JP2012242508A - Retroreflective member, retroreflective building material and construction method of building - Google Patents

Retroreflective member, retroreflective building material and construction method of building Download PDF

Info

Publication number
JP2012242508A
JP2012242508A JP2011110781A JP2011110781A JP2012242508A JP 2012242508 A JP2012242508 A JP 2012242508A JP 2011110781 A JP2011110781 A JP 2011110781A JP 2011110781 A JP2011110781 A JP 2011110781A JP 2012242508 A JP2012242508 A JP 2012242508A
Authority
JP
Japan
Prior art keywords
retroreflective
reflective
retroreflective member
vertex
building material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011110781A
Other languages
Japanese (ja)
Inventor
Giichi Hirayama
義一 平山
Norio Kaneko
則夫 金子
Kazuhiro Kido
一博 木戸
Yoshikazu Sugiyama
喜和 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2011110781A priority Critical patent/JP2012242508A/en
Publication of JP2012242508A publication Critical patent/JP2012242508A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem with a conventional retroreflective sheet which is structured to reflect incident light from a specific direction straight back therein as much as possible and thereby sometimes reflecting the incident light, which varies season by season and hour by hour such as sunlight from outer space, even in an unintended direction such as the direction toward the ground.SOLUTION: A retroreflective member has concave sections which respectively have a shape of an inclined triangular pyramid where: three side faces collectively forming an apex with an opening in a shape of a triangle as a bottom face; and a projection point of the apex on the bottom face is deviated from a barycentric position of the bottom face to a reference side of the triangle. In each concave section, a reflection surface is formed on at least one of the three side faces.

Description

本発明は、再帰反射部材、再帰反射性建材および建築物の建築方法に関する。   The present invention relates to a retroreflective member, a retroreflective building material, and a building construction method.

従来、コーナーキューブ、ビーズ等を平面的に配列して、入射する光線を入射方向へ反射させる再帰反射シートが知られている。再帰反射シートは、例えば道路標識などの保安用品に活用されている。一方、再帰反射部材をビルの壁材に用い、太陽光線を地面方向へ反射させることなく入射方向へ反射することにより、地球の温暖化を防ぐ提案もなされている(例えば特許文献1)。
[先行技術文献]
[特許文献]
[特許文献1]特開2006−317648号公報
Conventionally, a retroreflective sheet is known in which corner cubes, beads, and the like are arranged in a plane to reflect incident light rays in the incident direction. The retroreflective sheet is used for security products such as road signs. On the other hand, a proposal has been made to prevent global warming by using a retroreflective member for a wall of a building and reflecting sunlight in the incident direction without reflecting the sunlight in the ground direction (for example, Patent Document 1).
[Prior art documents]
[Patent Literature]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2006-317648

しかし、従来の再帰反射シートは、特定の方向から入射する入射光を、できる限りその方向へ反射させるように構造化されているので、宇宙空間から到来する太陽光のような、季節、時間によって変化する入射光を、かえって地面方向などの予定外の方向へ反射させてしまう場合が有るという課題があった。   However, the conventional retroreflective sheet is structured so as to reflect the incident light incident from a specific direction as much as possible. Therefore, depending on the season and time, such as sunlight coming from outer space. There is a problem that the incident light that changes may be reflected in an unplanned direction such as the ground direction.

上記課題を解決するために、本発明の第1の態様における再帰反射部材は、三角形の開口を底面として頂点を形成する3つの側面を有し、頂点から底面への射影位置が底面の重心位置から三角形の基準辺の側へ偏位した三角斜錘形状の凹部を備え、3つの側面のうち少なくとも一面が反射面に形成されている。   In order to solve the above-mentioned problem, the retroreflective member according to the first aspect of the present invention has three side surfaces that form a vertex with a triangular opening as a bottom surface, and the projected position from the vertex to the bottom surface is the position of the center of gravity of the bottom surface. And a concave portion having a triangular pyramid shape displaced from the reference side of the triangle, and at least one of the three side surfaces is formed on the reflecting surface.

上記課題を解決するために、本発明の第2の態様における再帰反射性建材は、上記の再帰反射部材を含む。   In order to solve the above-mentioned subject, the retroreflective building material in the 2nd mode of the present invention contains the above-mentioned retroreflective member.

上記課題を解決するために、本発明の第3の態様における建築物の建築方法は、三角形の開口を底面として頂点を形成する3つの側面を有し、頂点から底面への射影位置が底面の重心位置から三角形の基準辺の側へ偏位した三角斜錘形状の凹部を備え、3つの側面のうち基準辺を含む基準面が少なくとも反射面に形成されている再帰反射部材を、夏至における南中時刻の太陽光線に対して基準面が直交するように設置する設置段階を含む。   In order to solve the above-mentioned problem, the building construction method according to the third aspect of the present invention has three side surfaces forming a vertex with a triangular opening as a bottom surface, and the projection position from the vertex to the bottom surface is the bottom surface. A retroreflective member having a triangular oblique pyramid-shaped concave portion displaced from the center of gravity to the reference side of the triangle and having a reference surface including the reference side among at least three of the side surfaces is formed on the reflection surface. It includes an installation stage in which the reference plane is installed so as to be orthogonal to the mid-time solar rays.

上記課題を解決するために、本発明の第4の態様における再帰反射部材は、n角形(nは3以上の自然数)の開口を底面として頂点を形成するn個の側面を有し、頂点から底面への射影位置が底面の重心位置からn角形の基準辺の側へ偏位したn角斜錘形状の凹部を備え、n個の側面のうち少なくとも一面が反射面に形成されている。   In order to solve the above-mentioned problem, the retroreflective member according to the fourth aspect of the present invention has n side surfaces forming apexes with an n-gonal (n is a natural number of 3 or more) opening as a bottom surface. The projection position on the bottom surface is provided with an n-angle oblique pyramid-shaped concave portion whose position is shifted from the gravity center position of the bottom surface to the n-side reference side, and at least one of the n side surfaces is formed on the reflection surface.

なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。   It should be noted that the above summary of the invention does not enumerate all the necessary features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.

