JP2012245435A - Polymer flocculant - Google Patents

Polymer flocculant Download PDF

Info

Publication number
JP2012245435A
JP2012245435A JP2011117010A JP2011117010A JP2012245435A JP 2012245435 A JP2012245435 A JP 2012245435A JP 2011117010 A JP2011117010 A JP 2011117010A JP 2011117010 A JP2011117010 A JP 2011117010A JP 2012245435 A JP2012245435 A JP 2012245435A
Authority
JP
Japan
Prior art keywords
monomer
polymer flocculant
sludge
polymer
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011117010A
Other languages
Japanese (ja)
Inventor
Yusuke Mizuno
雄介 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP2011117010A priority Critical patent/JP2012245435A/en
Publication of JP2012245435A publication Critical patent/JP2012245435A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polymer flocculant which forms a coarse flock having an excellent stability in the treatment of sludge and wastewater, and whose flocculation treatment speed is fast.SOLUTION: The polymer flocculant includes a (co)polymer having 10 mol% or more of a constitutional unit that is comprised of a monomer (M1) shown by formula (1). In the formula, Ris a hydrogen atom or a methyl group, Ris an alkylene group of 1-10 carbon atoms, R-Rare each independently an alkyl group of 1-15 carbon atoms, and Zis Clor 1/2 SO.

Description

本発明は、高分子凝集剤に関する。更に詳しくは、フロックの粗大化に優れる高分子凝集剤に関する。   The present invention relates to a polymer flocculant. More specifically, the present invention relates to a polymer flocculant excellent in floc coarsening.

従来、下水及びし尿等の汚泥処理、一般産業廃水等の廃水処理、土木工事での泥水処理及び浚渫埋め立て時の泥水の沈降分離等に水溶性高分子が使用されてきた。例えば汚泥や廃水等の有機性汚泥の脱水に対しては、(メタ)アクリロイルオキシエチルトリメチルアンモウニウムクロライド重合物、アクリルアミド−アクリロイルオキシエチルトリメチルアンモニウムクロライド共重合物及びポリビニルアミジン等のカチオン性高分子凝集剤(例えば、特許文献1及び2参照)や、アクリルアミド−アクリル酸−(メタ)アクリロイルオキシエチルトリメチルアンモニウムクロライド共重合物等の両性高分子凝集剤(例えば、特許文献3参照)が使用できることが開示されている。   Conventionally, water-soluble polymers have been used for sludge treatment such as sewage and human waste, wastewater treatment such as general industrial wastewater, mud treatment in civil engineering, and sedimentation and separation of muddy water during reclamation. For example, for the dehydration of organic sludge such as sludge and wastewater, cationic polymers such as (meth) acryloyloxyethyltrimethylammonium chloride polymer, acrylamide-acryloyloxyethyltrimethylammonium chloride copolymer and polyvinylamidine An amphoteric polymer flocculant (for example, see Patent Document 3) such as a flocculant (for example, see Patent Documents 1 and 2) or an acrylamide-acrylic acid- (meth) acryloyloxyethyltrimethylammonium chloride copolymer can be used. It is disclosed.

また、廃水処理、或いは建設や浚渫埋め立て等の土木分野での使用を目的として、水溶性高分子に更に水溶性モノマーをグラフト重合させ、凝集密度を高めることを特徴としたアニオン性高分子凝集剤も開示されている(例えば、特許文献4及び5参照)。   Also, anionic polymer flocculants characterized by increasing the agglomeration density by graft polymerization of water-soluble monomers to water-soluble polymers for the purpose of wastewater treatment or civil engineering fields such as construction and reclamation Is also disclosed (see, for example, Patent Documents 4 and 5).

近年、特に有機性汚泥の脱水に関して、発生する汚泥量の増加から脱水処理速度の向上ニーズが高まっていることや、汚泥性状の難脱水化に伴う脱水ケーキの焼却処分費用の増大及び脱水ケーキをそのまま埋め立て処分する際の埋立地の逼迫した状況等から、より強く、粗大なフロックを形成させ、脱水時の含水率を大幅に低減することができる高分子凝集剤が望まれている。
しかし、上記従来技術の内、カチオン性高分子凝集剤及び両性高分子凝集剤は、フロックの凝集密度が低いという問題があり、また凝集密度を高めたとされる上記アニオン性高分子凝集剤は、グラフト重合が緻密に制御されておらず不溶化しやすいという問題があり、いずれも上記ニーズを満たすには至っていなかった。
In recent years, especially regarding the dewatering of organic sludge, the need for improving the dewatering rate has increased due to the increase in the amount of sludge generated, the increase in incineration disposal costs of dewatered cake due to the difficult dewatering of sludge properties, and the In view of the tightness of landfill sites when landfilled as it is, a polymer flocculant capable of forming stronger and coarser flocs and greatly reducing the water content during dehydration is desired.
However, among the above prior arts, the cationic polymer flocculant and the amphoteric polymer flocculant have a problem that the floc aggregation density is low, and the anionic polymer flocculant that is said to have increased the aggregation density is: There is a problem that the graft polymerization is not precisely controlled and easily insolubilized, and none of these have satisfied the above needs.

