JP2012243704A - Induction heating cooker - Google Patents

Induction heating cooker Download PDF

Info

Publication number
JP2012243704A
JP2012243704A JP2011115498A JP2011115498A JP2012243704A JP 2012243704 A JP2012243704 A JP 2012243704A JP 2011115498 A JP2011115498 A JP 2011115498A JP 2011115498 A JP2011115498 A JP 2011115498A JP 2012243704 A JP2012243704 A JP 2012243704A
Authority
JP
Japan
Prior art keywords
heating
diameter
pan
temperature
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011115498A
Other languages
Japanese (ja)
Inventor
Masayo Haji
雅代 土師
Sunao Okuda
直 奥田
Takeshi Kitaizumi
武 北泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011115498A priority Critical patent/JP2012243704A/en
Publication of JP2012243704A publication Critical patent/JP2012243704A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an induction heating cooker which properly controls a heating power when cooking a cooking object, especially when boiling noodles, without causing boiling over.SOLUTION: An induction heating cooker comprises a heating coil 3 heating a pan 1 as a heating object, a high-frequency inverter 4 supplying a current to the heating coil 3, a top plate 2 arranged on the heating coil 3 and on which the pan 1 is placed, infrared detection means 5 arranged below the top plate 2 for detecting infrared irradiated from a bottom face of the pan 1, temperature detection means 6 detecting a temperature of the pan 1 based on an output of the infrared detection means 5, diameter determination means 7 determining a diameter of the pan 1 based on output characteristics of the high-frequency inverter 4, and control means 8 controlling heating based on an output of the temperature detection means 6. The control means 8 decreases a thermal dose when it is detected that a temperature in the pan 1 reaches a boiling temperature. At this time, the control means 8 decreases a degree of decrement of the thermal dose in the case where the determined diameter of the pan 1 is large, and increases the degree of decrement of the thermal dose in the case where the diameter of the pan 1 is small. Accordingly, the heating power can be properly controlled regardless of a shape of the pan 1.

Description

本発明は、調理物、特に麺を茹でる時に火力を適正に制御して吹きこぼれることなく調理することができる誘導加熱調理器に関するものである。   TECHNICAL FIELD The present invention relates to an induction heating cooker that can cook without spilling by properly controlling the heating power when cooking food, particularly noodles.

従来の調理器は、鍋底の温度センサより鍋内の温度を測定して麺茹で時に吹きこぼれないように火力制御を行っていた(例えば、特許文献1参照)。   The conventional cooking device measures the temperature in the pan from the temperature sensor at the bottom of the pan, and controls the thermal power so that it does not spill out occasionally with the noodle bowl (see, for example, Patent Document 1).

特開平10−155659号公報Japanese Patent Laid-Open No. 10-155659

しかしながら、前記従来の方法では加熱対象物としての鍋の形状を考慮していないため、十分な加熱量が供給できなかったり、逆に加熱量が多すぎて吹きこぼれさせることがあった。また、鍋に調理物が投入されたタイミングをすばやく検知できないために精度良く火力制御を行えないという課題があった。   However, since the conventional method does not consider the shape of the pan as a heating object, a sufficient amount of heating cannot be supplied, or conversely, the amount of heating is too large to cause spillage. Moreover, since the timing when the food was put into the pan could not be detected quickly, there was a problem that the thermal power control could not be performed with high accuracy.

本発明は、前記従来の課題を解決するもので、加熱対象物の特性を考慮して最適な火力制御を実現することができる誘導加熱調理器を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing the induction heating cooking appliance which can implement | achieve optimal thermal-power control in consideration of the characteristic of a heating target object.

前記従来の課題を解決するために、本発明の誘導加熱調理器は、加熱対象物を加熱する加熱コイルと、前記加熱コイルに電流を供給する高周波インバータと、前記加熱コイルの上部に設置され加熱対象物が載置される天板と、前記天板の下に設置され前記加熱対象物の底面から放射される赤外線を検知する赤外線検出手段と、前記赤外線検出手段の出力から加熱対象物の温度を検知する温度検知手段と、前記高周波インバータの出力特性より加熱対象物の径を判定する径判定手段と、温度検知手段の出力より加熱を制御する制御手段を有し、前記制御手段は加熱対象物内の温度が沸騰温度に到達したことを検知した時には加熱量を減少させる。この時、判定した加熱対象物の径が大きい場合には減少させる加熱量を小さくし、加熱対象物の径が小さい場合には減少させる加熱量を大きくして沸騰維持時に最適な加熱量を供給することができる。また、加熱対象物の径に応じた判定値以上に温度が低下した場合には調理物が投入されたと判断することによって、最適なタイミングで供給する加熱量を増加させることができ、さらには加熱対象物の径に応じた判定値以上に温度が上昇した場合には調理物投入前の加熱量にて制御することによって余分な加熱量や吹きこぼれを抑制することが出来る。   In order to solve the conventional problems, an induction heating cooker according to the present invention includes a heating coil for heating an object to be heated, a high-frequency inverter for supplying current to the heating coil, and a heating coil installed on the heating coil. A top plate on which the object is placed, infrared detection means for detecting infrared rays radiated from the bottom surface of the heating object installed under the top board, and the temperature of the heating object from the output of the infrared detection means Temperature detecting means for detecting the temperature, diameter determining means for determining the diameter of the object to be heated from the output characteristics of the high frequency inverter, and control means for controlling the heating based on the output of the temperature detecting means, the control means being the object to be heated When it is detected that the temperature inside the object has reached the boiling temperature, the heating amount is decreased. At this time, when the determined diameter of the heating object is large, the heating amount to be reduced is reduced, and when the diameter of the heating object is small, the heating amount to be decreased is increased to supply the optimum heating amount when maintaining boiling. can do. In addition, when the temperature falls below a determination value corresponding to the diameter of the object to be heated, it is possible to increase the amount of heating to be supplied at an optimum timing by determining that the cooked food has been added, and further When the temperature rises above a determination value corresponding to the diameter of the object, an excessive amount of heating or spilling can be suppressed by controlling with the amount of heating before the food is added.

