WO2022162845A1 - Reflection unit for solar cell modules - Google Patents

Reflection unit for solar cell modules Download PDF

Info

Publication number
WO2022162845A1
WO2022162845A1 PCT/JP2021/003112 JP2021003112W WO2022162845A1 WO 2022162845 A1 WO2022162845 A1 WO 2022162845A1 JP 2021003112 W JP2021003112 W JP 2021003112W WO 2022162845 A1 WO2022162845 A1 WO 2022162845A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflecting
solar cell
reflecting surface
cell module
triangular
Prior art date
Application number
PCT/JP2021/003112
Other languages
French (fr)
Japanese (ja)
Inventor
悠 岩田
昌宏 溝口
勝弘 石井
Original Assignee
ネクストエナジー・アンド・リソース株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ネクストエナジー・アンド・リソース株式会社 filed Critical ネクストエナジー・アンド・リソース株式会社
Priority to JP2022577925A priority Critical patent/JPWO2022162845A1/ja
Priority to PCT/JP2021/003112 priority patent/WO2022162845A1/en
Publication of WO2022162845A1 publication Critical patent/WO2022162845A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a reflective unit for a solar cell module.
  • the amount of power generated by the solar cell module increases as the altitude of the sun rises, and reaches its peak around noon when the solar radiation intensity is at its maximum.
  • FIG. 10 is a reference diagram superimposing the amount of power generated by a general solar cell module and the amount of power generated by a solar cell module designed to overload the output.
  • the horizontal axis indicates the passage of time from morning to night, and the vertical axis indicates the amount of power generation.
  • the power generation amount of a general solar cell module is indicated as "normal power generation amount”
  • the power generation amount of a solar cell module designed to be overloaded is indicated as "power generation amount when overloaded”. ing.
  • DC electricity generated by the solar cell module is generated in excess of the amount that can be converted into AC electricity at one time by the power conditioner. A so-called peak cut, in which the amount is discarded, is performed.
  • Patent Literature 1 discloses a technique of arranging a film-like reflective module between rows of solar cell modules.
  • sunlight is reflected by a reflecting surface of a film-like reflecting module and irradiated to an adjacent solar cell module, thereby increasing the output of the entire solar cell module.
  • the solar cell module may be damaged due to excessive solar radiation intensity on the solar cell module.
  • the present invention provides a solar cell module reflective unit that is arranged to be inclined in one direction, comprising a reflective member, wherein the reflective member is arranged in the direction in which the reflective unit should be inclined.
  • a reflecting unit comprising at least one valley-shaped pattern extending in a direction orthogonal to the Invention 1).
  • Such an invention is arranged, for example, on the south side of a solar cell module whose light-receiving surface is slanted to the south, and is slanted to the north.
  • the solar radiation intensity can be increased in the morning and afternoon hours when the solar radiation intensity is relatively weak. Therefore, since the solar radiation intensity around noon when the solar radiation intensity reaches its maximum does not increase excessively, it is possible to increase the overall power generation amount while suppressing the increase in the peak-cut power generation amount.
  • invention 1 when the direction toward the sky from each of the first reflecting surface and the second reflecting surface is the positive direction, the normal vector of the first reflecting surface and the normal of the second reflecting surface
  • the angle ⁇ formed with the vector is preferably 30° or more and 90° or less (Invention 2).
  • the at least one valley pattern is defined by two triangular prismatic structures connected in the orthogonal direction, and the first reflecting surface and the second reflecting surface are , preferably a pair of surfaces formed by the two triangular prism-shaped structures facing each other across the connection line of the two triangular prism-shaped structures (Invention 3).
  • the reflecting member can be easily manufactured, and the effect of increasing the solar radiation intensity in the solar cell module can be enhanced.
  • the first reflective surface and the second reflective surface are a pair of triangular prismatic structures that face each other across a connecting line of the two triangular prismatic structures. It is preferably a part of the surface (Invention 4).
  • the reflecting member can be easily manufactured, and the effect of increasing the solar radiation intensity in the solar cell module can be enhanced.
  • each of the two triangular prismatic structures includes a triangular pyramidal region whose cross-sectional area decreases along the direction in which the reflecting unit is to be tilted, and the first reflecting surface and the It is preferable that the second reflecting surface is a pair of surfaces formed by the two triangular pyramidal regions facing each other with the connection line interposed therebetween (invention 5).
  • the reflecting member can be easily manufactured, and the effect of increasing the solar radiation intensity in the solar cell module can be further enhanced.
  • the solar cell module reflection unit of the present invention is arranged, for example, on the south side of the solar cell module whose light receiving surface is obliquely arranged toward the south, and is inclined toward the north. According to the reflecting unit, the solar radiation intensity can be increased in the morning and afternoon hours when the solar radiation intensity is relatively low. Therefore, since the solar radiation intensity around noon when the solar radiation intensity reaches its maximum does not increase excessively, it is possible to increase the overall power generation amount while suppressing the increase in the peak-cut power generation amount.
  • FIGS. 1A and 1B are schematic diagrams showing a solar cell module reflection unit according to a first embodiment of the present invention, in which (a) is a perspective view, (b) is a top view, and (c) is A of (b). -A line cross-sectional view, (d) is a reference perspective view shown together with the solar cell module.
  • 2A and 2B are schematic diagrams showing a solar cell module reflection unit according to a second embodiment of the present invention, in which (a) is a perspective view, (b) is a top view, and (c) is A1 of (b).
  • FIG. 3 is a schematic diagram showing a conventional reflector for a solar cell module together with a solar cell module, in which (a) is a reflector having a planar reflecting surface, and (b) is a cross section in a direction perpendicular to the direction of inclination. shows a reflector with a concave reflecting surface.
  • FIG. 4(a) is a schematic cross-sectional view showing how the reflectors of Comparative Examples 2 and 3 are installed on the solar cell module.
  • FIG. 4B is a schematic cross-sectional view of the reflector of Comparative Example 2 as seen from the east side.
  • FIG. 5(a) is a schematic cross-sectional view showing how to install each reflection unit of Examples 1 and 2 on a solar cell module.
  • 5B is a top view of the reflecting member of Example 1.
  • FIG. 5C is a top view of the reflecting member of Example 2.
  • FIG. 6 is a schematic diagram of an array of solar cell modules of 9 m in the east-west direction and 4 m in the north-south direction divided into 9 ⁇ 12 squares.
  • FIG. 7 is a graph showing changes in the solar radiation intensity in the light receivers installed in the black-painted portions in FIG. 6 for Comparative Examples 1 to 3 and Examples 1 and 2;
  • FIG. 8 is a graph showing the rate of increase in solar radiation intensity in the light receivers installed in the blackened portions of FIG. 6 for Comparative Examples 1 to 3 and Examples 1 and 2;
  • FIG. 9 is a graph showing the solar radiation intensity distribution in an array of solar cell modules, in which (a) is for Comparative Example 2, (b) is for Example 1, and (c) is for Example 2. showing.
  • FIG. 10 is a reference diagram superimposing the amount of power generated by a general solar cell module and the amount of power generated by a solar cell module designed to overload the output.
  • a solar cell module 100 as shown in FIGS. 1(d) and 2(e) will be briefly described as an example of a solar cell module to which the reflecting unit for a solar cell module of the present invention can be applied.
  • the solar cell module 100 is obliquely installed so that the light receiving surface faces south.
  • a plurality of solar cell modules 100 are arranged at regular intervals in the north-south direction.
  • FIGS. 1A and 1B are schematic diagrams showing a solar cell module reflection unit 10 according to a first embodiment of the present invention, in which (a) is a perspective view, (b) is a top view, and (c) is a perspective view of (b). A cross-sectional view taken along the line AA, and (d) is a reference perspective view shown together with a solar cell module. As shown in FIG. 1(d), the reflecting unit 10 is arranged with an inclination in one direction during use.
  • a reflecting unit 10 includes a reflecting member 1 .
  • the reflecting member 1 includes at least one valley-shaped pattern 2 extending in a direction ⁇ 1 perpendicular to the direction ⁇ 1 in which the reflecting unit 10 is to be tilted.
  • the valley pattern 2 has a pair of reflecting surfaces 3 composed of a first reflecting surface 31 and a second reflecting surface 32 .
  • FIG. 3A and 3B are schematic diagrams showing a conventional reflector for a solar cell module together with a solar cell module 100, in which (a) is a reflector 30 having a planar reflecting surface, and (b) is a direction orthogonal to the direction of inclination. A reflector 40 having a reflective surface with a concave cross-section is shown.
  • the output of the solar cell module can be increased.
  • the solar cell module may be damaged due to excessive solar radiation intensity on the solar cell module.
  • the reflecting member 1 has at least one valley pattern 2 extending in the direction ⁇ 1 perpendicular to the direction ⁇ 1 in which the reflecting unit 10 should be tilted.
  • the valley pattern 2 has a pair of reflecting surfaces 3 composed of a first reflecting surface 31 and a second reflecting surface 32, the solar radiation intensity is relatively low in the morning and afternoon hours. can be increased. Therefore, since the solar radiation intensity around noon when the solar radiation intensity reaches its maximum does not increase excessively, it is possible to increase the overall power generation amount while suppressing the increase in the peak-cut power generation amount.
  • the reflecting unit 10 has one valley pattern 2 extending in the direction ⁇ 1.
  • the reflecting unit 10 has three valley patterns 2 extending in the direction ⁇ 1.
  • the number of valley patterns 2 may be two, or may be four or more.
  • the valley pattern 2 is defined by two triangular prismatic structures 4 connected in the direction ⁇ 1.
  • the first reflecting surface 31 and the second reflecting surface 32 are a pair of surfaces formed by two triangular prismatic structures 4 facing each other with the connection line C1 of the two triangular prismatic structures 4 interposed therebetween.
  • the cross-sectional area of the triangular prismatic structure 4 is constant along the direction ⁇ 1.
  • the cross-sectional area of the triangular prismatic structure 4 means the cross-sectional area of the triangular prismatic structure 4 in the direction ⁇ 1.
  • the triangular columnar structure 4 is a structure defined by three side surfaces of a first inclined surface 41 , a second inclined surface 42 and a bottom surface 43 . As shown in FIG. 1, the triangular prismatic structure 4 does not have to physically have the bottom surface 43 .
  • the triangular columnar structure 4 in FIG. 1 has a gable roof shape with a first inclined surface 41 and a second inclined surface 42 .
  • the cross-sectional area of the triangular prismatic structure 4 is defined by the first inclined surface 41, the second inclined surface 42, and the bottom surface 43 as a virtual surface. It means the cross-sectional area of the configured triangular prismatic structure 4 .
  • the second inclined surface 42 of the triangular prismatic structure 4 corresponds to the first reflecting surface 31
  • the first inclined surface 41 of the triangular prismatic structure 4 corresponds to the second reflecting surface 32 . That is, in the present embodiment, a pair of surfaces formed by the second inclined surface 42 of one triangular prismatic structure 4 and the first inclined surface 41 of the adjacent triangular prismatic structure 4 serves as the first reflecting surface. It corresponds to a pair of reflecting surfaces 3 composed of the surface 31 and the second reflecting surface 32 .
  • the reflection The member 1 can be easily manufactured, and the effect of increasing the solar radiation intensity in the solar cell module 100 can be enhanced.
  • the cross-sectional shape of the triangular columnar structure 4 may be an isosceles triangle having an apex angle defined by the first inclined surface 41 and the second inclined surface 42 . That is, in the triangular columnar structure 4, the first inclined surface 41 and the second inclined surface 42 may have a symmetrical structure centering on the top side extending in the direction ⁇ 1. This means that in the valley pattern 2, the first reflecting surface 31 and the second reflecting surface 32 have a symmetrical structure with the connecting line C1 as the center. Since the first reflecting surface 31 and the second reflecting surface 32 have a symmetrical structure with respect to the connection line C1, the uniformity of the effect of increasing the solar radiation intensity in the solar cell module 100 can be ensured. .
  • a plurality of continuous valley-shaped patterns 2 are formed by arranging a plurality of gable roof-shaped triangular prism-shaped structures 4 in a row along the direction ⁇ 1.
  • a pair of surfaces formed by the two triangular prismatic structures 4 are used as a pair of reflecting surfaces 3 .
  • the normal vector N31 of the first reflecting surface 31 and the normal vector N32 of the second reflecting surface 32 are The angle ⁇ 1 to be formed is 30° or more and 90° or less.
  • the angle ⁇ 1 between the normal vector N 31 and the normal vector N 32 is too large, the intensity of solar radiation in the solar cell module 100 tends to be uneven. In photovoltaic power generation, generated power is affected by the lowest current value generated in each cell in each series circuit of solar cell module 100 . Therefore, if there is unevenness in the solar radiation intensity, the amount of power generated in a portion with strong solar radiation does not contribute to the AC power generation. On the other hand, if the angle ⁇ 1 is too small, the solar cell module 100 is less effective in increasing the solar radiation intensity. When the angle ⁇ 1 is 30° or more and 90° or less, it is possible to enhance the effect of increasing the solar radiation intensity in the solar cell module 100 while securing the power generation amount that contributes to the AC power generation. Preferably, the angle ⁇ 1 is 40° or more and 60° or less.
  • the reflecting unit 10 is obliquely installed in the direction ⁇ 1 at an inclination angle ⁇ 1 and used.
  • the inclination angle ⁇ 1 is the angle formed by the bottom surface 43 of the triangular columnar structure 4 or the bottom surface 43 as a virtual surface with respect to the horizontal plane.
  • the reflecting unit 10 is normally provided with the reflecting member 1 obliquely oriented northward at an inclination angle of ⁇ 1 on the south side of the solar cell module 100 whose light-receiving surface is obliquely oriented southward. used.
  • the inclination angle ⁇ 1 can be appropriately set according to the installation angle of the symmetrical solar cell module 100, and may be, for example, 15° or more and 45° or less.
  • the same material as used for a conventional reflecting plate or reflecting sheet can be used.
  • the material for forming the reflecting surface 3 includes a sheet of polyester, polyethylene, or the like vapor-deposited with aluminum, a canvas vapor-deposited with aluminum, or an aluminum plate.
