JP2012242127A - Soil sensor and soil sensing method - Google Patents

Soil sensor and soil sensing method Download PDF

Info

Publication number
JP2012242127A
JP2012242127A JP2011109597A JP2011109597A JP2012242127A JP 2012242127 A JP2012242127 A JP 2012242127A JP 2011109597 A JP2011109597 A JP 2011109597A JP 2011109597 A JP2011109597 A JP 2011109597A JP 2012242127 A JP2012242127 A JP 2012242127A
Authority
JP
Japan
Prior art keywords
soil
dielectric constant
electrode
measured
reference material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011109597A
Other languages
Japanese (ja)
Other versions
JP5779972B2 (en
Inventor
Yukihiro Yooku
幸宏 陽奥
Yasuhiro Endo
康浩 遠藤
Koichi Suzuki
幸一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2011109597A priority Critical patent/JP5779972B2/en
Publication of JP2012242127A publication Critical patent/JP2012242127A/en
Application granted granted Critical
Publication of JP5779972B2 publication Critical patent/JP5779972B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To simply determine the properties of soil.SOLUTION: A soil sensor includes first electrodes 12 to be in direct contact with soil 28, a reference material 16 with water permeability and water retentivity, second electrodes 14 to be in contact with the soil 28 through the reference material 16, and a determination unit 36 that determines properties of the soil 28 on the basis of permittivity of the soil 28 measured using the first electrodes 12 and permittivity of the reference material 16 measured using the second electrodes 14.

Description

本発明は、土壌センサおよび土壌センシング方法に関し、例えば土壌の誘電率を計測することにより土質を判定する土壌センサおよび土壌センシング方法である。   The present invention relates to a soil sensor and a soil sensing method, for example, a soil sensor and a soil sensing method for determining soil quality by measuring the dielectric constant of soil.

例えば、防災を目的として、河川やダムなどの堤防決壊や土砂災害を迅速に検知し予測するために、土壌内の水分量等を計測することが有効であると考えられている。例えば、土壌内の水分量を時系列で計測することができれば、土壌内の水分の浸透の様子を知ることができる。これにより、堤防決壊や土砂災害を迅速に検知することができる。土壌センサとして、土壌の比誘電率や伝導率を計測し、土壌の水分含有量を計測するセンサが知られている(特許文献1および2)。このようなセンサを用い、土壌内の水分量を時系列で計測することができる。   For example, for the purpose of disaster prevention, it is considered effective to measure the amount of water in the soil in order to quickly detect and predict levee breaks and sediment disasters such as rivers and dams. For example, if the amount of water in the soil can be measured in time series, the state of water penetration in the soil can be known. Thereby, a bank break and a sediment disaster can be detected quickly. As a soil sensor, a sensor that measures the relative dielectric constant and conductivity of soil and measures the moisture content of the soil is known (Patent Documents 1 and 2). Using such a sensor, the amount of water in the soil can be measured in time series.

特開平10−62368号公報Japanese Patent Laid-Open No. 10-62368 特開2003−329625号公報JP 2003-329625 A

土壌の誘電率と土壌内の水分量との関係は、土壌の土質により異なる。このため、土質が不明な土壌においては、ボーリング等の掘削により計測対象の土壌のサンプルを採取する。採取した土壌の分析した上で、土壌の誘電率と水分量との相関曲線を取得する。この相関曲線を用い、土壌の誘電率から土壌内の水分量を計測することとなる。この場合、土壌のサンプルを採取し分析するコストがかかってしまう。また、土壌の土質は、土壌サンプルの採取位置により変わってしまうこともあるため、土壌センサを設置した位置の正確な土質を判定することは難しい。土壌サンプルを採取せず、土壌の誘電率と水分量との相関曲線を推測することもある。しかし、この場合、正確なデータは取得できない。   The relationship between the dielectric constant of soil and the amount of water in the soil varies depending on the soil quality. For this reason, in the soil whose soil quality is unknown, a sample of the soil to be measured is collected by excavation such as boring. After analyzing the collected soil, a correlation curve between the dielectric constant of the soil and the amount of water is obtained. Using this correlation curve, the moisture content in the soil is measured from the dielectric constant of the soil. In this case, the cost of collecting and analyzing the soil sample is increased. Moreover, since the soil quality of a soil may change with the collection position of a soil sample, it is difficult to determine the exact soil quality of the position which installed the soil sensor. In some cases, a correlation curve between the soil permittivity and the water content is estimated without taking a soil sample. However, in this case, accurate data cannot be acquired.

本土壌センサおよび土壌センシング方法は、土壌の土質を簡単に判定することを目的とする。   The purpose of the soil sensor and the soil sensing method is to easily determine the soil quality of the soil.

例えば、土壌と直接接触する第1電極と、透水性および保水性を備える参照材と、前記参照材を介し前記土壌と接触する第2電極と、前記第1電極を用い計測した前記土壌の誘電率と、前記第2電極を用い計測した前記参照材の誘電率と、に基づき、前記土壌の土質を判定する判定部と、を具備することを特徴とする土壌センサを用いる。   For example, a first electrode in direct contact with soil, a reference material having water permeability and water retention, a second electrode in contact with the soil through the reference material, and the dielectric of the soil measured using the first electrode A soil sensor comprising: a determination unit that determines soil quality based on a rate and a dielectric constant of the reference material measured using the second electrode.

例えば、土壌と直接接触する第1電極を用い前記土壌の誘電率を計測し、透水性および保水性を備える参照材を介し前記土壌と接触する第2電極を用い前記参照材の誘電率を計測し、前記土壌の誘電率と前記参照材の誘電率とに基づき、前記土壌の土質を判定することを特徴とする土壌センシング方法を用いる。   For example, the dielectric constant of the soil is measured using a first electrode that is in direct contact with soil, and the dielectric constant of the reference material is measured using a second electrode that is in contact with the soil via a reference material having water permeability and water retention. Then, a soil sensing method is used in which the soil quality of the soil is determined based on the dielectric constant of the soil and the dielectric constant of the reference material.

本土壌センサおよび土壌センシング方法によれば、土壌の土質を簡単に判定することができる。   According to the soil sensor and the soil sensing method, the soil quality of the soil can be easily determined.

図1(a)および図1(b)は、実施例1に係る土壌センサを示す図である。FIG. 1A and FIG. 1B are diagrams illustrating a soil sensor according to the first embodiment. 図2(a)および図2(b)は、実施例1に係る土壌センサの本体部のブロック図である。FIG. 2A and FIG. 2B are block diagrams of the main body of the soil sensor according to the first embodiment. 図3(a)および図3(b)は、実施例1に係る本体部の動作を示すフローチャートである。FIG. 3A and FIG. 3B are flowcharts illustrating the operation of the main body according to the first embodiment. 図4は、土壌の比誘電率と土壌中の水分量との関係の例を示す図である。FIG. 4 is a diagram showing an example of the relationship between the relative dielectric constant of soil and the amount of water in the soil. 図5は、参照材の比誘電率ε0と土壌の比誘電率ε1との関係を示す測定結果の例である。FIG. 5 is an example of measurement results showing the relationship between the relative permittivity ε0 * of the reference material and the relative permittivity ε1 * of the soil. 図6は、実施例2に係る土壌センサの本体部のブロック図である。FIG. 6 is a block diagram of the main body of the soil sensor according to the second embodiment. 図7は、実施例2に係る判定部の動作を示すフローチャートである。FIG. 7 is a flowchart illustrating the operation of the determination unit according to the second embodiment. 図8(a)および図8(b)は、それぞれ判定部および算出部の動作の例を説明する模式図である。FIG. 8A and FIG. 8B are schematic diagrams illustrating examples of operations of the determination unit and the calculation unit, respectively. 図9は、実施例2に係る土壌センサの算出部の動作を示すフローチャートである。FIG. 9 is a flowchart illustrating the operation of the calculation unit of the soil sensor according to the second embodiment. 図10は、実施例3に係る判定部の動作を示すフローチャートである。FIG. 10 is a flowchart illustrating the operation of the determination unit according to the third embodiment. 図11(a)および図11(b)は、実施例3の判定部の動作の例を説明する模式図である。FIG. 11A and FIG. 11B are schematic diagrams illustrating an example of the operation of the determination unit according to the third embodiment.