本発明の誘導加熱調理器は、加熱対象物の特性を考慮して火力制御できるため、麺などの調理物を茹でる時に過不足なく必要な加熱量を供給することができ、また吹きこぼれを抑制することができる。   Since the induction heating cooker of the present invention can control the heating power in consideration of the characteristics of the object to be heated, it can supply the necessary amount of heating without excess or deficiency when cooking food such as noodles and suppresses spillage. be able to.

本発明の実施の形態1における誘導加熱調理器の構成を示すブロック図The block diagram which shows the structure of the induction heating cooking appliance in Embodiment 1 of this invention. 本発明の実施の形態1における制御手段での処理内容を示す流れ図The flowchart which shows the processing content in the control means in Embodiment 1 of this invention 本発明の実施の形態2における動作周波数と入力電流の関係を示すグラフThe graph which shows the relationship between the operating frequency and input current in Embodiment 2 of this invention 本発明の実施の形態2における径判定手段での処理内容を示す流れ図The flowchart which shows the processing content in the diameter determination means in Embodiment 2 of this invention 本発明の実施の形態3における入力電流とコイル電流の関係を示すグラフThe graph which shows the relationship between the input current and coil current in Embodiment 3 of this invention 本発明の実施の形態3における径判定手段での処理内容を示す流れ図The flowchart which shows the processing content in the diameter determination means in Embodiment 3 of this invention 本発明の実施の形態4におけるコイル電流とコイル電圧の関係を示すグラフThe graph which shows the relationship between the coil current and coil voltage in Embodiment 4 of this invention 本発明の実施の形態4における径判定手段での処理内容を示す流れ図The flowchart which shows the processing content in the diameter determination means in Embodiment 4 of this invention 本発明の実施の形態5における加熱対象物の径の違いによる温度変化の違いを示すグラフThe graph which shows the difference in the temperature change by the difference in the diameter of the heating target in Embodiment 5 of this invention 本発明の実施の形態6における加熱対象物の径の違いによる温度変化の違いを示すグラフThe graph which shows the difference in the temperature change by the difference in the diameter of the heating target in Embodiment 6 of this invention 本発明の実施の形態6における制御手段での調理物投入判定工程の処理内容を示す流れ図The flowchart which shows the processing content of the cooking input determination process in the control means in Embodiment 6 of this invention. 本発明の実施の形態7における加熱対象物の径の違いによる温度変化の違いを示すグラフThe graph which shows the difference in the temperature change by the difference in the diameter of the heating target in Embodiment 7 of this invention 本発明の実施の形態7における制御手段での火力復帰判定工程の処理内容を示す流れ図The flowchart which shows the processing content of the thermal power return determination process in the control means in Embodiment 7 of this invention

本発明は、加熱対象物を加熱する加熱コイルと、前記加熱コイルに電流を供給する高周波インバータと、前記加熱コイルの上部に設置され加熱対象物が載置される天板と、前記天板の下に設置され前記加熱対象物の底面から放射される赤外線を検知する赤外線検出手段と、前記赤外線検出手段の出力から加熱対象物の温度を検知する温度検知手段と、前記高周波インバータの出力特性より加熱対象物の径を判定する径判定手段と、温度検知手段の出力より加熱を制御する制御手段を有し、前記制御手段は加熱対象物内の温度が沸騰温度に到達したことを検知した時には加熱量を減少させる。この時、判定した加熱対象物の径が大きい場合には減少させる加熱量を小さくし、加熱対象物の径が小さい場合には減少させる加熱量を大きくすることにより、加熱対象物の形状にかかわらず過不足なく加熱量を供給することができる。   The present invention includes a heating coil that heats a heating object, a high-frequency inverter that supplies current to the heating coil, a top plate that is installed on the heating coil and on which the heating object is placed, and the top plate From infrared detection means for detecting infrared rays radiated from the bottom surface of the heating object installed below, temperature detection means for detecting the temperature of the heating object from the output of the infrared detection means, and output characteristics of the high-frequency inverter A diameter determining means for determining the diameter of the object to be heated and a control means for controlling the heating based on the output of the temperature detecting means, and when the control means detects that the temperature in the object to be heated has reached the boiling temperature. Reduce the amount of heating. At this time, when the determined diameter of the heating object is large, the heating amount to be reduced is decreased, and when the diameter of the heating object is small, the heating amount to be decreased is increased, thereby affecting the shape of the heating object. The heating amount can be supplied without excess or deficiency.

また、具体的には、径判定手段は、入力電流によって判定をすることが可能である。他にも、径判定手段は、加熱コイルに流れるコイル電流によっても判定を行うこともできるし、加熱コイルに発生するコイル電圧によっても判定を行うこともできる。これにより、簡単な構成で容易に加熱対象物の径の大小を判定することができる。   Specifically, the diameter determining means can make a determination based on the input current. In addition, the diameter determination means can also make a determination based on a coil current flowing in the heating coil, and can also make a determination based on a coil voltage generated in the heating coil. Thereby, the magnitude of the diameter of a heating target object can be easily determined with a simple structure.