  • FIGSecond embodiment> 2A and 2B are schematic diagrams showing a solar cell module reflection unit 20 according to a second embodiment of the present invention, in which (a) is a perspective view, (b) is a top view, and (c) is a perspective view of (b). 3D is a cross-sectional view taken along the line A1-A1, (d) is a cross-sectional view taken along the line A2-A2 of (b), and (e) is a reference perspective view showing the solar cell module 100 together. Similar to the reflection unit 10 of the first embodiment, the reflection unit 20 is arranged to be inclined in one direction during use, as shown in FIG. 2(d).
  • the reflecting unit 20 has a reflecting member 6 .
  • the reflecting member 6 includes at least one valley-shaped pattern 7 extending in a direction ⁇ 2 orthogonal to the direction ⁇ 2 in which the reflecting unit 20 is to be tilted.
  • the valley pattern 7 has a pair of reflecting surfaces 8 composed of a first reflecting surface 81 and a second reflecting surface 82 .
  • the reflecting member 6 includes at least one valley pattern 7 extending in the direction ⁇ 2 perpendicular to the direction ⁇ 2 in which the reflecting unit 20 should be tilted.
  • the valley-shaped pattern 7 has a pair of reflecting surfaces 8 composed of a first reflecting surface 81 and a second reflecting surface 82, thereby increasing the solar radiation intensity in the morning and afternoon hours when the solar radiation intensity is relatively low. can be made Therefore, since the solar radiation intensity around noon when the solar radiation intensity reaches its maximum does not increase excessively, it is possible to increase the overall power generation amount while suppressing the increase in the peak-cut power generation amount.
  • the reflecting unit 20 has one valley pattern 7 extending in the direction ⁇ 2.
  • the reflecting unit 20 has three valley patterns 7 extending in the direction ⁇ 2.
  • the number of valley patterns 7 may be two, or may be four or more.
  • the valley pattern 7 is defined by two triangular prismatic structures 9 connected in the direction ⁇ 2.
  • the triangular columnar structure 9 is a structure defined by three side surfaces, a first inclined surface 91 , a second inclined surface 92 and a bottom surface 93 . As shown in FIG. 2, the triangular prismatic structure 9 does not have to physically have a bottom surface 93 .
  • the triangular columnar structure 9 in FIG. 2 has a gable roof shape with a first inclined surface 91 and a second inclined surface 92 .
  • the first reflecting surface 81 and the second reflecting surface 82 are a pair of surfaces formed by two triangular prismatic structures 9 facing each other across the connection line C2 of the two triangular prismatic structures 9. It is part. More specifically, each of the two triangular prismatic structures 9 includes a triangular pyramidal region 95 whose cross-sectional area decreases along the direction ⁇ 2, and the first reflecting surface 81 and the second reflecting surface 82 are , a pair of surfaces formed by two triangular pyramidal regions 95 facing each other with the connection line C2 interposed therebetween.
  • the triangular pyramidal region 95 has the shape of an upper portion obtained by cutting the triangular prismatic structure 4 in FIG.
  • the cross-sectional area of the triangular pyramidal region 95 means the cross - sectional area of the triangular pyramidal region 95 in the direction ⁇ 2.
  • the portion of the second inclined surface 92 of the triangular prismatic structure 9 that overlaps the triangular pyramidal region 95 corresponds to the first reflecting surface 81
  • the first inclined surface 91 of the triangular prismatic structure 9 A portion overlapping the triangular pyramidal region 95 corresponds to the second reflecting surface 82 . That is, in the present embodiment, of the pair of surfaces formed by the second inclined surface 92 of one triangular prismatic structure 9 and the first inclined surface 91 of the adjacent triangular prismatic structure 9, the triangular pyramidal region A portion overlapping with 95 corresponds to a pair of reflecting surfaces 8 composed of the first reflecting surface 81 and the second reflecting surface 82 .
  • the first reflecting surface 81 and the second reflecting surface 82 are part of a pair of surfaces formed by the two triangular prism-shaped structures 9 facing each other across the connection line C2 of the two triangular prism-shaped structures 9. Therefore, the reflecting member 6 can be easily manufactured, and the effect of increasing the solar radiation intensity in the solar cell module 100 can be enhanced.
  • the cross-sectional shape of the triangular columnar structure 9 may be an isosceles triangle having an apex angle defined by the first inclined surface 91 and the second inclined surface 92 . That is, in the triangular columnar structure 9, the first inclined surface 91 and the second inclined surface 92 may have a symmetrical structure centering on the top side extending in the direction ⁇ 2. This means that in the valley pattern 7, the first reflecting surface 81 and the second reflecting surface 82 have a symmetrical structure with the connecting line C2 as the center. Since the first reflecting surface 81 and the second reflecting surface 82 have a symmetrical structure with respect to the connection line C2 , the uniformity of the effect of increasing the solar radiation intensity in the solar cell module 100 can be ensured. .
  • the reflecting member 6 may or may not physically have a portion other than the triangular pyramidal region 95 in the triangular prismatic structure 9 .
  • the reflecting member 6 in FIG. 2 is an example showing a case where the triangular prismatic structure 9 does not physically have a portion other than the triangular pyramidal region 95 .
  • a plurality of continuous valley-shaped patterns 7 are formed by arranging a plurality of gabled roof-shaped triangular prism-shaped structures 9 in a row along the direction ⁇ 2.
  • a pair of reflecting surfaces 8 are a part of the pair of surfaces formed by the two triangular columnar structures 9 .
  • the normal vector N 81 of the first reflecting surface 81 and the normal vector N 82 of the second reflecting surface 82 are The angle ⁇ 2 to be formed is 30° or more and 90° or less.
  • the reflection unit 20 is obliquely installed in a direction ⁇ 2 at an inclination angle ⁇ 2 and used.
  • the inclination angle ⁇ 2 is the angle formed by the bottom surface 93 of the triangular columnar structure 9 or the bottom surface 93 as a virtual surface with respect to the horizontal plane.
  • the reflecting unit 20 is normally provided with the reflecting member 6 obliquely oriented northward at an inclination angle of ⁇ 2 on the south side of the solar cell module 100 whose light-receiving surface is obliquely oriented southward. used.
  • the range of the tilt angle ⁇ 2 can be appropriately set according to the installation angle of the symmetrical solar cell module 100 , like the tilt angle ⁇ 1 of the reflection unit 10 of the first embodiment. It may be 45° or less.
  • the same material as used for a conventional reflecting plate or reflecting sheet can be used, like the reflecting surface 3 of the reflecting member 1 of the first embodiment.
  • a sheet such as polyester or polyethylene vapor-deposited with aluminum, a canvas vapor-deposited with aluminum, an aluminum plate, or the like can be used.
  • the present invention has been described with reference to the drawings, the present invention is not limited to the above embodiments, and various modifications are possible.
  • the reflecting surface is particularly described. or legs for installation.
  • three-dimensional CAD was used to create the light-receiving surface of the solar cell module, the conventional reflector, and the reflection unit of the present invention. It is assumed that the conventional reflector and the reflecting unit of the present invention have a perfect specular reflection characteristic with a reflectance of 100%.
  • a line (ray) with energy was generated from a light source simulating the sun using the Monte Carlo method, and a light source tracing analysis was performed from the light source to the light receiving surface.
  • the direct light component is emitted as parallel rays from the light source that moves on the sun orbit, and the scattered light component is determined from the hemispherical surface covering the calculation area using the Monte Carlo method to determine the emission position and direction. I thought I would inject.
  • Comparative Example 1 did not use a reflector.
  • Comparative Example 2 As Comparative Example 2, a reflecting plate 30 having a planar reflecting surface as shown in FIG. 3(a) was used. The inclination angle ⁇ 30 of the reflector 30 was set to 40°.
  • Comparative Example 3 As Comparative Example 3, a reflecting plate 40 having a reflecting surface having a concave cross section in a direction orthogonal to the tilt direction shown in FIG. 3B was used. The inclination angle ⁇ 40 of the reflector 40 was set to 45°.
  • Example 1 As Example 1, a reflection unit 20 as shown in FIG. 2(a) was used. The inclination angle ⁇ 2 of the reflecting member 6 was set to 30°. The angle ⁇ 2 shown in FIGS. 2(c) and 2 (d) was set to 80.3°.
  • Example 2 As Example 2, a reflection unit 20 as shown in FIG. 2(a) was used. The inclination angle ⁇ 2 of the reflecting member 6 was set to 30° as in the second embodiment. The angle ⁇ 2 shown in FIGS. 2(c) and 2 (d) was set to 45.8°.
  • FIG. 4A is a schematic cross-sectional view showing how the reflectors 30 and 40 of Comparative Examples 2 and 3 are installed on the solar cell modules 100 (100a and 100b).
  • FIG. 4(a) is a schematic cross-sectional view of the reflectors 30 and 40 as seen from a direction orthogonal to the tilt direction.
  • the concave reflector 40 is also shown planar for convenience in order to clearly show the inclination angles ⁇ 30 and ⁇ 40 of the reflectors 30 and 40 of Comparative Examples 2 and 3.
  • the solar cell module 100 was installed so that the light-receiving surface tilted 20° toward the south.
  • the maximum height of the solar cell module 100 was approximately 1.37 m.
  • the distance (the distance between the maximum heights) between the first solar cell module 100a and the second solar cell module 100b adjacent to the south side thereof was approximately 6.80 m.
  • the reflectors 30 and 40 of Comparative Examples 2 and 3 are inclined northward at an angle of inclination ⁇ 30 between the first solar cell module 100a and the second solar cell module 100b. It was arranged obliquely with an angle ⁇ 40 .
  • the inclination angle ⁇ 30 of the reflector 30 was set to 40°
  • the inclination angle ⁇ 40 of the reflector 40 was set to 45°.
  • FIG. 4B is a schematic cross-sectional view of the reflector 40 of Comparative Example 3 as seen from the east side.
  • the tilt angle ⁇ 40 of the reflector 40 is defined as shown in FIG. 4(b).
  • the reflector 40 of Comparative Example 3 had a concave reflecting surface shown in FIG. 4(b).
  • FIG. 5(a) is a schematic cross-sectional view showing how to install each reflection unit 20 of Examples 1 and 2 on the solar cell module 100 (100a, 100b).
  • FIG. 5A is a schematic cross-sectional view of each reflection unit 20 viewed from a direction orthogonal to the tilt direction.
  • the reflecting member 6 is shown in a planar shape for the sake of convenience in order to clearly show the inclination angle ⁇ 2 of each reflecting member 6 of Examples 1 and 2.
  • the solar cell module 100 was installed such that the light receiving surface tilted southward at 20°.
  • the maximum height of the solar cell module 100 was approximately 1.37 m.
  • the distance (the distance between the maximum heights) between the first solar cell module 100a and the second solar cell module 100b adjacent to the south side thereof was approximately 6.80 m.
  • the reflecting member 6 is tilted northward at an angle of ⁇ between the first solar cell module 100a and the second solar cell module 100b. It was arranged so as to be obliquely installed with 2 .
  • the inclination angle ⁇ 2 of each reflecting member 6 in Examples 1 and 2 was set to 30°.
  • FIG. 5B is a top view of the reflecting member 6 of Example 1.
  • the reflecting member 6 of Example 1 has one valley pattern 7 defined by the two triangular pyramidal structures 9 shown in FIG. 2 arranged at intervals of 2 m. and the angle ⁇ 2 was 80.3°.
  • the cross-sectional shape of the triangular pyramidal structure 9 of Example 1 was an isosceles triangle.
  • FIG. 5C is a top view of the reflecting member 6 of Example 2.
  • the reflecting member 6 of Example 2 has three valley patterns 7 defined by the four triangular pyramidal structures 9 shown in FIG. 2 arranged at intervals of 1 m. and the angle ⁇ 2 was 45.8°.
  • the cross-sectional shape of the triangular pyramidal structure 9 of Example 2 was an isosceles triangle.
  • FIG. 6 is a schematic diagram of an array of solar cell modules 100 of 9 m in the east-west direction and 4 m in the north-south direction divided into 9 ⁇ 12 squares.
  • the horizontal axis indicates the distance from the east edge of the array, and the vertical axis indicates the distance from the bottom edge of the array.
  • a comparison test of changes in the sunshine intensity was conducted for Comparative Examples 1 to 3 and Examples 1 and 2 with respect to the black-painted portion in FIG. The results are shown in FIGS. 7 and 8.
  • FIG. 7 and 8 The results are shown in FIGS. 7 and 8.
  • FIG. 7 is a graph showing changes in solar radiation intensity in the light receivers installed in the blackened portions of FIG. 6 for Comparative Examples 1 to 3 and Examples 1 and 2.
  • the horizontal axis indicates time, and the vertical axis indicates sunshine intensity.
  • FIG. 8 is a graph showing the rate of increase in solar radiation intensity in the light receivers installed in the blackened portions of FIG. 6 for Comparative Examples 1 to 3 and Examples 1 and 2;
  • the horizontal axis indicates time, and the vertical axis indicates the increase rate of sunlight intensity.
  • the solar cell module may be damaged due to excessive solar radiation intensity on the solar cell module. Therefore, it is more desirable to increase the solar radiation intensity during low solar radiation in the morning and afternoon than to increase the maximum solar radiation intensity.
  • the planar reflector of Comparative Example 2 the generated power increases most in all time zones, but the maximum solar radiation intensity also increases by about 150%, which is a major disadvantage.
  • the maximum solar radiation intensity did not increase so much, but the overall solar radiation intensity increased.
  • FIG. 9 is a graph showing the solar radiation intensity distribution in an array of solar cell modules, in which (a) is for Comparative Example 2, (b) is for Example 1, and (c) is for Example 2. showing.
  • the horizontal axis indicates the distance from the east edge of the array, and the vertical axis indicates the distance from the bottom edge of the array.
  • the solar radiation intensity was uniform up to about 1.5 m from the bottom end of the array, but increased to about 125%. It turned out that I would be taken.
  • FIG. 9B in the reflection unit of Example 1, although the maximum increase rate of the solar radiation intensity was about 120%, the solar radiation intensity was slightly uneven.
  • FIG. 9(c) in the reflection unit of Example 2, the maximum increase rate of the solar radiation intensity was about 110%, and it was found that the solar radiation intensity increased approximately evenly as a whole.
  • the present invention can increase the overall power generation amount while suppressing an increase in peak-cut power generation amount, and can be widely used for various solar cell modules.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The present invention is a reflection unit for solar cell modules which is disposed so as to be inclined in one direction, said reflection unit comprising a reflection member, wherein the reflection member includes at least one valley-type pattern that extends in a direction orthogonal to the direction in which the reflection unit is to be inclined, and the valley-type pattern has a pair of reflection surfaces constituted by a first reflection surface and a second reflection surface. The reflection unit for solar cell modules is disposed, for example, so as to be inclined facing north, on the south side of a solar cell module having a light receiving surface that is provided so as to be inclined facing south. The reflection unit makes it possible to increase the insolation intensity during AM and PM times during which the insolation intensity is relatively low. Thus, the insolation intensity is not excessively increased at around noontime when the insolation intensity is at a maximum, and it is therefore possible to increase the total amount of generated power while suppressing an increase in the amount of generated power subject to peak shaving.