本実施形態に係る再帰反射部材を、ビルの壁面に適用した場合を示す図である。It is a figure which shows the case where the retroreflection member which concerns on this embodiment is applied to the wall surface of a building. 本実施形態に係る再帰反射部材が入射光線を再帰反射する方向を示す説明図である。It is explanatory drawing which shows the direction in which the retroreflection member which concerns on this embodiment retroreflects an incident light ray. 本実施形態に係る再帰反射部材を示す外観斜視図である。It is an external appearance perspective view which shows the retroreflection member which concerns on this embodiment. 再帰反射効率の算出に関する定義図である。It is a definition figure regarding calculation of retroreflection efficiency. 凹部が直錘形状である場合の各断面と座標値を示す図である。It is a figure which shows each cross section and coordinate value when a recessed part is a straight weight shape. 直錘形状に対する各季節における反射効率の時間変化を示す図である。It is a figure which shows the time change of the reflective efficiency in each season with respect to a straight weight shape. 凹部が南中時の太陽光を受けている様子を示す図である。It is a figure which shows a mode that a recessed part is receiving sunlight at the time of south and middle. 第1の斜錘形状の各断面および座標値を示す図である。It is a figure which shows each cross section and coordinate value of a 1st oblique pyramid shape. 第1の斜錘形状に対する各季節における反射効率の時間変化を示す図である。It is a figure which shows the time change of the reflective efficiency in each season with respect to a 1st cone shape. 第2の斜錘形状の各断面および座標値を示す図である。It is a figure which shows each cross section and coordinate value of a 2nd oblique pyramid shape. 第2の斜錘形状に対する各季節における反射効率の時間変化を示す図である。It is a figure which shows the time change of the reflective efficiency in each season with respect to a 2nd cone shape. 第3の斜錘形状の各断面および座標値を示す図である。It is a figure which shows each cross section and coordinate value of a 3rd cone weight shape. 第3の斜錘形状に対する各季節における反射効率の時間変化を示す図である。It is a figure which shows the time change of the reflective efficiency in each season with respect to a 3rd cone weight shape. 第4の斜錘形状の各断面および座標値を示す図である。It is a figure which shows each cross section and coordinate value of a 4th oblique pyramid shape. 第4の斜錘形状に対する各季節における反射効率の時間変化を示す図である。It is a figure which shows the time change of the reflective efficiency in each season with respect to a 4th cone shape. 本実施形態に係る他の再帰反射部材を示す外観図である。It is an external view which shows the other retroreflection member which concerns on this embodiment. 本実施形態に係る他の再帰反射部材を示す外観図である。It is an external view which shows the other retroreflection member which concerns on this embodiment. 本実施形態に係る他の再帰反射部材を説明する図である。It is a figure explaining the other retroreflection member which concerns on this embodiment. 本実施形態に係る再帰反射部材を建材としてビルの壁面へ設置する工程を説明する図である。It is a figure explaining the process of installing the retroreflection member which concerns on this embodiment on the wall surface of a building as a building material.

以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   Hereinafter, the present invention will be described through embodiments of the invention, but the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.

図1は、本実施形態に係る再帰反射部材10を、ビル20の壁面に適用した場合を示す図である。再帰反射部材10は、ビル20の外壁材の一部として利用される。   FIG. 1 is a diagram illustrating a case where the retroreflective member 10 according to the present embodiment is applied to a wall surface of a building 20. The retroreflective member 10 is used as a part of the outer wall material of the building 20.

本実施形態に係る再帰反射部材10は、季節、時間によって入射角が変化する太陽光を、例えば1年を通じての総反射量で評価した場合に、良好に宇宙空間の方向へ反射させて太陽光エネルギーを放出させる性質を備える。別言すれば、例えば夏季における地面方向などの、望ましくない方向への反射を軽減させる性質を備える。   The retroreflective member 10 according to the present embodiment reflects sunlight in which the incident angle changes depending on the season and time, for example, in the direction of outer space when the total reflection amount throughout the year is evaluated. It has the property of releasing energy. In other words, it has a property of reducing reflection in an undesired direction such as the direction of the ground surface in summer.

近時のビルの外壁は、ガラスなどの反射部材で覆われることが多くなってきており、太陽光が反射部材で正反射されることにより、夏の強烈な光と熱が地面方向へ照射されることが社会問題化している。特に、地面に蓄積された熱エネルギーがヒートアイランド現象を引き起こし、さらには地球温暖化の原因のひとつとなっていることは周知の事実である。そこで、本実施形態に係る再帰反射部材10では、ビルに照射される太陽光をできる限り地面方向へ反射させず、特に夏季において、再帰反射させて宇宙空間に太陽光エネルギーを放出させる。   Recently, the outer walls of buildings are often covered with reflective members such as glass, and sunlight is regularly reflected by the reflective members, so that intense summer light and heat are irradiated toward the ground. Has become a social problem. In particular, it is a well-known fact that the heat energy accumulated on the ground causes the heat island phenomenon and is one of the causes of global warming. Therefore, with the retroreflective member 10 according to the present embodiment, the sunlight irradiated to the building is not reflected as much as possible toward the ground, and in the summer, the solar energy is retroreflected to release solar energy to outer space.

具体的には、太陽光である入射光101がビル20の壁面に敷き詰められた再帰反射部材10に入射すると、その多くが、反射光102としてほぼ入射方向に沿って太陽に向けて反射される。反射された反射光102のエネルギーは、一部が大気に吸収されながら、やがて宇宙空間へ放出される。   Specifically, when the incident light 101 that is sunlight enters the retroreflective member 10 spread on the wall surface of the building 20, most of the reflected light 102 is reflected toward the sun almost along the incident direction. . The energy of the reflected reflected light 102 is eventually released into outer space while being partially absorbed by the atmosphere.

一方で、夏季の地面による太陽光の照り返しもヒートアイランド現象の原因のひとつとなっている。したがって、再帰反射部材が入射方向に関わらず入射方向へ入射光を反射させると、地面による照り返しを再び地面方向へ反射させることになり、地面による蓄熱をより加速する結果となる。   On the other hand, the reflection of sunlight by the ground in summer is one of the causes of the heat island phenomenon. Therefore, when the retroreflective member reflects incident light in the incident direction regardless of the incident direction, reflection from the ground is reflected again toward the ground, resulting in a further acceleration of heat storage by the ground.

そこで、本実施形態に係る再帰反射部材10は、地面に照射される入射光103の照り返し光104が入射した場合は、その表面で乱反射させて拡散する。つまり再帰反射部材10は、太陽光が直接入射する方向からの入射光に対しては再帰反射性を備え、その他の方向から入射する入射光に対しては再帰反射させずに拡散する。   Therefore, the retroreflective member 10 according to the present embodiment diffuses by diffusely reflecting on the surface thereof when the reflected light 104 of the incident light 103 applied to the ground is incident. That is, the retroreflective member 10 has retroreflectivity for incident light from the direction in which sunlight directly enters, and diffuses without retroreflecting incident light incident from other directions.

図2は、本実施形態に係る再帰反射部材10が入射光線を再帰反射する方向を示す説明図である。再帰反射部材10は、ビル20の南側壁面に敷き詰められている。具体的には後述するが、最も効率よく再帰反射する特定の方向が夏至の南中高度となるように設置されることが好ましい。この場合、所定の再帰反射率の得られる太陽の方角は、夏至の太陽行路111と冬至の太陽行路112に挟まれた、南方の一定の方角に含まれる実効方角110である。   FIG. 2 is an explanatory diagram showing a direction in which the retroreflective member 10 according to the present embodiment retroreflects incident light rays. The retroreflective member 10 is spread on the south side wall surface of the building 20. Specifically, as will be described later, it is preferable that the specific direction for retroreflecting most efficiently is the south-mid altitude of the summer solstice. In this case, the direction of the sun from which a predetermined retroreflectance can be obtained is an effective direction 110 included in a certain south direction sandwiched between the solar path 111 of the summer solstice and the solar path 112 of the winter solstice.

次に、再帰反射部材10の構造について説明する。図3は、本実施形態に係る再帰反射部材10を示す外観斜視図である。再帰反射部材10は、一定の大きさでユニット化されており、上述のようにビル20の壁面に敷き詰める場合には、複数のユニットを並べて取り付ける。   Next, the structure of the retroreflective member 10 will be described. FIG. 3 is an external perspective view showing the retroreflective member 10 according to the present embodiment. The retroreflective member 10 is unitized with a fixed size, and when it is spread on the wall surface of the building 20 as described above, a plurality of units are mounted side by side.

再帰反射部材10は、ベース部材31、ベース部材31に設けられた複数の凹部32、ベース部材31同士を連結するための接続部33から主に構成される。ベース部材31は、例えばセラミックス、プラスチックなどを素材とする、剛性の高い基材である。凹部32は、ベース部材31に対する三角形の開口を底面とする斜錘形状を成す。つまり、凹部32は、最深部である頂点から開口である底面に向かって垂直に下ろす垂心(射影位置)が、底面の三角形の重心を通らない錐形状である。そして、その表面の少なくとも一部は反射材で形成されている。反射材は、凹部32に貼着、蒸着、塗布された反射素材であっても良いし、反射素材で形成されたベース部材31自身であっても良い。例えば、アルミナ、チタニア、ジルコニア、アルミニウムなどが反射素材として利用される。接続部33は、再帰反射部材10の周縁部に設けられた、他の再帰反射部材10と接続しつつ壁部へ固定するための、例えばボルト貫通穴である。   The retroreflective member 10 mainly includes a base member 31, a plurality of concave portions 32 provided in the base member 31, and a connection portion 33 for connecting the base members 31 to each other. The base member 31 is a highly rigid base material made of, for example, ceramics or plastic. The recess 32 has a truncated pyramid shape with a triangular opening with respect to the base member 31 as a bottom surface. That is, the concave portion 32 has a conical shape in which a perpendicular (projection position) that vertically drops from the deepest vertex to the bottom surface that is the opening does not pass through the center of gravity of the triangle on the bottom surface. And at least one part of the surface is formed with the reflecting material. The reflective material may be a reflective material adhered, vapor-deposited or applied to the recess 32, or the base member 31 itself formed of a reflective material. For example, alumina, titania, zirconia, aluminum or the like is used as the reflective material. The connection part 33 is a bolt through hole, for example, provided on the peripheral part of the retroreflective member 10 and fixed to the wall part while being connected to the other retroreflective member 10.

次に凹部32の具体的な錘形状について順次説明する。図4は、再帰反射効率の算出に関する定義図である。凹部32は、南向きを正方向とする南北に延びるx軸、天頂向きを正方向とする天地に延びるy軸、東向きを正方向とする東西に延びるz軸に対し、yz平面上に三角形の底面開口が設けられて定義される。つまり、再帰反射部材10が、南向きの垂直な壁面に設置されている場合を想定する。   Next, a specific weight shape of the recess 32 will be sequentially described. FIG. 4 is a definition diagram relating to the calculation of retroreflective efficiency. The recess 32 is triangular on the yz plane with respect to the x axis extending north and south with the south direction as the positive direction, the y axis extending to the top and bottom with the zenith direction as the positive direction, and the z axis extending east and west with the east direction as the positive direction. The bottom opening is provided and defined. That is, it is assumed that the retroreflective member 10 is installed on a vertical wall surface facing south.

底面開口となる三角形は、図示するように頂点P10、P11、P12により定められる。すると、3つの側面(内面)の交点として形成される、錘形状の頂点であるP00は、x軸の負領域に存在する。そして、錘形状の3つの内面のうち、P00、P10、P11で囲まれる面をS0とし、P00、P11、P12で囲まれる面をS1(基準面)とし、P00、P12、P10で囲まれる面をS2とする。   A triangle serving as a bottom opening is defined by vertices P10, P11, and P12 as shown. Then, P00, which is the apex of the weight shape, formed as an intersection of the three side surfaces (inner surfaces) exists in the negative region of the x axis. Of the three weight-shaped inner surfaces, the surface surrounded by P00, P10, and P11 is S0, the surface surrounded by P00, P11, and P12 is S1 (reference surface), and the surface is surrounded by P00, P12, and P10. Is S2.

このように定義付けられる凹部32に対して、各時刻の太陽高度と方位角から、N本の入射光120を底面開口に入射させて、反射光の方向を計算する。このとき、S0〜S2の各面の反射率をR、1本の光線のエネルギーを1とする。このときの入射光120のエネルギーの総和はNとなる。   From the sun altitude and azimuth angle at each time point, the N incident lights 120 are made incident on the bottom opening to calculate the direction of the reflected light. At this time, the reflectance of each surface of S0 to S2 is R, and the energy of one light beam is 1. At this time, the total energy of the incident light 120 is N.

本実施形態における再帰反射光121は、反射後に、入射光120と逆向きの光線に対して許容角度θにより形成される円錐130の内側で直進する光として定義される。この円錐130の外側に向かって反射する光は、非再帰反射光122として定義される。凹部32で反射した光線のうち、この円錐130内に含まれる再帰反射光121の本数をM(0≦M≦N)とすると、個々の再帰反射光121の反射回数を、i(0≦i≦N)を用いてr(i)と表すことができる。このとき再帰反射光121の総エネルギーEは以下で表される。

Figure 2012242508
The retroreflected light 121 in the present embodiment is defined as light that travels straight inside the cone 130 that is formed with an allowable angle θ with respect to a light ray that is opposite to the incident light 120 after reflection. The light reflected toward the outside of the cone 130 is defined as non-retroreflective light 122. If the number of retroreflected light 121 included in the cone 130 among the light rays reflected by the concave portion 32 is M (0 ≦ M ≦ N), the number of reflections of each retroreflected light 121 is i (0 ≦ i). ≦ N) and can be expressed as r (i). At this time, the total energy E of the retroreflected light 121 is expressed as follows.
Figure 2012242508

そして、再帰反射光121の総エネルギーEを入射光120の総エネルギーで割ることにより、次のように再帰反射効率εを定義する。すなわち、再帰反射効率εは、壁面に設置された再帰反射部材10の凹部32に入射した太陽光のエネルギーに対する、許容角度θの円錐内に反射される反射光のエネルギーの比率である。

Figure 2012242508
Then, by dividing the total energy E of the retroreflected light 121 by the total energy of the incident light 120, the retroreflective efficiency ε is defined as follows. That is, the retroreflective efficiency ε is the ratio of the energy of reflected light reflected in the cone having the allowable angle θ to the energy of sunlight incident on the recess 32 of the retroreflective member 10 installed on the wall surface.
Figure 2012242508

以上の定義を用いて、凹部32の錘形状について説明する。なお本実施形態においては、具体的な数値としてN=100、R=0.9、θ=30°を適用して一連の計算を行う。   The weight shape of the recess 32 will be described using the above definition. In the present embodiment, a series of calculations is performed by applying N = 100, R = 0.9, and θ = 30 ° as specific numerical values.

図5は、凹部32が直錘形状である場合の各断面と座標値を示す図である。直錘形状は、頂点から開口である底面に向かって垂直に下ろす垂心(射影位置)が、底面の三角形の重心と重なる形状である。図5の直錘は、S0〜S1の各面が互いに直交する。図の例では、1辺が25.98mmの正三角形の開口であり、凹部の深さが10.66mmとなる位置にP00が定められている。   FIG. 5 is a diagram showing cross sections and coordinate values when the concave portion 32 has a straight weight shape. The straight weight shape is a shape in which a centroid (projection position) vertically dropped from the apex toward the bottom surface that is an opening overlaps the center of gravity of the triangle on the bottom surface. In the straight weight of FIG. 5, the surfaces S0 to S1 are orthogonal to each other. In the example shown in the figure, an opening of an equilateral triangle having one side of 25.98 mm, and P00 is defined at a position where the depth of the recess is 10.66 mm.

このような凹部32に対し、東京(北緯34.7°、東経135.5°)における、夏至、春分・秋分、冬至のそれぞれ6時から18時の間の1時間おきの反射効率を計算した。その結果を図6に示す。特に、図6(a)は、各季節における再帰反射効率の時間変化を示し、図6(b)は、非再帰反射光122のうち水平面であるz平面より下へ反射する光線の各季節における反射効率の時間変化を示す。   With respect to such a recess 32, the reflection efficiency was calculated every 6 hours from 16:00 to 18:00 on the summer solstice, spring equinox / autumn and winter solstice in Tokyo (34.7 ° north latitude, 135.5 ° east longitude). The result is shown in FIG. In particular, FIG. 6A shows the temporal change in retroreflective efficiency in each season, and FIG. 6B shows the non-retroreflective light 122 in each season of light rays reflected below the z plane, which is the horizontal plane. The time change of reflection efficiency is shown.

(a)図に示すように、凹部32が直錘形状である場合は、最も高い再帰反射効率が要求される夏至において再帰反射効率が0であり、冬至においても午前と午後で60%超の再帰反射効率が得られるに留まる結果となる。また、(b)図に示すように、朝夕に水平以下の方向へ反射する非再帰反射光122が多く生じる結果となる。水平以下の方向へ反射する非再帰反射光122は、歩行者が不快に感じるなどの弊害が多く、好ましくない反射光である。したがって、直錘形状である凹部32は、再帰反射効率の観点からも、非再帰反射光122の反射方向の観点からも好ましくない。   (A) As shown in the figure, when the recess 32 has a straight weight shape, the retroreflective efficiency is 0 in the summer solstice where the highest retroreflective efficiency is required, and it exceeds 60% in the morning and afternoon in the winter solstice. As a result, the retroreflective efficiency is obtained. Further, as shown in FIG. 5B, a large amount of non-retroreflective light 122 that is reflected in the morning and evening directions below the horizontal level is generated. The non-retroreflected light 122 that reflects in the direction below the horizontal is unfavorable reflected light because it has many harmful effects such as a pedestrian feeling uncomfortable. Therefore, the concave portion 32 having a straight weight shape is not preferable from the viewpoint of the retroreflective efficiency and from the viewpoint of the reflection direction of the non-retroreflective light 122.

そこで、これらの観点から凹部32の最適形状を以下に説明する。図7は、夏至における東京での南中時の太陽光を凹部32が受けている様子を示す図である。特に図7(a)は斜視図を表し、図7(b)はxy断面図を表す。   Therefore, the optimum shape of the recess 32 will be described below from these viewpoints. FIG. 7 is a diagram illustrating a state in which the concave portion 32 receives sunlight during the south-central time in Tokyo in the summer solstice. In particular, FIG. 7A shows a perspective view, and FIG. 7B shows an xy sectional view.

まず、省エネルギーおよび環境対策の目的からは、夏の正午前後の太陽光を最も効率的に再帰反射させることが望ましい。夏至における太陽の南中高度は、90°−(緯度−23.5°)で表される。東京の緯度を35°として当てはめると、夏至における東京での南中高度は78.5°となる。   First, for the purpose of energy saving and environmental measures, it is desirable to retroreflect sunlight most effectively after summer noon in summer. The sun's south-middle altitude at the summer solstice is represented by 90 °-(latitude-23.5 °). Applying the latitude of Tokyo as 35 °, the south-central altitude at Tokyo in the summer solstice is 78.5 °.

南中時の太陽光を1回反射で同一方向に反射させるには、S1面がこの角度からの光線に対して直交することと、S0面、S2面が入射光および反射光を遮蔽しないことが条件となる。すなわち、凹部32のxy断面の形状について、「x軸とS1面のなす角度が夏至における太陽の南中高度の補角=緯度−23.5°に等しい」ことと、「S1面と稜線P00−P10のなす角が90°以下であること」の2つの条件が満たされる必要がある。   In order to reflect sunlight in the south and central times in the same direction with a single reflection, the S1 surface should be orthogonal to the light rays from this angle, and the S0 and S2 surfaces should not shield incident light and reflected light. Is a condition. That is, with respect to the shape of the xy section of the recess 32, “the angle formed by the x-axis and the S1 plane is equal to the complementary angle of the south-south altitude of the sun at the summer solstice = latitude −23.5 °” and “the S1 plane and the ridgeline P00 The two conditions “the angle formed by −P10 is 90 ° or less” must be satisfied.

前者の条件は、S1面が南中時の太陽光線に直交する条件であり、後者の条件は、面S0、面S2が入射光および反射光を遮蔽しない条件である。なお、東京の緯度約35°においてはx軸とS1面のなす角度は約11.5°となる。   The former condition is a condition in which the S1 surface is orthogonal to the sun rays in the middle of the south, and the latter condition is a condition in which the surfaces S0 and S2 do not shield incident light and reflected light. Note that the angle between the x-axis and the S1 plane is about 11.5 ° at a latitude of about 35 ° in Tokyo.

なお、直線P00−P10はxy平面内に含まれることが望ましいが、この位置に無い場合でも夏至の南中時の再帰反射効率にはほとんど影響しない。ただし、春秋の朝夕の反射特性に影響を与える。なお、上記の条件では夏至の太陽の南中時に最大の再帰反射効率を発揮するように最適化しているが、例えば7月、8月の適当な時期の太陽の南中高度に最適化する場合は、夏至における太陽の南中高度の代わりに、当該時期における太陽の南中高度を用いればよい。また、実用的には±3°程度の範囲で成り立てばよい。特に、厳密な最適化ではなく簡易的に反射方向を定める場合であれば、前者の条件は、頂点P00から開口三角形P10−P11−P12への射影位置が、開口三角形の重心位置から基準辺であるP11−P12側へ偏位した位置となるように三角斜錘形状を決定すれば良い。   The straight line P00-P10 is preferably included in the xy plane, but even if it is not in this position, it hardly affects the retroreflective efficiency at the time of the summer solstice. However, it affects the reflection characteristics of spring and autumn morning and evening. In the above conditions, optimization is performed so that the maximum retroreflective efficiency is exhibited during the south-south sun of the summer solstice. For example, when optimizing the south-south altitude of the sun at an appropriate time in July and August, for example. May be used instead of the solar mid-sea altitude at the summer solstice. In practice, it may be established within a range of about ± 3 °. In particular, if the reflection direction is simply determined instead of strict optimization, the former condition is that the projection position from the vertex P00 to the aperture triangle P10-P11-P12 is the reference edge from the center of gravity of the aperture triangle. What is necessary is just to determine a triangular-pyramid shape so that it may become a position displaced to a certain P11-P12 side.

以下に、凹部32の形状について好ましい例を順に説明する。図8は、第1の斜錘形状の各断面および座標値を示す図である。第1の斜錘形状における凹部32は、1辺25.98mmの正三角形の開口を有し、開口からP00までの深さは4.4mmである。また、開口の三角形のP10が天頂を向く形状であり、P00は正三角形の中心から下に6.6mmシフトしている。なお、第1の斜錘形状は、x軸とS1面のなす角度が11.56°であり、S1面と稜線P00−P10のなす角が90°であるので、上述の条件を満たしている。   Below, a preferable example is demonstrated in order about the shape of the recessed part 32. FIG. FIG. 8 is a diagram showing each cross section and coordinate values of the first inclined pyramid shape. The concave portion 32 in the first oblique pyramid shape has an equilateral triangular opening with a side of 25.98 mm, and the depth from the opening to P00 is 4.4 mm. Moreover, P10 of the triangle of opening is a shape which faces a zenith, and P00 has shifted 6.6 mm below from the center of the equilateral triangle. Note that the first oblique pyramid shape satisfies the above-mentioned condition because the angle formed by the x-axis and the S1 surface is 11.56 ° and the angle formed by the S1 surface and the ridgelines P00 to P10 is 90 °. .

図9は、第1の斜錘形状に対する各季節における反射効率の時間変化を示す図である。計算の前提条件は、図6の結果を導いた条件と同じである。図からわかるように、夏至の正午前後の再帰反射効率は80%以上であり、春分および秋分で最大60%、冬至で最大30%と、比較的高い再帰反射効率を発揮することがわかる。   FIG. 9 is a diagram showing the temporal change in the reflection efficiency in each season with respect to the first inclined pyramid shape. The preconditions for the calculation are the same as the conditions that led to the results of FIG. As can be seen from the figure, the retroreflective efficiency after noon in the summer solstice is 80% or more, a maximum of 60% in the spring and autumn minutes, and a maximum of 30% in the winter solstice.

図10は、第2の斜錘形状の各断面および座標値を示す図である。第2の斜錘形状における凹部32は、1辺25.98mmの正三角形の開口を有し、開口からP00までの深さは15mmである。また、開口の三角形のP10が天頂を向く形状であり、P00は正三角形の中心から下に4mmシフトしている。なお、第2の斜錘形状は、x軸とS1面のなす角度が11.56°であり、S1面と稜線P00−P10のなす角が64.84°であるので、上述の条件を満たしている。   FIG. 10 is a diagram illustrating each cross section and coordinate values of the second oblique pyramid shape. The concave portion 32 in the second oblique pyramid shape has an equilateral triangular opening with a side of 25.98 mm, and the depth from the opening to P00 is 15 mm. Further, the triangular shape P10 of the opening has a shape facing the zenith, and P00 is shifted 4 mm downward from the center of the regular triangle. In addition, since the angle formed between the x-axis and the S1 surface is 11.56 ° and the angle formed between the S1 surface and the ridgelines P00 to P10 is 64.84 °, the second inclined pyramid shape satisfies the above condition. ing.

図11は、第2の斜錘形状に対する各季節における反射効率の時間変化を示す図である。計算の前提条件は、図6の結果を導いた条件と同じである。図からわかるように、夏至の正午前後の再帰反射効率は80%以上であり、春分および秋分・冬至で最大20%以下と、夏季を中心として高い再帰反射効率を発揮することがわかる。   FIG. 11 is a diagram showing the temporal change in reflection efficiency in each season with respect to the second inclined pyramid shape. The preconditions for the calculation are the same as the conditions that led to the results of FIG. As can be seen from the figure, the retroreflective efficiency after noon in the summer solstice is 80% or more, and the maximum is 20% or less in the spring equinox, autumn equinox, and winter solstice, showing that the retroreflective efficiency is high mainly in the summer.

図12は、第3の斜錘形状の各断面および座標値を示す図である。第3の斜錘形状における凹部32は、長辺30mm、高さ15mmの直角二等辺三角形の開口を有し、開口からP00までの深さは3mmである。また、開口の三角形のP10が天頂を向く形状であり、P00は底辺から上に4mmシフトしている。なお、第3の斜錘形状は、x軸とS1面のなす角度が11.30°であり、S1面と稜線P00−P10のなす角が90°であるので、上述の条件を満たしている。   FIG. 12 is a diagram showing the cross-sections and coordinate values of the third oblique pyramid shape. The recess 32 in the third oblique pyramid shape has an opening of a right isosceles triangle having a long side of 30 mm and a height of 15 mm, and the depth from the opening to P00 is 3 mm. Moreover, P10 of the triangle of opening is a shape which faces a top | zenith, and P00 has shifted 4 mm upwards from the base. In addition, since the angle formed between the x-axis and the S1 surface is 11.30 ° and the angle formed between the S1 surface and the ridgelines P00 to P10 is 90 °, the third inclined pyramid shape satisfies the above-described condition. .

図13は、第3の斜錘形状に対する各季節における反射効率の時間変化を示す図である。計算の前提条件は、図6の結果を導いた条件と同じである。図からわかるように、夏至の正午前後の再帰反射効率は70%程度であり、春分および秋分で最大40%、冬至で最大20%以下と、夏季に高い再帰反射効率を発揮することがわかる。   FIG. 13 is a diagram showing the temporal change in the reflection efficiency in each season with respect to the third inclined pyramid shape. The preconditions for the calculation are the same as the conditions that led to the results of FIG. As can be seen, the retroreflective efficiency after noon in the summer solstice is about 70%, with a maximum of 40% in the spring and autumn minutes and a maximum of 20% or less in the winter solstice, showing a high retroreflective efficiency in the summer.

図14は、第4の斜錘形状の各断面および座標値を示す図である。第4の斜錘形状における凹部32は、長辺30mm、高さ15mmの直角二等辺三角形の開口を有し、開口からP00までの深さは3mmである。また、開口の三角形のP10が地面を向く形状であり、P00は底辺から上に0.6mmシフトしている。なお、第4の斜錘形状は、x軸とS1面のなす角度が11.30°であり、S1面と稜線P00−P10のなす角が90°であるので、上述の条件を満たしている。   FIG. 14 is a diagram showing each cross section and coordinate values of the fourth oblique pyramid shape. The concave portion 32 in the fourth oblique pyramid shape has an opening of a right isosceles triangle having a long side of 30 mm and a height of 15 mm, and the depth from the opening to P00 is 3 mm. Further, the triangular P10 of the opening is shaped to face the ground, and P00 is shifted from the bottom by 0.6 mm upward. In addition, since the angle formed between the x-axis and the S1 surface is 11.30 ° and the angle formed between the S1 surface and the ridgelines P00 to P10 is 90 °, the fourth inclined pyramid shape satisfies the above-described condition. .

図15は、第4の斜錘形状に対する各季節における反射効率の時間変化を示す図である。計算の前提条件は、図6の結果を導いた条件と同じである。図からわかるように、夏至の正午前後の再帰反射効率は70%程度であり、春分および秋分で最大40%、冬至で最大20%以下と、夏季に高い再帰反射効率を発揮することがわかる。   FIG. 15 is a diagram showing a temporal change in the reflection efficiency in each season with respect to the fourth inclined pyramid shape. The preconditions for the calculation are the same as the conditions that led to the results of FIG. As can be seen, the retroreflective efficiency after noon in the summer solstice is about 70%, with a maximum of 40% in the spring and autumn minutes and a maximum of 20% or less in the winter solstice, showing a high retroreflective efficiency in the summer.

図16は、本実施形態に係る他の再帰反射部材11を示す外観図である。これまで説明した凹部32は、そのサイズに依存せずにそれぞれの再帰反射効率を発揮する。したがって、ベース部材31に多くの凹部32を設けようとする場合は、大きさの異なる凹部32を敷き詰めればそれだけ再帰反射部材全体としての効率が上がる。すなわち、図示するように、大きな凹部321の間隙に小さな凹部322を設ければ良い。異なる大きさの凹部を敷き詰める場合には、2種類の凹部に限らず、例えば、フラクタルとなるように複数種類の凹部を敷き詰めればより効果的である。もちろん、デザイン的な観点から、規則的な配置に限らず、ランダムな配置を採用しても良い。また、大きさの異なる凹部321、322が、それぞれ一つのみで再帰反射部材11を形成しても良い。この場合、大小様々な再帰反射部材11を組み合わせて敷き詰めることができる。   FIG. 16 is an external view showing another retroreflective member 11 according to this embodiment. The recess 32 described so far exhibits each retroreflective efficiency without depending on its size. Therefore, when many concave portions 32 are to be provided in the base member 31, the efficiency of the retroreflective member as a whole increases as long as the concave portions 32 having different sizes are spread. That is, as shown in the drawing, a small recess 322 may be provided in the gap between the large recesses 321. When laying down recesses of different sizes, it is more effective to lay down a plurality of types of recesses to form, for example, a fractal, without being limited to two types of recesses. Of course, from the viewpoint of design, not only regular arrangement but also random arrangement may be adopted. Further, the retroreflective member 11 may be formed with only one concave portion 321, 322 having a different size. In this case, the retroreflective members 11 of various sizes can be combined and spread.

図17は、本実施形態に係る他の再帰反射部材12を示す外観図である。図16を用いて説明したような、異なる大きさの凹部を敷き詰める以外にも、再帰反射効率を上げることができる。具体的には、上述の第3の斜錘形状と第4の斜錘形状は、互いに底面開口の形状が同一の関係にあり、これらを組み合わせるとベース部材31において稠密配列を実現することができる。このように配列したものが図17に示す再帰反射部材12であり、第3の斜錘形状を有する凹部323と第4の斜錘形状を有する凹部324が隣接して稠密に配置されている。再帰反射部材12は、全体として、第3の斜錘形状により発揮される図13で示した再帰反射効率と、第4の斜錘形状により発揮される図15で示した再帰反射効率とを、足し合わせた再帰反射効率を発揮する。   FIG. 17 is an external view showing another retroreflective member 12 according to this embodiment. Retroreflective efficiency can be increased in addition to laying out recesses of different sizes as described with reference to FIG. Specifically, the above-described third and fourth oblique pyramid shapes have the same relationship in shape of the bottom openings, and when they are combined, a dense arrangement can be realized in the base member 31. . What is arranged in this way is the retroreflective member 12 shown in FIG. 17, in which the concave portion 323 having the third oblique pyramid shape and the concave portion 324 having the fourth oblique pyramid shape are arranged densely adjacent to each other. The retroreflective member 12 as a whole has the retroreflective efficiency shown in FIG. 13 exhibited by the third oblique pyramid shape and the retroreflective efficiency shown in FIG. 15 exhibited by the fourth oblique pyramid shape, Adds retroreflective efficiency.

図18は、本実施形態に係る他の再帰反射部材13を説明する図である。上述の再帰反射部材においては、底面開口としての三角形が視認される態様で凹部32が配置されていた。しかし、凹部32をより稠密に配置するには、底面開口としての三角形が仮想的に重なり合って配列される構造であっても良い。以下に具体的に説明する。   FIG. 18 is a diagram illustrating another retroreflective member 13 according to this embodiment. In the above-mentioned retroreflective member, the recessed part 32 was arrange | positioned in the aspect which the triangle as a bottom face opening is visually recognized. However, in order to arrange the concave portions 32 more densely, a structure in which triangles as bottom openings are virtually overlapped and arranged may be used. This will be specifically described below.

図18(a)は、正三角形である底面開口が、底辺を互いに半分共有するように、仮想的に重なり合った場合を示す図である。すなわち、左側の正三角形P10、P11、P12と右側の正三角形P10'、P11'、P12'は、図示するように、P11−P12'間で底辺を共有する。このとき、それぞれの斜錘形状の頂点は、P00およびP00'である。このように底面開口が重なり合って形成される立体形状は、実際には図の実線で示すように、隣接する2つの三角斜錘形状の一部が切り取られて稜線を共有する形状となる。この場合、外見上は開口が六角形となる。ただし、開口の六角形は、それぞれの辺が同一平面上には存在せず、隣接しない3つの頂点とその他の3つの頂点が、それぞれ異なる平面上に存在する立体構造となる。このように、上下方向にも底面開口を重ね合わせて2次元的に凹部を展開すると、図(b)の再帰反射部材13を形成することができる。なお、図(c)は、図(b)におけるA−A断面図である。このように稠密に配列された立体構造を採用する再帰反射部材13は、ベース部材31に対する平行面が存在しないので、全体として高い再帰反射効率を実現する。   FIG. 18A is a diagram illustrating a case where the bottom openings, which are equilateral triangles, are virtually overlapped so that the bases share half of each other. That is, the left regular triangles P10, P11, and P12 and the right regular triangles P10 ′, P11 ′, and P12 ′ share a base between P11 and P12 ′ as shown in the figure. At this time, the vertices of the respective oblique pyramid shapes are P00 and P00 ′. In this way, the three-dimensional shape formed by overlapping the bottom openings is actually a shape in which a part of two adjacent triangular pyramid shapes are cut off and the ridge line is shared as shown by the solid line in the figure. In this case, the opening is hexagonal in appearance. However, the hexagon of the opening has a three-dimensional structure in which each side does not exist on the same plane, and three non-adjacent vertices and the other three vertices exist on different planes. As described above, when the recesses are developed two-dimensionally by overlapping the bottom openings in the vertical direction, the retroreflective member 13 shown in FIG. In addition, FIG. (C) is AA sectional drawing in FIG. (B). Since the retroreflective member 13 that employs a three-dimensional structure arranged densely in this manner does not have a parallel surface with respect to the base member 31, it achieves a high retroreflective efficiency as a whole.

以上説明した本実施形態においては、東京を設置場所として説明した。他の設置場所を想定する場合は、上述の条件式に即して、適宜凹部の形状を変更すれば良い。また、底面開口は三角形に限らず、多角形であっても良い。すなわち、凹部の形状は、底面開口がn角形(nは3以上の自然数)であるn角斜錐形状であれば、上述の形状に類似する効果を発揮する。   In the present embodiment described above, Tokyo has been described as the installation location. When other installation locations are assumed, the shape of the recess may be changed as appropriate in accordance with the above conditional expression. Further, the bottom opening is not limited to a triangle but may be a polygon. That is, if the shape of the concave portion is an n-angled pyramid shape whose bottom opening is an n-gon (n is a natural number of 3 or more), an effect similar to the above-described shape is exhibited.

図19は、本実施形態に係る再帰反射部材10を再帰反射性建材としてビル20の壁面へ設置する工程を説明する図である。上述のように再帰反射部材10を組み合わせて壁面へ設置する場合、図19(a)に示すように、夏至における南中時刻の太陽90の太陽光線に対して、基準面であるS1が直交するように設置することが肝要であることは上述のとおりである。   FIG. 19 is a diagram illustrating a process of installing the retroreflective member 10 according to the present embodiment on the wall surface of the building 20 as a retroreflective building material. When the retroreflective member 10 is combined and installed on the wall surface as described above, as shown in FIG. 19A, the reference plane S1 is orthogonal to the sun rays of the sun 90 at the time of the south and middle at the summer solstice. It is as described above that it is important to install in this way.

再帰反射部材10をビル20の壁面へ設置する場合、図19(b)に示すように、それぞれをボルト40で固定するなどの設置工程を経る。このとき、当該ビル20が立地する緯度から夏至における南中高度を算出して、上記条件を満たす凹部32を有する再帰反射部材10を選択して採用することができる。または、設置する再帰反射部材10が有する凹部32が上記条件を満たすように、ボルト40の締結により角度を調整することもできる。ボルト40を用いず、接着剤等を用いる場合であっても、同様に角度調整を施すことができる。   When the retroreflective member 10 is installed on the wall surface of the building 20, an installation process such as fixing each with a bolt 40 is performed as shown in FIG. At this time, the retroreflective member 10 having the concave portion 32 that satisfies the above conditions can be selected and employed by calculating the south-middle altitude at the summer solstice from the latitude at which the building 20 is located. Alternatively, the angle can be adjusted by fastening the bolt 40 so that the recess 32 of the retroreflective member 10 to be installed satisfies the above conditions. Even in the case of using an adhesive or the like without using the bolt 40, the angle can be adjusted similarly.

以上の実施形態においては、再帰反射部材10が少なくとも反射外壁材の一部として形成される再帰反射性建材を例として説明したが、再帰反射部材10は、もちろん反射外壁材に限らず、様々な形態をとり得る。反射外壁タイル、反射床材、反射瓦などの形態としての再帰反射性建材であっても十分実用的である。例えば反射床材の場合、設置方向が壁材に比較して直交する方向になるので、上述の条件を満たす床面に適した凹部32を形成すれば良い。   In the above embodiment, the retroreflective building material in which the retroreflective member 10 is formed at least as a part of the reflective outer wall material has been described as an example. However, the retroreflective member 10 is not limited to the reflective outer wall material, and may be various. Can take form. Even retroreflective building materials in the form of reflective outer wall tiles, reflective flooring materials, reflective tiles, etc. are sufficiently practical. For example, in the case of a reflective flooring, the installation direction is a direction orthogonal to the walling material, so that the concave portion 32 suitable for the floor surface that satisfies the above-described conditions may be formed.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

10、11、12 再帰反射部材、20 ビル、31 ベース部材、32 凹部、33 接続部、40 ボルト、90 太陽、101 入射光、102 反射光、103 入射光、104 照り返し光、110 実効方角、111 夏至の太陽行路、112 冬至の太陽行路、120 入射光、121 再帰反射光、122 非再帰反射光、130 円錐、321、322、323、324 凹部 10, 11, 12 Retroreflective member, 20 Building, 31 Base member, 32 Recessed part, 33 Connection part, 40 Volts, 90 Sun, 101 Incident light, 102 Reflected light, 103 Incident light, 104 Reflected light, 110 Effective direction, 111 Sun Solst Path, 112 Winter Solstice Path, 120 Incident Light, 121 Retroreflective Light, 122 Non-Retroreflective Light, 130 Cone, 321, 322, 323, 324 Recess

Claims (14)

三角形の開口を底面として頂点を形成する3つの側面を有し、前記頂点から前記底面への射影位置が前記底面の重心位置から前記三角形の基準辺の側へ偏位した三角斜錘形状の凹部を備え、
前記3つの側面のうち少なくとも一面が反射面に形成されている再帰反射部材。
A triangular pyramid-shaped concave portion having three side surfaces forming a vertex with a triangular opening as a bottom surface, and a projection position from the vertex to the bottom surface being deviated from the center of gravity position of the bottom surface toward the reference side of the triangle With
A retroreflective member in which at least one of the three side surfaces is formed as a reflective surface.
前記3つの側面のいずれもが前記反射面であり、
前記底面に入射する光が、前記反射面のうち前記基準辺を含む基準面で反射された後に、他の反射面で反射されて再帰反射する請求項1に記載の再帰反射部材。
Any of the three side surfaces is the reflecting surface,
The retroreflective member according to claim 1, wherein the light incident on the bottom surface is reflected by a reference surface including the reference side among the reflective surfaces, and then reflected by another reflective surface and retroreflected.
前記基準面と、前記他の反射面の稜線とがなす角度は、90度以下である請求項2に記載の再帰反射部材。   The retroreflective member according to claim 2, wherein an angle formed by the reference surface and a ridge line of the other reflection surface is 90 degrees or less. 前記凹部を複数備える請求項1から3のいずれか1項に記載の再帰反射部材。   The retroreflection member according to any one of claims 1 to 3, comprising a plurality of the recesses. 複数の前記凹部は、互いに大きさが異なる相似形を含み、前記基準辺が互いに平行となるように配列されている請求項4に記載の再帰反射部材。   The retroreflective member according to claim 4, wherein the plurality of concave portions include similar shapes having different sizes, and are arranged so that the reference sides are parallel to each other. 複数の前記凹部は、前記底面としての前記三角形が重なり合って配置されることにより、隣接する前記凹部と稜線を共有して稠密に配置される請求項4に記載の再帰反射部材。   The retroreflective member according to claim 4, wherein the plurality of concave portions are arranged densely by sharing the ridge line with the adjacent concave portions by overlapping the triangles as the bottom surfaces. 請求項1から6のいずれか1項に記載の再帰反射部材を含む再帰反射性建材。   A retroreflective building material comprising the retroreflective member according to claim 1. 前記基準辺を含む基準面は、最も再帰反射率が大きくなる方向に対して直交するように設けられている請求項7に記載の再帰反射性建材。   The retroreflective building material according to claim 7, wherein the reference surface including the reference side is provided so as to be orthogonal to a direction in which the retroreflectance is maximized. 少なくとも反射外壁タイルの一部として形成される請求項7または8に記載の再帰反射性建材。   The retroreflective building material of Claim 7 or 8 formed as a part of at least reflective outer wall tile. 少なくとも反射外壁材の一部として形成される請求項7または8に記載の再帰反射性建材。   The retroreflective building material of Claim 7 or 8 formed as a part of at least reflective outer wall material. 少なくとも反射床材の一部として形成される請求項7または8に記載の再帰反射性建材。   The retroreflective building material according to claim 7 or 8, which is formed as at least a part of a reflective flooring. 少なくとも反射瓦の一部として形成される請求項7または8に記載の再帰反射性建材。   The retroreflective building material of Claim 7 or 8 formed as a part of at least reflective tile. 三角形の開口を底面として頂点を形成する3つの側面を有し、前記頂点から前記底面への射影位置が前記底面の重心位置から前記三角形の基準辺の側へ偏位した三角斜錘形状の凹部を備え、前記3つの側面のうち前記基準辺を含む基準面が少なくとも反射面に形成されている再帰反射部材を、夏至における南中時刻の太陽光線に対して前記基準面が直交するように設置する再帰反射部材設置段階を含む建築物の建築方法。   A triangular pyramid-shaped concave portion having three side surfaces forming a vertex with a triangular opening as a bottom surface, and a projection position from the vertex to the bottom surface being deviated from the center of gravity position of the bottom surface toward the reference side of the triangle A retroreflective member in which a reference surface including the reference side among the three side surfaces is formed on at least a reflection surface so that the reference surface is orthogonal to the sun rays at the time of south and middle in the summer solstice A construction method of a building including a retroreflective member installation stage. n角形(nは3以上の自然数)の開口を底面として頂点を形成するn個の側面を有し、前記頂点から前記底面への射影位置が前記底面の重心位置から前記n角形の基準辺の側へ偏位したn角斜錘形状の凹部を備え、
前記n個の側面のうち少なくとも一面が反射面に形成されている再帰反射部材。
An n-side (n is a natural number of 3 or more) opening has n side surfaces forming a vertex with a bottom surface, and a projected position from the vertex to the bottom surface is a position of the reference side of the n-side from the center of gravity of the bottom surface. It is provided with a concave portion of an n-angle oblique pyramid shape displaced to the side,
A retroreflective member in which at least one of the n side surfaces is formed as a reflective surface.
JP2011110781A 2011-05-17 2011-05-17 Retroreflective member, retroreflective building material and construction method of building Pending JP2012242508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011110781A JP2012242508A (en) 2011-05-17 2011-05-17 Retroreflective member, retroreflective building material and construction method of building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011110781A JP2012242508A (en) 2011-05-17 2011-05-17 Retroreflective member, retroreflective building material and construction method of building