また、前記制御手段は、前記加熱対象物の径に応じて判定値を選択し、前記判定値以上に温度検知手段の出力が低下した場合には前記加熱対象物内に調理物が投入されたと判定し、加熱量を増加させることにより、前記加熱対象物の形状にかかわらず同じタイミングで調理物の投入を検知することができる。   In addition, the control unit selects a determination value according to the diameter of the heating object, and when the output of the temperature detection unit decreases more than the determination value, the cooked material is put into the heating object. By determining and increasing the heating amount, it is possible to detect the input of the cooked food at the same timing regardless of the shape of the heating object.

また、前記制御手段は、調理物投入後の加熱量を、前記加熱対象物の径が大きい場合には小さい場合よりも増加させる加熱量を増やすことにより、前記加熱対象物の形状にかかわらず過不足なく加熱量を供給することができる。   In addition, the control means may increase the amount of heating after adding the cooked food, regardless of the shape of the object to be heated, by increasing the amount of heating that is increased when the diameter of the object to be heated is larger than when it is small. The heating amount can be supplied without shortage.

また、前記制御手段は、前記加熱対象物の径に応じて判定値を選択し、調理物投入後に前記判定値以上に前記温度検知手段の出力が上昇した場合には調理物投入前の加熱量にて制御することにより、余分な加熱量を抑制することが出来、さらには吹きこぼれを抑制することが出来る。   In addition, the control unit selects a determination value according to the diameter of the object to be heated, and when the output of the temperature detection unit rises more than the determination value after the food is charged, the heating amount before the food is charged By controlling at, excess heating amount can be suppressed, and furthermore, spillage can be suppressed.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment.

(実施の形態1)
図1において、加熱対象物としての鍋1を加熱する第1の加熱コイル3aおよび第2の加熱コイル3bと、前記第1の加熱コイル3aおよび第2の加熱コイル3bの上部で前記鍋1を保持する天板2と、前記第1の加熱コイル3aおよび第2の加熱コイル3bに各々高周波電流を供給し、前記鍋1を誘導加熱で発熱させる第1の高周波インバータ4aおよび第2の高周波インバータ4bと、前記天板2の下面に設置され前記鍋1の底面から放射される赤外線を検出する赤外線検出手段5と、前記赤外線検出手段5の出力から前記鍋1の温度を検知する温度検知手段6と、前記第1の高周波インバータ4aから得られるインバータ特性より前記鍋1の径を判定する径判定手段7と、前記第1の加熱コイル3aおよび第2の加熱コイル3bに供給する電力を制御する制御手段8とを有している。
(Embodiment 1)
In FIG. 1, the first heating coil 3 a and the second heating coil 3 b for heating the pan 1 as a heating object, and the pan 1 at the upper part of the first heating coil 3 a and the second heating coil 3 b. A first high-frequency inverter 4a and a second high-frequency inverter that supply a high-frequency current to the top plate 2 to be held, the first heating coil 3a and the second heating coil 3b, respectively, and cause the pan 1 to generate heat by induction heating. 4b, infrared detection means 5 that is installed on the lower surface of the top plate 2 and detects infrared rays emitted from the bottom surface of the pan 1, and temperature detection means that detects the temperature of the pan 1 from the output of the infrared detection means 5 6 and the diameter determining means 7 for determining the diameter of the pan 1 from the inverter characteristics obtained from the first high-frequency inverter 4a, and the first heating coil 3a and the second heating coil 3b. And a control unit 8 for controlling that power.

以上のように構成された誘導加熱調理器について、以下その動作、作用を説明する。   About the induction heating cooking appliance comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、図示されていない電源を投入して加熱を開始する。制御手段8からの制御により第1の高周波インバータ4aおよび第2の高周波インバータ4bから第1の加熱コイル3aおよび第2の加熱コイル3bに誘導磁界が発生し、天板2上の鍋1が加熱される。   First, a power supply (not shown) is turned on to start heating. An induction magnetic field is generated in the first heating coil 3a and the second heating coil 3b from the first high-frequency inverter 4a and the second high-frequency inverter 4b by the control from the control means 8, and the pan 1 on the top plate 2 is heated. Is done.

ここで、鍋1の温度が上昇するとその温度に合わせた赤外線が前記鍋1から放射される。天板2に使用されるガラスセラミックなどは2.5μm以下の波長域の赤外線を効率よく透過できるため、赤外線検出手段5は例えば2.5μm以下の波長を検出することができるフォトダイオードなどで構成されており、前記天板2を通ったこの波長域の赤外線が赤外線検出手段5に入射される。また、前記赤外線検出手段5は、集光レンズを用いてより多くの赤外線を集光し、かつ、前記鍋1以外からの赤外線を遮断することにより精度の向上を図っている。   Here, when the temperature of the pan 1 rises, infrared rays corresponding to the temperature are emitted from the pan 1. Since the glass ceramic or the like used for the top plate 2 can efficiently transmit infrared rays having a wavelength range of 2.5 μm or less, the infrared detection means 5 is composed of, for example, a photodiode that can detect wavelengths of 2.5 μm or less. Infrared light in this wavelength range that has passed through the top plate 2 is incident on the infrared detection means 5. Further, the infrared detecting means 5 collects more infrared rays using a condensing lens and blocks infrared rays from other than the pan 1 to improve accuracy.