Description

太陽電池モジュール用反射ユニットReflector unit for solar module
 本発明は、太陽電池モジュール用の反射ユニットに関する。 The present invention relates to a reflective unit for a solar cell module.
 太陽電池モジュールの発電量は、太陽高度の上昇とともに増加し、日射強度が最大になる正午頃に発電量も最大となる。 The amount of power generated by the solar cell module increases as the altitude of the sun rises, and reaches its peak around noon when the solar radiation intensity is at its maximum.
 最近の太陽光発電所においては、パワーコンディショナの出力に対して、太陽電池モジュールの出力が過積載となるように設計されている場合が多い。図10は、一般的な太陽電池モジュールの発電量と、出力が過積載となるように設計された太陽電池モジュールの発電量とを重ねて示した参考図である。横軸は朝から夜までの時間経過を、縦軸は発電量を示している。図10では、一般的な太陽電池モジュールの発電量を「通常の発電量」として、出力が過積載となるように設計された太陽電池モジュールの発電量を「過積載時の発電量」として示している。図10に示すように、出力が過積載となるように設計された太陽電池モジュールでは、太陽電池モジュールで発電した直流電気をパワーコンディショナで一度に交流電気に変換できる量を超えた分の発電量を捨てる、いわゆるピークカットが行われている。  In many cases, recent solar power plants are designed so that the output of the solar cell module is overloaded with respect to the output of the power conditioner. FIG. 10 is a reference diagram superimposing the amount of power generated by a general solar cell module and the amount of power generated by a solar cell module designed to overload the output. The horizontal axis indicates the passage of time from morning to night, and the vertical axis indicates the amount of power generation. In FIG. 10, the power generation amount of a general solar cell module is indicated as "normal power generation amount", and the power generation amount of a solar cell module designed to be overloaded is indicated as "power generation amount when overloaded". ing. As shown in FIG. 10, in a solar cell module designed to have an overloaded output, DC electricity generated by the solar cell module is generated in excess of the amount that can be converted into AC electricity at one time by the power conditioner. A so-called peak cut, in which the amount is discarded, is performed.
 近年、太陽光発電分野では、太陽電池モジュールに照射される光の量を増加させるために、太陽電池モジュールの間に反射板又は反射シートを設けることで、太陽光を太陽電池モジュールに反射させる技術が種々提案されている。例えば、特許文献1には、太陽電池モジュールの列の間にフィルム状の反射モジュールを配置する技術が開示されている。特許文献1では、太陽光をフィルム状の反射モジュールの反射面で反射させて、隣接する太陽電池モジュールへ照射することにより、太陽電池モジュール全体の出力の増加を図っている。 In recent years, in the field of photovoltaic power generation, in order to increase the amount of light irradiated to a solar cell module, a technique for reflecting sunlight to the solar cell module by providing a reflector or a reflective sheet between the solar cell modules. have been proposed. For example, Patent Literature 1 discloses a technique of arranging a film-like reflective module between rows of solar cell modules. In Patent Literature 1, sunlight is reflected by a reflecting surface of a film-like reflecting module and irradiated to an adjacent solar cell module, thereby increasing the output of the entire solar cell module.
 しかし、従来の反射板又は反射シートによって太陽電池モジュールの出力を増加させても、ピークカットされる発電量が増えるだけで、パワーコンディショナの出力の増加には大きく寄与できないおそれがある。また、従来の反射板又は反射シートを用いると、太陽電池モジュールに対する日射強度が強すぎることで、太陽電池モジュールへダメージが生じるおそれもある。 However, even if the output of the solar cell module is increased by using a conventional reflector or sheet, it will only increase the amount of power generated that is peak-cut, and there is a risk that it will not contribute significantly to the increase in the output of the power conditioner. Moreover, if a conventional reflector or sheet is used, the solar cell module may be damaged due to excessive solar radiation intensity on the solar cell module.
国際公開第2017/157424号WO2017/157424
 本発明は上述のような事情に基づいてなされたものであり、ピークカットされる発電量の増加を抑えつつ、全体の発電量を増加させることが可能な太陽電池モジュール用反射ユニットの提供を目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a reflection unit for a solar cell module that can increase the overall power generation while suppressing an increase in the amount of power generated by peak cutting. and
 上記課題を解決するために、本発明は、一方向に傾斜して配置される太陽電池モジュール用反射ユニットであって、反射部材を備え、前記反射部材は、前記反射ユニットが傾斜されるべき方向と直交する方向に延在する谷型パターンを少なくとも1つ含み、前記谷型パターンは、第1反射面と第2反射面とから構成される一対の反射面を有する、反射ユニットを提供する(発明1)。 In order to solve the above problems, the present invention provides a solar cell module reflective unit that is arranged to be inclined in one direction, comprising a reflective member, wherein the reflective member is arranged in the direction in which the reflective unit should be inclined. providing a reflecting unit comprising at least one valley-shaped pattern extending in a direction orthogonal to the Invention 1).
 かかる発明(発明1)は、例えば、受光面が南向きに斜設される太陽電池モジュールの南側に、北向きに傾斜して配置される。当該発明によれば、日射強度が比較的弱い午前及び午後の時間帯の日射強度を増加させることができる。そのため、日射強度が最大になる正午頃の日射強度を過剰に増加させることないので、ピークカットされる発電量の増加を抑えつつ、全体の発電量を増加させることができる。 Such an invention (Invention 1) is arranged, for example, on the south side of a solar cell module whose light-receiving surface is slanted to the south, and is slanted to the north. According to the invention, the solar radiation intensity can be increased in the morning and afternoon hours when the solar radiation intensity is relatively weak. Therefore, since the solar radiation intensity around noon when the solar radiation intensity reaches its maximum does not increase excessively, it is possible to increase the overall power generation amount while suppressing the increase in the peak-cut power generation amount.
 上記発明(発明1)においては、前記第1反射面及び第2反射面それぞれから空に向かう方向を正方向とするとき、前記第1反射面の法線ベクトルと前記第2反射面の法線ベクトルとのなす角度θが、30°以上90°以下であることが好ましい(発明2)。 In the above invention (invention 1), when the direction toward the sky from each of the first reflecting surface and the second reflecting surface is the positive direction, the normal vector of the first reflecting surface and the normal of the second reflecting surface The angle θ formed with the vector is preferably 30° or more and 90° or less (Invention 2).
 第1反射面の法線ベクトルと第2反射面の法線ベクトルとのなす角度θが大き過ぎると、太陽電池モジュールにおける日射強度にムラが生じやすい。太陽光発電において、発電電力は、太陽電池モジュールの各直列回路中の各セルで発生する電流値のうち最も低い値に影響を受ける。そのため、日射強度にムラがある場合、日射が強い部分での発電量は交流発電電力に寄与しない。一方、角度θが小さ過ぎると、太陽電池モジュールにおける日射強度の増加効果が小さくなる。かかる発明(発明2)によれば、交流発電電力に寄与する発電量を確保しつつ、太陽電池モジュールにおける日射強度の増加効果を高めることができる。 If the angle θ formed by the normal vector of the first reflecting surface and the normal vector of the second reflecting surface is too large, unevenness in the solar radiation intensity tends to occur in the solar cell module. In photovoltaic power generation, generated power is affected by the lowest current value generated in each cell in each series circuit of the photovoltaic module. Therefore, if there is unevenness in the solar radiation intensity, the amount of power generated in a portion with strong solar radiation does not contribute to the AC power generation. On the other hand, if the angle θ is too small, the effect of increasing the solar radiation intensity in the solar cell module becomes small. According to this invention (Invention 2), it is possible to enhance the effect of increasing the solar radiation intensity in the solar cell module while ensuring the amount of power that contributes to the AC power generation.
 上記発明(発明1,2)においては、前記少なくとも1つの谷型パターンは、前記直交する方向に接続される2つの三角柱状構造体により画定され、前記第1反射面及び前記第2反射面は、前記2つの三角柱状構造体の接続線を挟んで対向する前記2つの三角柱状構造体により形成される一対の面であることが好ましい(発明3)。 In the above inventions (inventions 1 and 2), the at least one valley pattern is defined by two triangular prismatic structures connected in the orthogonal direction, and the first reflecting surface and the second reflecting surface are , preferably a pair of surfaces formed by the two triangular prism-shaped structures facing each other across the connection line of the two triangular prism-shaped structures (Invention 3).
 かかる発明(発明3)によれば、反射部材の製造が容易であるとともに、太陽電池モジュールにおける日射強度の増加効果を高めることができる。 According to this invention (Invention 3), the reflecting member can be easily manufactured, and the effect of increasing the solar radiation intensity in the solar cell module can be enhanced.
 上記発明(発明3)においては、記第1反射面及び前記第2反射面は、前記2つの三角柱状構造体の接続線を挟んで対向する前記2つの三角柱状構造体により形成される一対の面の一部であることが好ましい(発明4)。 In the above invention (Invention 3), the first reflective surface and the second reflective surface are a pair of triangular prismatic structures that face each other across a connecting line of the two triangular prismatic structures. It is preferably a part of the surface (Invention 4).
 かかる発明(発明4)によれば、反射部材の製造が容易であるとともに、太陽電池モジュールにおける日射強度の増加効果を高めることができる。 According to this invention (Invention 4), the reflecting member can be easily manufactured, and the effect of increasing the solar radiation intensity in the solar cell module can be enhanced.
 上記発明(発明4)においては、前記2つの三角柱状構造体のそれぞれは、前記反射ユニットが傾斜されるべき方向に沿って断面積が減少する三角錐状領域を含み、前記第1反射面及び前記第2反射面は、前記接続線を挟んで対向する前記2つの三角錐状領域により形成される一対の面であることが好ましい(発明5)。 In the above invention (Invention 4), each of the two triangular prismatic structures includes a triangular pyramidal region whose cross-sectional area decreases along the direction in which the reflecting unit is to be tilted, and the first reflecting surface and the It is preferable that the second reflecting surface is a pair of surfaces formed by the two triangular pyramidal regions facing each other with the connection line interposed therebetween (invention 5).
 かかる発明(発明5)によれば、反射部材の製造が容易であるとともに、太陽電池モジュールにおける日射強度の増加効果をより高めることができる。 According to this invention (Invention 5), the reflecting member can be easily manufactured, and the effect of increasing the solar radiation intensity in the solar cell module can be further enhanced.
 本発明の太陽電池モジュール用反射ユニットは、例えば、受光面が南向きに斜設される太陽電池モジュールの南側に、北向きに傾斜して配置される。当該反射ユニットによれば、日射強度が比較的弱い午前及び午後の時間帯の日射強度を増加させることができる。そのため、日射強度が最大になる正午頃の日射強度を過剰に増加させることないので、ピークカットされる発電量の増加を抑えつつ、全体の発電量を増加させることができる。 The solar cell module reflection unit of the present invention is arranged, for example, on the south side of the solar cell module whose light receiving surface is obliquely arranged toward the south, and is inclined toward the north. According to the reflecting unit, the solar radiation intensity can be increased in the morning and afternoon hours when the solar radiation intensity is relatively low. Therefore, since the solar radiation intensity around noon when the solar radiation intensity reaches its maximum does not increase excessively, it is possible to increase the overall power generation amount while suppressing the increase in the peak-cut power generation amount.
図1は、本発明の第一実施形態に係る太陽電池モジュール用反射ユニットを示す概略図であって、(a)は斜視図、(b)は上面図、(c)は(b)のA-A線断面図、(d)は太陽電池モジュールとともに示す参考斜視図である。1A and 1B are schematic diagrams showing a solar cell module reflection unit according to a first embodiment of the present invention, in which (a) is a perspective view, (b) is a top view, and (c) is A of (b). -A line cross-sectional view, (d) is a reference perspective view shown together with the solar cell module. 図2は、本発明の第二実施形態に係る太陽電池モジュール用反射ユニットを示す概略図であって、(a)は斜視図、(b)は上面図、(c)は(b)のA1-A1線断面図、(d)は(b)のA2-A2線断面図、(e)は太陽電池モジュールとともに示す参考斜視図である。2A and 2B are schematic diagrams showing a solar cell module reflection unit according to a second embodiment of the present invention, in which (a) is a perspective view, (b) is a top view, and (c) is A1 of (b). -A1 line cross-sectional view, (d) is an A2-A2 line cross-sectional view of (b), and (e) is a reference perspective view shown together with a solar cell module. 図3は、従来の太陽電池モジュール用反射板を太陽電池モジュールとともに示す概略図であって、(a)は平面状の反射面を有する反射板、(b)は傾斜方向と直交する方向の断面が凹状である反射面を有する反射板を示している。FIG. 3 is a schematic diagram showing a conventional reflector for a solar cell module together with a solar cell module, in which (a) is a reflector having a planar reflecting surface, and (b) is a cross section in a direction perpendicular to the direction of inclination. shows a reflector with a concave reflecting surface. 図4(a)は、太陽電池モジュールに対する比較例2、3の反射板の設置の仕方を示す概略断面図である。図4(b)は、比較例2の反射板を東側から見た概略断面図である。FIG. 4(a) is a schematic cross-sectional view showing how the reflectors of Comparative Examples 2 and 3 are installed on the solar cell module. FIG. 4B is a schematic cross-sectional view of the reflector of Comparative Example 2 as seen from the east side. 図5(a)は、太陽電池モジュールに対する実施例1、2の各反射ユニットの設置の仕方を示す概略断面図である。図5(b)は、実施例1の反射部材の上面図である。図5(c)は、実施例2の反射部材の上面図である。FIG. 5(a) is a schematic cross-sectional view showing how to install each reflection unit of Examples 1 and 2 on a solar cell module. 5B is a top view of the reflecting member of Example 1. FIG. FIG. 5C is a top view of the reflecting member of Example 2. FIG. 図6は、東西方向9m×南北方向4mの太陽電池モジュールのアレイを9×12マスに分割した概略図である。FIG. 6 is a schematic diagram of an array of solar cell modules of 9 m in the east-west direction and 4 m in the north-south direction divided into 9×12 squares. 図7は、比較例1から3及び実施例1、2について、図6の黒塗り部に設置した受光器における日射強度の変化を示したグラフである。FIG. 7 is a graph showing changes in the solar radiation intensity in the light receivers installed in the black-painted portions in FIG. 6 for Comparative Examples 1 to 3 and Examples 1 and 2; 図8は、比較例1から3及び実施例1、2について、図6の黒塗り部に設置した受光器における日射強度の増加率を示したグラフである。FIG. 8 is a graph showing the rate of increase in solar radiation intensity in the light receivers installed in the blackened portions of FIG. 6 for Comparative Examples 1 to 3 and Examples 1 and 2; 図9は、太陽電池モジュールのアレイにおける日射強度分布を示すグラフであって、(a)は比較例2の場合、(b)は実施例1の場合、(c)は実施例2の場合を示している。FIG. 9 is a graph showing the solar radiation intensity distribution in an array of solar cell modules, in which (a) is for Comparative Example 2, (b) is for Example 1, and (c) is for Example 2. showing. 図10は、一般的な太陽電池モジュールの発電量と、出力が過積載となるように設計された太陽電池モジュールの発電量とを重ねて示した参考図である。FIG. 10 is a reference diagram superimposing the amount of power generated by a general solar cell module and the amount of power generated by a solar cell module designed to overload the output.
 以下、本発明の太陽電池モジュール用反射ユニットの実施の形態について、適宜図面を参照して説明する。以下に説明する実施形態は、本発明の理解を容易にするためのものであって、何ら本発明を限定するものではない。 Hereinafter, embodiments of the solar cell module reflection unit of the present invention will be described with reference to the drawings as appropriate. The embodiments described below are intended to facilitate understanding of the present invention, and are not intended to limit the present invention.
〔太陽電池モジュール〕
 まず、本発明の太陽電池モジュール用反射ユニットを適用可能な太陽電池モジュールとして、図1(d)及び図2(e)に示されるような太陽電池モジュール100を例に挙げて簡単に説明する。
[Solar module]