以下、図面を参照に本発明に係る実施例について説明する。   Embodiments according to the present invention will be described below with reference to the drawings.

図1(a)および図1(b)は、実施例1に係る土壌センサを示す図である。図1(a)は、土壌センサ100の模式図であり、図1(b)は、土壌センサ100の埋没部26の断面図である。図1(a)および図1(b)のように、土壌センサ100は、埋没部26と本体部30とを備えている。埋没部26は、土壌28内に埋没されている。本体部30は、土壌28の外に設置される。埋没部26は、第1電極12、第2電極14、参照材16および支持体18を備えている。支持体18は、例えば非透水性の材料から形成されており、支持体18内部には浸水しないことが好ましい。また、支持体18は、第1電極12間、第2電極間、および、第1電極と第2電極14間が短絡しないように少なくとも表面が絶縁体であることが好ましい。支持体18としては、例えばアクリルまたはジュラコン等の樹脂を用いることができる。また、支持体18は、アルミニウムまたは鉄等の金属の表面を絶縁処理したものでもよい。支持体18の形状は、土壌28内に設置するため、先端が尖った円柱形である。支持体18の形状は、他の形状でもよい。   FIG. 1A and FIG. 1B are diagrams illustrating a soil sensor according to the first embodiment. FIG. 1A is a schematic diagram of the soil sensor 100, and FIG. 1B is a cross-sectional view of the buried portion 26 of the soil sensor 100. As shown in FIGS. 1A and 1B, the soil sensor 100 includes an embedded part 26 and a main body part 30. The buried part 26 is buried in the soil 28. The main body 30 is installed outside the soil 28. The buried portion 26 includes the first electrode 12, the second electrode 14, the reference material 16, and the support 18. The support 18 is made of, for example, a water-impermeable material, and it is preferable that the support 18 is not submerged. Moreover, it is preferable that at least the surface of the support 18 is an insulator so as not to short-circuit between the first electrodes 12, between the second electrodes, and between the first electrode and the second electrode 14. As the support 18, for example, a resin such as acrylic or Duracon can be used. Further, the support 18 may be obtained by insulating the surface of a metal such as aluminum or iron. Since the support 18 is installed in the soil 28, the support 18 has a cylindrical shape with a sharp tip. The shape of the support 18 may be other shapes.

支持体18の表面には、複数の第1電極12が設けられている。第1電極12は、土壌28と直接接触している。さらに、支持体18の表面には、複数の第2電極14が設けられている。第2電極14は、参照材16により覆われている。参照材16は、透水性および保水性を備える材料により形成される。参照材16としては、例えばセルロースを用いることができる。第2電極14は、参照材16を介し土壌28と接触している。第1電極12および第2電極14は、例えば金または銅等の金属により形成されている。第1電極12および第2電極14は、支持体18の周囲に設けられたリング形状をしている。また、第1電極12および第2電極14は、それぞれ1対設けられている。第1電極12および第2電極14の形状および数はこれらに限られない。第1電極12および第2電極は、それぞれ1または複数設けられていればよい。第1電極12と本体部30とはケーブル20により電気的に接続され、第2電極14と本体部30とはケーブル22により接続される。   A plurality of first electrodes 12 are provided on the surface of the support 18. The first electrode 12 is in direct contact with the soil 28. Further, a plurality of second electrodes 14 are provided on the surface of the support 18. The second electrode 14 is covered with a reference material 16. The reference material 16 is formed of a material having water permeability and water retention. As the reference material 16, for example, cellulose can be used. The second electrode 14 is in contact with the soil 28 via the reference material 16. The first electrode 12 and the second electrode 14 are made of a metal such as gold or copper, for example. The first electrode 12 and the second electrode 14 have a ring shape provided around the support 18. A pair of the first electrode 12 and the second electrode 14 is provided. The shape and number of the first electrode 12 and the second electrode 14 are not limited to these. One or a plurality of the first electrode 12 and the second electrode may be provided. The first electrode 12 and the main body 30 are electrically connected by a cable 20, and the second electrode 14 and the main body 30 are connected by a cable 22.

支持体18の直径は、例えば20mmから30mmとすることができる。第1電極12の間隔および第2電極14の上下方向の間隔は各々、5mm〜10mmとすることができる。第1電極12の間隔および第2電極14の上下方向の幅は各々、5mm〜10mmとすることができる。参照材16の左右方向の幅および上下方向の長さは、参照材16の誘電率を測定するのに十分な大きさとすることが好ましい。しかしながら、参照材16が大きすぎる場合、水分が参照材16内に十分浸透しなくなる可能性もある。参照材16の大きさは、上記を考慮して設計される。   The diameter of the support 18 can be 20 mm to 30 mm, for example. The distance between the first electrodes 12 and the distance between the second electrodes 14 in the vertical direction can be set to 5 mm to 10 mm, respectively. The interval between the first electrodes 12 and the vertical width of the second electrode 14 can be 5 mm to 10 mm, respectively. The width in the left-right direction and the length in the vertical direction of the reference material 16 are preferably large enough to measure the dielectric constant of the reference material 16. However, when the reference material 16 is too large, there is a possibility that moisture does not sufficiently penetrate into the reference material 16. The size of the reference material 16 is designed in consideration of the above.

図2(a)および図2(b)は、実施例1に係る土壌センサの本体部の機能ブロック図である。図3(a)および図3(b)は、実施例1に係る本体部の動作を示すフローチャートである。図2(a)のように、本体部30は、土壌誘電率計測部32、参照誘電率計測部34および判定部36を備えている。例えば静電容量を測定する測定器とCPU(central
Processing Unit)とは、プログラム等により土壌誘電率計測部32および参照誘電率計測部34として機能する。また、CPU等は、判定部36として機能する。
FIG. 2A and FIG. 2B are functional block diagrams of the main body of the soil sensor according to the first embodiment. FIG. 3A and FIG. 3B are flowcharts illustrating the operation of the main body according to the first embodiment. As shown in FIG. 2A, the main body 30 includes a soil dielectric constant measurement unit 32, a reference dielectric constant measurement unit 34, and a determination unit 36. For example, a measuring instrument for measuring capacitance and a CPU (central
Processing Unit) functions as a soil dielectric constant measurement unit 32 and a reference dielectric constant measurement unit 34 by a program or the like. Further, the CPU or the like functions as the determination unit 36.