温度検知手段6は、前記鍋1からの赤外線のみが赤外線検出手段5に入射し、その赤外線量にあわせたダイオード電流を、I−V変換した上で増幅し、温度に変換される。この温度情報が制御手段8に入力され、制御手段8は鍋1の底の温度を1秒ごとに算出する。   In the temperature detection means 6, only the infrared rays from the pan 1 are incident on the infrared detection means 5, and the diode current corresponding to the amount of infrared rays is IV-converted and amplified to be converted into temperature. This temperature information is input to the control means 8, and the control means 8 calculates the temperature of the bottom of the pan 1 every second.

このとき、図2にて制御手段8での火力制御アルゴリズムの一例を示す。   At this time, an example of the thermal power control algorithm in the control means 8 is shown in FIG.

ステップ(以下、Sと表示する)1において、径判定手段7にて鍋1の径を判定する。S2において、制御手段8は温度検知手段6の出力の所定時間での温度差を1秒毎に算出し、前記算出した温度差が所定温度差内であることを連続的に検知したかどうかを判定し、連続的に検知した場合は沸騰したと判定してS3へ進み、検知しなかった場合はS2に戻る。S3において、制御手段8にて鍋1の径に応じた火力に変更して沸騰を維持する。S4において、制御手段8にて鍋1内に調理物が投入されたかどうかを判定し、調理物が投入された場合には相応の火力に変更する。S5において、制御手段8にて鍋1内の被加熱物が沸騰近辺の温度に復帰したかどうかを判定し、沸騰に近い温度に復帰した場合にはS3にて得られた火力に変更する。   In step (hereinafter referred to as S) 1, the diameter determining means 7 determines the diameter of the pan 1. In S2, the control means 8 calculates a temperature difference at a predetermined time of the output of the temperature detection means 6 every second, and determines whether or not it is continuously detected that the calculated temperature difference is within the predetermined temperature difference. If it is determined and continuously detected, it is determined that the water has boiled and the process proceeds to S3. If not detected, the process returns to S2. In S3, the control means 8 changes the heating power according to the diameter of the pan 1 to maintain boiling. In S4, it is determined by the control means 8 whether or not the cooked food has been put into the pan 1, and when the cooked food has been thrown in, the heating power is changed to an appropriate heating power. In S5, it is determined by the control means 8 whether or not the object to be heated in the pan 1 has returned to a temperature in the vicinity of boiling, and when it returns to a temperature close to boiling, the heating power obtained in S3 is changed.

以上のように、赤外線検出手段5を介して温度検出手段6で算出した温度は、鍋1の底面の温度変化を正確に検知できるので途中で調理物が投入されても過不足なく必要な加熱量を供給することができ、また吹きこぼれを抑制することができる。   As described above, the temperature calculated by the temperature detecting means 6 via the infrared detecting means 5 can accurately detect the temperature change of the bottom surface of the pan 1, so that even if the food is thrown in the middle, the necessary heating is sufficient. An amount can be supplied and spillage can be suppressed.

(実施の形態2)
図3のグラフを参照して、鍋1の径を判定する工程を説明する。所定の動作周波数faで第1の加熱コイル3aを動作させた場合、入力電流I1が発生する。この入力電流I1が判定値Ia未満の場合、第1の加熱コイル3aは無負荷の状態、すなわち第1の加熱コイル3a上には鍋1が載置されていない状態であると判定できる。これにより、鍋1の径
を判定することができる。
(Embodiment 2)
With reference to the graph of FIG. 3, the process of determining the diameter of the pan 1 is demonstrated. When the first heating coil 3a is operated at a predetermined operating frequency fa, an input current I1 is generated. When the input current I1 is less than the determination value Ia, it can be determined that the first heating coil 3a is in an unloaded state, that is, the pan 1 is not placed on the first heating coil 3a. Thereby, the diameter of the pan 1 can be determined.

以下、図4を用いて鍋1の径を判定するアルゴリズムの一例を説明する。   Hereinafter, an example of an algorithm for determining the diameter of the pan 1 will be described with reference to FIG.

S11において、所定の動作周波数faで動作した時の入力電流I1を取得する。S12において、取得した入力電流I1が判定値Ia以上であればS13へ進み、判定値Ia未満であればS14へ進む。S13において、鍋1の径を「大」と判定して鍋1の径の判定方法を終了する。S14において、鍋1の径を「小」と判定して鍋1の径の判定方法を終了する。   In S11, an input current I1 when operating at a predetermined operating frequency fa is acquired. In S12, if the acquired input current I1 is greater than or equal to the determination value Ia, the process proceeds to S13, and if it is less than the determination value Ia, the process proceeds to S14. In S13, the diameter of the pot 1 is determined to be “large”, and the method for determining the diameter of the pot 1 is terminated. In S14, the diameter of the pot 1 is determined to be “small”, and the method for determining the diameter of the pot 1 is terminated.

なお、入力電流の判定値Iaは予め最適な値を実験的に決定するものである。   The input current determination value Ia is experimentally determined in advance as an optimum value.

また、以上の説明では加熱コイルは2分割しかされてないが、複数に分割すれば精度面で有効である。   Further, in the above description, the heating coil is only divided into two, but if divided into a plurality, it is effective in terms of accuracy.