First, a solar cell module 100 as shown in FIGS. 1(d) and 2(e) will be briefly described as an example of a solar cell module to which the reflecting unit for a solar cell module of the present invention can be applied.
 太陽電池モジュール100は、受光面が南向きになるよう斜設されている。通常、複数の太陽電池モジュール100が、南北方向に等間隔で配列されている。 The solar cell module 100 is obliquely installed so that the light receiving surface faces south. Usually, a plurality of solar cell modules 100 are arranged at regular intervals in the north-south direction.
〔太陽電池モジュール用反射ユニット〕
 次に、本発明の太陽電池モジュール用反射ユニットの実施の形態について、図面を参照しながら詳説する。
[Reflection unit for solar cell module]
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of a solar cell module reflecting unit of the present invention will be described in detail with reference to the drawings.
〈第一実施形態〉
 図1は、本発明の第一実施形態に係る太陽電池モジュール用反射ユニット10を示す概略図であって、(a)は斜視図、(b)は上面図、(c)は(b)のA-A線断面図、(d)は太陽電池モジュールとともに示す参考斜視図である。反射ユニット10は、図1(d)に示すように、使用の際に、一方向に傾斜して配置される。
<First embodiment>
1A and 1B are schematic diagrams showing a solar cell module reflection unit 10 according to a first embodiment of the present invention, in which (a) is a perspective view, (b) is a top view, and (c) is a perspective view of (b). A cross-sectional view taken along the line AA, and (d) is a reference perspective view shown together with a solar cell module. As shown in FIG. 1(d), the reflecting unit 10 is arranged with an inclination in one direction during use.
 反射ユニット10は反射部材1を備えている。反射部材1は、反射ユニット10が傾斜されるべき方向αと直交する方向βに延在する谷型パターン2を少なくとも1つ含んでいる。谷型パターン2は、第1反射面31と第2反射面32とから構成される一対の反射面3を有する。 A reflecting unit 10 includes a reflecting member 1 . The reflecting member 1 includes at least one valley-shaped pattern 2 extending in a direction β1 perpendicular to the direction α1 in which the reflecting unit 10 is to be tilted. The valley pattern 2 has a pair of reflecting surfaces 3 composed of a first reflecting surface 31 and a second reflecting surface 32 .
 図3は、従来の太陽電池モジュール用反射板を太陽電池モジュール100とともに示す概略図であって、(a)は平面状の反射面を有する反射板30、(b)は傾斜方向と直交する方向の断面が凹状である反射面を有する反射板40を示している。図3に示されるような従来の反射板によれば、太陽電池モジュールの出力を増加させることができる。しかし、太陽電池モジュールの出力を増加させても、ピークカットされる発電量が増えるだけで、パワーコンディショナの出力の増加には大きく寄与できないおそれがある。また、図3に示されるような従来の反射板によれば、太陽電池モジュールに対する日射強度が強すぎることで、太陽電池モジュールへダメージが生じるおそれもある。 3A and 3B are schematic diagrams showing a conventional reflector for a solar cell module together with a solar cell module 100, in which (a) is a reflector 30 having a planar reflecting surface, and (b) is a direction orthogonal to the direction of inclination. A reflector 40 having a reflective surface with a concave cross-section is shown. According to the conventional reflector as shown in FIG. 3, the output of the solar cell module can be increased. However, even if the output of the solar cell module is increased, there is a possibility that the output of the power conditioner will not be greatly increased because the peak-cut power generation amount will increase. Moreover, according to the conventional reflector as shown in FIG. 3, the solar cell module may be damaged due to excessive solar radiation intensity on the solar cell module.
 一方、本実施形態の太陽電池モジュール用反射ユニット10によれば、反射部材1が、反射ユニット10が傾斜されるべき方向αと直交する方向βに延在する谷型パターン2を少なくとも1つ含み、谷型パターン2が、第1反射面31と第2反射面32とから構成される一対の反射面3を有することにより、日射強度が比較的弱い午前及び午後の時間帯の日射強度を増加させることができる。そのため、日射強度が最大になる正午頃の日射強度を過剰に増加させることないので、ピークカットされる発電量の増加を抑えつつ、全体の発電量を増加させることができる。 On the other hand, according to the solar cell module reflecting unit 10 of the present embodiment, the reflecting member 1 has at least one valley pattern 2 extending in the direction β1 perpendicular to the direction α1 in which the reflecting unit 10 should be tilted. In addition, since the valley pattern 2 has a pair of reflecting surfaces 3 composed of a first reflecting surface 31 and a second reflecting surface 32, the solar radiation intensity is relatively low in the morning and afternoon hours. can be increased. Therefore, since the solar radiation intensity around noon when the solar radiation intensity reaches its maximum does not increase excessively, it is possible to increase the overall power generation amount while suppressing the increase in the peak-cut power generation amount.
 図1(a)では、反射ユニット10は、方向βに延在する1つの谷型パターン2を有している。図1(d)では、反射ユニット10は、方向βに延在する3つの谷型パターン2を有している。谷型パターン2の数は2つであってもよく、4つ以上であってもよい。 In FIG. 1(a), the reflecting unit 10 has one valley pattern 2 extending in the direction β1. In FIG. 1(d), the reflecting unit 10 has three valley patterns 2 extending in the direction β1. The number of valley patterns 2 may be two, or may be four or more.
 図1(a)に示すように、谷型パターン2は、方向βに接続される2つの三角柱状構造体4により画定されている。第1反射面31及び第2反射面32は、2つの三角柱状構造体4の接続線Cを挟んで対向する2つの三角柱状構造体4により形成される一対の面である。三角柱状構造体4の断面積は、方向αに沿って一定である。三角柱状構造体4の断面積とは、方向αにおける三角柱状構造体4の断面積を意味する。 As shown in FIG. 1(a), the valley pattern 2 is defined by two triangular prismatic structures 4 connected in the direction β1. The first reflecting surface 31 and the second reflecting surface 32 are a pair of surfaces formed by two triangular prismatic structures 4 facing each other with the connection line C1 of the two triangular prismatic structures 4 interposed therebetween. The cross-sectional area of the triangular prismatic structure 4 is constant along the direction α1. The cross-sectional area of the triangular prismatic structure 4 means the cross-sectional area of the triangular prismatic structure 4 in the direction α1.
 三角柱状構造体4は、第1傾斜面41、第2傾斜面42、及び底面43の3つの側面により定義される構造体である。図1に示すように、三角柱状構造体4は底面43を物理的に有していなくともよい。図1の三角柱状構造体4は、第1傾斜面41及び第2傾斜面42による切妻屋根形状を呈している。なお、三角柱状構造体4が底面43を物理的に有さない場合、三角柱状構造体4の断面積とは、第1傾斜面41、第2傾斜面42、及び仮想面としての底面43から構成される三角柱状構造体4の断面積を意味する。 The triangular columnar structure 4 is a structure defined by three side surfaces of a first inclined surface 41 , a second inclined surface 42 and a bottom surface 43 . As shown in FIG. 1, the triangular prismatic structure 4 does not have to physically have the bottom surface 43 . The triangular columnar structure 4 in FIG. 1 has a gable roof shape with a first inclined surface 41 and a second inclined surface 42 . When the triangular prismatic structure 4 does not physically have the bottom surface 43, the cross-sectional area of the triangular prismatic structure 4 is defined by the first inclined surface 41, the second inclined surface 42, and the bottom surface 43 as a virtual surface. It means the cross-sectional area of the configured triangular prismatic structure 4 .
 本実施形態では、三角柱状構造体4の第2傾斜面42が第1反射面31に相当し、三角柱状構造体4の第1傾斜面41が第2反射面32に相当する。すなわち、本実施形態では、1つの三角柱状構造体4の第2傾斜面42と、これに隣り合う三角柱状構造体4の第1傾斜面41とにより形成される一対の面が、第1反射面31と第2反射面32とから構成される一対の反射面3に相当する。 In this embodiment, the second inclined surface 42 of the triangular prismatic structure 4 corresponds to the first reflecting surface 31 , and the first inclined surface 41 of the triangular prismatic structure 4 corresponds to the second reflecting surface 32 . That is, in the present embodiment, a pair of surfaces formed by the second inclined surface 42 of one triangular prismatic structure 4 and the first inclined surface 41 of the adjacent triangular prismatic structure 4 serves as the first reflecting surface. It corresponds to a pair of reflecting surfaces 3 composed of the surface 31 and the second reflecting surface 32 .
 第1反射面31及び第2反射面32が、2つの三角柱状構造体4の接続線Cを挟んで対向する2つの三角柱状構造体4により形成される一対の面であることにより、反射部材1の製造が容易であるとともに、太陽電池モジュール100における日射強度の増加効果を高めることができる。 Since the first reflecting surface 31 and the second reflecting surface 32 are a pair of surfaces formed by the two triangular prismatic structures 4 facing each other across the connecting line C1 of the two triangular prismatic structures 4, the reflection The member 1 can be easily manufactured, and the effect of increasing the solar radiation intensity in the solar cell module 100 can be enhanced.
 三角柱状構造体4の断面形状は、第1傾斜面41と第2傾斜面42とにより定まる角度を頂角とする二等辺三角形状であってもよい。すなわち、三角柱状構造体4において、第1傾斜面41と第2傾斜面42とは、方向αに延びる頂辺を中心として対称構造を有していてもよい。これは、谷型パターン2において、第1反射面31と第2反射面32とが、接続線Cを中心として対称構造を有していることを意味する。第1反射面31と第2反射面32とが、接続線Cを中心として対称構造を有していることにより、太陽電池モジュール100における日射強度の増加効果の均一性を確保することができる。 The cross-sectional shape of the triangular columnar structure 4 may be an isosceles triangle having an apex angle defined by the first inclined surface 41 and the second inclined surface 42 . That is, in the triangular columnar structure 4, the first inclined surface 41 and the second inclined surface 42 may have a symmetrical structure centering on the top side extending in the direction α1. This means that in the valley pattern 2, the first reflecting surface 31 and the second reflecting surface 32 have a symmetrical structure with the connecting line C1 as the center. Since the first reflecting surface 31 and the second reflecting surface 32 have a symmetrical structure with respect to the connection line C1, the uniformity of the effect of increasing the solar radiation intensity in the solar cell module 100 can be ensured. .
 図1(d)では、方向βに沿って、切妻屋根型の三角柱状構造体4が複数連なるように配置されることにより、連続する複数の谷型パターン2が形成されており、隣り合う2つの三角柱状構造体4により形成される一対の面を一対の反射面3としている。 In FIG. 1(d), a plurality of continuous valley-shaped patterns 2 are formed by arranging a plurality of gable roof-shaped triangular prism-shaped structures 4 in a row along the direction β1. A pair of surfaces formed by the two triangular prismatic structures 4 are used as a pair of reflecting surfaces 3 .
 第1反射面31及び第2反射面32それぞれから空に向かう方向を正方向とするとき、第1反射面31の法線ベクトルN31と前記第2反射面32の法線ベクトルN32とのなす角度θは、30°以上90°以下である。 When the direction toward the sky from each of the first reflecting surface 31 and the second reflecting surface 32 is defined as the positive direction, the normal vector N31 of the first reflecting surface 31 and the normal vector N32 of the second reflecting surface 32 are The angle θ1 to be formed is 30° or more and 90° or less.
 法線ベクトルN31と法線ベクトルN32とのなす角度θが大き過ぎると、太陽電池モジュール100における日射強度にムラが生じやすい。太陽光発電において、発電電力は、太陽電池モジュール100の各直列回路中の各セルで発生する電流値のうち最も低い値に影響を受ける。そのため、日射強度にムラがある場合、日射が強い部分での発電量は交流発電電力に寄与しない。一方、角度θが小さ過ぎると、太陽電池モジュール100における日射強度の増加効果が小さくなる。角度θが30°以上90°以下であることにより、交流発電電力に寄与する発電量を確保しつつ、太陽電池モジュール100における日射強度の増加効果を高めることができる。好ましくは、角度θは40°以上60°以下である。 If the angle θ 1 between the normal vector N 31 and the normal vector N 32 is too large, the intensity of solar radiation in the solar cell module 100 tends to be uneven. In photovoltaic power generation, generated power is affected by the lowest current value generated in each cell in each series circuit of solar cell module 100 . Therefore, if there is unevenness in the solar radiation intensity, the amount of power generated in a portion with strong solar radiation does not contribute to the AC power generation. On the other hand, if the angle θ1 is too small, the solar cell module 100 is less effective in increasing the solar radiation intensity. When the angle θ 1 is 30° or more and 90° or less, it is possible to enhance the effect of increasing the solar radiation intensity in the solar cell module 100 while securing the power generation amount that contributes to the AC power generation. Preferably, the angle θ1 is 40° or more and 60° or less.
 反射ユニット10は、方向αに傾斜角φで斜設して使用される。傾斜角φは、水平面に対して三角柱状構造体4の底面43又は仮想面としての底面43がなす角度である。図1(d)に示すように、通常、反射ユニット10は、受光面が南向きに斜設される太陽電池モジュール100の南側に、反射部材1が北向きに傾斜角φで斜設して使用される。傾斜角φは、対称である太陽電池モジュール100の設置角度に応じて適宜設定することができ、例えば、15°以上45°以下であってもよい。 The reflecting unit 10 is obliquely installed in the direction α 1 at an inclination angle φ 1 and used. The inclination angle φ 1 is the angle formed by the bottom surface 43 of the triangular columnar structure 4 or the bottom surface 43 as a virtual surface with respect to the horizontal plane. As shown in FIG. 1(d), the reflecting unit 10 is normally provided with the reflecting member 1 obliquely oriented northward at an inclination angle of φ 1 on the south side of the solar cell module 100 whose light-receiving surface is obliquely oriented southward. used. The inclination angle φ 1 can be appropriately set according to the installation angle of the symmetrical solar cell module 100, and may be, for example, 15° or more and 45° or less.
 反射部材1の反射面3を形成する材料としては、従来の反射板又は反射シートに用いられるものと同じものを用いることができる。例えば、反射面3を形成する材料として、アルミ蒸着されたポリエステルやポリエチレンなどのシート、アルミ蒸着された帆布、又はアルミ板などが挙げられる。 As a material for forming the reflecting surface 3 of the reflecting member 1, the same material as used for a conventional reflecting plate or reflecting sheet can be used. For example, the material for forming the reflecting surface 3 includes a sheet of polyester, polyethylene, or the like vapor-deposited with aluminum, a canvas vapor-deposited with aluminum, or an aluminum plate.
〈第二実施形態〉
 図2は、本発明の第二実施形態に係る太陽電池モジュール用反射ユニット20を示す概略図であって、(a)は斜視図、(b)は上面図、(c)は(b)のA1-A1線断面図、(d)は(b)のA2-A2線断面図、(e)は太陽電池モジュール100とともに示す参考斜視図である。反射ユニット20は、第一実施形態の反射ユニット10と同様に、図2(d)に示すように、使用の際に、一方向に傾斜して配置される。
<Second embodiment>
2A and 2B are schematic diagrams showing a solar cell module reflection unit 20 according to a second embodiment of the present invention, in which (a) is a perspective view, (b) is a top view, and (c) is a perspective view of (b). 3D is a cross-sectional view taken along the line A1-A1, (d) is a cross-sectional view taken along the line A2-A2 of (b), and (e) is a reference perspective view showing the solar cell module 100 together. Similar to the reflection unit 10 of the first embodiment, the reflection unit 20 is arranged to be inclined in one direction during use, as shown in FIG. 2(d).
 反射ユニット20は反射部材6を備えている。反射部材6は、反射ユニット20が傾斜されるべき方向αと直交する方向βに延在する谷型パターン7を少なくとも1つ含んでいる。谷型パターン7は、第1反射面81と第2反射面82とから構成される一対の反射面8を有する。 The reflecting unit 20 has a reflecting member 6 . The reflecting member 6 includes at least one valley-shaped pattern 7 extending in a direction β2 orthogonal to the direction α2 in which the reflecting unit 20 is to be tilted. The valley pattern 7 has a pair of reflecting surfaces 8 composed of a first reflecting surface 81 and a second reflecting surface 82 .