特開昭63−274409号公報JP 63-274409 A 特開2000−107513号公報JP 2000-107513 A 特開平3−189000Japanese Patent Laid-Open No. 3-189000 特開平6−254305JP-A-6-254305 特開平6−254306JP-A-6-254306

本発明は上記問題点に鑑みなされたものであり、本発明の目的は、汚泥や廃水の処理において安定性に優れる粗大なフロックを形成し、かつ、凝集処理速度の速い高分子凝集剤を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a polymer flocculant that forms a coarse floc that is excellent in stability in the treatment of sludge and wastewater and that has a high flocculation speed. There is to do.

本発明者は、上記の目的を達成すべく検討を行った結果、本発明に到達した。即ち、本発明は一般式(1)で示される単量体(M1)及び/又は一般式(2)で示される単量体(M2)からなる構成単位を10モル%以上有する(共)重合体からなる高分子凝集剤である。   The inventor of the present invention has reached the present invention as a result of studies to achieve the above object. That is, the present invention provides a (co) weight having 10 mol% or more of a structural unit composed of the monomer (M1) represented by the general formula (1) and / or the monomer (M2) represented by the general formula (2). It is a polymer flocculant made of coalescence.

Figure 2012245435
Figure 2012245435

[式中、R1は水素原子又はメチル基、R2は炭素数1〜10のアルキレン基、R3〜R5はそれぞれ独立に炭素数1〜15のアルキル基、Z-はCl-又は1/2SO4 2-を表す。] [Wherein, R 1 is a hydrogen atom or a methyl group, R 2 is an alkylene group having 1 to 10 carbon atoms, R 3 to R 5 are each independently an alkyl group having 1 to 15 carbon atoms, Z is Cl or 1 / 2SO 4 2- represents. ]

Figure 2012245435
Figure 2012245435

[式中、R6は水素原子又はメチル基、R7及びR8はそれぞれ独立に炭素数1〜10のアルキレン基、R9〜R13はそれぞれ独立に炭素数1〜15のアルキル基、Z-はCl-又は1/2SO4 2-を表す。] [Wherein, R 6 is a hydrogen atom or a methyl group, R 7 and R 8 are each independently an alkylene group having 1 to 10 carbon atoms, R 9 to R 13 are each independently an alkyl group having 1 to 15 carbon atoms, Z - is Cl - represents a or 1 / 2SO 4 2-. ]

本発明の高分子凝集剤は、汚泥や廃水の処理において強固で粗大なフロックを形成するため、形成されたフロックは破壊及び再分散しにくく、凝集処理速度を著しく高めることできる。   Since the polymer flocculant of the present invention forms strong and coarse flocs in the treatment of sludge and wastewater, the formed flocs are difficult to break and re-disperse, and the flocculant treatment rate can be significantly increased.

本発明の高分子凝集剤は、一般式(1)で示される単量体(M1)及び/又は一般式(2)で示される単量体(M2)からなる構成単位を10モル%以上有する(共)重合体からなることを特徴とする。   The polymer flocculant of the present invention has 10% by mole or more of structural units composed of the monomer (M1) represented by the general formula (1) and / or the monomer (M2) represented by the general formula (2). It is characterized by comprising a (co) polymer.

Figure 2012245435
Figure 2012245435

一般式(1)におけるR1は水素原子又はメチル基、R2は炭素数1〜10のアルキレン基、R3〜R5はそれぞれ独立に炭素数1〜15のアルキル基、Z-はCl-又は1/2SO4 2-を表す。 In general formula (1), R 1 is a hydrogen atom or a methyl group, R 2 is an alkylene group having 1 to 10 carbon atoms, R 3 to R 5 are each independently an alkyl group having 1 to 15 carbon atoms, and Z is Cl −. Or represents 1 / 2SO 4 2- .

凝集性能(特にフロックの粗大化)の観点からR1、R3、R4及びR5はメチル基、R2はエチレン基、Z-はCl-であることが好ましい。 From the viewpoint of aggregation performance (particularly floc coarsening), R 1 , R 3 , R 4 and R 5 are preferably methyl groups, R 2 is an ethylene group, and Z is Cl .

Figure 2012245435
Figure 2012245435

一般式(2)における、R6は水素原子又はメチル基、R7及びR8はそれぞれ独立に炭素数1〜10のアルキレン基、R9〜R13はそれぞれ独立に炭素数1〜15のアルキル基、Z-はCl-又は1/2SO4 2-を表す。 In general formula (2), R 6 is a hydrogen atom or a methyl group, R 7 and R 8 are each independently an alkylene group having 1 to 10 carbon atoms, and R 9 to R 13 are each independently an alkyl group having 1 to 15 carbon atoms. group, Z - is Cl - represents a or 1 / 2SO 4 2-.