(実施の形態3)
図5は、鍋1の径を判定する別の工程を説明するためのグラフである。入力電流Ibを流した時、第1の加熱コイル3aにはコイル電流Ic1が流れる。このコイル電流Ic1が判定値Ic以上の場合、第1の加熱コイル3aは無負荷の状態、すなわち第1の加熱コイル3a上には鍋1が載置されていない状態であると判定できる。これにより、鍋1の径を判定することができる。
(Embodiment 3)
FIG. 5 is a graph for explaining another process for determining the diameter of the pan 1. When the input current Ib flows, the coil current Ic1 flows through the first heating coil 3a. When the coil current Ic1 is greater than or equal to the determination value Ic, it can be determined that the first heating coil 3a is in an unloaded state, that is, the pan 1 is not placed on the first heating coil 3a. Thereby, the diameter of the pan 1 can be determined.

以下、図6を用いて鍋1の径を判定するアルゴリズムの一例を説明する。   Hereinafter, an example of an algorithm for determining the diameter of the pan 1 will be described with reference to FIG.

S21において、入力電流Ibを流した時のコイル電流Ic1を取得する。S22において、取得したコイル電流Ic1が判定値Ic以上であればS23へ進み、判定値Ic未満であればS24へ進む。S23においては、鍋1の径を「小」と判定して、鍋1の径の判定処理を終了する。また、S24においては、鍋1の径を「大」と判定して、鍋1の径の判定処理を終了する。   In S21, the coil current Ic1 when the input current Ib is supplied is acquired. In S22, if the acquired coil current Ic1 is greater than or equal to the determination value Ic, the process proceeds to S23, and if it is less than the determination value Ic, the process proceeds to S24. In S23, the diameter of the pot 1 is determined to be “small”, and the diameter determining process for the pot 1 is terminated. Moreover, in S24, the diameter of the pan 1 is determined to be “large”, and the determination processing of the diameter of the pan 1 is ended.

なお、コイル電流の判定値Icは予め最適な値を実験的に決定するものである。   The coil current determination value Ic is experimentally determined in advance as an optimum value.

また、以上の説明では加熱コイルは2分割しかされてないが、複数に分割すれば精度面で有効である。   Further, in the above description, the heating coil is only divided into two, but if divided into a plurality, it is effective in terms of accuracy.

(実施の形態4)
図7は、鍋1の径を判定する別の工程を説明するためのグラフである。入力電流Ibを流した時、第1の加熱コイル3aにはコイル電圧Vd1が発生する。このコイル電圧Vd1が判定値Vd以上の場合、第1の加熱コイル3aは無負荷の状態、すなわち第1の加熱コイル3a上には鍋1が載置されていない状態であると判定できる。これにより、鍋1の径を判定することができる。
(Embodiment 4)
FIG. 7 is a graph for explaining another process for determining the diameter of the pan 1. When the input current Ib flows, a coil voltage Vd1 is generated in the first heating coil 3a. When the coil voltage Vd1 is equal to or higher than the determination value Vd, it can be determined that the first heating coil 3a is in an unloaded state, that is, the pan 1 is not placed on the first heating coil 3a. Thereby, the diameter of the pan 1 can be determined.

以下、図8を用いて鍋1の径を判定するアルゴリズムの一例を説明する。   Hereinafter, an example of an algorithm for determining the diameter of the pan 1 will be described with reference to FIG.

S31において、入力電流Ibを流した時のコイル電圧Vd1を取得する。S32において、取得したコイル電圧Vd1が判定値Vd以上であればS33へ進み、判定値Vd未満であればS34へ進む。S33では、鍋1の径を「小」と判定して、鍋1の径の判定処理を終了する。S34では、鍋1の径を「大」と判定して、鍋1の径の判定処理を終了する。   In S31, the coil voltage Vd1 when the input current Ib is supplied is acquired. In S32, if the acquired coil voltage Vd1 is not less than the determination value Vd, the process proceeds to S33, and if it is less than the determination value Vd, the process proceeds to S34. In S33, the diameter of the pot 1 is determined to be “small”, and the diameter determining process for the pot 1 is terminated. In S34, the diameter of the pot 1 is determined to be “large”, and the diameter determining process for the pot 1 is terminated.

なお、コイル電圧の判定値Vdは予め最適な値を実験的に決定するものである。   The coil voltage determination value Vd is experimentally determined in advance as an optimum value.

また、以上の説明では加熱コイルは2分割しかされてないが、複数に分割すれば精度面で有効である。   Further, in the above description, the heating coil is only divided into two, but if divided into a plurality, it is effective in terms of accuracy.

(実施の形態5)
図9は沸騰後、加熱量を落とした時の鍋1の径の違いによる温度変化の違いをグラフに表したものである。鍋1の径が大きい場合、径が小さい鍋1と比べて放熱面積が大きいために同じ加熱量では温度が降下してしまう。従って、鍋1の径に関わらず沸騰を維持するためには鍋1の径に応じて沸騰維持時の加熱量を変更すれば良い。この時、鍋1の径が小さい場合の沸騰維持時の加熱量をW21、鍋1の径が大きい場合の沸騰維持時の加熱量をW22とすると、以下の式が成り立つ。
(Embodiment 5)
FIG. 9 is a graph showing the difference in temperature change due to the difference in the diameter of the pan 1 when the heating amount is reduced after boiling. When the diameter of the pan 1 is large, the heat radiation area is larger than that of the pot 1 having a small diameter, and thus the temperature drops at the same heating amount. Therefore, what is necessary is just to change the heating amount at the time of boiling maintenance according to the diameter of the pan 1, in order to maintain boiling irrespective of the diameter of the pan 1. FIG. At this time, when the heating amount at the time of boiling maintenance when the diameter of the pan 1 is small is W21 and the heating amount at the time of boiling maintenance when the diameter of the pan 1 is large is W22, the following equation is established.