 本実施形態の太陽電池モジュール用反射ユニット20によれば、反射部材6が、反射ユニット20が傾斜されるべき方向αと直交する方向βに延在する谷型パターン7を少なくとも1つ含み、谷型パターン7が、第1反射面81と第2反射面82とから構成される一対の反射面8を有することにより、日射強度が比較的弱い午前及び午後の時間帯の日射強度を増加させることができる。そのため、日射強度が最大になる正午頃の日射強度を過剰に増加させることないので、ピークカットされる発電量の増加を抑えつつ、全体の発電量を増加させることができる。 According to the solar cell module reflecting unit 20 of the present embodiment, the reflecting member 6 includes at least one valley pattern 7 extending in the direction β2 perpendicular to the direction α2 in which the reflecting unit 20 should be tilted. , the valley-shaped pattern 7 has a pair of reflecting surfaces 8 composed of a first reflecting surface 81 and a second reflecting surface 82, thereby increasing the solar radiation intensity in the morning and afternoon hours when the solar radiation intensity is relatively low. can be made Therefore, since the solar radiation intensity around noon when the solar radiation intensity reaches its maximum does not increase excessively, it is possible to increase the overall power generation amount while suppressing the increase in the peak-cut power generation amount.
 図2(a)では、反射ユニット20は、方向βに延在する1つの谷型パターン7を有している。図2(e)では、反射ユニット20は、方向βに延在する3つの谷型パターン7を有している。谷型パターン7の数は2つであってもよく、4つ以上であってもよい。 In FIG. 2(a), the reflecting unit 20 has one valley pattern 7 extending in the direction β2. In FIG. 2(e), the reflecting unit 20 has three valley patterns 7 extending in the direction β2. The number of valley patterns 7 may be two, or may be four or more.
 図2(a)に示すように、谷型パターン7は、方向βに接続される2つの三角柱状構造体9により画定されている。三角柱状構造体9は、第1傾斜面91、第2傾斜面92、及び底面93の3つの側面により定義される構造体である。図2に示すように、三角柱状構造体9は底面93を物理的に有していなくともよい。図2の三角柱状構造体9は、第1傾斜面91及び第2傾斜面92による切妻屋根形状を呈している。 As shown in FIG. 2(a), the valley pattern 7 is defined by two triangular prismatic structures 9 connected in the direction β2. The triangular columnar structure 9 is a structure defined by three side surfaces, a first inclined surface 91 , a second inclined surface 92 and a bottom surface 93 . As shown in FIG. 2, the triangular prismatic structure 9 does not have to physically have a bottom surface 93 . The triangular columnar structure 9 in FIG. 2 has a gable roof shape with a first inclined surface 91 and a second inclined surface 92 .
 本実施形態において、第1反射面81及び第2反射面82は、2つの三角柱状構造体9の接続線Cを挟んで対向する2つの三角柱状構造体9により形成される一対の面の一部である。より具体的には、2つの三角柱状構造体9のそれぞれは、方向αに沿って断面積が減少する三角錐状領域95を含んでおり、第1反射面81及び第2反射面82は、接続線Cを挟んで対向する2つの三角錐状領域95により形成される一対の面である。三角錐状領域95は、図1(a)における三角柱状構造体4を頂点x、底点y1及びy2を通る平面で切り取った上側部の形状を有している。なお、三角錐状領域95の断面積とは、方向αにおける三角錐状領域95の断面積を意味する。 In the present embodiment, the first reflecting surface 81 and the second reflecting surface 82 are a pair of surfaces formed by two triangular prismatic structures 9 facing each other across the connection line C2 of the two triangular prismatic structures 9. It is part. More specifically, each of the two triangular prismatic structures 9 includes a triangular pyramidal region 95 whose cross-sectional area decreases along the direction α2, and the first reflecting surface 81 and the second reflecting surface 82 are , a pair of surfaces formed by two triangular pyramidal regions 95 facing each other with the connection line C2 interposed therebetween. The triangular pyramidal region 95 has the shape of an upper portion obtained by cutting the triangular prismatic structure 4 in FIG. The cross-sectional area of the triangular pyramidal region 95 means the cross - sectional area of the triangular pyramidal region 95 in the direction α2.
 本実施形態では、三角柱状構造体9の第2傾斜面92のうち三角錐状領域95と重複する部分が第1反射面81に相当し、三角柱状構造体9の第1傾斜面91のうち三角錐状領域95と重複する部分が第2反射面82に相当する。すなわち、本実施形態では、1つの三角柱状構造体9の第2傾斜面92と、これに隣り合う三角柱状構造体9の第1傾斜面91とにより形成される一対の面うち三角錐状領域95と重複する部分が、第1反射面81と第2反射面82とから構成される一対の反射面8に相当する。 In this embodiment, the portion of the second inclined surface 92 of the triangular prismatic structure 9 that overlaps the triangular pyramidal region 95 corresponds to the first reflecting surface 81, and the first inclined surface 91 of the triangular prismatic structure 9 A portion overlapping the triangular pyramidal region 95 corresponds to the second reflecting surface 82 . That is, in the present embodiment, of the pair of surfaces formed by the second inclined surface 92 of one triangular prismatic structure 9 and the first inclined surface 91 of the adjacent triangular prismatic structure 9, the triangular pyramidal region A portion overlapping with 95 corresponds to a pair of reflecting surfaces 8 composed of the first reflecting surface 81 and the second reflecting surface 82 .
 第1反射面81及び第2反射面82が、2つの三角柱状構造体9の接続線Cを挟んで対向する2つの三角柱状構造体9により形成される一対の面の一部であることにより、反射部材6の製造が容易であるとともに、太陽電池モジュール100における日射強度の増加効果を高めることができる。 The first reflecting surface 81 and the second reflecting surface 82 are part of a pair of surfaces formed by the two triangular prism-shaped structures 9 facing each other across the connection line C2 of the two triangular prism-shaped structures 9. Therefore, the reflecting member 6 can be easily manufactured, and the effect of increasing the solar radiation intensity in the solar cell module 100 can be enhanced.
 三角柱状構造体9の断面形状は、第1傾斜面91と第2傾斜面92とにより定まる角度を頂角とする二等辺三角形状であってもよい。すなわち、三角柱状構造体9において、第1傾斜面91と第2傾斜面92とは、方向αに延びる頂辺を中心として対称構造を有していてもよい。これは、谷型パターン7において、第1反射面81と第2反射面82とが、接続線Cを中心として対称構造を有していることを意味する。第1反射面81と第2反射面82とが、接続線Cを中心として対称構造を有していることにより、太陽電池モジュール100における日射強度の増加効果の均一性を確保することができる。 The cross-sectional shape of the triangular columnar structure 9 may be an isosceles triangle having an apex angle defined by the first inclined surface 91 and the second inclined surface 92 . That is, in the triangular columnar structure 9, the first inclined surface 91 and the second inclined surface 92 may have a symmetrical structure centering on the top side extending in the direction α2. This means that in the valley pattern 7, the first reflecting surface 81 and the second reflecting surface 82 have a symmetrical structure with the connecting line C2 as the center. Since the first reflecting surface 81 and the second reflecting surface 82 have a symmetrical structure with respect to the connection line C2 , the uniformity of the effect of increasing the solar radiation intensity in the solar cell module 100 can be ensured. .
 反射部材6は、三角柱状構造体9における三角錐状領域95以外の部分を物理的に有していてもよく、有していなくともよい。図2の反射部材6は、三角柱状構造体9における三角錐状領域95以外の部分を物理的に有していない場合を示す例である。 The reflecting member 6 may or may not physically have a portion other than the triangular pyramidal region 95 in the triangular prismatic structure 9 . The reflecting member 6 in FIG. 2 is an example showing a case where the triangular prismatic structure 9 does not physically have a portion other than the triangular pyramidal region 95 .
 図2(e)では、方向βに沿って、切妻屋根型の三角柱状構造体9が複数連なるように配置されることにより、連続する複数の谷型パターン7が形成されており、隣り合う2つの三角柱状構造体9により形成される一対の面の一部を一対の反射面8としている。 In FIG. 2(e), a plurality of continuous valley-shaped patterns 7 are formed by arranging a plurality of gabled roof-shaped triangular prism-shaped structures 9 in a row along the direction β2. A pair of reflecting surfaces 8 are a part of the pair of surfaces formed by the two triangular columnar structures 9 .
 第1反射面81及び第2反射面82それぞれから空に向かう方向を正方向とするとき、第1反射面81の法線ベクトルN81と前記第2反射面82の法線ベクトルN82とのなす角度θは、30°以上90°以下である。 When the direction toward the sky from each of the first reflecting surface 81 and the second reflecting surface 82 is defined as the positive direction, the normal vector N 81 of the first reflecting surface 81 and the normal vector N 82 of the second reflecting surface 82 are The angle θ2 to be formed is 30° or more and 90° or less.
 反射ユニット20は、方向αに傾斜角φで斜設して使用される。傾斜角φは、水平面に対して三角柱状構造体9の底面93又は仮想面としての底面93がなす角度である。図2(e)に示すように、通常、反射ユニット20は、受光面が南向きに斜設される太陽電池モジュール100の南側に、反射部材6が北向きに傾斜角φで斜設して使用される。傾斜角φの範囲は、第一実施形態の反射ユニット10の傾斜角φと同様に、対称である太陽電池モジュール100の設置角度に応じて適宜設定することができ、例えば、15°以上45°以下であってもよい。 The reflection unit 20 is obliquely installed in a direction α2 at an inclination angle φ2 and used. The inclination angle φ 2 is the angle formed by the bottom surface 93 of the triangular columnar structure 9 or the bottom surface 93 as a virtual surface with respect to the horizontal plane. As shown in FIG. 2(e), the reflecting unit 20 is normally provided with the reflecting member 6 obliquely oriented northward at an inclination angle of φ2 on the south side of the solar cell module 100 whose light-receiving surface is obliquely oriented southward. used. The range of the tilt angle φ2 can be appropriately set according to the installation angle of the symmetrical solar cell module 100 , like the tilt angle φ1 of the reflection unit 10 of the first embodiment. It may be 45° or less.
 反射部材6の反射面8を形成する材料としては、第一実施形態の反射部材1の反射面3と同様に、従来の反射板又は反射シートに用いられるものと同じものを用いることができる。例えば、反射面8を形成する材料として、アルミ蒸着されたポリエステルやポリエチレンなどのシート、アルミ蒸着された帆布、又はアルミ板などが挙げられる。 As a material for forming the reflecting surface 8 of the reflecting member 6, the same material as used for a conventional reflecting plate or reflecting sheet can be used, like the reflecting surface 3 of the reflecting member 1 of the first embodiment. For example, as a material for forming the reflecting surface 8, a sheet such as polyester or polyethylene vapor-deposited with aluminum, a canvas vapor-deposited with aluminum, an aluminum plate, or the like can be used.
 以上、本発明について図面を参照して説明してきたが、本発明は上記実施形態に限定されず、種々の変更実施が可能である。上記第一及び第二実施形態においては、本発明の太陽電池モジュール用反射ユニットが備える反射部材のうち、特に反射面について説明しているが、反射部材は、反射面の裏側に設けられる基材や設置用の脚部等を有していてもよい。 Although the present invention has been described with reference to the drawings, the present invention is not limited to the above embodiments, and various modifications are possible. In the above-described first and second embodiments, of the reflecting members included in the reflecting unit for a solar cell module of the present invention, the reflecting surface is particularly described. or legs for installation.
 以下、本発明を実施例により、さらに詳細に説明するが、本発明は以下の実施例によって限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited by the following examples.
 従来の反射板及び本発明の反射ユニットによる太陽電池モジュールにおける日射強度の影響を調査するために、反射板と日射計を配置して試験を繰り返したが、時期や天候に日射計の結果が左右されるため、精度よく試験結果の比較検証を行うには長期間を要することが分かった。そこで、検証スピードを加速させるために、以下の数値シミュレーションを行った。 In order to investigate the effect of solar radiation intensity on a solar cell module using a conventional reflector and a reflector unit of the present invention, we repeated tests by arranging a reflector and a pyranometer. Therefore, it was found that a long period of time is required to compare and verify the test results with high accuracy. Therefore, in order to accelerate the verification speed, the following numerical simulation was performed.
 数値シミュレーションでは、3次元CADを用いて、太陽電池モジュールの受光面、および従来の反射板及び本発明の反射ユニットを作成した。従来の反射板及び本発明の反射ユニットの表面特性としては、反射率100%の完全鏡面反射特性を持つものと仮定した。太陽を模擬した光源からモンテカルロ法を用いてエネルギーを持った線(光線)を生成し、この光線が光源から受光面に到達するまでの、光源追跡解析を行った。ここで、太陽光源において、直達光成分は太陽軌道上を動く光源から平行光線として射出し、散乱光成分は計算領域を覆う半球状の面からモンテカルロ法を用いて射出位置、射出方向を決定し射出するとした。 In the numerical simulation, three-dimensional CAD was used to create the light-receiving surface of the solar cell module, the conventional reflector, and the reflection unit of the present invention. It is assumed that the conventional reflector and the reflecting unit of the present invention have a perfect specular reflection characteristic with a reflectance of 100%. A line (ray) with energy was generated from a light source simulating the sun using the Monte Carlo method, and a light source tracing analysis was performed from the light source to the light receiving surface. Here, in the solar light source, the direct light component is emitted as parallel rays from the light source that moves on the sun orbit, and the scattered light component is determined from the hemispherical surface covering the calculation area using the Monte Carlo method to determine the emission position and direction. I thought I would inject.
 以下の試験では、NEDOの公開するMETPV-11の東経137.43度、北緯34.42度の地点の2019年(以降、西暦は省略する。)6月20日(晴れの日)の日射強度を用いて、6月24日の太陽軌道で動くと仮定した光源と、8月26日(晴れの日)の日射強度を用いて、8月24日の太陽軌道で動くと仮定した光源とを元に、数値シミュレーションの計算を行った。なお、METPV-11には、直達光成分(要素番号:2)と散乱光成分(要素番号:3)の配分がデータとして記載されているため、全日射量に対する直達光成分の割合を算出することができる。 In the following test, the solar radiation intensity at 137.43 degrees east longitude and 34.42 degrees north latitude on METPV-11 published by NEDO on June 20, 2019 (hereinafter the calendar year is omitted) (clear day) , and the light source assumed to move in the sun orbit on August 24, using the solar irradiance on August 26 (clear day). Based on this, calculation of numerical simulation was performed. In METPV-11, the distribution of the direct light component (element number: 2) and the scattered light component (element number: 3) is described as data, so the ratio of the direct light component to the total amount of solar radiation is calculated. be able to.
 〔日照強度の変化の比較試験〕
 比較例1から3及び実施例1、2について、太陽電池モジュールにおける日照強度の変化を比較する試験を行った。
[Comparative test of changes in sunshine intensity]
For Comparative Examples 1 to 3 and Examples 1 and 2, a test was conducted to compare changes in sunlight intensity in solar cell modules.
 6月20日(晴れの日)の日射強度を用いて、6月24日の太陽軌道で動くと仮定した光源にて、太陽電池モジュールにおける日射強度の変化を比較した。 Using the solar radiation intensity on June 20th (sunny day), we compared changes in solar radiation intensity in the solar cell module with a light source assumed to move in the sun's orbit on June 24th.
〈比較例1〉
 比較例1では反射板を用いなかった。
<Comparative Example 1>
Comparative Example 1 did not use a reflector.
〈比較例2〉
 比較例2として、図3(a)に示すような平面状の反射面を有する反射板30を用いた。反射板30の傾斜角φ30は40°とした。
<Comparative Example 2>
As Comparative Example 2, a reflecting plate 30 having a planar reflecting surface as shown in FIG. 3(a) was used. The inclination angle φ30 of the reflector 30 was set to 40°.
〈比較例3〉
 比較例3として、図3(b)に示す傾斜方向と直交する方向の断面が凹状である反射面を有する反射板40を用いた。反射板40の傾斜角φ40は、45°とした。
<Comparative Example 3>
As Comparative Example 3, a reflecting plate 40 having a reflecting surface having a concave cross section in a direction orthogonal to the tilt direction shown in FIG. 3B was used. The inclination angle φ40 of the reflector 40 was set to 45°.
〈実施例1〉
 実施例1として、図2(a)に示すような反射ユニット20を用いた。反射部材6の傾斜角φは30°とした。図2(c)及び(d)に示した角度θは80.3°とした。
<Example 1>
As Example 1, a reflection unit 20 as shown in FIG. 2(a) was used. The inclination angle φ2 of the reflecting member 6 was set to 30°. The angle θ2 shown in FIGS. 2(c) and 2 (d) was set to 80.3°.
〈実施例2〉
 実施例2として、図2(a)に示すような反射ユニット20を用いた。反射部材6の傾斜角φは、実施例2と同じく30°とした。図2(c)及び(d)に示した角度θは45.8°とした。
<Example 2>