図2(a)および図3(a)を用い、本体部30の動作について説明する。まず、土壌誘電率計測部32は、ケーブル20により第1電極12と接続されており、第1電極12を用い土壌28の誘電率を計測する(ステップS10)。参照誘電率計測部34は、ケーブル22により第2電極14と接続されており、第2電極14を用い参照材16の誘電率を計測する(ステップS12)。土壌誘電率計測部32および参照誘電率計測部34は、それぞれ第1電極12間および第2電極14間の静電容量を測定し、測定された静電容量より土壌28の誘電率および参照材16の誘電率を計測することができる。土壌28の誘電率および参照材16の誘電率は、それぞれ第1電極12および第2電極14を用い、他の方法により計測してもよい。また、ステップS10とステップS12とは同時に行なってもよく、ステップS12をステップS10より先に行なってもよい。判定部36は、第1電極12を用い計測した土壌28の誘電率ε1と、第2電極14を用い計測した参照材の誘電率ε0と、に基づき、土壌の土質を判定する(ステップS14)。その後終了する。   The operation of the main body 30 will be described with reference to FIGS. 2 (a) and 3 (a). First, the soil dielectric constant measurement unit 32 is connected to the first electrode 12 by the cable 20 and measures the dielectric constant of the soil 28 using the first electrode 12 (step S10). The reference dielectric constant measurement unit 34 is connected to the second electrode 14 by the cable 22 and measures the dielectric constant of the reference material 16 using the second electrode 14 (step S12). The soil dielectric constant measuring unit 32 and the reference dielectric constant measuring unit 34 measure the capacitance between the first electrodes 12 and the second electrode 14 respectively, and the dielectric constant of the soil 28 and the reference material are measured based on the measured capacitance. A dielectric constant of 16 can be measured. The dielectric constant of the soil 28 and the dielectric constant of the reference material 16 may be measured by other methods using the first electrode 12 and the second electrode 14, respectively. Moreover, step S10 and step S12 may be performed simultaneously, and step S12 may be performed prior to step S10. The determination unit 36 determines the soil quality based on the dielectric constant ε1 of the soil 28 measured using the first electrode 12 and the dielectric constant ε0 of the reference material measured using the second electrode 14 (step S14). . Then exit.

図2(b)および図3(b)を用い、別の本体部30の動作について説明する。図2(b)のように、本体部30は、図2(a)の本体部30に加え算出部38を備えている。CPU等は、算出部38として機能する。図2(b)および図3(b)のように、算出部38は、判定部36の判定した土壌の土質と、土壌28の誘電率ε1と、に基づき、土壌28中の水分量を算出する(ステップS16)。その後、終了する。   The operation of another main body 30 will be described with reference to FIGS. 2B and 3B. As shown in FIG. 2B, the main body 30 includes a calculation unit 38 in addition to the main body 30 shown in FIG. The CPU or the like functions as the calculation unit 38. As shown in FIG. 2B and FIG. 3B, the calculation unit 38 calculates the amount of water in the soil 28 based on the soil quality determined by the determination unit 36 and the dielectric constant ε1 of the soil 28. (Step S16). Then, the process ends.

以上のように、図2(a)に示した本体部30を備える土壌センサは、土壌の土質を判定することができる。図2(b)に示した本体部30を備える土壌センサは、加えて土壌28の水分量を算出することができる。   As mentioned above, a soil sensor provided with the main-body part 30 shown to Fig.2 (a) can determine the soil quality of soil. In addition, the soil sensor provided with the main body 30 shown in FIG. 2B can calculate the moisture content of the soil 28.

図4は、土壌の比誘電率と土壌中の水分量との関係の例を示す図である。図4において、土壌が黒土の場合を実線F1、土壌が川砂の場合を実線F2で示している。図4のように、黒土と、川砂とは、土壌の比誘電率ε1と土壌の水分量との関係が大きく異なる。 FIG. 4 is a diagram showing an example of the relationship between the relative dielectric constant of soil and the amount of water in the soil. In FIG. 4, the solid line F1 indicates the case where the soil is black soil, and the solid line F2 indicates the case where the soil is river sand. As shown in FIG. 4, the relationship between the relative permittivity ε1 * of the soil and the moisture content of the soil is greatly different between the black soil and the river sand.

未知の土壌の体積Vs中に含まれる水分の体積をVwとした場合、土壌中の水分の体積含有率(水分量)W1は、W1=Vw/Vsとなる。土壌の水分量W1は、誘電率(または比誘電率)ε1を用い、以下の相関曲線で表される。
W1=Fn(ε1)
ここで、Fnは土質ごとの相関曲線である。
When the volume of moisture contained in the unknown soil volume Vs is Vw, the volume content (water content) W1 of the moisture in the soil is W1 = Vw / Vs. The soil water content W1 is expressed by the following correlation curve using a dielectric constant (or relative dielectric constant) ε1.
W1 = Fn (ε1)
Here, Fn is a correlation curve for each soil.

このように、誘電率(または比誘電率)に相関曲線Fnを適用することにより、土壌中の水分量を算出可能である。しかしながら、相関曲線Fnは土質ごとに異なる。このため、土質が不明な状態では体積水分量W1を算出できない。   Thus, the moisture content in the soil can be calculated by applying the correlation curve Fn to the dielectric constant (or relative dielectric constant). However, the correlation curve Fn differs for each soil type. For this reason, the volume water content W1 cannot be calculated in a state where the soil quality is unknown.

一方、既知の参照材16の体積Vs0中に含まれる水分の体積Vw0とした場合、参照材16の水分の体積含有率(水分量)W0は、W0=Vw0/Vs0となる。参照材16の水分量W0は、誘電率(または比誘電率)ε0を用い、以下の相関曲線を用い表される。
W0=F0(ε0)
相関曲線F0は既知のため、誘電率(または比誘電率)ε0を用い、参照材16内の水分量W0を算出できる。
On the other hand, when the volume Vw0 of the moisture contained in the known volume Vs0 of the reference material 16 is set, the volume content (water content) W0 of the moisture of the reference material 16 is W0 = Vw0 / Vs0. The water content W0 of the reference material 16 is expressed using the following correlation curve using a dielectric constant (or relative dielectric constant) ε0.
W0 = F0 (ε0)
Since the correlation curve F0 is known, the water content W0 in the reference material 16 can be calculated using the dielectric constant (or relative dielectric constant) ε0.

土壌の水分量W1と参照材16の水分量W0は、土壌と参照材16との吸水性の違いにより、土壌ごとに一定の相関がある。例えば、F1(ε1)とF0(ε0)との間には一定の相関がある。   The water content W1 of the soil and the water content W0 of the reference material 16 have a certain correlation for each soil due to the difference in water absorption between the soil and the reference material 16. For example, there is a certain correlation between F1 (ε1) and F0 (ε0).

図5は、参照材の比誘電率ε0と土壌の比誘電率ε1との関係を示す測定結果の例である。図5において、土壌が黒土の測定点を黒丸、土壌が川砂の測定点を白丸で示している。実線は、各点から最小二乗法を用い計算した直線である。黒土の比誘電率ε0とε1の相関曲線E1(ε0、ε1)と、川砂の比誘電率ε0とε1の相関曲線E2(ε0、ε1)と、は異なる。 FIG. 5 is an example of measurement results showing the relationship between the relative permittivity ε0 * of the reference material and the relative permittivity ε1 * of the soil. In FIG. 5, the measurement point of the black soil is indicated by a black circle, and the measurement point of the river sand is indicated by a white circle. The solid line is a straight line calculated from each point using the least square method. The correlation curve E1 (ε0 * , ε1 * ) of the relative permittivity ε0 * and ε1 * of black soil is different from the correlation curve E2 (ε0 * , ε1 * ) of the relative permittivity ε0 * and ε1 * of river sand.

したがって、土壌28の誘電率ε1と参照材16の誘電率ε0とを計測し、比較することにより、土壌の土質を推定することができる。土壌の土質が推定できれば、推定した土壌の誘電率と水分量との相関曲線Fnを用い、土壌の水分量を算出できる。   Accordingly, the soil quality of the soil can be estimated by measuring and comparing the dielectric constant ε1 of the soil 28 and the dielectric constant ε0 of the reference material 16. If the soil quality of the soil can be estimated, the moisture content of the soil can be calculated using the correlation curve Fn between the estimated dielectric constant of the soil and the moisture content.

実施例1によれば、図3(a)のステップS14のように、判定部36が第1電極12を用い計測した土壌28の誘電率と、第2電極14を用い計測した参照材16の誘電率と、に基づき、土壌28の土質を判定する。このように、土壌28の土質を判定することができる。   According to Example 1, as in step S14 of FIG. 3A, the permittivity of the soil 28 measured by the determination unit 36 using the first electrode 12 and the reference material 16 measured using the second electrode 14 are measured. The soil quality of the soil 28 is determined based on the dielectric constant. Thus, the soil quality of the soil 28 can be determined.