W21 < W22 (式1)
以上のように、鍋1の径に応じて沸騰維持時の加熱量を変更すれば、鍋1の形状に関わらず過不足なく加熱することができる。
W21 <W22 (Formula 1)
As described above, if the amount of heating at the time of boiling maintenance is changed according to the diameter of the pan 1, the pan 1 can be heated regardless of the shape of the pan 1.

(実施の形態6)
図10にて、鍋1内に調理物が投入された事を検知する工程をグラフに示す。沸騰維持中に調理物が投入された場合、被加熱物が増えたために火力が変更されない限り温度は下降するが、鍋1の径が小さい方が同じ水量でも水深が深くなるために、鍋1の底へ温度変化が伝わるのが遅くなる。よって、同様のタイミングで調理物が投入されたことを検知するためには鍋1の径の大きさに応じて調理物が投入されたかどうかの判定値を選択すれば良い。この時、鍋1の径が小さい時の判定値をTe1、鍋1の径が大きい時の判定値をTe2とすると、以下のような関係式が成立する。
(Embodiment 6)
In FIG. 10, the process which detects that the foodstuff was thrown into the pan 1 is shown on a graph. If the cooked food is thrown in while maintaining boiling, the temperature will drop unless the heating power is changed because of the increase in the number of objects to be heated. It will slow down the temperature change to the bottom. Therefore, in order to detect that the cooked food has been thrown in at the same timing, a determination value as to whether the cooked food has been thrown in may be selected according to the diameter of the pot 1. At this time, if the determination value when the diameter of the pot 1 is small is Te1, and the determination value when the diameter of the pot 1 is large is Te2, the following relational expression is established.

Te1 < Te2 (式2)
以下、図11を用いて調理物の投入を検知するアルゴリズムの一例を説明する。
Te1 <Te2 (Formula 2)
Hereinafter, an example of an algorithm for detecting the input of the cooked product will be described with reference to FIG.

S41において、基準温度Tk0を取得する。S42において、鍋1の径の大きさに応じた判定値Teを選択する。S43において、温度Tkを取得する。S44において、基準温度Tk0と取得した温度Tkの差が判定値Te以上であればS45へ進み、判定値Te未満であればS43に戻る。S45において、鍋1の径の大きさに応じた火力へ変更する。   In S41, a reference temperature Tk0 is acquired. In S42, a determination value Te corresponding to the size of the diameter of the pan 1 is selected. In S43, the temperature Tk is acquired. In S44, if the difference between the reference temperature Tk0 and the acquired temperature Tk is greater than or equal to the determination value Te, the process proceeds to S45, and if it is less than the determination value Te, the process returns to S43. In S45, the heating power is changed according to the diameter of the pot 1.

なお、判定値Teは予め最適な値を実験的に決定するものである。   The determination value Te is experimentally determined in advance as an optimum value.

また、調理物の投入が判定された後の火力であるが、鍋1の径が小さい時の火力をW31、鍋1の径が大きい時の火力をW32とすると、鍋1の径が大きい方が放熱面積が大きいために以下のような関係式が成立する。   Moreover, it is the thermal power after the introduction of the cooked food is determined. If the thermal power when the diameter of the pan 1 is small is W31, and the thermal power when the diameter of the pan 1 is large is W32, the one with the larger diameter of the pan 1 However, since the heat radiation area is large, the following relational expression is established.

W31 < W32 (式3)
この時、上記の説明では鍋1の径の大きさは2種類しかないが、鍋1の径を複数種類に判別すれば、精度面で有効である。
W31 <W32 (Formula 3)
At this time, in the above description, there are only two kinds of diameters of the pot 1, but if the diameter of the pot 1 is discriminated into a plurality of kinds, it is effective in terms of accuracy.

以上のように、鍋1の径の大きさに応じて判定値を選択することにより、同様のタイミングで調理物が投入されたことを検知することができる。また、鍋1の径の大きさに応じて検知後の火力を選択することにより、鍋1の種類に関わらず同じように調理物を加熱することが出来る。   As described above, by selecting the determination value according to the size of the diameter of the pan 1, it is possible to detect that the cooked food has been introduced at the same timing. Moreover, by selecting the heating power after detection according to the size of the diameter of the pan 1, the cooked food can be similarly heated regardless of the type of the pan 1.