As Example 2, a reflection unit 20 as shown in FIG. 2(a) was used. The inclination angle φ2 of the reflecting member 6 was set to 30° as in the second embodiment. The angle θ2 shown in FIGS. 2(c) and 2 (d) was set to 45.8°.
 比較例1から3及び実施例1、2に共通する太陽電池モジュール100に対する反射板及び反射ユニットの設置の仕方について説明する。 A description will be given of how to install the reflector plate and the reflection unit on the solar cell module 100 common to Comparative Examples 1 to 3 and Examples 1 and 2.
 図4(a)は、太陽電池モジュール100(100a、100b)に対する比較例2、3の反射板30、40の設置の仕方を示す概略断面図である。図4(a)は、反射板30、40を傾斜方向と直交する方向から見た概略断面図である。なお、図4(a)では、比較例2、3の反射板30、40の傾斜角φ30、傾斜角φ40を明確に表すため、便宜上、凹状の反射板40も平面状に示されている。図4(a)に示すように、太陽電池モジュール100は、受光面が南向きに20°の傾きを持つように設置された。太陽電池モジュール100の最大高さは、約1.37mであった。第1太陽電池モジュール100aと、これの南側に隣接される第2太陽電池モジュール100bとの距離(最大高さ間の距離)は、約6.80mであった。 FIG. 4A is a schematic cross-sectional view showing how the reflectors 30 and 40 of Comparative Examples 2 and 3 are installed on the solar cell modules 100 (100a and 100b). FIG. 4(a) is a schematic cross-sectional view of the reflectors 30 and 40 as seen from a direction orthogonal to the tilt direction. In addition, in FIG. 4A, the concave reflector 40 is also shown planar for convenience in order to clearly show the inclination angles φ 30 and φ 40 of the reflectors 30 and 40 of Comparative Examples 2 and 3. there is As shown in FIG. 4(a), the solar cell module 100 was installed so that the light-receiving surface tilted 20° toward the south. The maximum height of the solar cell module 100 was approximately 1.37 m. The distance (the distance between the maximum heights) between the first solar cell module 100a and the second solar cell module 100b adjacent to the south side thereof was approximately 6.80 m.
 図4(a)に示すように、比較例2、3の反射板30、40は、第1太陽電池モジュール100aと第2太陽電池モジュール100bとの間に、北向きに傾斜角φ30、傾斜角φ40を持って斜設されるように配置された。反射板30の傾斜角φ30は40°とし、反射板40の傾斜角φ40は45°とした。図4(b)は、比較例3の反射板40を東側から見た概略断面図である。反射板40の傾斜角φ40は、図4(b)に示すように定義される。比較例3の反射板40は、図4(b)に示す凹状の反射面を有していた。 As shown in FIG. 4(a), the reflectors 30 and 40 of Comparative Examples 2 and 3 are inclined northward at an angle of inclination φ 30 between the first solar cell module 100a and the second solar cell module 100b. It was arranged obliquely with an angle φ40 . The inclination angle φ30 of the reflector 30 was set to 40°, and the inclination angle φ40 of the reflector 40 was set to 45°. FIG. 4B is a schematic cross-sectional view of the reflector 40 of Comparative Example 3 as seen from the east side. The tilt angle φ 40 of the reflector 40 is defined as shown in FIG. 4(b). The reflector 40 of Comparative Example 3 had a concave reflecting surface shown in FIG. 4(b).
 図5(a)は、太陽電池モジュール100(100a、100b)に対する実施例1、2の各反射ユニット20の設置の仕方を示す概略断面図である。図5(a)は、各反射ユニット20を傾斜方向と直交する方向から見た概略断面図である。なお、図5(a)では、実施例1、2の各反射部材6の傾斜角φを明確に表すため、便宜上、反射部材6が平面状に示されている。図5(a)に示すように、比較例1、2と同様に、太陽電池モジュール100は、受光面が南向きに20°の傾きを持つように設置された。太陽電池モジュール100の最大高さは、約1.37mであった。第1太陽電池モジュール100aと、これの南側に隣接される第2太陽電池モジュール100bとの距離(最大高さ間の距離)は、約6.80mであった。 FIG. 5(a) is a schematic cross-sectional view showing how to install each reflection unit 20 of Examples 1 and 2 on the solar cell module 100 (100a, 100b). FIG. 5A is a schematic cross-sectional view of each reflection unit 20 viewed from a direction orthogonal to the tilt direction. In addition, in FIG. 5A, the reflecting member 6 is shown in a planar shape for the sake of convenience in order to clearly show the inclination angle φ2 of each reflecting member 6 of Examples 1 and 2. As shown in FIG. As shown in FIG. 5(a), similarly to Comparative Examples 1 and 2, the solar cell module 100 was installed such that the light receiving surface tilted southward at 20°. The maximum height of the solar cell module 100 was approximately 1.37 m. The distance (the distance between the maximum heights) between the first solar cell module 100a and the second solar cell module 100b adjacent to the south side thereof was approximately 6.80 m.
 図5(a)に示すように、実施例1、2の各反射ユニット20は、第1太陽電池モジュール100aと第2太陽電池モジュール100bとの間に、反射部材6が北向きに傾斜角φを持って斜設されるように配置された。実施例1、2の各反射部材6の傾斜角φはいずれも30°とした。 As shown in FIG. 5A, in each of the reflecting units 20 of Examples 1 and 2, the reflecting member 6 is tilted northward at an angle of φ between the first solar cell module 100a and the second solar cell module 100b. It was arranged so as to be obliquely installed with 2 . The inclination angle φ2 of each reflecting member 6 in Examples 1 and 2 was set to 30°.
 図5(b)は、実施例1の反射部材6の上面図である。図5(b)に示すように、実施例1の反射部材6は、2m間隔で配置される図2で示した2つの三角錐状構造体9により画定される1つの谷型パターン7を有し、角度θは80.3°であった。実施例1の三角錐状構造体9の断面形状は、二等辺三角形状であった。 FIG. 5B is a top view of the reflecting member 6 of Example 1. FIG. As shown in FIG. 5(b), the reflecting member 6 of Example 1 has one valley pattern 7 defined by the two triangular pyramidal structures 9 shown in FIG. 2 arranged at intervals of 2 m. and the angle θ2 was 80.3°. The cross-sectional shape of the triangular pyramidal structure 9 of Example 1 was an isosceles triangle.
 図5(c)は、実施例2の反射部材6の上面図である。図5(c)に示すように、実施例2の反射部材6は、1m間隔で配置される図2で示した4つの三角錐状構造体9により画定される3つの谷型パターン7を有し、角度θは45.8°であった。実施例2の三角錐状構造体9の断面形状は、二等辺三角形状であった。 FIG. 5C is a top view of the reflecting member 6 of Example 2. FIG. As shown in FIG. 5(c), the reflecting member 6 of Example 2 has three valley patterns 7 defined by the four triangular pyramidal structures 9 shown in FIG. 2 arranged at intervals of 1 m. and the angle θ2 was 45.8°. The cross-sectional shape of the triangular pyramidal structure 9 of Example 2 was an isosceles triangle.
 図6は、東西方向9m×南北方向4mの太陽電池モジュール100のアレイを9×12マスに分割した概略図である。横軸はアレイの東端からの距離を、縦軸はアレイの下端からの距離を示している。図6の黒塗り部に対して、比較例1から3及び実施例1、2について、日照強度の変化の比較試験を行った。結果を図7及び図8に示す。 FIG. 6 is a schematic diagram of an array of solar cell modules 100 of 9 m in the east-west direction and 4 m in the north-south direction divided into 9×12 squares. The horizontal axis indicates the distance from the east edge of the array, and the vertical axis indicates the distance from the bottom edge of the array. A comparison test of changes in the sunshine intensity was conducted for Comparative Examples 1 to 3 and Examples 1 and 2 with respect to the black-painted portion in FIG. The results are shown in FIGS. 7 and 8. FIG.
 図7は、比較例1から3及び実施例1、2について、図6の黒塗り部に設置した受光器における日射強度の変化を示したグラフである。横軸は時間を、縦軸は日照強度を示している。図8は、比較例1から3及び実施例1、2について、図6の黒塗り部に設置した受光器における日射強度の増加率を示したグラフである。横軸は時間を、縦軸は日照強度増加率を示している。 FIG. 7 is a graph showing changes in solar radiation intensity in the light receivers installed in the blackened portions of FIG. 6 for Comparative Examples 1 to 3 and Examples 1 and 2. The horizontal axis indicates time, and the vertical axis indicates sunshine intensity. FIG. 8 is a graph showing the rate of increase in solar radiation intensity in the light receivers installed in the blackened portions of FIG. 6 for Comparative Examples 1 to 3 and Examples 1 and 2; The horizontal axis indicates time, and the vertical axis indicates the increase rate of sunlight intensity.
 図8から、比較例2の平面状の反射板及び比較例3の凹状の反射板では、12時(正午)前後で日射が最も強められ、この間に最大日射強度が大きく増加したことがわかる。一方、実施例1及び2の反射ユニットでは、12時(正午)前後で最大日射強度は大きく変化しなかったが、9時から11時及び13時から15時の日射強度が飛躍的に増加し、全体として日射強度が大きく増加したことがわかる。 From FIG. 8, it can be seen that with the planar reflector of Comparative Example 2 and the concave reflector of Comparative Example 3, the solar radiation was most intense around 12:00 (noon), and the maximum solar radiation intensity increased significantly during this time. On the other hand, in the reflection units of Examples 1 and 2, the maximum solar radiation intensity did not change significantly around 12:00 (noon), but the solar radiation intensity increased dramatically from 9:00 to 11:00 and from 13:00 to 15:00. , it can be seen that the overall solar radiation intensity increased significantly.
 最近の太陽光発電所においては、パワーコンディショナの出力に対して、太陽電池モジュールの出力が過積載となるように設計されている発電所が多い。このような発電所では、太陽電池モジュールで発電した直流電気をパワーコンディショナで一度に交流電気に変換できる量を超えた分の発電量を捨てる、いわゆるピークカットが行われている。そのため、比較例2及び3のように最大日射強度を増加させても、ピークカットされる発電量が増えるだけで、パワーコンディショナの出力の増加には大きく寄与できないおそれがある。実施例1及び2の反射ユニットによれば、日射強度が最大になる正午頃の日射強度を過剰に増加させることがないので、ピークカットされる発電量の増加を抑えつつ、全体の発電量を増加させることができる。 Many of the recent solar power plants are designed so that the output of the solar cell module is overloaded with respect to the output of the power conditioner. In such a power plant, so-called peak cut is performed in which the amount of power generated in excess of the amount of DC electricity generated by the solar cell module that can be converted into AC electricity at one time by the power conditioner is discarded. Therefore, even if the maximum solar radiation intensity is increased as in Comparative Examples 2 and 3, the amount of power generated that is peak-cut increases, and there is a possibility that it cannot greatly contribute to the increase in the output of the power conditioner. According to the reflection units of Examples 1 and 2, since the solar radiation intensity around noon when the solar radiation intensity reaches its maximum does not increase excessively, the total power generation amount can be reduced while suppressing the increase in the peak cut power generation amount. can be increased.
 また、比較例2及び3のような従来の反射板を用いると、太陽電池モジュールに対する日射強度が強すぎることで、太陽電池モジュールへダメージが生じるおそれもある。そのため、最大日射強度を増加させるよりも、午前及び午後の低日射時の日射強度を増加させることのほうが望ましい。例えば、比較例2の平面状の反射板では、全時間帯で最も発電電力が増加しているが、最大日射強度も150%程増加してしまうことが大きなデメリットとなる。一方、実施例1及び2の反射ユニットでは、最大日射強度はあまり増加していないが、全体としての日射強度が増加している。 Also, if conventional reflectors such as Comparative Examples 2 and 3 are used, the solar cell module may be damaged due to excessive solar radiation intensity on the solar cell module. Therefore, it is more desirable to increase the solar radiation intensity during low solar radiation in the morning and afternoon than to increase the maximum solar radiation intensity. For example, with the planar reflector of Comparative Example 2, the generated power increases most in all time zones, but the maximum solar radiation intensity also increases by about 150%, which is a major disadvantage. On the other hand, in the reflecting units of Examples 1 and 2, the maximum solar radiation intensity did not increase so much, but the overall solar radiation intensity increased.
 〔日照強度分布の比較試験〕
 次に、比較例2の平面状の反射板及び実施例1、2の反射ユニットを用いて、太陽電池モジュールにおける日照強度分布の比較試験を行った。
[Comparison test of sunshine intensity distribution]
Next, using the planar reflector of Comparative Example 2 and the reflection units of Examples 1 and 2, a comparison test of the sunlight intensity distribution in the solar cell module was conducted.
 8月26日(晴れの日)の日射強度を用いて、8月24日の太陽軌道で動くと仮定した光源にて、14時における太陽電池モジュールのアレイにおける日射強度分布を比較した。結果を図9に示す。 Using the solar radiation intensity on August 26th (sunny day), we compared the solar radiation intensity distribution in the array of solar cell modules at 14:00 with a light source assumed to move in the sun's orbit on August 24th. The results are shown in FIG.
 図9は、太陽電池モジュールのアレイにおける日射強度分布を示すグラフであって、(a)は比較例2の場合、(b)は実施例1の場合、(c)は実施例2の場合を示している。横軸はアレイの東端からの距離を、縦軸はアレイの下端からの距離を示している。 FIG. 9 is a graph showing the solar radiation intensity distribution in an array of solar cell modules, in which (a) is for Comparative Example 2, (b) is for Example 1, and (c) is for Example 2. showing. The horizontal axis indicates the distance from the east edge of the array, and the vertical axis indicates the distance from the bottom edge of the array.
 図9(a)に示されるように、比較例2の平面状の反射板では、アレイの下端からの距離が1.5m程度までは、日射強度は均一であったが、125%程度まで強められてしまうことがわかった。一方、図9(b)に示されるように、実施例1の反射ユニットでは、日射強度の最大増加率は120%程度であったが、日射強度にややムラが生じた。図9(c)に示されるように、実施例2の反射ユニットでは、日射強度の最大増加率は110%程度であり、全体でおよそ均等に日射強度が増加したことがわかった。 As shown in FIG. 9A, in the planar reflector of Comparative Example 2, the solar radiation intensity was uniform up to about 1.5 m from the bottom end of the array, but increased to about 125%. It turned out that I would be taken. On the other hand, as shown in FIG. 9B, in the reflection unit of Example 1, although the maximum increase rate of the solar radiation intensity was about 120%, the solar radiation intensity was slightly uneven. As shown in FIG. 9(c), in the reflection unit of Example 2, the maximum increase rate of the solar radiation intensity was about 110%, and it was found that the solar radiation intensity increased approximately evenly as a whole.
 太陽光発電において、発電電力は、太陽電池モジュールの各直列回路中の各セルで発生する電流値のうち最も低い値に影響を受ける。そのため、日射強度にムラがある場合、日射が強い部分での発電分は交流発電電力に寄与しない。また、日射が強い部分で発生した電力は日射が弱い部分で熱に変わってしまうためセルに悪影響を及ぼす。そのため、できるだけ日射強度にムラが生じないことが好ましい。角度θが45.8°である実施例2の反射ユニットは、角度θが80.3°である実施例1の反射ユニットよりも、日射強度の増加効果を高めることができると考えられる。 In photovoltaic power generation, generated power is affected by the lowest current value generated in each cell in each series circuit of the photovoltaic module. Therefore, if there is unevenness in the solar radiation intensity, the amount of power generated in the portion where the solar radiation is strong does not contribute to the AC power generation. Also, the electric power generated in the part with strong solar radiation is converted into heat in the part with weak solar radiation, which adversely affects the cell. Therefore, it is preferable that unevenness in solar radiation intensity is minimized. It is considered that the reflection unit of Example 2 , in which the angle θ2 is 45.8°, can enhance the effect of increasing the solar radiation intensity more than the reflection unit of Example 1 , in which the angle θ2 is 80.3°. .
 本発明は、ピークカットされる発電量の増加を抑えつつ、全体の発電量を増加させることが可能であり、各種の太陽電池モジュールに広く利用することができる。 The present invention can increase the overall power generation amount while suppressing an increase in peak-cut power generation amount, and can be widely used for various solar cell modules.
1,6 反射部材
2,7 谷型パターン
3,8 反射面
 31,81 第1反射面
 32,82 第2反射面
4,9 三角柱状構造体
 41,91 第1傾斜面
 42,92 第2傾斜面
 43,93 底面
 95 三角錐状領域
10,20 太陽電池モジュール用反射ユニット
100 太陽電池モジュール
,C 接続線
Reference Signs List 1, 6 reflecting members 2, 7 valley patterns 3, 8 reflecting surfaces 31, 81 first reflecting surfaces 32, 82 second reflecting surfaces 4, 9 triangular columnar structures 41, 91 first inclined surfaces 42, 92 second inclined surfaces Surfaces 43, 93 Bottom surface 95 Triangular pyramidal regions 10, 20 Solar cell module reflection unit 100 Solar cell module C1, C2 connection line