また、図3(b)のステップS16のように、算出部38が判定部36の判定した土壌28の土質と、第1電極12を用い計測した土壌28の誘電率ε1と、に基づき、土壌28中の水分量を算出する。このように、土壌28中の水分量を算出することができる。   3B, based on the soil quality of the soil 28 determined by the determination unit 36 and the dielectric constant ε1 of the soil 28 measured using the first electrode 12, the soil is determined based on the soil 28. The amount of water in 28 is calculated. Thus, the amount of water in the soil 28 can be calculated.

図6は、実施例2に係る土壌センサの本体部のブロック図である。図6のように、本体部30は、実施例1の図2に比べ第1記憶部37および第2記憶部39を備えている。第1記憶部37および第2記憶部39は、不揮発性メモリまたは揮発性メモリであり、例えばフラッシュメモリまたはハードディスクユニット等である。第1記憶部37は、土壌の複数の土質nに対応した相関曲線En(ε0、ε1)を記憶している。ここで、相関曲線En(ε0、ε1)は、土壌28の土質nに対応した土壌28の誘電率ε1と参照材16の誘電率ε0との相関曲線である。相関曲線En(ε0、ε1)は、複数の既知の土質に対し予め計測され、第1記憶部37に記憶されている。第2記憶部39は、土壌の土質nに対応した、土壌の誘電率ε1と水分量W1との相関曲線Fnを記憶している。相関曲線Fnは、複数の既知の土質に対し予め計測され、第2記憶部39に記憶されている。本体部30のその他の構成および埋没部26は、実施例1と同じであり説明を省略する。   FIG. 6 is a block diagram of the main body of the soil sensor according to the second embodiment. As shown in FIG. 6, the main body 30 includes a first storage unit 37 and a second storage unit 39 as compared to FIG. 2 of the first embodiment. The first storage unit 37 and the second storage unit 39 are non-volatile memory or volatile memory, such as a flash memory or a hard disk unit. The first storage unit 37 stores correlation curves En (ε0, ε1) corresponding to a plurality of soil qualities n of the soil. Here, the correlation curve En (ε0, ε1) is a correlation curve between the dielectric constant ε1 of the soil 28 corresponding to the soil quality n of the soil 28 and the dielectric constant ε0 of the reference material 16. The correlation curve En (ε0, ε1) is measured in advance for a plurality of known soil properties and stored in the first storage unit 37. The second storage unit 39 stores a correlation curve Fn between the soil permittivity ε1 and the water content W1 corresponding to the soil quality n. The correlation curve Fn is measured in advance for a plurality of known soil properties and stored in the second storage unit 39. The other configuration of the main body 30 and the buried portion 26 are the same as those in the first embodiment, and a description thereof is omitted.

図7は、実施例2に係る判定部の動作を示すフローチャートである。図7のように、判定部36は、土壌誘電率計測部32から土壌28の誘電率ε1を取得する(ステップS20)。次に、判定部36は、参照誘電率計測部34から参照材16の誘電率を取得する(ステップS22)。ステップS20とステップS22とは同時に行なってもよく、ステップS22をステップS20より先に行なってもよい。判定部36は、終了か判定する(ステップS24)。例えば、判定部36は、所定時間ごとに所定回数、ステップS20およびS22を繰り返した場合、終了と判定する。所定回数は、例えば2回でもよい。3回以上でもよい。例えば、所定回数を2回とすることにより、より早く誘電率の計測を終了することができる。土質の判定の精度を向上させるためには、誘電率の計測は、より多く回数行なうことが好ましい。さらに、土質の判定の精度を向上させるためには、より異なる水分量について、誘電率の計測を行なうことが好ましい。また、例えば、判定部36は、水分量の差または誘電率の差が所定以上となった場合、Yesと判定してもよい。ステップS24においてNoの場合ステップS20に戻る。   FIG. 7 is a flowchart illustrating the operation of the determination unit according to the second embodiment. As shown in FIG. 7, the determination unit 36 acquires the dielectric constant ε1 of the soil 28 from the soil dielectric constant measurement unit 32 (step S20). Next, the determination unit 36 acquires the dielectric constant of the reference material 16 from the reference dielectric constant measurement unit 34 (step S22). Step S20 and step S22 may be performed simultaneously, and step S22 may be performed prior to step S20. The determination unit 36 determines whether the process is finished (step S24). For example, when the determination unit 36 repeats steps S20 and S22 a predetermined number of times every predetermined time, the determination unit 36 determines the end. The predetermined number of times may be two times, for example. It may be 3 times or more. For example, the dielectric constant measurement can be completed earlier by setting the predetermined number of times to two. In order to improve the accuracy of soil determination, it is preferable that the dielectric constant is measured more times. Furthermore, in order to improve the accuracy of soil determination, it is preferable to measure the dielectric constant for different amounts of water. For example, the determination unit 36 may determine Yes when the difference in moisture amount or the difference in dielectric constant is equal to or greater than a predetermined value. If No in step S24, the process returns to step S20.

ステップS24においてYesの場合、判定部36は、取得した土壌28の誘電率ε1と参照材16の誘電体ε0とから、土壌28の誘電率ε1と参照材16の誘電体ε0との相関曲線E(ε0、ε1)を算出する(ステップS26)。判定部36は、第1記憶部37から複数の土質nに対応した相関曲線En(ε0、ε1)を取得する(ステップS28)。判定部36は、相関曲線En(ε0、ε1)のうち相関曲線E(ε0、ε1)と最も相関の高いEn(ε0、ε1)に対応する土質を、土壌28の土質と判定する(ステップS30)。   In the case of Yes in step S24, the determination unit 36 calculates the correlation curve E between the dielectric constant ε1 of the soil 28 and the dielectric ε0 of the reference material 16 from the obtained dielectric constant ε1 of the soil 28 and the dielectric ε0 of the reference material 16. (Ε0, ε1) is calculated (step S26). The determination unit 36 acquires correlation curves En (ε0, ε1) corresponding to the plurality of soils n from the first storage unit 37 (step S28). The determination unit 36 determines the soil quality corresponding to En (ε0, ε1) having the highest correlation with the correlation curve E (ε0, ε1) among the correlation curves En (ε0, ε1) as the soil quality of the soil 28 (step S30). ).

図8(a)および図8(b)は、それぞれ判定部および算出部の動作の例を説明する模式図である。図8(a)の横軸は参照材16の誘電率ε0、縦軸は土壌28の誘電率ε1である。相関曲線E1からE3は、第1記憶部37に記憶された、土質1〜3に対応した誘電率ε1と誘電率ε0との相関曲線である。図7のステップS26において、判定部36は、未知の土質の土壌28について、第1電極12を用い計測した土壌28の誘電率ε1と第2電極14を用い計測した参照材16の誘電率ε0との相関曲線E(ε0、ε1)を算出する。ステップS30において、判定部36は、相関曲線E1からE3のうち相関曲線E(ε0、ε1)と最も相関の高い相関曲線E2を選択する。図8の例においては、相関曲線E2に対応する土質2を、土壌28の土質と判定する。最も相関の高い相関曲線は、例えば、相関曲線E1からE3と相関曲線E(ε0、ε1)との距離の平均が最も小さい相関曲線E1からE3を選択してもよい。また、相関曲線E1からE3が直線の場合、傾きが相関曲線E(ε0、ε1)に最も近い相関曲線を選択してもよい。   FIG. 8A and FIG. 8B are schematic diagrams illustrating examples of operations of the determination unit and the calculation unit, respectively. In FIG. 8A, the horizontal axis represents the dielectric constant ε0 of the reference material 16, and the vertical axis represents the dielectric constant ε1 of the soil 28. Correlation curves E1 to E3 are correlation curves of the dielectric constant ε1 and the dielectric constant ε0 corresponding to the soils 1 to 3 stored in the first storage unit 37. In step S26 of FIG. 7, the determination unit 36 determines the dielectric constant ε1 of the soil 28 measured using the first electrode 12 and the dielectric constant ε0 of the reference material 16 measured using the second electrode 14 for the soil 28 of unknown soil quality. A correlation curve E (ε0, ε1) is calculated. In step S30, the determination unit 36 selects a correlation curve E2 having the highest correlation with the correlation curve E (ε0, ε1) among the correlation curves E1 to E3. In the example of FIG. 8, the soil quality 2 corresponding to the correlation curve E <b> 2 is determined as the soil quality of the soil 28. As the correlation curve having the highest correlation, for example, the correlation curves E1 to E3 having the smallest average distance between the correlation curves E1 to E3 and the correlation curve E (ε0, ε1) may be selected. When the correlation curves E1 to E3 are straight lines, a correlation curve whose slope is closest to the correlation curve E (ε0, ε1) may be selected.