(実施の形態7)
図12において、鍋1内に調理物が投入されて火力を変更後、通常の沸騰維持時の火力に復帰する工程をグラフに示す。調理物を投入後調理物が鍋1の底に沈むために、鍋1内の水は沸騰しているにもかかわらず鍋1の底の温度が調理物投入前よりも下がる場合がある。この場合、調理物投入前の温度まで復帰させるためには過剰な加熱をする必要があり効率的とは言い難い。そこで、鍋1の底に沈んだ調理物に必要な加熱量を与えたら鍋1の底の温度が上昇してくるので、鍋1の底の温度が所定温度以上上昇した時に通常の沸騰維持時の火力に変更すれば効率良く加熱することができる。一方、鍋1の径が小さいほど同じ水量でも水深が深いために温度の上昇度合いは緩やかになり、同様のタイミングで火力を変更するためには鍋1の径の大きさに応じて判定値を選択する必要がある。この時、鍋1の径が小さい時の判定値をTg1、鍋1の径が大きい時の判定値をTg2とすると、以下のような関係式が成立する。
(Embodiment 7)
In FIG. 12, the process which returns to the heating power at the time of normal boiling maintenance after a cooked material is thrown into the pan 1 and a heating power is changed is shown in a graph. Since the food sinks into the bottom of the pan 1 after the food is charged, the temperature at the bottom of the pan 1 may be lower than before the food is charged even though the water in the pot 1 is boiling. In this case, it is necessary to carry out excessive heating in order to return to the temperature before the food is added, which is not efficient. Therefore, when the necessary amount of heating is given to the food sinking to the bottom of the pan 1, the temperature of the bottom of the pan 1 rises. Therefore, when the temperature of the bottom of the pan 1 rises above a predetermined temperature, normal boiling is maintained. If it is changed to the heating power, it can be heated efficiently. On the other hand, the smaller the diameter of the pan 1, the deeper the water depth is, even at the same amount of water, so the temperature rises more slowly. To change the heating power at the same timing, the judgment value is set according to the size of the diameter of the pan 1. Must be selected. At this time, if the determination value when the diameter of the pan 1 is small is Tg1, and the determination value when the diameter of the pan 1 is large is Tg2, the following relational expression is established.

Tg1 < Tg2 (式4)
以下、図13を用いて調理物投入されて火力を変更後、通常の沸騰維持の火力へ復帰するアルゴリズムの一例を説明する。
Tg1 <Tg2 (Formula 4)
Hereinafter, an example of an algorithm for returning to normal boiling-maintenance heating power after changing the heating power by using the cooked product will be described with reference to FIG.

S51において、基準温度Tx0を取得する。S52において、鍋1の径の大きさに応じた判定値Tgを選択する。S53において、温度Txを取得する。S54において、取得した温度Txと基準温度Tx0の差が判定値Tg以上であればS55へ進み、判定値Tg未満であればS53に戻る。S55において、調理物投入前の火力へ変更する。   In S51, a reference temperature Tx0 is acquired. In S52, the determination value Tg corresponding to the size of the diameter of the pan 1 is selected. In S53, the temperature Tx is acquired. In S54, if the difference between the acquired temperature Tx and the reference temperature Tx0 is not less than the determination value Tg, the process proceeds to S55, and if it is less than the determination value Tg, the process returns to S53. In S55, the heating power is changed to that before the food is added.

なお、判定値Tgは予め最適な値を実験的に決定するものである。   The determination value Tg is experimentally determined in advance as an optimum value.

この時、上記の説明では鍋1の底の厚さは2種類しかないが、鍋1の底の厚さを複数種類に判別すれば、精度面で有効である。   At this time, there are only two types of thickness of the bottom of the pan 1 in the above description, but it is effective in terms of accuracy if the thickness of the bottom of the pan 1 is discriminated into a plurality of types.

以上のように、鍋1の底の厚さに応じて判定値を選択することにより、同様のタイミングで調理物投入されて火力を変更後、通常の沸騰維持の火力へ復帰することが出来る。   As described above, by selecting the determination value according to the thickness of the bottom of the pan 1, the cooked product is charged at the same timing and the heating power is changed, and then it can be returned to the normal boiling maintenance heating power.

以上のように、本発明にかかる誘導加熱調理器は、鍋1の底面の形状に関わらず精度良く温度を検知することができ、その結果、調理物、特に麺を茹でる時に火力を適正に制御して吹きこぼれることなく調理することができるので、家庭用あるいは業務用など様々な誘導加熱調理器にも適用できる。   As described above, the induction heating cooker according to the present invention can accurately detect the temperature regardless of the shape of the bottom surface of the pan 1, and as a result, the heating power is appropriately controlled when the food, particularly noodles, is boiled. Therefore, it can be cooked without spilling, so it can be applied to various induction heating cookers such as home use and business use.

1 鍋(加熱対象物)
2 天板
3a 第1の加熱コイル
3b 第2の加熱コイル
4a 第1の高周波インバータ
4b 第2の高周波インバータ
5 赤外線検出手段
6 温度検知手段
7 径判定手段
8 制御手段
1 Pan (object to be heated)
2 Top plate 3a 1st heating coil 3b 2nd heating coil 4a 1st high frequency inverter 4b 2nd high frequency inverter 5 Infrared detection means 6 Temperature detection means 7 Diameter determination means 8 Control means

Claims (5)