Publications (1)

Publication Number Publication Date
JP2012242508A true JP2012242508A (en) 2012-12-10

Family

ID=47464302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011110781A Pending JP2012242508A (en) 2011-05-17 2011-05-17 Retroreflective member, retroreflective building material and construction method of building

Country Status (1)

Country Link
JP (1) JP2012242508A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015015114A (en) * 2013-07-03 2015-01-22 株式会社ジャパンディスプレイ Organic electroluminescent display device
DE112019002340T5 (en) 2018-05-09 2021-08-26 Yazaki Energy System Corporation EXTERIOR WALL MATERIAL AND METHOD OF MANUFACTURING THEREOF
KR20220106318A (en) * 2021-01-22 2022-07-29 주식회사 선포탈 Light Reflecting Device For Natural Light Of Embedded Type And Its Manufacturing Method
US11871907B2 (en) 2021-05-28 2024-01-16 Evident Corporation Illumination optical system for endoscope, optical adaptor and endoscope

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09504385A (en) * 1993-10-20 1997-04-28 ミネソタ マイニング アンド マニュファクチャリング カンパニー Raised area retroreflective corner cube article and fabrication method
JP2002323612A (en) * 2001-02-20 2002-11-08 Sharp Corp Optical element such as corner cube array and reflection type display device equipped with the same
JP2006510951A (en) * 2002-12-17 2006-03-30 アヴェリー・デニッソン・コーポレーション 3 level cutting cube corner
JP2006178495A (en) * 2001-06-15 2006-07-06 Sharp Corp Micro corner cube array, method of making the same and display device using the same
JP2006322313A (en) * 2005-04-20 2006-11-30 Ntt Facilities Inc Solar light reflection structure, and facility using structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09504385A (en) * 1993-10-20 1997-04-28 ミネソタ マイニング アンド マニュファクチャリング カンパニー Raised area retroreflective corner cube article and fabrication method
JP2002323612A (en) * 2001-02-20 2002-11-08 Sharp Corp Optical element such as corner cube array and reflection type display device equipped with the same
JP2006178495A (en) * 2001-06-15 2006-07-06 Sharp Corp Micro corner cube array, method of making the same and display device using the same
JP2006510951A (en) * 2002-12-17 2006-03-30 アヴェリー・デニッソン・コーポレーション 3 level cutting cube corner
JP2006322313A (en) * 2005-04-20 2006-11-30 Ntt Facilities Inc Solar light reflection structure, and facility using structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015015114A (en) * 2013-07-03 2015-01-22 株式会社ジャパンディスプレイ Organic electroluminescent display device
DE112019002340T5 (en) 2018-05-09 2021-08-26 Yazaki Energy System Corporation EXTERIOR WALL MATERIAL AND METHOD OF MANUFACTURING THEREOF
US11608676B2 (en) 2018-05-09 2023-03-21 Yazaki Energy System Corporation Outer wall material and method for manufacturing same
KR20220106318A (en) * 2021-01-22 2022-07-29 주식회사 선포탈 Light Reflecting Device For Natural Light Of Embedded Type And Its Manufacturing Method
KR102454650B1 (en) 2021-01-22 2022-10-14 주식회사 선포탈 Light Reflecting Device For Natural Light Of Embedded Type And Its Manufacturing Method
US11871907B2 (en) 2021-05-28 2024-01-16 Evident Corporation Illumination optical system for endoscope, optical adaptor and endoscope

Similar Documents

Publication Publication Date Title
US4073568A (en) Retroreflector units with three mutually perpendicular surfaces defining a trihedral angle of a rectangular parallelepiped
WO2011096098A1 (en) Lighting device and lighting apparatus provided with lighting device
CN100538157C (en) A kind of navigation mark lamp unit
JP2012242508A (en) Retroreflective member, retroreflective building material and construction method of building
JP4828290B2 (en) Sunlight reflecting structure and equipment using the structure
JPS6238681B2 (en)
US20210404129A1 (en) Methods and apparatus for ultrawide entrance angle reflective articles for use with autonomous vehicle machine vision systems
US9651721B2 (en) Retroreflector with low refractive index backing
JP2006317648A (en) Member for preventing global warming
CN105960561A (en) Flexible unobstructed beam shaping
US20130314927A1 (en) Secondary optical lens for lamp
EP2806076A1 (en) Method and system for retroreflective cooling
JP2012242509A (en) Retroreflective member, retroreflective building material and construction method of building
CA1055457A (en) Prismatic lighting panel
WO2018025993A1 (en) Lighting device
JP2009537023A (en) Retroreflector
CN105278015A (en) Double-side micro pyramid array retroreflection structure
JP2012002892A (en) Transparent body for window and manufacturing method thereof
WO2013089132A1 (en) Solar cell module and photovoltaic power generator
RU2014117867A (en) DIRECTED BY DIRECT LINES A MULTIDIRECTIONAL PRISMATIC CLUSTER LIGHT-RETURNING SHEET MATERIAL
Montes-Amoros When buildings attack their neighbors: Strategies for protecting against “death rays.”
CN213338177U (en) Efficient light reflection microprism array structure
JP2011164491A (en) Retroreflective member
WO2022162845A1 (en) Reflection unit for solar cell modules
US20230400612A1 (en) Retroreflective materials and articles incorporating near-ideal total internal retroreflective elements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150602