図9は、実施例2に係る土壌センサの算出部の動作を示すフローチャートである。図9のように、算出部38は、参照誘電率計測部34から計測した土壌28の誘電率ε1を取得する(ステップS50)。算出部38は、判定部36が判定した土壌の土質を取得する(ステップS52)。ステップS50とS52との順番は逆でもよい。算出部38は、第2記憶部39から判定部36が判定した土質に対応する相関曲線Fnを取得する(ステップS54)。算出部38は、土質と相関曲線Fnとから土壌の水分量を算出する(ステップS56)   FIG. 9 is a flowchart illustrating the operation of the calculation unit of the soil sensor according to the second embodiment. As illustrated in FIG. 9, the calculation unit 38 acquires the dielectric constant ε1 of the soil 28 measured from the reference dielectric constant measurement unit 34 (Step S50). The calculation unit 38 acquires the soil quality determined by the determination unit 36 (step S52). The order of steps S50 and S52 may be reversed. The calculation unit 38 acquires a correlation curve Fn corresponding to the soil quality determined by the determination unit 36 from the second storage unit 39 (step S54). The calculation unit 38 calculates the moisture content of the soil from the soil quality and the correlation curve Fn (step S56).

図8(b)の横軸は土壌の誘電率ε1、縦軸は土壌の水分量W1である。相関曲線F1からF3は、第2記憶部39に記憶された土質1〜3に対応した誘電率ε1と水分量との相関曲線である。図9のステップS54において、算出部38は、判定部36が判定した土質の相関曲線F2を取得する(ステップS54)。ステップS56において、算出部38は相関曲線F2を用い、第1電極12を用い計測した土壌28の誘電率ε1´に対応する水分量W1´を算出する。   In FIG. 8B, the horizontal axis is the soil dielectric constant ε1, and the vertical axis is the soil water content W1. Correlation curves F1 to F3 are correlation curves between the dielectric constant ε1 corresponding to the soils 1 to 3 stored in the second storage unit 39 and the water content. In step S54 of FIG. 9, the calculation unit 38 acquires the soil correlation curve F2 determined by the determination unit 36 (step S54). In step S56, the calculation unit 38 uses the correlation curve F2 to calculate the water content W1 ′ corresponding to the dielectric constant ε1 ′ of the soil 28 measured using the first electrode 12.

実施例2によれば、図7のステップS30のように、判定部36は、第1電極12を用い計測した土壌28の誘電率ε1と、第2電極14を用い計測した参照材16の誘電率ε0と、相関曲線Enと、から土壌28の土質を判定する。これにより、相関曲線Enを用い土質を判定するため、土質をより正確に判定することができる。   According to the second embodiment, as in step S30 of FIG. 7, the determination unit 36 determines the dielectric constant ε1 of the soil 28 measured using the first electrode 12 and the dielectric constant of the reference material 16 measured using the second electrode 14. The soil quality of the soil 28 is determined from the rate ε0 and the correlation curve En. Thereby, since the soil quality is determined using the correlation curve En, the soil quality can be determined more accurately.

また、図8(a)のように、判定部36は、第1記憶部37に記憶された相関曲線Enのうち、計測した相関曲線E(ε0、ε1)と、最も相関関係がある相関曲線に対応した土質を、土壌28の土質と判定する。これにより、計測した相関曲線Eに最も相関の高い相関曲線Enの土質を土壌28の土質と判定するため、より正確に土質を判定することができる。   Further, as shown in FIG. 8A, the determination unit 36 has a correlation curve that is most correlated with the measured correlation curve E (ε0, ε1) among the correlation curves En stored in the first storage unit 37. Is determined as the soil quality of the soil 28. Thereby, since the soil of the correlation curve En having the highest correlation with the measured correlation curve E is determined as the soil of the soil 28, the soil can be determined more accurately.

さらに、図8(b)のように、算出部38は、第1電極12を用い計測した土壌28の誘電率ε1と、第2記憶部39に記憶された相関曲線Fnと、から土壌28中の水分量を算出する。これにより、より正確に判定された土質に基づき水分量を算出することにより、より正確な土壌28中の水分量を算出できる。   Further, as shown in FIG. 8B, the calculation unit 38 calculates the soil 28 from the dielectric constant ε1 of the soil 28 measured using the first electrode 12 and the correlation curve Fn stored in the second storage unit 39. Calculate the amount of water. Thereby, the water content in the soil 28 can be calculated more accurately by calculating the water content based on the more accurately determined soil quality.

実施例3は、実施例2とは別の方法で、判定部36が土壌の土質を判定する例である。実施例3の土壌センサにおいて、埋没部26および本体部30の構成は実施例2と同じであり、説明を省略する。   The third embodiment is an example in which the determination unit 36 determines the soil quality by a method different from the second embodiment. In the soil sensor of the third embodiment, the structures of the buried portion 26 and the main body portion 30 are the same as those of the second embodiment, and the description thereof is omitted.

図10は、実施例3に係る判定部の動作を示すフローチャートである。図10のように、判定部36は、土壌誘電率計測部32から土壌28の誘電率ε1を取得する(ステップS40)。次に、判定部36は、参照誘電率計測部34から参照材16の誘電率ε0を取得する(ステップS42)。ステップS40とステップS42とは同時に行なってもよく、ステップS42をステップS40より先に行なってもよい。   FIG. 10 is a flowchart illustrating the operation of the determination unit according to the third embodiment. As shown in FIG. 10, the determination unit 36 acquires the dielectric constant ε1 of the soil 28 from the soil dielectric constant measurement unit 32 (step S40). Next, the determination unit 36 acquires the dielectric constant ε0 of the reference material 16 from the reference dielectric constant measurement unit 34 (step S42). Step S40 and step S42 may be performed simultaneously, and step S42 may be performed prior to step S40.

判定部36は、第1記憶部37から複数の土質nに対応した相関曲線En(ε0、ε1)を取得する(ステップS44)。判定部36は、相関曲線En(ε0、ε1)のうち、計測した土壌28の誘電率ε1および参照材16の誘電率ε0の少なくとも一方が範囲内の相関曲線E´(ε0、ε1)を抽出する(ステップS46)。判定部36は、抽出された相関曲線E´(ε0、ε1)のうち、点(ε0、ε1)と最も距離の近い相関曲線E´(ε0、ε1)に対応する土質を、土壌28の土質と判定する(ステップS48)。算出部38の動作は、実施例2と同じであり説明を省略する。   The determination unit 36 acquires correlation curves En (ε0, ε1) corresponding to the plurality of soils n from the first storage unit 37 (step S44). The determination unit 36 extracts a correlation curve E ′ (ε0, ε1) in which at least one of the measured dielectric constant ε1 of the soil 28 and the dielectric constant ε0 of the reference material 16 is within the range from the correlation curve En (ε0, ε1). (Step S46). The determination unit 36 determines the soil quality corresponding to the correlation curve E ′ (ε0, ε1) closest to the point (ε0, ε1) among the extracted correlation curves E ′ (ε0, ε1) as the soil quality of the soil 28. Is determined (step S48). The operation of the calculation unit 38 is the same as that of the second embodiment, and a description thereof is omitted.