凝集性能(特にフロックの粗大化)の観点からR6及びR9〜R13はメチル基、R7及びR8はエチレン基、Z-はCl-であることが好ましい。 From the viewpoint of aggregating performance (particularly floc coarsening), R 6 and R 9 to R 13 are preferably methyl groups, R 7 and R 8 are ethylene groups, and Z is Cl .

単量体(M1)及び単量体(M2)は、1種を単独で用いても、2種以上を併用してもよい。   A monomer (M1) and a monomer (M2) may be used individually by 1 type, or may use 2 or more types together.

本発明の高分子凝集剤を構成する重合体は、単量体(M1)若しくは単量体(M2)の単独重合体又は単量体(M1)及び単量体(M2)の共重合体でもよいし、単量体(M1)及び/又は単量体(M2)とその他の単量体との共重合体であってもよい。   The polymer constituting the polymer flocculant of the present invention may be a monomer (M1) or a homopolymer of monomer (M2) or a copolymer of monomer (M1) and monomer (M2). It may be a monomer (M1) and / or a copolymer of the monomer (M2) and another monomer.

その他の単量体としては、非イオン性単量体、アニオン性単量体及びカチオン性単量体が挙げられる。   Examples of other monomers include nonionic monomers, anionic monomers, and cationic monomers.

非イオン性単量体としては、20℃での水への溶解度が10以上の親水性単量体(アクリルアミド、アクリロニトリル及びビニルピロリドン等)、及び20℃での水への溶解度が10未満の疎水性単量体[炭素数4〜30の(シクロ)アルキル(メタ)アクリレート等、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ラウリル(メタ)アクリレート、オクタデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート及びシクロオクチル(メタ)アクリレート]が挙げられる。   Nonionic monomers include hydrophilic monomers (acrylamide, acrylonitrile, vinylpyrrolidone, etc.) having a solubility in water at 20 ° C. of 10 or more, and hydrophobicity having a solubility in water at 20 ° C. of less than 10. Monomer [C4-C30 (cyclo) alkyl (meth) acrylate, etc., for example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate), octadecyl (meth) ) Acrylate, cyclohexyl (meth) acrylate and cyclooctyl (meth) acrylate].

アニオン性単量体としては、アクリル酸(塩)、アクリルアミドメチルプロパンスルホン酸(塩)及びイタコン酸(塩)等が挙げられ、アニオン性単量体が塩を形成する際のカチオンとしては、アルカリ金属カチオン及び低級アミニウムカチオン等が挙げられる。   Examples of the anionic monomer include acrylic acid (salt), acrylamidomethylpropanesulfonic acid (salt), and itaconic acid (salt). The cation used when the anionic monomer forms a salt includes alkali. Examples include metal cations and lower aminium cations.

カチオン性単量体としては、(メタ)アクリロイルオキシエチルトリメチルアンモニウムクロライド、(メタ)アクリロイルオキシエチルジメチルベンジルアンモニウムクロライド及びジメチルジアリルアンモニウムメチルサルフェート等が挙げられる。   Examples of the cationic monomer include (meth) acryloyloxyethyltrimethylammonium chloride, (meth) acryloyloxyethyldimethylbenzylammonium chloride, dimethyldiallylammonium methylsulfate, and the like.

これらの内、凝集性能の観点から好ましいのは、アクリルアミド、アクリロニトリル、アクリル酸、(メタ)アクリロイルオキシエチルトリメチルアンモニウムクロライド、更に好ましいのは、アクリルアミド及び(メタ)アクリロイルオキシエチルトリメチルアンモニウムクロライドである。   Among these, acrylamide, acrylonitrile, acrylic acid, (meth) acryloyloxyethyltrimethylammonium chloride are preferable from the viewpoint of aggregation performance, and acrylamide and (meth) acryloyloxyethyltrimethylammonium chloride are more preferable.

その他の単量体は、1種を単独で用いても、2種以上を併用してもよい。   Other monomers may be used alone or in combination of two or more.

単量体(M1)及び/又は単量体(M2)とその他の単量体とを共重合する場合、全単量体に対する単量体(M1)及び/又は単量体(M2)の量は、凝集性能(特にフロックの粗大化)の観点から、通常10モル%以上、好ましくは50モル%以上である。   When copolymerizing the monomer (M1) and / or the monomer (M2) and other monomers, the amount of the monomer (M1) and / or the monomer (M2) relative to the total monomers From the viewpoint of agglomeration performance (particularly floc coarsening), it is usually at least 10 mol%, preferably at least 50 mol%.