Claims (5)

  1.  一方向に傾斜して配置される太陽電池モジュール用反射ユニットであって、
     反射部材を備え、
     前記反射部材は、前記反射ユニットが傾斜されるべき方向と直交する方向に延在する谷型パターンを少なくとも1つ含み、
     前記谷型パターンは、第1反射面と第2反射面とから構成される一対の反射面を有する、
     反射ユニット。
    A reflective unit for a solar cell module that is arranged obliquely in one direction,
    Equipped with a reflective member,
    the reflecting member includes at least one valley-shaped pattern extending in a direction orthogonal to the direction in which the reflecting unit should be tilted;
    The valley pattern has a pair of reflecting surfaces composed of a first reflecting surface and a second reflecting surface,
    reflection unit.
  2.  前記第1反射面及び前記第2反射面のそれぞれから空に向かう方向を正方向とするとき、
     前記第1反射面の法線ベクトルと前記第2反射面の法線ベクトルとのなす角度θが、30°以上90°以下である、
     請求項1に記載の反射ユニット。
    When the direction toward the sky from each of the first reflecting surface and the second reflecting surface is a positive direction,
    An angle θ between a normal vector of the first reflecting surface and a normal vector of the second reflecting surface is 30° or more and 90° or less.
    A reflecting unit according to claim 1 .
  3.  前記少なくとも1つの谷型パターンは、前記直交する方向に接続される2つの三角柱状構造体により画定され、
     前記第1反射面及び前記第2反射面は、前記2つの三角柱状構造体の接続線を挟んで対向する前記2つの三角柱状構造体により形成される一対の面である、
     請求項1又は請求項2に記載の反射ユニット。
    wherein the at least one valley pattern is defined by two triangular prismatic structures connected in the orthogonal direction;
    The first reflecting surface and the second reflecting surface are a pair of surfaces formed by the two triangular prismatic structures facing each other across a connection line of the two triangular prismatic structures,
    The reflecting unit according to claim 1 or 2.
  4.  前記第1反射面及び前記第2反射面は、前記2つの三角柱状構造体の接続線を挟んで対向する前記2つの三角柱状構造体により形成される一対の面の一部である、
     請求項3に記載の反射ユニット。
    The first reflecting surface and the second reflecting surface are part of a pair of surfaces formed by the two triangular prism-shaped structures facing each other across a connecting line of the two triangular prism-shaped structures,
    A reflecting unit according to claim 3.
  5.  前記2つの三角柱状構造体のそれぞれは、前記反射ユニットが傾斜されるべき方向に沿って断面積が減少する三角錐状領域を含み、
     前記第1反射面及び前記第2反射面は、前記接続線を挟んで対向する前記2つの三角錐状領域により形成される一対の面である、
     請求項4に記載の反射ユニット。
    each of the two triangular prismatic structures includes a triangular pyramidal region whose cross-sectional area decreases along the direction in which the reflecting unit is to be tilted;
    The first reflecting surface and the second reflecting surface are a pair of surfaces formed by the two triangular pyramidal regions facing each other across the connection line,
    A reflecting unit according to claim 4.
PCT/JP2021/003112 2021-01-28 2021-01-28 Reflection unit for solar cell modules WO2022162845A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022577925A JPWO2022162845A1 (en) 2021-01-28 2021-01-28
PCT/JP2021/003112 WO2022162845A1 (en) 2021-01-28 2021-01-28 Reflection unit for solar cell modules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/003112 WO2022162845A1 (en) 2021-01-28 2021-01-28 Reflection unit for solar cell modules