図11(a)および図11(b)は、実施例3の判定部の動作の例を説明する模式図である。図11(a)および図11(b)の横軸は参照材の誘電率ε0、縦軸は土壌の誘電率ε1である。まず、図11(a)を用い、実施例3の判定部36の動作の第1の例を説明する。図11(a)の相関曲線E1からE3は、図8(a)と同じであり説明を省略する。相関曲線E1からE3のそれぞれにおいて誘電率ε1がとりうる範囲は、範囲R1からR3である。計測した土壌28の誘電率はε1´であり、参照材の誘電率はε0´である。図10のステップS46において、計測した土壌28の誘電率ε1´が範囲内の相関曲線はE2およびE3である。そこで、判定部36は、相関曲線E1およびE2を抽出する。ステップS48において、判定部36は、抽出された相関曲線E1およびE2のうち、最も計測された点(ε0´、ε1´)に近い相関曲線E3に対応する土質を、土壌28の土質と判定する。   FIG. 11A and FIG. 11B are schematic diagrams illustrating an example of the operation of the determination unit according to the third embodiment. 11A and 11B, the horizontal axis represents the dielectric constant ε0 of the reference material, and the vertical axis represents the dielectric constant ε1 of the soil. First, the 1st example of operation | movement of the determination part 36 of Example 3 is demonstrated using Fig.11 (a). The correlation curves E1 to E3 in FIG. 11A are the same as those in FIG. The range that the dielectric constant ε1 can take in each of the correlation curves E1 to E3 is the range R1 to R3. The measured dielectric constant of the soil 28 is ε1 ′, and the dielectric constant of the reference material is ε0 ′. In step S46 of FIG. 10, the correlation curves within the range of the measured dielectric constant ε1 ′ of the soil 28 are E2 and E3. Therefore, the determination unit 36 extracts correlation curves E1 and E2. In step S <b> 48, the determination unit 36 determines the soil corresponding to the correlation curve E <b> 3 closest to the measured points (ε0 ′, ε1 ′) among the extracted correlation curves E <b> 1 and E <b> 2 as the soil quality of the soil 28. .

次に、図11(b)を用い、実施例3の判定部の動作の第2の例を説明する。図11(b)の相関曲線E4からE6は、それぞれ異なる土質の相関曲線である。相関曲線E4からE6のそれぞれにおいて参照材16の誘電率ε0がとりうる範囲は、範囲R4からR6である。計測した土壌28の誘電率はε1´であり、参照材の誘電率はε0´である。図10のステップS46において、計測した参照材16の誘電率ε0´が範囲内の相関曲線はE5およびE6である。そこで、判定部36は、相関曲線E5およびE6を抽出する。ステップS48において、判定部36は、抽出された相関曲線E5およびE6のうち、最も計測された点(ε0´、ε1´)に近い相関曲線E5に対応する土質を、土壌28の土質と判定する。   Next, a second example of the operation of the determination unit according to the third embodiment will be described with reference to FIG. Correlation curves E4 to E6 in FIG. 11B are correlation curves of different soil types. The ranges that the dielectric constant ε0 of the reference material 16 can take in the correlation curves E4 to E6 are the ranges R4 to R6. The measured dielectric constant of the soil 28 is ε1 ′, and the dielectric constant of the reference material is ε0 ′. In step S46 in FIG. 10, the correlation curves within the range of the measured dielectric constant ε0 ′ of the reference material 16 are E5 and E6. Therefore, the determination unit 36 extracts correlation curves E5 and E6. In step S <b> 48, the determination unit 36 determines the soil corresponding to the correlation curve E <b> 5 closest to the measured points (ε0 ′, ε1 ′) among the extracted correlation curves E <b> 5 and E <b> 6 as the soil quality of the soil 28. .

さらに、判定部36は、第2記憶部39に記憶された相関曲線Enのうち、計測した土壌28の誘電率ε1´が所定の範囲内であり、かつ計測した参照材16の誘電率ε0´が所定の範囲内の相関曲線を抽出してもよい。   Further, in the correlation curve En stored in the second storage unit 39, the determination unit 36 has the measured dielectric constant ε1 ′ of the soil 28 within a predetermined range, and the measured dielectric constant ε0 ′ of the reference material 16. May extract a correlation curve within a predetermined range.

実施例3によれば、図11(a)および図11(b)のように、判定部36は、第1記憶部37に記憶された相関曲線のうち、計測された土壌28の誘電率ε1´および参照材16の誘電率ε0´が所定範囲となる相関曲線を抽出する。抽出された相関曲線のうち、計測された点(ε0´、ε1´)との距離が最も近い相関曲線に対応する土質を土壌28の土質と判定する。これにより、土壌28の土質を判定することができる。実施例3によれば、第1電極12および第2電極14を用いた誘電率の測定が1回のため、短時間で土質を判定することができる。   According to the third embodiment, as shown in FIG. 11A and FIG. 11B, the determination unit 36 includes the measured dielectric constant ε1 of the soil 28 among the correlation curves stored in the first storage unit 37. 'And a correlation curve in which the dielectric constant ε0' of the reference material 16 falls within a predetermined range are extracted. Among the extracted correlation curves, the soil quality corresponding to the correlation curve that is closest to the measured points (ε0 ′, ε1 ′) is determined as the soil quality of the soil 28. Thereby, the soil quality of the soil 28 can be determined. According to the third embodiment, since the dielectric constant is measured once using the first electrode 12 and the second electrode 14, the soil quality can be determined in a short time.

実施例2および実施例3の土壌センサにおいては、実施例1の図2(a)および図3(a)で説明したように、土壌の土質を判定し、土壌の水分量は算出しなくてもよい。   In the soil sensor of Example 2 and Example 3, as explained in FIG. 2A and FIG. 3A of Example 1, the soil quality of the soil is determined, and the moisture content of the soil is not calculated. Also good.

実施例2から実施例3において、土壌の誘電率ε1と参照材の誘電率ε0との相関曲線Enから土壌28の土質を判定する例を説明した。当然のことながら、相関曲線Enは、土壌28の比誘電率ε1と参照材16の比誘電率ε0とで表すことができる。また、相関曲線Enは、第1電極12間の静電容量と第2電極14間の静電容量とで表すことができる。さらに、実施例2から実施例3において、土壌の誘電率ε1と土壌の水分量Vwとの相関曲線Fnから土壌28の水分量を判定する例を説明した。当然のことながら、相関曲線Fnは、土壌28の比誘電率ε1と水分量W1とで表すことができる。また、相関曲線Fnは、第1電極12間の静電容量と水分量W1とで表すことができる。 In Examples 2 to 3, the example in which the soil quality of the soil 28 is determined from the correlation curve En between the dielectric constant ε1 of the soil and the dielectric constant ε0 of the reference material has been described. As a matter of course, the correlation curve En can be expressed by the relative dielectric constant ε1 * of the soil 28 and the relative dielectric constant ε0 * of the reference material 16. Further, the correlation curve En can be represented by the capacitance between the first electrodes 12 and the capacitance between the second electrodes 14. Furthermore, in Example 2 to Example 3, the example which determines the moisture content of the soil 28 from the correlation curve Fn of the dielectric constant (epsilon) 1 of soil and the moisture content Vw of soil was demonstrated. As a matter of course, the correlation curve Fn can be represented by the relative dielectric constant ε1 * of the soil 28 and the water content W1. Further, the correlation curve Fn can be expressed by the capacitance between the first electrodes 12 and the moisture amount W1.