加熱対象物を加熱する加熱コイルと、
前記加熱コイルに電流を供給する高周波インバータと、
前記加熱コイルの上部に設置され、前記加熱対象物が載置される天板と、
前記天板の下に設置され、前記加熱対象物の底面から放射される赤外線を検知する赤外線検出手段と、
前記赤外線検出手段の出力から前記加熱対象物の温度を検知する温度検知手段と、
前記高周波インバータの出力特性より前記加熱対象物の径を判定する径判定手段と、
前記温度検知手段の出力より加熱を制御する制御手段とを備え、
前記制御手段は、前記加熱対象物内の温度が沸騰温度に到達したことを検知した時には加熱量を減少させ、前記径判定手段で判定した前記加熱対象物の径が大きい場合には減少させる加熱量を小さくし、前記加熱対象物の径が小さい場合には減少させる加熱量を大きくする、誘導加熱調理器。
A heating coil for heating an object to be heated;
A high-frequency inverter for supplying current to the heating coil;
Installed on top of the heating coil, and a top plate on which the heating object is placed;
Infrared detector that is installed under the top plate and detects infrared rays emitted from the bottom surface of the heating object,
Temperature detection means for detecting the temperature of the heating object from the output of the infrared detection means;
Diameter determining means for determining the diameter of the heating object from the output characteristics of the high frequency inverter;
Control means for controlling heating from the output of the temperature detection means,
The control means reduces the heating amount when detecting that the temperature in the heating object has reached the boiling temperature, and reduces the heating amount when the diameter of the heating object determined by the diameter determination means is large. An induction heating cooker that reduces the amount and increases the amount of heating to be reduced when the diameter of the heating object is small.
前記径判定手段は、入力電流、前記加熱コイルに流れるコイル電流及び前記加熱コイルに発生するコイル電圧のいずれかによって判定を行う、請求項1記載の誘導加熱調理器。 The induction heating cooker according to claim 1, wherein the diameter determination means performs determination based on any one of an input current, a coil current flowing through the heating coil, and a coil voltage generated at the heating coil. 前記制御手段は、前記加熱対象物の径に応じて判定値を選択し、前記判定値以上に温度検知手段の出力が低下した場合には前記加熱対象物内に調理物が投入されたと判別し、加熱量を増加させる、請求項1または2に記載の誘導加熱調理器。 The control means selects a determination value according to the diameter of the heating object, and when the output of the temperature detection means decreases more than the determination value, it determines that the cooked food has been put into the heating object. The induction heating cooker according to claim 1 or 2, wherein the heating amount is increased. 前記制御手段は、調理物投入後の加熱量を、前記加熱対象物の径が大きい場合には小さい場合よりも増加させる加熱量を増やす、請求項1〜3のいずれか1項に記載の誘導加熱調理器。 The induction according to any one of claims 1 to 3, wherein the control means increases the amount of heating after increasing the amount of heating after charging the cooked food, when the diameter of the object to be heated is larger than when it is small. Cooking cooker. 前記制御手段は、前記加熱対象物の径に応じて判定値を選択し、調理物投入後に前記判定値以上に前記温度検知手段の出力が上昇した場合には調理物投入前の加熱量にて制御する、請求項1〜4のいずれか1項に記載の誘導加熱調理器。 The control means selects a determination value according to the diameter of the object to be heated, and when the output of the temperature detection means rises above the determination value after throwing the food, the heating amount before throwing the food The induction heating cooking appliance of any one of Claims 1-4 which controls.
JP2011115498A 2011-05-24 2011-05-24 Induction heating cooker Pending JP2012243704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011115498A JP2012243704A (en) 2011-05-24 2011-05-24 Induction heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011115498A JP2012243704A (en) 2011-05-24 2011-05-24 Induction heating cooker

Publications (1)

Publication Number Publication Date
JP2012243704A true JP2012243704A (en) 2012-12-10

Family

ID=47465158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011115498A Pending JP2012243704A (en) 2011-05-24 2011-05-24 Induction heating cooker

Country Status (1)

Country Link
JP (1) JP2012243704A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10155659A (en) * 1996-11-27 1998-06-16 Tokyo Gas Co Ltd Cooker with boilover preventing function
JP2001244061A (en) * 2000-03-01 2001-09-07 Mitsubishi Electric Corp Induction heating cooker
JP2003249339A (en) * 2002-02-22 2003-09-05 Mitsubishi Electric Corp Induction heating cooker
JP2006310115A (en) * 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd Induced heating cooking appliance
JP2010198895A (en) * 2009-02-25 2010-09-09 Panasonic Corp Induction heating cooker and its program
JP2010212053A (en) * 2009-03-10 2010-09-24 Panasonic Corp Induction heating, cooker and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10155659A (en) * 1996-11-27 1998-06-16 Tokyo Gas Co Ltd Cooker with boilover preventing function
JP2001244061A (en) * 2000-03-01 2001-09-07 Mitsubishi Electric Corp Induction heating cooker
JP2003249339A (en) * 2002-02-22 2003-09-05 Mitsubishi Electric Corp Induction heating cooker
JP2006310115A (en) * 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd Induced heating cooking appliance
JP2010198895A (en) * 2009-02-25 2010-09-09 Panasonic Corp Induction heating cooker and its program
JP2010212053A (en) * 2009-03-10 2010-09-24 Panasonic Corp Induction heating, cooker and program

Similar Documents

Publication Publication Date Title
JP4965652B2 (en) Induction heating cooker
CN1701639A (en) Induction heating cooker
JP5012164B2 (en) Induction heating cooker
JP2007080553A (en) Induction heating cooker
JP2010212053A (en) Induction heating, cooker and program
JP5045375B2 (en) Induction heating cooker
JP2007227044A (en) Induction heating cooking device
JP2012243703A (en) Induction heating cooker
JP2007115515A (en) Induction heating cooking device
JP2012243704A (en) Induction heating cooker
JP4123108B2 (en) Induction heating cooker
JP2006134627A (en) Induction heating cooking device
JP4497196B2 (en) Induction heating cooker
JP4357938B2 (en) Induction heating cooker
JP2012221644A (en) Induction heating cooker
JP2011060569A (en) Heating cooker, and program
CN106488601A (en) The method determining for temperature
JP2011108430A (en) Induction heating cooker
JP2010198895A (en) Induction heating cooker and its program
JP2008060088A5 (en)
JP5109963B2 (en) Induction heating cooker
JP2006260942A (en) Induction heating cooking device
JP2008226568A (en) Induction heating cooker
JP4285355B2 (en) Induction heating cooker
JP4123213B2 (en) Induction heating cooker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140514

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140612

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160126