Publications (1)

Publication Number Publication Date
WO2022162845A1 true WO2022162845A1 (en) 2022-08-04

Family

ID=82652756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003112 WO2022162845A1 (en) 2021-01-28 2021-01-28 Reflection unit for solar cell modules

Country Status (2)

Country Link
JP (1) JPWO2022162845A1 (en)
WO (1) WO2022162845A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178671A (en) * 1984-02-24 1985-09-12 Agency Of Ind Science & Technol Solar ray power generation system
JP2017093004A (en) * 2015-11-02 2017-05-25 株式会社高揚 Solar panel frame
CN207427072U (en) * 2017-09-21 2018-05-29 栾禄祥 Two dimension tracking array overflows anti-, straight reflexed face combination light reflection solar cell array
CN207427070U (en) * 2017-09-21 2018-05-29 栾禄祥 A kind of array overflows anti-, straight reflexed face combination light reflection device of solar generating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178671A (en) * 1984-02-24 1985-09-12 Agency Of Ind Science & Technol Solar ray power generation system
JP2017093004A (en) * 2015-11-02 2017-05-25 株式会社高揚 Solar panel frame
CN207427072U (en) * 2017-09-21 2018-05-29 栾禄祥 Two dimension tracking array overflows anti-, straight reflexed face combination light reflection solar cell array
CN207427070U (en) * 2017-09-21 2018-05-29 栾禄祥 A kind of array overflows anti-, straight reflexed face combination light reflection device of solar generating

Also Published As

Publication number Publication date
JPWO2022162845A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
US8742250B2 (en) Stationary sunlight redirecting system for increasing the efficiency of fixed-tilt PV farm
Zacharopoulos et al. Linear dielectric non-imaging concentrating covers for PV integrated building facades
US20120145222A1 (en) Enhanced flat plate concentration PV panel
CN103077990B (en) Wide-angle concentrated photovoltaic power generating system with wavelength selectivity and method thereof
Paul Optical performance analysis and design optimisation of multisectioned compound parabolic concentrators for photovoltaics application
Paul Application of compound parabolic concentrators to solar photovoltaic conversion: A comprehensive review
EP2418692B1 (en) Stationary sunlight redirecting element and system
US20120118351A1 (en) Solar electricity generation system
RU2488915C2 (en) Solar concentrator module (versions)
US20230287682A1 (en) Skylights with integrated photovoltaics and refractive light-steering
KR102103279B1 (en) Bifacial photovoltaic module device and method of using the same
KR101502084B1 (en) Solar Reflectors and solar power generator system using the same
Meller et al. Kaleidoscope homogenizers sensitivity to shading
US20180076758A1 (en) Three-Dimensional Elongated Photovoltaic Cell Assemblies
CN116802817A (en) Spatial structure of photovoltaic module or solar radiation concentrator
WO2022162845A1 (en) Reflection unit for solar cell modules
KR101968937B1 (en) Pyramid Solar PV Structure
CN115552293A (en) Light redirecting prism, redirecting prism wall and solar panel comprising same
KR101968938B1 (en) PV Power Systems through Optimum Arrangement of Pyramid Solar Power Structures for Increasing Over-all Generator Efficiency
JP7505123B2 (en) Spatial structure of photovoltaic module or solar radiation collector
JP2014103381A (en) Photovoltaic power generation device
JPH1131836A (en) Condenser type solar power generator and module
US20130000691A1 (en) Apparatus for concentrating solar energy
JP7336044B1 (en) Solar panel unit and solar panel installation structure
Tamuno-Ibuomi et al. Improving the Packing Efficiency of Building Integrated Concentrating Photovoltaic Systems through a Novel Hexagonal Concentrator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022577925

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922861

Country of ref document: EP

Kind code of ref document: A1