以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

実施例1〜3を含む実施形態に関し、さらに以下の付記を開示する。
付記1:
土壌と直接接触する第1電極と、透水性および保水性を備える参照材と、前記参照材を介し前記土壌と接触する第2電極と、前記第1電極を用い計測した前記土壌の誘電率と、前記第2電極を用い計測した前記参照材の誘電率と、に基づき、前記土壌の土質を判定する判定部と、を具備することを特徴とする土壌センサ。
付記2:
前記判定部の判定した前記土壌の土質と、前記第1電極を用い計測した前記土壌の誘電率と、に基づき、前記土壌中の水分量を算出する算出部を具備する付記1記載の土壌センサ。
付記3:
前記土壌の土質に対応した前記土壌の誘電率と前記参照材の誘電率との相関曲線を記憶する第1記憶部を具備し、前記判定部は、前記第1電極を用い計測した前記土壌の誘電率と前記第2電極を用い計測した前記参照材の誘電率と、前記第1記憶部に記憶された相関曲線と、から前記土壌の土質を判定することを特徴とする付記1または2記載の土壌センサ。
付記4:
前記判定部は、前記第1記憶部に記憶された相関曲線のうち、前記第1電極を用い計測した前記土壌の誘電率と前記第2電極を用い計測した前記参照材の誘電率との相関曲線と、最も相関関係がある相関曲線に対応した土質を、前記土壌の土質と判定することを特徴とする付記3記載の土壌センサ。
付記5:
前記判定部は、前記第1記憶部に記憶された相関曲線のうち、前記第1電極を用い計測した前記土壌の誘電率と前記第2電極を用い計測した前記参照材の誘電率と少なくとも一方が所定範囲となる相関曲線を抽出し、抽出された相関曲線のうち、前記第1電極を用い計測した前記土壌の誘電率と、前記第2電極を用い計測した前記参照材の誘電率とが示す点との距離が最も近い相関曲線に対応する土質を前記土壌の土質と判定することを特徴とする付記3記載の土壌センサ。
付記6:
前記土壌の土質に対応した前記土壌の誘電率と水分量との相関曲線を記憶する第2記憶部を具備し、前記算出部は、前記判定部が判定した土質と、前記第1電極を用い計測した前記土壌の誘電率と、前記相関曲線と、から前記土壌中の水分量を算出することを特徴とする付記2記載の土壌センサ。
付記7:
土壌と直接接触する第1電極を用い前記土壌の誘電率を計測し、透水性および保水性を備える参照材を介し前記土壌と接触する第2電極を用い前記参照材の誘電率を計測し、前記土壌の誘電率と前記参照材の誘電率とに基づき、前記土壌の土質を判定することを特徴とする土壌センシング方法。
付記8
判定された前記土壌の土質と、前記土壌の誘電率と、に基づき、前記土壌中の水分量を算出することを特徴とする付記7記載の土壌センシング方法。
The following additional remarks are disclosed regarding the embodiment including Examples 1 to 3.
Appendix 1:
A first electrode in direct contact with the soil, a reference material having water permeability and water retention, a second electrode in contact with the soil through the reference material, and a dielectric constant of the soil measured using the first electrode A soil sensor comprising: a determination unit that determines the soil quality of the soil based on a dielectric constant of the reference material measured using the second electrode.
Appendix 2:
The soil sensor according to supplementary note 1, further comprising a calculating unit that calculates a moisture content in the soil based on the soil quality of the soil determined by the determining unit and the dielectric constant of the soil measured using the first electrode. .
Appendix 3:
A first storage unit that stores a correlation curve between a dielectric constant of the soil corresponding to a soil quality of the soil and a dielectric constant of the reference material; and the determination unit is configured to measure the soil measured using the first electrode. The supplementary note 1 or 2, wherein the soil quality is determined from a dielectric constant, a dielectric constant of the reference material measured using the second electrode, and a correlation curve stored in the first storage unit. Soil sensor.
Appendix 4:
The determination unit includes a correlation between a dielectric constant of the soil measured using the first electrode and a dielectric constant of the reference material measured using the second electrode among the correlation curves stored in the first storage unit. The soil sensor according to appendix 3, wherein the soil corresponding to the curve and the correlation curve having the most correlation is determined as the soil quality of the soil.
Appendix 5:
The determination unit includes at least one of a dielectric constant of the soil measured using the first electrode and a dielectric constant of the reference material measured using the second electrode among the correlation curves stored in the first storage unit. A correlation curve having a predetermined range is extracted, and among the extracted correlation curves, the dielectric constant of the soil measured using the first electrode and the dielectric constant of the reference material measured using the second electrode are: The soil sensor according to supplementary note 3, wherein the soil quality corresponding to the correlation curve having the closest distance to the indicated point is determined as the soil quality of the soil.
Appendix 6:
A second storage unit that stores a correlation curve between the dielectric constant of the soil corresponding to the soil quality of the soil and a moisture content; and the calculation unit uses the soil determined by the determination unit and the first electrode The soil sensor according to supplementary note 2, wherein the moisture content in the soil is calculated from the measured dielectric constant of the soil and the correlation curve.
Appendix 7:
Measuring the dielectric constant of the soil using a first electrode in direct contact with the soil, measuring the dielectric constant of the reference material using a second electrode in contact with the soil through a reference material having water permeability and water retention; The soil sensing method characterized by determining the soil quality of the soil based on the dielectric constant of the soil and the dielectric constant of the reference material.
Appendix 8
The soil sensing method according to appendix 7, wherein the moisture content in the soil is calculated based on the determined soil quality and the dielectric constant of the soil.

12 第1電極
14 第2電極
16 参照材
18 支持部
26 埋没部
28 土壌
30 本体部
32 土壌誘電率計測部
34 参照誘電率計測部
36 判定部
37 第1記憶部
38 算出部
39 第2記憶部
DESCRIPTION OF SYMBOLS 12 1st electrode 14 2nd electrode 16 Reference material 18 Support part 26 Burying part 28 Soil 30 Main body part 32 Soil dielectric constant measurement part 34 Reference dielectric constant measurement part 36 Judgment part 37 1st memory | storage part 38 Calculation part 39 2nd memory | storage part

Claims (7)