本発明の高分子凝集剤の形態は特に限定されず、粉末状、フィルム状、水溶液状、w/oエマルション状又は懸濁液状等の任意の形態をとることができる。   The form of the polymer flocculant of the present invention is not particularly limited, and can take any form such as powder, film, aqueous solution, w / o emulsion, or suspension.

本発明の高分子凝集剤は、公知の方法、例えば水溶液重合、水と有機溶剤を用いた乳化重合、懸濁重合等により製造できる。
水溶液重合の場合、単量体濃度が10〜80重量%となるように単量体水溶液として系内を不活性ガスで置換した後、公知の重合触媒[例えば過硫酸アンモニウム及び過硫酸カリウム等の過硫酸塩;ベンゾイルパーオキシド等の有機過酸化物;2,2’−アゾビス−(アミジノプロパン)ハイドロクロライド及びアゾビスシアノバレリン酸等のアゾ系化合物;レドックス触媒等]を加え20〜100℃程度で数時間重合を行う。また、光増感剤を加えた後、紫外線等を照射してもよい。
The polymer flocculant of the present invention can be produced by a known method such as aqueous solution polymerization, emulsion polymerization using water and an organic solvent, suspension polymerization and the like.
In the case of aqueous solution polymerization, after replacing the interior of the system with an inert gas so that the monomer concentration becomes 10 to 80% by weight, a known polymerization catalyst [for example, a catalyst such as ammonium persulfate and potassium persulfate is added. Sulfates; organic peroxides such as benzoyl peroxide; azo compounds such as 2,2′-azobis- (amidinopropane) hydrochloride and azobiscyanovaleric acid; redox catalysts, etc.] at about 20-100 ° C. Polymerize for several hours. Moreover, after adding a photosensitizer, you may irradiate an ultraviolet-ray etc.

本発明の高分子凝集剤の使用量は、汚泥又は廃水の種類、懸濁している粒子の大きさ等により異なるが、汚泥等中の蒸発残留物重量(以下、TSと略記)に基づいて、通常0.01〜10%、凝集性能の観点から好ましい下限は0.1%、更に好ましくは0.5%、特に好ましくは1%、処理費用の観点から好ましい上限は5%、更に好ましくは3%、特に好ましくは2%である。   The amount of the polymer flocculant of the present invention varies depending on the type of sludge or waste water, the size of suspended particles, etc., but based on the weight of evaporation residue in sludge and the like (hereinafter abbreviated as TS), Usually 0.01 to 10%, and the lower limit preferable from the viewpoint of aggregation performance is 0.1%, more preferably 0.5%, particularly preferably 1%, and the upper limit preferable from the viewpoint of processing cost is 5%, more preferably 3%. %, Particularly preferably 2%.

本発明の高分子凝集剤は、必要により、他の凝集剤と併用してもよい。他の凝集剤としては、メタクリロイルオキシエチルトリメチルアンモニウムクロライド重合物、アクリルアミド−アクリロイルオキシエチルトリメチルアンモニウムクロライド共重合物、アクリルアミド−アクリロイルオキシエチルトリメチルアンモニウムクロライド共重合物及びビニルアミジン重合体等のカチオン性高分子凝集剤;アクリルアミド−アクリル酸ソーダ共重合物等のアニオン性高分子凝集剤;アクリルアミド−アクリル酸−アクリロイルオキシエチルトリメチルアンモニウムクロライド共重合物等の両性高分子凝集剤等が挙げられる。   The polymer flocculant of the present invention may be used in combination with other flocculants as necessary. Other flocculants include cationic polymers such as methacryloyloxyethyltrimethylammonium chloride polymer, acrylamide-acryloyloxyethyltrimethylammonium chloride copolymer, acrylamide-acryloyloxyethyltrimethylammonium chloride copolymer, and vinylamidine polymer. Flocculants; Anionic polymer flocculants such as acrylamide-sodium acrylate copolymer; Amphoteric polymer flocculants such as acrylamide-acrylic acid-acryloyloxyethyltrimethylammonium chloride copolymer.

本発明の高分子凝集剤を汚泥又は廃水に添加して使用する際は、汚泥又は廃水によっては、硫酸バンド、ポリ塩化アルミニウム、塩化第二鉄、硫酸第二鉄、ポリ硫酸鉄及び消石灰等の無機凝結剤及び/又はアニリン−ホルムアルデヒド重縮合物塩酸塩、ポリビニルベンジルトリメチルアンモニウムクロライド及びジ(メタ)アリルジメチルアンモニウムクロライド等の有機凝結剤を併用してもよい。併用する場合は、高分子凝集剤に予め添加してもよいし、汚泥又は廃水に予め無機凝結剤及び/又は有機凝結剤を添加し、一次凝集させた後、高分子凝集剤を添加してもよい。
無機凝結剤及び/又は有機凝結剤を使用する際の添加量は、汚泥又は廃水の種類、懸濁している粒子の大きさ及び用いる凝結剤の種類等によって異なるが、汚泥又は廃水中のTSに基づいて、無機凝結剤は通常20重量%以下、凝集性能の観点から好ましくは0.5〜10重量%、更に好ましくは1〜8重量%、特に好ましくは3〜5重量%であり、有機凝結剤は通常1重量%以下、凝集性能の観点から好ましくは0.01〜0.5重量%、更に好ましくは0.025〜0.2重量%、特に好ましくは0.05〜0.15重量%である。
When the polymer flocculant of the present invention is used by adding it to sludge or wastewater, depending on the sludge or wastewater, sulfate band, polyaluminum chloride, ferric chloride, ferric sulfate, polyiron sulfate, slaked lime, etc. An inorganic coagulant and / or an organic coagulant such as aniline-formaldehyde polycondensate hydrochloride, polyvinylbenzyltrimethylammonium chloride and di (meth) allyldimethylammonium chloride may be used in combination. When using in combination, it may be added in advance to the polymer flocculant, or after adding an inorganic coagulant and / or an organic coagulant to sludge or wastewater in advance to cause primary aggregation, the polymer coagulant is added. Also good.
The amount of inorganic coagulant and / or organic coagulant added varies depending on the type of sludge or waste water, the size of suspended particles and the type of coagulant used, etc. The inorganic coagulant is usually 20% by weight or less, preferably from 0.5 to 10% by weight, more preferably from 1 to 8% by weight, particularly preferably from 3 to 5% by weight from the viewpoint of aggregation performance. The agent is usually 1% by weight or less, preferably from 0.01 to 0.5% by weight, more preferably from 0.025 to 0.2% by weight, particularly preferably from 0.05 to 0.15% by weight, from the viewpoint of aggregation performance. It is.

上記の処理方法により形成されたフロック状の汚泥の脱水方法(固液分離法)としては、例えばろ過装置(膜又はカラムろ過装置等)、濃縮装置(重力、遠心、加圧浮上又は造粒濃縮装置等)及び脱水装置(遠心脱水装置、ベルトプレス、フィルタープレス、スクリュープレス及び真空脱水装置等)を用いる方法が挙げられる。これらの内、本発明の高分子凝集剤の優れた凝集性能発現の観点から好ましいのは、濃縮装置又は脱水装置を用いる方法、更に好ましいのは遠心、ベルトプレス、フィルタープレス又はスクリュープレス脱水装置を用いる方法である。   Examples of the dehydration method (solid-liquid separation method) of floc sludge formed by the above processing method include a filtration device (membrane or column filtration device), a concentration device (gravity, centrifugation, pressurized flotation or granulation concentration). And the like, and a method using a dehydrator (such as a centrifugal dehydrator, a belt press, a filter press, a screw press, and a vacuum dehydrator). Among these, from the viewpoint of the excellent aggregation performance of the polymer flocculant of the present invention, a method using a concentrator or a dehydrator is preferable, and a centrifugal, belt press, filter press or screw press dehydrator is more preferable. This method is used.

以下、実施例により本発明を更に説明するが、本発明はこれに限定されるものではない。尚、実施例中の部は重量部、%は重量%を示す。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited to this. In addition, the part in an Example shows a weight part and% shows weight%.

製造例1
反応容器に、1−(2−ヒドロキシエチル)−4−メチルピペラジン144部、ハイドロキノン1部、テトラヒドロフラン200部を仕込み、空気をバブリングしながら80℃に加熱し、メタクリル酸クロライド115部を1時間かけてゆっくりと滴下した。滴下終了後更に1時間反応させた。反応後、室温まで冷却し、水100部を加え、振盪後分液し、有機層から減圧下に溶媒を除去して、中間体202部を得た。
反応容器に得られた中間体200部と水200部を仕込み、撹拌下にメチルクロライド105部を40℃で吹き込み、上記一般式(1)においてR1及びR3〜R5がメチル基、R2がエチレン基、Z-がCl-である単量体の水溶液(M−1) 495部を得た。単量体水溶液(M−1)の単量体濃度は60%であった。
Production Example 1
A reaction vessel was charged with 144 parts of 1- (2-hydroxyethyl) -4-methylpiperazine, 1 part of hydroquinone, and 200 parts of tetrahydrofuran, heated to 80 ° C. while bubbling air, and 115 parts of methacrylic acid chloride was added over 1 hour. And slowly dropped. After completion of the dropwise addition, the reaction was further continued for 1 hour. After the reaction, the reaction solution was cooled to room temperature, 100 parts of water was added, and the mixture was separated after shaking, and the solvent was removed from the organic layer under reduced pressure to obtain 202 parts of an intermediate.
200 parts of the intermediate obtained in the reaction vessel and 200 parts of water are charged, and 105 parts of methyl chloride are blown at 40 ° C. with stirring. In the above general formula (1), R 1 and R 3 to R 5 are methyl groups, R 495 parts of an aqueous monomer solution (M-1) in which 2 is an ethylene group and Z is Cl are obtained. The monomer concentration of the monomer aqueous solution (M-1) was 60%.

製造例2
1−(2−ヒドロキシエチル)−4−メチルピペラジン144部を3,6−ジメチル−3,6−ジアザヘプタン−1−オール146部に代えた以外は製造例1と同様にして、上記一般式(2)においてR6及びR9〜R13がメチル基、R7及びR8がエチレン基、Z-がCl-である単量体の水溶液(M−2)を得た。単量体水溶液(M−2)の単量体濃度は60%であった。
Production Example 2
In the same manner as in Production Example 1 except that 144 parts of 1- (2-hydroxyethyl) -4-methylpiperazine was replaced with 146 parts of 3,6-dimethyl-3,6-diazaheptan-1-ol, the above general formula ( In 2), an aqueous monomer solution (M-2) in which R 6 and R 9 to R 13 are methyl groups, R 7 and R 8 are ethylene groups, and Z is Cl is obtained. The monomer concentration of the aqueous monomer solution (M-2) was 60%.

実施例1〜4及び比較例1
撹拌機を備えた反応容器に表1に記載の処方に基づいて単量体又は単量体水溶液を仕込み、更に単量体の濃度が34%となる量の水を加え、均一に撹拌した。撹拌下、単量体水溶液のpH(20℃)を硫酸で3.3に調整した。
次に系内を窒素で充分に置換した後40℃に昇温し、ラジカル重合用連鎖移動剤としてのトリエチレングリコールジチオールの2%メタノール溶液0.1部、重合開始剤としての2,2’−アゾビス(2−アミジノプロパン)二塩酸塩の10%水溶液1部及び過酸化水素の0.1%水溶液1部、酸化還元剤としてのアスコルビン酸の0.15%水溶液1部及び硫酸第一鉄の0.05%水溶液1部を加えて撹拌後、溶液温度40〜50℃で10時間重合を行い、更に70℃に昇温して1時間熟成し重合を完結した。その後、内容物を取り出し、直径約5mmのミンチ状に細断し、80℃の熱風で2時間乾燥後、粉砕して、体積平均粒子径1,000μmの粉末状の高分子凝集剤を得た。
Examples 1 to 4 and Comparative Example 1
A monomer or an aqueous monomer solution was charged into a reaction vessel equipped with a stirrer based on the formulation shown in Table 1, and water was added in an amount such that the monomer concentration was 34%, and the mixture was stirred uniformly. Under stirring, the pH (20 ° C.) of the aqueous monomer solution was adjusted to 3.3 with sulfuric acid.
Next, after sufficiently replacing the system with nitrogen, the temperature was raised to 40 ° C., 0.1 part of a 2% methanol solution of triethylene glycol dithiol as a chain transfer agent for radical polymerization, and 2,2 ′ as a polymerization initiator. -1 part of a 10% aqueous solution of azobis (2-amidinopropane) dihydrochloride and 1 part of a 0.1% aqueous solution of hydrogen peroxide, 1 part of a 0.15% aqueous solution of ascorbic acid as redox agent and ferrous sulfate After adding 1 part of a 0.05% aqueous solution and stirring, polymerization was performed at a solution temperature of 40 to 50 ° C. for 10 hours, and the temperature was further raised to 70 ° C. for aging for 1 hour to complete the polymerization. Thereafter, the contents were taken out, chopped into minced shapes having a diameter of about 5 mm, dried with hot air at 80 ° C. for 2 hours, and then pulverized to obtain a powdery polymer flocculant having a volume average particle size of 1,000 μm. .

尚、表1におけるDAMQはN,N−ジメチルアミノエチルメタクリレートのメチルクロライド4級アンモニウム塩、MMAはメチルメタクリレートである。   In Table 1, DAMQ is methyl chloride quaternary ammonium salt of N, N-dimethylaminoethyl methacrylate, and MMA is methyl methacrylate.

得られた高分子凝集剤及び下水処理場で採取した汚泥(pH6.3、TS1.5%、有機分84%)を用いて、以下の評価方法によりフロック粒径、フロック強度及び脱水ケーキ含水率を評価した。結果を表1に示す。
尚、汚泥中のTS及び有機分(強熱減量)は、下水試験方法(日本下水道協会、1984年度版)記載の分析方法に準じて行った。
Using the obtained polymer flocculant and sludge collected at a sewage treatment plant (pH 6.3, TS 1.5%, organic content 84%), floc particle size, floc strength and moisture content of dehydrated cake were evaluated by the following evaluation methods. Evaluated. The results are shown in Table 1.
In addition, TS and organic content (ignition loss) in sludge were performed according to the analysis method described in the sewage test method (Japan Sewerage Association, 1984 version).

<フロック粒径>
500mLビーカーに汚泥200gを採取し、ジャーテスター(型式「JMD−6HS−A」:宮本理研工業株式会社製)の撹拌棒に板状の塩ビ製撹拌羽根(羽根幅5cm、高さ2cm、厚さ0.2cm)2枚を撹拌棒の軸の延長上から見て十字になるように、かつ撹拌羽根の間隔(中心部同士の間隔)が5cmとなるように撹拌棒に取り付けた撹拌装置を用いて、回転数120rpmで汚泥を撹拌しながら、予め水499gに固形分で1.0gの高分子凝集剤を完全に溶解させた0.2重量%高分子凝集剤水溶液13gを注射器等で一気に添加し、30秒間撹拌を継続した後、撹拌を止めて形成されたフロックの大きさ(回転数120rpmでのフロック粒径)を目視にて素早く観察する。続いて回転数300rpmで、更に30秒間撹拌した後、撹拌を止めて形成されたフロックの大きさ(回転数300rpmでのフロック粒径)を再度目視にて観察する。
<Flock particle size>
200 g of sludge was collected in a 500 mL beaker, and a plate-like PVC stirring blade (blade width 5 cm, height 2 cm, thickness) on a stirring bar of a jar tester (model “JMD-6HS-A” manufactured by Miyamoto Riken Kogyo Co., Ltd.) 0.2 cm) using a stirrer attached to the stirrer so that the two pieces look like a cross when viewed from the extension of the shaft of the stirrer and the distance between the stirring blades (interval between the central portions) is 5 cm Then, while stirring the sludge at a rotation speed of 120 rpm, 13 g of 0.2 wt% polymer flocculant aqueous solution in which 1.0 g of the polymer flocculant was completely dissolved in 499 g of water in advance was added at once with a syringe or the like. Then, after stirring is continued for 30 seconds, the size of the floc formed by stopping the stirring (floc particle diameter at 120 rpm) is quickly observed visually. Subsequently, after further stirring for 30 seconds at a rotational speed of 300 rpm, the size of the floc formed by stopping the stirring (the floc particle diameter at a rotational speed of 300 rpm) is again visually observed.

<フロック強度>
上記の回転数120rpm及び300rpmでのフロック粒径を比較し、フロック粒径の変化からフロック強度を下記の基準に従って評価する。
◎:非常に強固(粒径に変化なし)
○:強固(ごく一部細分化)
×:弱い(全体的に細分化)
<Flock strength>
The floc particle diameters at the rotation speeds of 120 rpm and 300 rpm are compared, and the floc strength is evaluated from the change of the floc particle diameter according to the following criteria.
A: Very strong (no change in particle size)
○: Strong (partially subdivided)
×: weak (overall segmentation)

<脱水ケーキ含水率>
ナイロン製ろ布を敷いたヌッチェを300mLメスシリンダー上にセットし、上記フロック粒径評価後の汚泥を漏斗上に一気に投入して濾過する。得られた濾過板上の汚泥の一部をスパーテルで採取して、プレスフィルター脱水試験機を用いて脱水(プレス圧1kg/cm2、プレス時間60秒)し、脱水ケーキ約3gをシャーレ(直径70mm、深さ10mm)に精秤[この重量を(W1)とする]して、循風乾燥機中で105±5℃で8時間乾燥させた後、シャーレに残った乾燥ケーキの重量(W2)を測定して、次式から脱水ケーキ含水率を算出する。
脱水ケーキ含水率(%)={(W1)−(W2)}×100/(W1)
<Dehydrated cake moisture content>
A Nutsche laid with a nylon filter cloth is set on a 300 mL graduated cylinder, and the sludge after the above floc particle size evaluation is put on the funnel at a stretch and filtered. Part of the sludge on the obtained filter plate was collected with a spatula and dehydrated using a press filter dehydration tester (pressing pressure 1 kg / cm 2 , pressing time 60 seconds), and about 3 g of dehydrated cake was collected in a petri dish (diameter 70 mm, depth 10 mm) (weigh this weight as (W1)), dried in a circulating drier at 105 ± 5 ° C. for 8 hours, and then the weight of the dry cake remaining in the petri dish (W2 ) And the moisture content of the dehydrated cake is calculated from the following equation.
Dehydrated cake moisture content (%) = {(W1) − (W2)} × 100 / (W1)

Figure 2012245435
Figure 2012245435

本発明の高分子凝集剤は、従来にない高いフロック強度及びフロックの粗大化を示すことから、汚泥又は廃水等の処理で生じた有機性汚泥又は無機性汚泥の脱水処理用高分子凝集剤として用いることができ、特に有機性汚泥の脱水処理用として好適である。   Since the polymer flocculant of the present invention exhibits unprecedented high floc strength and floc coarsening, the polymer flocculant for dehydration treatment of organic sludge or inorganic sludge generated by treatment of sludge or waste water, etc. It can be used and is particularly suitable for dehydration treatment of organic sludge.

Claims (2)

一般式(1)で示される単量体(M1)及び/又は一般式(2)で示される単量体(M2)からなる構成単位を10モル%以上有する(共)重合体からなる高分子凝集剤。
Figure 2012245435
[式中、R1は水素原子又はメチル基、R2は炭素数1〜10のアルキレン基、R3〜R5はそれぞれ独立に炭素数1〜15のアルキル基、Z-はCl-又は1/2SO4 2-を表す。]
Figure 2012245435
[式中、R6は水素原子又はメチル基、R7及びR8はそれぞれ独立に炭素数1〜10のアルキレン基、R9〜R13はそれぞれ独立に炭素数1〜15のアルキル基、Z-はCl-又は1/2SO4 2-を表す。]
A polymer comprising a (co) polymer having 10 mol% or more of a structural unit comprising the monomer (M1) represented by the general formula (1) and / or the monomer (M2) represented by the general formula (2). Flocculant.
Figure 2012245435
[Wherein, R 1 is a hydrogen atom or a methyl group, R 2 is an alkylene group having 1 to 10 carbon atoms, R 3 to R 5 are each independently an alkyl group having 1 to 15 carbon atoms, Z is Cl or 1 / 2SO 4 2- represents. ]
Figure 2012245435
[Wherein, R 6 is a hydrogen atom or a methyl group, R 7 and R 8 are each independently an alkylene group having 1 to 10 carbon atoms, R 9 to R 13 are each independently an alkyl group having 1 to 15 carbon atoms, Z - is Cl - represents a or 1 / 2SO 4 2-. ]
前記一般式(1)におけるR1及びR3〜R5がメチル基、R2がエチレン基、Z-がCl-であり、前記一般式(2)におけるR6及びR9〜R13がメチル基、R7及びR8がエチレン基、Z-がCl-である請求項1記載の高分子凝集剤。 R 1 and R 3 to R 5 in the general formula (1) are methyl groups, R 2 is an ethylene group, Z is Cl , and R 6 and R 9 to R 13 in the general formula (2) are methyl group, R 7 and R 8 is an ethylene group, Z - is Cl - polymer flocculant according to claim 1, wherein the.
JP2011117010A 2011-05-25 2011-05-25 Polymer flocculant Withdrawn JP2012245435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011117010A JP2012245435A (en) 2011-05-25 2011-05-25 Polymer flocculant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011117010A JP2012245435A (en) 2011-05-25 2011-05-25 Polymer flocculant

Publications (1)

Publication Number Publication Date
JP2012245435A true JP2012245435A (en) 2012-12-13

Family

ID=47466425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011117010A Withdrawn JP2012245435A (en) 2011-05-25 2011-05-25 Polymer flocculant

Country Status (1)

Country Link
JP (1) JP2012245435A (en)

Similar Documents

Publication Publication Date Title
US6617402B2 (en) Polymer flocculants with improved dewatering characteristics
JP4857170B2 (en) Cationic polymer flocculant and sludge treatment method using the same
WO2013153004A1 (en) New cationic polymers
JP4126931B2 (en) Polymer flocculant and sludge dewatering method
JP5700354B2 (en) Sludge dewatering agent and sludge dewatering treatment method
US9321869B2 (en) Cationic polymers
JP5649279B2 (en) Dewatering method for sewage digested sludge
US20030042209A1 (en) Polymeric flocculant and method of sludge dehydration
JP2013215708A (en) Amphoteric water-soluble polymer flocculant and method for dehydrating sludge by using the same
JP6486006B2 (en) Polymer flocculant and sludge dewatering method using the same
JP2007268414A (en) Dehydration method of organic sludge
CN106170502B (en) water-soluble cross-linked block copolymer
JP2012245435A (en) Polymer flocculant
WO2008047739A1 (en) Method of dewatering sewage sludge
JP2017100111A (en) Cross-linking type polymer coagulant, manufacturing method of the same and waste water treating method using the same
JP2017000914A (en) Polymer flocculant, method for production thereof, and dewatering method for sludge using the flocculant
JPH08243600A (en) Polymer flocculant
CN106496404B (en) Polyacrylate polymer dispersion liquid
JP2002097236A (en) Production method of block copolymer, polymeric coagulant having the same copolymer and dewatering method of sludge
JP3740423B2 (en) Method for treating waste liquid containing emulsion polymerization polymer
JP4109145B2 (en) Polymer flocculant and method for producing the same
JP3260729B2 (en) Polymer flocculant
JP4396185B2 (en) Composition
JP6612630B2 (en) Polymer flocculant composition, method for producing the same, and sludge dewatering method using the polymer flocculant composition
JP5878409B2 (en) Wastewater treatment method using organic coagulant

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805