土壌と直接接触する第1電極と、
透水性および保水性を備える参照材と、
前記参照材を介し前記土壌と接触する第2電極と、
前記第1電極を用い計測した前記土壌の誘電率と、前記第2電極を用い計測した前記参照材の誘電率と、に基づき、前記土壌の土質を判定する判定部と、
を具備することを特徴とする土壌センサ。
A first electrode in direct contact with the soil;
A reference material with water permeability and water retention;
A second electrode in contact with the soil via the reference material;
A determination unit that determines the soil quality of the soil based on the dielectric constant of the soil measured using the first electrode and the dielectric constant of the reference material measured using the second electrode;
A soil sensor comprising:
前記判定部の判定した前記土壌の土質と、前記第1電極を用い計測した前記土壌の誘電率と、に基づき、前記土壌中の水分量を算出する算出部を具備する請求項1記載の土壌センサ。   2. The soil according to claim 1, further comprising a calculation unit that calculates a moisture content in the soil based on the soil quality of the soil determined by the determination unit and the dielectric constant of the soil measured using the first electrode. Sensor. 前記土壌の土質に対応した前記土壌の誘電率と前記参照材の誘電率との相関曲線を記憶する第1記憶部を具備し、
前記判定部は、前記第1電極を用い計測した前記土壌の誘電率と前記第2電極を用い計測した前記参照材の誘電率と、前記第1記憶部に記憶された相関曲線と、から前記土壌の土質を判定することを特徴とする請求項1または2記載の土壌センサ。
A first storage unit that stores a correlation curve between a dielectric constant of the soil corresponding to the soil quality of the soil and a dielectric constant of the reference material;
The determination unit includes a dielectric constant of the soil measured using the first electrode, a dielectric constant of the reference material measured using the second electrode, and a correlation curve stored in the first storage unit. The soil sensor according to claim 1 or 2, wherein the soil quality of the soil is determined.
前記判定部は、前記第1記憶部に記憶された相関曲線のうち、前記第1電極を用い計測した前記土壌の誘電率と前記第2電極を用い計測した前記参照材の誘電率との相関曲線と、最も相関関係がある相関曲線に対応した土質を、前記土壌の土質と判定することを特徴とする請求項3記載の土壌センサ。   The determination unit includes a correlation between a dielectric constant of the soil measured using the first electrode and a dielectric constant of the reference material measured using the second electrode among the correlation curves stored in the first storage unit. 4. The soil sensor according to claim 3, wherein the soil quality corresponding to the curve and the correlation curve having the most correlation is determined as the soil quality of the soil. 前記判定部は、前記第1記憶部に記憶された相関曲線のうち、前記第1電極を用い計測した前記土壌の誘電率と前記第2電極を用い計測した前記参照材の誘電率との少なくとも一方が所定範囲となる相関曲線を抽出し、抽出された相関曲線のうち、前記第1電極を用い計測した前記土壌の誘電率と、前記第2電極を用い計測した前記参照材の誘電率とが示す点との距離が最も近い相関曲線に対応する土質を前記土壌の土質と判定することを特徴とする請求項3記載の土壌センサ。   The determination unit includes at least a dielectric constant of the soil measured using the first electrode and a dielectric constant of the reference material measured using the second electrode among the correlation curves stored in the first storage unit. One of the extracted correlation curves is a predetermined range, and among the extracted correlation curves, the dielectric constant of the soil measured using the first electrode, and the dielectric constant of the reference material measured using the second electrode The soil sensor according to claim 3, wherein the soil quality corresponding to the correlation curve closest to the point indicated by is determined as the soil quality of the soil. 前記土壌の土質に対応した前記土壌の誘電率と水分量との相関曲線を記憶する第2記憶部を具備し、
前記算出部は、前記判定部が判定した土質と、前記第1電極を用い計測した前記土壌の誘電率と、前記相関曲線と、から前記土壌中の水分量を算出することを特徴とする請求項2記載の土壌センサ。
A second storage unit for storing a correlation curve between the soil permittivity and the moisture content corresponding to the soil quality;
The said calculation part calculates the moisture content in the said soil from the soil quality which the said determination part determined, the dielectric constant of the said soil measured using the said 1st electrode, and the said correlation curve. Item 2. The soil sensor according to Item 2.
土壌と直接接触する第1電極を用い前記土壌の誘電率を計測し、
透水性および保水性を備える参照材を介し前記土壌と接触する第2電極を用い前記参照材の誘電率を計測し、
前記土壌の誘電率と前記参照材の誘電率とに基づき、前記土壌の土質を判定することを特徴とする土壌センシング方法。
Measure the dielectric constant of the soil using the first electrode in direct contact with the soil,
Measure the dielectric constant of the reference material using a second electrode that contacts the soil through a reference material having water permeability and water retention,
The soil sensing method characterized by determining the soil quality of the soil based on the dielectric constant of the soil and the dielectric constant of the reference material.
JP2011109597A 2011-05-16 2011-05-16 Soil sensor and soil sensing method Expired - Fee Related JP5779972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011109597A JP5779972B2 (en) 2011-05-16 2011-05-16 Soil sensor and soil sensing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011109597A JP5779972B2 (en) 2011-05-16 2011-05-16 Soil sensor and soil sensing method

Publications (2)

Publication Number Publication Date
JP2012242127A true JP2012242127A (en) 2012-12-10
JP5779972B2 JP5779972B2 (en) 2015-09-16

Family

ID=47464012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011109597A Expired - Fee Related JP5779972B2 (en) 2011-05-16 2011-05-16 Soil sensor and soil sensing method

Country Status (1)

Country Link
JP (1) JP5779972B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057574A (en) * 2011-09-07 2013-03-28 Fujitsu Ltd Soil sensor
KR20220047474A (en) * 2020-10-08 2022-04-18 주식회사 브이씨 Green information measuring apparatus and operating method of green information measuring apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189693A (en) * 1996-01-11 1997-07-22 Dkk Corp Moisture measuring sensor and moisture meter
JP3070450U (en) * 1999-05-25 2000-08-04 義孝 佐野 Electronic soil humidity measurement method and equipment for plants
JP2001012501A (en) * 1999-06-21 2001-01-16 Hyundai Motor Co Ltd Variable speed synchronous system for manual transmission and synchronous method suitable therefor
JP2002340835A (en) * 2001-05-16 2002-11-27 East Japan Railway Co Precision management method for moisture measuring device
JP2011112506A (en) * 2009-11-26 2011-06-09 Nitto Seiko Co Ltd Penetration rod

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189693A (en) * 1996-01-11 1997-07-22 Dkk Corp Moisture measuring sensor and moisture meter
JP3070450U (en) * 1999-05-25 2000-08-04 義孝 佐野 Electronic soil humidity measurement method and equipment for plants
JP2001012501A (en) * 1999-06-21 2001-01-16 Hyundai Motor Co Ltd Variable speed synchronous system for manual transmission and synchronous method suitable therefor
JP2002340835A (en) * 2001-05-16 2002-11-27 East Japan Railway Co Precision management method for moisture measuring device
JP2011112506A (en) * 2009-11-26 2011-06-09 Nitto Seiko Co Ltd Penetration rod

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057574A (en) * 2011-09-07 2013-03-28 Fujitsu Ltd Soil sensor
KR20220047474A (en) * 2020-10-08 2022-04-18 주식회사 브이씨 Green information measuring apparatus and operating method of green information measuring apparatus
KR102507316B1 (en) * 2020-10-08 2023-03-09 주식회사 브이씨 Green information measuring apparatus and operating method of green information measuring apparatus

Also Published As

Publication number Publication date
JP5779972B2 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP5724773B2 (en) Soil sensor
US20120126816A1 (en) Method of monitoring a hydrocarbon reservoir
US8372252B2 (en) Method for setting a distance between an electrode and a workpiece
JP5779972B2 (en) Soil sensor and soil sensing method
CN106018261A (en) Electrochemical rapid detection method for reinforcement corrosion degree in concrete structure
KR101094369B1 (en) Cone penetrometer for measuring impedance of ground
JP2012132794A (en) Soil moisture measuring device and method for measuring soil moisture
Zhang et al. Roughness evaluation for distinguishing fresh and sheared rock joint surfaces with different sampling intervals
JP5669313B2 (en) Method and apparatus for predicting ground displacement
JP5490456B2 (en) Soil classification method
Löfroth et al. Mapping of quick clay using sounding methods and resistivity in the Göta River valley
JP2008111272A (en) Monitoring method and device of banking on weak underwater ground
RU2466768C2 (en) Method of defining fluid boundary level
JP3968297B2 (en) Reinforcement corrosion measurement method inside concrete
Masaoka et al. Application of a Combined Penetrometer‐Moisture Probe for Investigating Heterogeneous Hydrological Properties of a Footslope Area
JP5898639B2 (en) Prediction method of ground displacement
CN203758549U (en) Capacitive sensor used for simultaneously obtaining inclination angle and liquid level of container
JP2011112506A (en) Penetration rod
RU2466430C2 (en) Method of electrical exploration using cylindrical probe
JP5781820B2 (en) Method and apparatus for predicting ground displacement
CN102928047A (en) Resistance type flexible electronic water gage
CN105403336B (en) A kind of miniature full-bridge feeler inspection probe
JP2011112641A (en) Penetration rod
Kang et al. Improving reliabilities of dam displacement based on monitoring given points by total station
JP5398880B1 (en) Soil judgment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150629

R150 Certificate of patent or registration of utility model

Ref document number: 5779972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees