JP2012242047A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2012242047A
JP2012242047A JP2011114873A JP2011114873A JP2012242047A JP 2012242047 A JP2012242047 A JP 2012242047A JP 2011114873 A JP2011114873 A JP 2011114873A JP 2011114873 A JP2011114873 A JP 2011114873A JP 2012242047 A JP2012242047 A JP 2012242047A
Authority
JP
Japan
Prior art keywords
valve
outdoor heat
refrigerant
heat exchange
switching valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011114873A
Other languages
Japanese (ja)
Other versions
JP5627536B2 (en
Inventor
Tomoatsu Minamida
知厚 南田
Yoichi Onuma
洋一 大沼
Takeshi Kamio
猛 神尾
Shoji Yamashita
将司 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Fujikoki Corp
Original Assignee
Daikin Industries Ltd
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Fujikoki Corp filed Critical Daikin Industries Ltd
Priority to JP2011114873A priority Critical patent/JP5627536B2/en
Publication of JP2012242047A publication Critical patent/JP2012242047A/en
Application granted granted Critical
Publication of JP5627536B2 publication Critical patent/JP5627536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner that can perform defrosting of an outdoor heat exchanger while continuing heating operation.SOLUTION: In the air conditioner 300, a flow path switching valve 51 has a switching mechanism for performing switching to one of a first mode, a second mode and a third mode. In the first mode, a refrigerant which enters from an expansion valve 7 is made to flow into both a first outdoor heat exchanging section 46a and a second outdoor heat exchanging section 46b. In the second mode, the refrigerant entering from the expansion valve 7 is made to flow into the first outdoor heat exchanging section 46a and the refrigerant entering from a bypass path 61 is made to flow into the second outdoor heat exchanging section 46b. In the third mode, the refrigerant entering from the expansion valve 7 is made to flow into the second outdoor heat exchanging section 46b and the refrigerant entering from the bypass path 61 is made to flow into the first outdoor heat exchanging section 46a. A controlling section 8 switches the flow path switching valve 51 to the second mode or the third mode when performing defrosting operation, and opens an on-off valve 71 of the bypass path 61. The on-off valve 71 is arranged on the bypass path 61.

Description

本発明は、流体の流通路を切り換え、或は、流体を多方向に分配する流路切換弁を備えた空気調和機に関する。   The present invention relates to an air conditioner provided with a flow path switching valve that switches a fluid flow path or distributes fluid in multiple directions.

空気調和機の暖房運転中に室外熱交換器が着霜したとき、その着霜を解消する手段として、圧縮機を出た高温冷媒が凝縮器をバイパスして蒸発器に流れるようにする方法が、特許文献1(特開平11−132603号公報)に開示されている。   When the outdoor heat exchanger is frosted during the heating operation of the air conditioner, as a means to eliminate the frost formation, there is a method in which the high-temperature refrigerant that has exited the compressor bypasses the condenser and flows to the evaporator. Patent Document 1 (Japanese Patent Application Laid-Open No. 11-132603) discloses.

しかしながら、特許文献1に開示されている空気調和機では、除霜運転のたびに暖気供給が停止するので、ユーザーに不快感を与える可能性が高い。   However, in the air conditioner disclosed in Patent Document 1, since the warm air supply is stopped every time the defrosting operation is performed, there is a high possibility that the user will feel uncomfortable.

本発明の課題は、暖房運転を継続したまま室外熱交換器の除霜を行うことができる空気調和機を提供することにある。   The subject of this invention is providing the air conditioner which can defrost an outdoor heat exchanger, continuing heating operation.

本発明の第1観点に係る空気調和機は、圧縮機、凝縮器、減圧器、蒸発器の順で冷媒が循環する蒸気圧縮式冷凍サイクルを利用する空気調和機であって、室内熱交換器と、室外熱交換器と、流路切換弁と、バイパス路と、開閉弁と、制御部とを備えている。室内熱交換器は、暖房運転時には凝縮器となり、冷房運転時には蒸発器となる。室外熱交換器は、暖房運転時には蒸発器となり、冷房運転時には凝縮器となる。流路切換弁は、減圧器と室外熱交換器との間に配置される。バイパス路は、圧縮機からの吐出冷媒の一部を流路切換弁に導く。開閉弁は、バイパス路に配置される。制御部は、少なくとも流路切換弁および開閉弁を制御する。室外熱交換器は、第1室外熱交換部と、第1室外熱交換部と並列に接続される第2室外熱交換部とを有している。流路切換弁は、第1弁室と、第2弁室と、弁体と、駆動部とを含んでいる。第1弁室は、複数のポートが設けられている平面状の第1弁シートを有し、そのポートを介して減圧器、第1室外熱交換部および第2室外熱交換部と通じ得る。第2弁室は、複数のポートが設けられている平面状の第2弁シートを有し、そのポートを介して少なくともバイパス路と通じ得る。弁体は、第1弁室と第2弁室とを仕切り、且つ一端が第1弁シートに近接し他端が第2弁シートに近接する流通管を有している。駆動部は、弁体を回転させる。さらに、流路切換弁は、第1形態、第2形態、及び第3形態のいずれかへの切り換えを行う。第1形態とは、流通管の一端が第1弁シート(201)のいずれのポートにも対峙しないことによって、減圧器から入った冷媒を第1室外熱交換部および第2室外熱交換部の双方に流す形態である。第2形態とは、流通管の一端が第2室外熱交換部に通じる第1弁シートのポートに対峙し、且つ他端がバイパス路に通じる第2弁シートのポートに対峙することによって、減圧器から入った冷媒を第1室外熱交換部に流し、且つバイパス路から入った冷媒を第2室外熱交換部に流す形態である。第3形態とは、流通管の一端が第1室外熱交換部に通じる第1弁シートのポートに対峙し、且つ他端がバイパス路に通じる第2弁シートのポートに対峙することによって、減圧器から入った冷媒を第2室外熱交換部に流し、且つバイパス路から入った冷媒を第1室外熱交換部に流す形態である。そして、制御部は、除霜運転を行うとき、流路切換弁を第2形態または第3形態へ切り換え、開閉弁を開状態にする。   An air conditioner according to a first aspect of the present invention is an air conditioner that uses a vapor compression refrigeration cycle in which refrigerant circulates in the order of a compressor, a condenser, a decompressor, and an evaporator, and is an indoor heat exchanger And an outdoor heat exchanger, a flow path switching valve, a bypass path, an on-off valve, and a control unit. An indoor heat exchanger becomes a condenser at the time of heating operation, and becomes an evaporator at the time of cooling operation. The outdoor heat exchanger serves as an evaporator during heating operation, and serves as a condenser during cooling operation. The flow path switching valve is disposed between the pressure reducer and the outdoor heat exchanger. The bypass path guides a part of the refrigerant discharged from the compressor to the flow path switching valve. The on-off valve is disposed in the bypass path. The control unit controls at least the flow path switching valve and the on-off valve. The outdoor heat exchanger has a first outdoor heat exchange part and a second outdoor heat exchange part connected in parallel with the first outdoor heat exchange part. The flow path switching valve includes a first valve chamber, a second valve chamber, a valve element, and a drive unit. The first valve chamber has a planar first valve seat provided with a plurality of ports, and can communicate with the decompressor, the first outdoor heat exchange unit, and the second outdoor heat exchange unit via the ports. The second valve chamber has a planar second valve seat provided with a plurality of ports, and can communicate with at least the bypass path via the ports. The valve body has a flow pipe that partitions the first valve chamber and the second valve chamber and has one end close to the first valve seat and the other end close to the second valve seat. The drive unit rotates the valve body. Furthermore, the flow path switching valve performs switching to any one of the first form, the second form, and the third form. The first form is that one end of the flow pipe does not face any port of the first valve seat (201), so that the refrigerant entered from the decompressor is supplied to the first outdoor heat exchange unit and the second outdoor heat exchange unit. It is a form that flows to both sides. In the second mode, one end of the flow pipe is opposed to the port of the first valve seat that communicates with the second outdoor heat exchanger, and the other end is opposed to the port of the second valve seat that communicates with the bypass passage. It is a form which flows the refrigerant | coolant which entered from the container to the 1st outdoor heat exchange part, and flows the refrigerant | coolant which entered from the bypass path to the 2nd outdoor heat exchange part. In the third mode, one end of the flow pipe faces the port of the first valve seat that leads to the first outdoor heat exchange section, and the other end faces the port of the second valve seat that leads to the bypass path, thereby reducing the pressure. It is a form which flows the refrigerant | coolant which entered from the container to the 2nd outdoor heat exchange part, and flows the refrigerant | coolant which entered from the bypass path to the 1st outdoor heat exchange part. And a control part switches a flow-path switching valve to a 2nd form or a 3rd form, and opens an on-off valve, when performing a defrost operation.

この空気調和機では、室外熱交換器の一部分を使用して暖房運転を継続しながら、他の部分にはバイパス路から高圧・高温冷媒を導入して除霜することができる。それゆえ、暖気供給が停止することなく除霜が行われる。   In this air conditioner, a part of the outdoor heat exchanger can be used to continue the heating operation, while the other part can be defrosted by introducing a high-pressure / high-temperature refrigerant from the bypass. Therefore, defrosting is performed without stopping the warm air supply.

本発明の第2観点に係る空気調和機は、第1観点に係る空気調和機であって、室外温度を検出する室外温度センサをさらに備えている。制御部は、室外温度センサの検出温度が所定温度以上のとき、開閉弁を閉状態にする。   An air conditioner according to a second aspect of the present invention is the air conditioner according to the first aspect, and further includes an outdoor temperature sensor that detects an outdoor temperature. The control unit closes the on-off valve when the temperature detected by the outdoor temperature sensor is equal to or higher than a predetermined temperature.

この空気調和機では、室外温度が氷点下でないとき(好ましくは5°C以上のとき)、霜は自然に融解するので、開閉弁を閉状態にして高圧・高温冷媒を導入することなく除霜することができる。   In this air conditioner, when the outdoor temperature is not below the freezing point (preferably 5 ° C or higher), frost naturally melts. Therefore, the open / close valve is closed and defrosting is performed without introducing high-pressure / high-temperature refrigerant. be able to.

本発明の第3観点に係る空気調和機は、第1観点に係る空気調和機であって、第2バイパス路をさらに備えている。第2バイパス路は、暖房運転時における室外熱交換器の出口と第2弁室の1つのポートとを繋ぐ。流路切換弁は、第1形態、第2形態、第3形態、及び第4形態のいずれかへの切り換えが可能である。なお、第4形態とは、流通管の端が第2弁シートのいずれのポートにも対峙しないことによって、バイパス路から入った冷媒を第2バイパス路へ流す形態である。そして、制御部は、流路切換弁を第1形態へ切り換える前に、第4形態へ切り換える。   The air conditioner which concerns on the 3rd viewpoint of this invention is an air conditioner which concerns on a 1st viewpoint, Comprising: The 2nd bypass path is further provided. The second bypass path connects the outlet of the outdoor heat exchanger during heating operation and one port of the second valve chamber. The flow path switching valve can be switched to any one of the first form, the second form, the third form, and the fourth form. In addition, the 4th form is a form which flows the refrigerant | coolant which entered from the bypass path to the 2nd bypass path because the end of a flow pipe does not oppose any port of a 2nd valve seat. And a control part switches to a 4th form, before switching a flow-path switching valve to a 1st form.

低外気温のとき、暖房運転開始直前の圧縮機は冷えている上に、圧縮機の熱容量が大きいので、暖房運転が開始されてから室内熱交換器に高温冷媒が循環するようになるまで一定の時間を要する。それゆえ、暖房運転性能の観点から見れば、速やかに圧縮機温度を上昇させることが好ましい。   When the outside air temperature is low, the compressor immediately before the start of heating operation is cold, and the heat capacity of the compressor is large, so it is constant from the start of heating operation until the high-temperature refrigerant circulates in the indoor heat exchanger Takes time. Therefore, it is preferable to quickly increase the compressor temperature from the viewpoint of heating operation performance.

この空気調和機では、制御部が流路切換弁を第4形態へ切り換えることによって、圧縮機から吐出された高圧・高温のガス冷媒の一部が、バイパス路、流路切換弁および第2バイパス路の順で流れ、再び圧縮機に戻るので、圧縮機温度が速やかに上昇する。   In this air conditioner, the control unit switches the flow path switching valve to the fourth mode, whereby a part of the high-pressure and high-temperature gas refrigerant discharged from the compressor is bypassed, the flow path switching valve, and the second bypass. Since it flows in order of a path and returns to a compressor again, a compressor temperature rises rapidly.

本発明の第4観点に係る空気調和機は、第3観点に係る空気調和機であって、室内熱交換器が、第1室内熱交換部と、第2室内熱交換部と、減圧部とを有している。減圧部は、第1室内熱交換部と第2室内熱交換部との間に接続される。流路切換弁は、第1形態、第2形態、第3形態、第4形態、及び第5形態のいずれかへの切り換えが可能である。なお、第5形態とは、流通管の一端が減圧器に通じる第1弁シートのポートに対峙し、且つ他端が第2バイパス路に通じる第2弁シートのポートに対峙することによって、第2バイパス路から入った冷媒を減圧器へ流す形態である。そして、制御部は、暖房運転時とは逆のサイクルによって圧縮機から吐出された冷媒を第1室内熱交換部に流す再熱除湿運転を行うとき、流路切換弁を第5形態へ切り換える。   The air conditioner which concerns on the 4th viewpoint of this invention is an air conditioner which concerns on a 3rd viewpoint, Comprising: An indoor heat exchanger has a 1st indoor heat exchange part, a 2nd indoor heat exchange part, a pressure reduction part, have. The decompression unit is connected between the first indoor heat exchange unit and the second indoor heat exchange unit. The flow path switching valve can be switched to any one of the first form, the second form, the third form, the fourth form, and the fifth form. In the fifth embodiment, the first end of the flow pipe faces the port of the first valve seat leading to the decompressor, and the other end faces the port of the second valve seat leading to the second bypass passage. This is a mode in which the refrigerant that has entered from the two bypass passages flows to the decompressor. And a control part switches a flow-path switching valve to a 5th form, when performing the reheat dehumidification operation which flows the refrigerant | coolant discharged from the compressor by the cycle contrary to the time of heating operation to a 1st indoor heat exchange part.

この空気調和機では、再熱除湿運転時、室内熱交換器の第1室内熱交換部だけが凝縮器となる。第1室内熱交換部は室外熱交換器に比べて容量が小さいので余剰冷媒が生じるが、圧縮機から吐出された冷媒は室外熱交換器の入口側から室外熱交換器内へ流入することもでき、余剰冷媒は室外熱交換器内に貯留される。それゆえ、第1室内熱交換部が過度に液冷媒で占められることなく、高圧上昇を抑えて凝縮器能力を有効に活用できる、即ち、圧縮機の入力を抑えた省エネルギーな再熱除湿運転ができる。   In this air conditioner, only the first indoor heat exchanger of the indoor heat exchanger becomes a condenser during the reheat dehumidification operation. Since the first indoor heat exchange section has a smaller capacity than the outdoor heat exchanger, surplus refrigerant is generated, but the refrigerant discharged from the compressor may flow into the outdoor heat exchanger from the inlet side of the outdoor heat exchanger. The surplus refrigerant is stored in the outdoor heat exchanger. Therefore, the first indoor heat exchange section is not excessively occupied by the liquid refrigerant, and the condenser capacity can be effectively utilized by suppressing the increase in the high pressure, that is, the energy-saving reheat dehumidification operation that suppresses the input of the compressor. it can.

本発明の第1観点に係る空気調和機では、室外熱交換器の一部分を使用して暖房運転を継続しながら除霜が行われるので、暖気供給が停止することがない。   In the air conditioner according to the first aspect of the present invention, defrosting is performed while continuing the heating operation using a part of the outdoor heat exchanger, so that the warm air supply does not stop.

本発明の第2観点に係る空気調和機では、開閉弁を閉状態にして高圧・高温冷媒を導入することなく除霜することができる。   In the air conditioner according to the second aspect of the present invention, defrosting can be performed without closing the on-off valve and introducing high-pressure / high-temperature refrigerant.

本発明の第3観点に係る空気調和機では、圧縮機から吐出された高圧・高温のガス冷媒の一部が、バイパス路、流路切換弁および第2バイパス路の順で流れ、再び圧縮機に戻るので、圧縮機温度が速やかに上昇する。   In the air conditioner according to the third aspect of the present invention, part of the high-pressure and high-temperature gas refrigerant discharged from the compressor flows in the order of the bypass path, the flow path switching valve, and the second bypass path, and again the compressor The compressor temperature rises quickly.

本発明の第4観点に係る空気調和機では、第1室内熱交換部が過度に液冷媒で占められることなく、高圧上昇を抑えて凝縮器能力を有効に活用できる、即ち、圧縮機の入力を抑えた省エネルギーな再熱除湿運転ができる。   In the air conditioner according to the fourth aspect of the present invention, the first indoor heat exchange section is not excessively occupied by the liquid refrigerant, and the condenser capacity can be effectively utilized while suppressing an increase in high pressure. Energy-saving reheat dehumidification operation that suppresses

本発明の一実施形態に係る空気調和機の構成図。The block diagram of the air conditioner which concerns on one Embodiment of this invention. 本実施形態に係る空気調和機に使用される流路切換弁の斜視図。The perspective view of the flow-path switching valve used for the air conditioner which concerns on this embodiment. 第1形態に切り換わった第1弁室を本体の中心軸と直交する面で切断したときの流路切換弁の断面図。Sectional drawing of a flow-path switching valve when the 1st valve chamber switched to the 1st form is cut | disconnected by the surface orthogonal to the central axis of a main body. 第1形態に切り換わった第2弁室を本体の中心軸と直交する面で切断したときの流路切換弁の断面図。Sectional drawing of a flow-path switching valve when the 2nd valve chamber switched to the 1st form is cut | disconnected by the surface orthogonal to the central axis of a main body. 第1形態へ切り換えられた流路切換弁の断面図。Sectional drawing of the flow-path switching valve switched to the 1st form. 第2形態に切り換わった第1弁室を本体の中心軸と直交する面で切断したときの流路切換弁の断面図。Sectional drawing of a flow-path switching valve when the 1st valve chamber switched to the 2nd form is cut | disconnected by the surface orthogonal to the central axis of a main body. 第2形態に切り換わった第2弁室を本体の中心軸と直交する面で切断したときの流路切換弁の断面図。Sectional drawing of a flow-path switching valve when the 2nd valve chamber switched to the 2nd form is cut | disconnected by the surface orthogonal to the central axis of a main body. 第3形態に切り換わった第1弁室を本体の中心軸と直交する面で切断したときの流路切換弁の断面図。Sectional drawing of a flow-path switching valve when the 1st valve chamber switched to the 3rd form is cut | disconnected by the surface orthogonal to the central axis of a main body. 第3形態に切り換わった第2弁室を本体の中心軸と直交する面で切断したときの流路切換弁の断面図。Sectional drawing of a flow-path switching valve when the 2nd valve chamber switched to the 3rd form is cut | disconnected by the surface orthogonal to the central axis of a main body. 第4形態に切り換わった第1弁室を本体の中心軸と直交する面で切断したときの流路切換弁の断面図。Sectional drawing of a flow-path switching valve when the 1st valve chamber switched to the 4th form is cut | disconnected by the surface orthogonal to the central axis of a main body. 第4形態に切り換わった第2弁室を本体の中心軸と直交する面で切断したときの流路切換弁の断面図。Sectional drawing of a flow-path switching valve when the 2nd valve chamber switched to the 4th form is cut | disconnected by the surface orthogonal to the central axis of a main body. 第5形態に切り換わった第1弁室を本体の中心軸と直交する面で切断したときの流路切換弁の断面図。Sectional drawing of a flow-path switching valve when the 1st valve chamber switched to the 5th form is cut | disconnected by the surface orthogonal to the central axis of a main body. 第5形態に切り換わった第2弁室を本体の中心軸と直交する面で切断したときの流路切換弁の断面図。Sectional drawing of a flow-path switching valve when the 2nd valve chamber switched to the 5th form is cut | disconnected by the surface orthogonal to the central axis of a main body. 第1形態に切り換わった流路切換弁の配管接続部間の連通状態を示す経路図。The path | route diagram which shows the communication state between the pipe connection parts of the flow-path switching valve switched to the 1st form. 第2形態に切り換わった流路切換弁の配管接続部間の連通状態を示す経路図。The route diagram which shows the communication state between the pipe connection parts of the flow-path switching valve switched to the 2nd form. 第3形態に切り換わった流路切換弁の配管接続部間の連通状態を示す経路図。The route diagram which shows the communication state between the pipe connection parts of the flow-path switching valve switched to the 3rd form. 第4形態に切り換わった流路切換弁の配管接続部間の連通状態を示す経路図。The route diagram which shows the communication state between the pipe connection parts of the flow-path switching valve switched to the 4th form. 第5形態に切り換わった流路切換弁の配管接続部間の連通状態を示す経路図。The route diagram which shows the communication state between the pipe connection parts of the flow-path switching valve switched to the 5th form.

以下図面を参照しながら、本発明の実施形態について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。   Embodiments of the present invention will be described below with reference to the drawings. The following embodiments are specific examples of the present invention and do not limit the technical scope of the present invention.

(1)空気調和機300の全体構成
図1は、本発明の一実施形態に係る空気調和機300の構成図である。図1において、空気調和機300は、室内ユニット4、室外ユニット6、及び制御部8を備えている。室内ユニット4及び室外ユニット6は冷媒連絡管によって接続され、蒸気圧縮式の冷媒回路が構成されている。
(1) Overall Configuration of Air Conditioner 300 FIG. 1 is a configuration diagram of an air conditioner 300 according to an embodiment of the present invention. In FIG. 1, the air conditioner 300 includes an indoor unit 4, an outdoor unit 6, and a control unit 8. The indoor unit 4 and the outdoor unit 6 are connected by a refrigerant communication pipe to constitute a vapor compression refrigerant circuit.

(2)詳細構成
(2−1)室内ユニット4
室内ユニット4は、室内熱交換器40を含む。室内熱交換器40は、フィン&チューブ型熱交換器であって、暖房運転時には冷媒の凝縮器として機能することによって空気を加熱する。また、冷房運転時には冷媒の蒸発器として機能することによって空気を冷却する。室内熱交換器40は、第1室内熱交換部40a、第1室内熱交換部40aと直列に接続される第2室内熱交換部40b、及び第1室内熱交換部40aと第2室内熱交換部40bとの間に接続される第2膨張弁40cを有している。
(2) Detailed configuration (2-1) Indoor unit 4
The indoor unit 4 includes an indoor heat exchanger 40. The indoor heat exchanger 40 is a fin-and-tube heat exchanger, and heats air by functioning as a refrigerant condenser during heating operation. In the cooling operation, the air is cooled by functioning as a refrigerant evaporator. The indoor heat exchanger 40 includes a first indoor heat exchange unit 40a, a second indoor heat exchange unit 40b connected in series with the first indoor heat exchange unit 40a, and the first indoor heat exchange unit 40a and the second indoor heat exchange. It has the 2nd expansion valve 40c connected between the parts 40b.

(2−2)室外ユニット6
室外ユニット6は、主に室外に設置され、四路切換弁2、圧縮機5、膨張弁7、室外熱交換器46及び流路切換弁51を有している。
(2-2) Outdoor unit 6
The outdoor unit 6 is mainly installed outdoors, and includes a four-way switching valve 2, a compressor 5, an expansion valve 7, an outdoor heat exchanger 46, and a flow path switching valve 51.

(2−2−1)四路切換弁2
四路切換弁2は、冷房運転と暖房運転との切換時に、冷媒の流れの方向を切り換える弁である。冷房運転時、四路切換弁2は、圧縮機5の吐出側と室外熱交換器46のガス側とを接続するとともに圧縮機5の吸入側と室内熱交換器40のガス側とを接続する。また、暖房運転時、四路切換弁2は、圧縮機5の吐出側と室内熱交換器40のガス側とを接続するとともに圧縮機5の吸入側と室外熱交換器46のガス側とを接続する。
(2-2-1) Four-way selector valve 2
The four-way switching valve 2 is a valve that switches the direction of the refrigerant flow when switching between the cooling operation and the heating operation. During the cooling operation, the four-way switching valve 2 connects the discharge side of the compressor 5 and the gas side of the outdoor heat exchanger 46 and connects the suction side of the compressor 5 and the gas side of the indoor heat exchanger 40. . During the heating operation, the four-way switching valve 2 connects the discharge side of the compressor 5 and the gas side of the indoor heat exchanger 40 and connects the suction side of the compressor 5 and the gas side of the outdoor heat exchanger 46. Connecting.

(2−2−2)圧縮機5
圧縮機5は、インバータ方式を採用した容量可変型圧縮機であって、低圧のガス冷媒を吸入し、圧縮して高圧のガス冷媒とした後に吐出する。
(2-2-2) Compressor 5
The compressor 5 is a variable capacity compressor adopting an inverter system, and sucks low-pressure gas refrigerant, compresses it into high-pressure gas refrigerant, and discharges it.

(2−2−3)膨張弁7
膨張弁7は、暖房運転時には室内熱交換器40において放熱した高圧の液冷媒を室外熱交換器46に送る前に減圧する。また、膨張弁7は、冷房運転時には室外熱交換器46において放熱した高圧の液冷媒を室内熱交換器40に送る前に減圧する。
(2-2-3) Expansion valve 7
The expansion valve 7 decompresses the high-pressure liquid refrigerant radiated in the indoor heat exchanger 40 before sending it to the outdoor heat exchanger 46 during the heating operation. Further, the expansion valve 7 decompresses the high-pressure liquid refrigerant radiated in the outdoor heat exchanger 46 before sending it to the indoor heat exchanger 40 during the cooling operation.

(2−2−4)室外熱交換器46
室外熱交換器46は、冷房運転時には冷媒の凝縮器として機能し、暖房運転時には冷媒の蒸発器として機能する熱交換器である。また、室外熱交換器46は、第1室外熱交換部46aと、第1室外熱交換部46aと並列に接続される第2室外熱交換部46bとを有している。
(2-2-4) Outdoor heat exchanger 46
The outdoor heat exchanger 46 is a heat exchanger that functions as a refrigerant condenser during the cooling operation and functions as a refrigerant evaporator during the heating operation. The outdoor heat exchanger 46 includes a first outdoor heat exchange unit 46a and a second outdoor heat exchange unit 46b connected in parallel with the first outdoor heat exchange unit 46a.

(2−2−5)流路切換弁51
図2は、本実施形態に係る空気調和機300に使用される流路切換弁51の斜視図である。図2において、流路切換弁51は、本体10、弁体20およびモータ30で構成されている。本体10は、両端が別部材で閉じられた円筒部材である。説明の便宜上、円筒部分を本体10の胴部10a、両端の一方を第1端部10b、他方を第2端部10cとよぶ。
(2-2-5) Flow path switching valve 51
FIG. 2 is a perspective view of the flow path switching valve 51 used in the air conditioner 300 according to the present embodiment. In FIG. 2, the flow path switching valve 51 includes a main body 10, a valve body 20, and a motor 30. The main body 10 is a cylindrical member whose both ends are closed by separate members. For convenience of explanation, the cylindrical portion is referred to as a body portion 10a of the main body 10, one of both ends is referred to as a first end portion 10b, and the other is referred to as a second end portion 10c.

第1端部10bには、外周から胴部10aへ通じる3つの孔があけられ、各孔に配管接続用の管が嵌め込まれてロウ付けされている。それら3つの管それぞれを第1配管接続部11、第3配管接続部13、及び第5配管接続部15とよぶ。   In the first end portion 10b, three holes leading from the outer periphery to the body portion 10a are formed, and pipes for pipe connection are fitted into each hole and brazed. Each of these three pipes is referred to as a first pipe connection part 11, a third pipe connection part 13, and a fifth pipe connection part 15.

また、第2端部10cには、その外周から胴部10aへ通じる2つの孔が設けられ、各孔に配管接続用の管が嵌め込まれてロウ付けされている。それら2つの管それぞれを第2配管接続部12、及び第4配管接続部14とよぶ。第1配管接続部11、第2配管接続部12、第3配管接続部13、第4配管接続部14、及び第5配管接続部15は、冷媒が流路切換弁51に入るときの流入口、および冷媒が流路切換弁51から出るときの流出口のいずれにも成り得る。   Further, the second end portion 10c is provided with two holes leading from the outer periphery to the body portion 10a, and pipes for pipe connection are fitted into each hole and brazed. These two pipes are called a second pipe connection part 12 and a fourth pipe connection part 14, respectively. The first pipe connection part 11, the second pipe connection part 12, the third pipe connection part 13, the fourth pipe connection part 14, and the fifth pipe connection part 15 are inlets when the refrigerant enters the flow path switching valve 51. , And an outlet when the refrigerant exits the flow path switching valve 51.

(3)流路切換弁51の詳細構成
第1配管接続部11、第3配管接続部13、及び第5配管接続部15は、本体10の底面(第2端部10c側)から視て同じ高さ位置で胴部10aの周囲に配置されている。同様に、第2配管接続部12及び第4配管接続部14は、本体10の底面から視て同じ高さ位置で胴部10aの周囲に配置されている。
(3) Detailed configuration of the flow path switching valve 51 The first pipe connection portion 11, the third pipe connection portion 13, and the fifth pipe connection portion 15 are the same as viewed from the bottom surface (the second end portion 10c side) of the main body 10. It is arrange | positioned around the trunk | drum 10a in the height position. Similarly, the 2nd piping connection part 12 and the 4th piping connection part 14 are arrange | positioned around the trunk | drum 10a in the same height position seeing from the bottom face of the main body 10. FIG.

図1において、第1配管接続部11は、膨張弁7に接続されている。第3配管接続部13は、室外熱交換器46の第1室外熱交換部46aに接続されている。第5配管接続部15は、室外熱交換器46の第2室外熱交換部46bに接続されている。   In FIG. 1, the first pipe connection portion 11 is connected to the expansion valve 7. The third pipe connection part 13 is connected to the first outdoor heat exchange part 46 a of the outdoor heat exchanger 46. The fifth pipe connection unit 15 is connected to the second outdoor heat exchange unit 46 b of the outdoor heat exchanger 46.

また、第2配管接続部12は、第2バイパス路62に接続されている。第2バイパス路62は、暖房運転時における室外熱交換器46の出口と流路切換弁51とを繋ぐ冷媒配管である。また、第4配管接続部14は、バイパス路61に接続されている。バイパス路61は、圧縮機5から吐出された冷媒の一部を流路切換弁51へ導く冷媒配管である。バイパス路61の途中には、開閉弁71が設けられている。   Further, the second pipe connection part 12 is connected to the second bypass path 62. The second bypass path 62 is a refrigerant pipe that connects the outlet of the outdoor heat exchanger 46 and the flow path switching valve 51 during the heating operation. Further, the fourth pipe connection portion 14 is connected to the bypass path 61. The bypass path 61 is a refrigerant pipe that guides a part of the refrigerant discharged from the compressor 5 to the flow path switching valve 51. An on-off valve 71 is provided in the middle of the bypass passage 61.

本体10の内部は円筒形の空洞であり、その円周面に沿って回転する弁体20が収納されている。弁体20は、円板状の回転体であり、本体10内部を第1弁室101と第2弁室102とに仕切っている。第1配管接続部11、第3配管接続部13、及び第5配管接続部15は、は第1弁室101に通じている。また、第2配管接続部12及び第4配管接続部14は、第2弁室102に通じている。さらに、弁体20はモータ30によって駆動され、モータ30の回転角度に応じて、第1形態、第2形態、第3形態、第4形態、及び第5形態に切り換わる。先ず、第1形態について、図3A及び図3Bを用いて説明する。   The inside of the main body 10 is a cylindrical cavity, and a valve body 20 that rotates along the circumferential surface is accommodated. The valve body 20 is a disk-shaped rotating body and partitions the inside of the main body 10 into a first valve chamber 101 and a second valve chamber 102. The first pipe connection part 11, the third pipe connection part 13, and the fifth pipe connection part 15 communicate with the first valve chamber 101. In addition, the second pipe connection part 12 and the fourth pipe connection part 14 communicate with the second valve chamber 102. Furthermore, the valve body 20 is driven by the motor 30 and switches to the first form, the second form, the third form, the fourth form, and the fifth form according to the rotation angle of the motor 30. First, a 1st form is demonstrated using FIG. 3A and 3B.

図3Aは第1形態に切り換わった第1弁室101を本体10の中心軸と直交する面で切断したときの流路切換弁の断面図であり、図3Bは第1形態に切り換わった第2弁室102を本体10の中心軸と直交する面で切断したときの流路切換弁の断面図である。   3A is a cross-sectional view of the flow path switching valve when the first valve chamber 101 that has been switched to the first configuration is cut along a plane that is orthogonal to the central axis of the main body 10, and FIG. 3B is that of the first configuration that has been switched to the first configuration. 4 is a cross-sectional view of the flow path switching valve when the second valve chamber 102 is cut along a plane orthogonal to the central axis of the main body 10.

図3Aにおいて、第3配管接続部13は、胴部10aの中心軸に対して第1配管接続部11から時計方向に90°離れた位置に固定されている。第5配管接続部15は、胴部10aの中心軸に対して第1配管接続部11から反時計方向に90°離れた位置に固定されている。図3Bにおいて、第4配管接続部14は、胴部10aの中心軸に対して第2配管接続部12から時計方向に180°離れた位置に固定されている。弁体20は、第1弁室101と第2弁室102とを貫通する流通管200を有している。流通管200の断面は、楕円形である。   In FIG. 3A, the 3rd piping connection part 13 is being fixed to the position 90 degrees away from the 1st piping connection part 11 clockwise with respect to the central axis of the trunk | drum 10a. The 5th pipe connection part 15 is being fixed to the position 90 degrees away from the 1st pipe connection part 11 counterclockwise with respect to the central axis of the trunk | drum 10a. In FIG. 3B, the 4th piping connection part 14 is being fixed to the position 180 degrees away from the 2nd piping connection part 12 clockwise with respect to the central axis of the trunk | drum 10a. The valve body 20 has a flow pipe 200 that penetrates the first valve chamber 101 and the second valve chamber 102. The cross section of the flow pipe 200 is elliptical.

図4は、第1形態へ切り換えられた流路切換弁の断面図である。図4において、第1弁室101は、第1配管接続部11、第3配管接続部13、及び第5配管接続部15のポートが設けられている平面状の第1弁シート201を有している。第2弁室102は、第2配管接続部12及び第4配管接続部14のポートが設けられている平面状の第2弁シート202を有している。   FIG. 4 is a cross-sectional view of the flow path switching valve switched to the first configuration. In FIG. 4, the first valve chamber 101 has a planar first valve seat 201 provided with ports of the first pipe connection part 11, the third pipe connection part 13, and the fifth pipe connection part 15. ing. The second valve chamber 102 has a planar second valve seat 202 in which the ports of the second pipe connection part 12 and the fourth pipe connection part 14 are provided.

流通管200の一端は第1弁シート201に近接しており、弁体20の回転によって第1配管接続部11、第3配管接続部13、及び第5配管接続部15のいずれかのポートと対峙することができる。また、他端は第2弁シート202に近接しており、弁体20の回転によって第2配管接続部12及び第4配管接続部14のいずれかのポートと対峙することができる。   One end of the flow pipe 200 is close to the first valve seat 201, and any one of the ports of the first pipe connection part 11, the third pipe connection part 13, and the fifth pipe connection part 15 by the rotation of the valve body 20. Can confront. Further, the other end is close to the second valve seat 202 and can be opposed to any port of the second pipe connection part 12 and the fourth pipe connection part 14 by the rotation of the valve body 20.

モータ30は、本体10の第1端部10b側に位置し、回転軸が第1端部10bを貫通して弁体20に連結されている。なお、図4では、他の部品と区別できるようにモータ30のみ2点鎖線で表示している。弁体20はモータ30によって駆動され、モータ30の回転角度に応じて、第1形態、第2形態、第3形態、第4形態及び第5形態のいずれかへ切り換える。   The motor 30 is located on the first end portion 10b side of the main body 10, and the rotation shaft passes through the first end portion 10b and is connected to the valve body 20. In FIG. 4, only the motor 30 is indicated by a two-dot chain line so that it can be distinguished from other components. The valve body 20 is driven by a motor 30 and switches to one of the first form, the second form, the third form, the fourth form, and the fifth form according to the rotation angle of the motor 30.

ここで、第1形態とは、弁体20が第1配管接続部11と第3配管接続部13と第5配管接続部15とを連通させる形態である。第2形態とは、弁体20が第1配管接続部11と第3配管接続部13とだけを連通させ、且つ第4配管接続部14と第5配管接続部15とだけを連通させる形態である。第3形態とは、弁体20が第1配管接続部11と第5配管接続部15とだけを連通させ、且つ第4配管接続部14と第3配管接続部13とだけを連通させる形態である。第4形態とは、第4配管接続部14と第2配管接続部12とを連通させる形態である。第5形態とは、第2配管接続部12と第1配管接続部11とを連通させる形態である。以下、各形態を形成するための構造について、説明する。   Here, the 1st form is a form in which the valve body 20 makes the 1st piping connection part 11, the 3rd piping connection part 13, and the 5th piping connection part 15 communicate. The second form is a form in which the valve body 20 communicates only the first pipe connection part 11 and the third pipe connection part 13 and communicates only the fourth pipe connection part 14 and the fifth pipe connection part 15. is there. The third form is a form in which the valve body 20 communicates only the first pipe connection part 11 and the fifth pipe connection part 15 and communicates only the fourth pipe connection part 14 and the third pipe connection part 13. is there. A 4th form is a form which makes the 4th piping connection part 14 and the 2nd piping connection part 12 communicate. A 5th form is a form which makes the 2nd piping connection part 12 and the 1st piping connection part 11 communicate. Hereinafter, the structure for forming each form is demonstrated.

(3−1)流路切換弁51の第1形態
図3A,図3Bで示すように、流路切換弁51が第1形態に切り換わることによって、第1弁室101では、流通管200の一端が第1配管接続部11、第3配管接続部13、及び第5配管接続部15のいずれかのポートとも対峙しない。第1配管接続部11から流入した冷媒は、第3配管接続部13に向かう冷媒と、第5配管接続部15に向う冷媒とに分流する。図1において、第3配管接続部13を出た冷媒は室外熱交換器46の第1室外熱交換部46aに送られ、第5配管接続部15を出た冷媒は室外熱交換器46の第2熱交換部46bに送られる。
(3-1) First form of flow path switching valve 51 As shown in FIGS. 3A and 3B, the flow path switching valve 51 is switched to the first form, so that in the first valve chamber 101, the flow pipe 200 One end does not face any port of the first pipe connection part 11, the third pipe connection part 13, and the fifth pipe connection part 15. The refrigerant that has flowed in from the first pipe connection part 11 is divided into a refrigerant that goes to the third pipe connection part 13 and a refrigerant that goes to the fifth pipe connection part 15. In FIG. 1, the refrigerant that has exited the third pipe connection portion 13 is sent to the first outdoor heat exchange portion 46 a of the outdoor heat exchanger 46, and the refrigerant that has exited the fifth pipe connection portion 15 has the first temperature of the outdoor heat exchanger 46. 2 is sent to the heat exchanger 46b.

第2弁室102では、流通管200の他端が第4配管接続部14と対峙している。第4配管接続部14から入った冷媒は、流通管200に塞き止められ第2配管接続部12へ流れることはできないので、流通管200内を通って第1弁室101に向う。しかし、そこでも冷媒は第1弁シート201によって塞き止められるので、第1配管接続部11、第3配管接続部13及び第5配管接続部15のいずれにも流れることはできない。   In the second valve chamber 102, the other end of the flow pipe 200 faces the fourth pipe connection portion 14. Since the refrigerant that has entered from the fourth pipe connection portion 14 is blocked by the flow pipe 200 and cannot flow to the second pipe connection section 12, the refrigerant passes through the flow pipe 200 toward the first valve chamber 101. However, since the refrigerant is blocked by the first valve seat 201, the refrigerant cannot flow through any of the first pipe connection part 11, the third pipe connection part 13, and the fifth pipe connection part 15.

図9Aは、第1形態に切り換わった流路切換弁51の各配管接続部間の連通状態を示す経路図である。図9Aにおいて、流路切換弁51が第1形態へ切り換わったことによって、第1配管接続部11と第3配管接続部13とが連通し、且つ第1配管接続部11と第5配管接続部15とが連通する。以後、第1形態に切り換わった流路切換弁51を通過する冷媒の流れを説明するときは、図9Aを参照する。   FIG. 9A is a route diagram illustrating a communication state between the pipe connection portions of the flow path switching valve 51 switched to the first form. In FIG. 9A, when the flow path switching valve 51 is switched to the first configuration, the first pipe connection part 11 and the third pipe connection part 13 communicate with each other, and the first pipe connection part 11 and the fifth pipe connection are connected. The part 15 communicates. Hereinafter, when the flow of the refrigerant passing through the flow path switching valve 51 switched to the first form is described, reference is made to FIG. 9A.

(3−2)流路切換弁51の第2形態
次に、図5Aは第2形態に切り換わった第1弁室101を本体10の中心軸と直交する面で切断したときの流路切換弁51の断面図であり、図5Bは第2形態に切り換わった第2弁室102を本体10の中心軸と直交する面で切断したときの流路切換弁51の断面図である。
(3-2) Second Mode of Channel Switching Valve 51 Next, FIG. 5A shows channel switching when the first valve chamber 101 switched to the second mode is cut along a plane orthogonal to the central axis of the main body 10. FIG. 5B is a cross-sectional view of the flow path switching valve 51 when the second valve chamber 102 switched to the second configuration is cut along a plane orthogonal to the central axis of the main body 10.

図5A、図5Bにおいて、流路切換弁51が第2形態に切り換わることによって、第1弁室101では、流通管200の一端が第5配管接続部15と対峙する。第1配管接続部11から流入した冷媒は、第5配管接続部15側が流通管200に塞き止められているので、第3配管接続部13に向かう。図1において、第3配管接続部13を出た冷媒は室外熱交換器46の第1室外熱交換部46aに送られる。   5A and 5B, the flow path switching valve 51 is switched to the second configuration, so that one end of the flow pipe 200 faces the fifth pipe connection portion 15 in the first valve chamber 101. The refrigerant flowing in from the first pipe connection portion 11 is directed to the third pipe connection portion 13 because the fifth pipe connection portion 15 side is blocked by the flow pipe 200. In FIG. 1, the refrigerant that has exited the third pipe connection portion 13 is sent to the first outdoor heat exchange portion 46 a of the outdoor heat exchanger 46.

第2弁室102では、流通管200の他端が第4配管接続部14と対峙している。第4配管接続部14から入った冷媒は、流通管200に塞き止められ第2配管接続部12へ流れることはできないので、流通管200内を通って第1弁室101に向う。流通管200は第5配管接続部15と連通しているので、流通管200を通過した冷媒は第5配管接続部15を経由して室外熱交換器46の第2室外熱交換部46bに送られる。   In the second valve chamber 102, the other end of the flow pipe 200 faces the fourth pipe connection portion 14. Since the refrigerant that has entered from the fourth pipe connection portion 14 is blocked by the flow pipe 200 and cannot flow to the second pipe connection section 12, the refrigerant passes through the flow pipe 200 toward the first valve chamber 101. Since the circulation pipe 200 communicates with the fifth pipe connection part 15, the refrigerant that has passed through the circulation pipe 200 is sent to the second outdoor heat exchange part 46 b of the outdoor heat exchanger 46 via the fifth pipe connection part 15. It is done.

図9Bは、第2形態に切り換わった流路切換弁51の各配管接続部間の連通状態を示す経路図である。図9bにおいて、流路切換弁51が第2形態へ切り換わったことによって、第1配管接続部11と第3配管接続部13とが連通し、且つ第4配管接続部14と第5配管接続部15とが連通する。以後、第2形態に切り換わった流路切換弁51を通過する冷媒の流れを説明するときは、図9Bを参照する。   FIG. 9B is a route diagram illustrating a communication state between the pipe connection portions of the flow path switching valve 51 switched to the second mode. In FIG. 9b, when the flow path switching valve 51 is switched to the second configuration, the first pipe connection portion 11 and the third pipe connection portion 13 communicate with each other, and the fourth pipe connection portion 14 and the fifth pipe connection. The part 15 communicates. Hereinafter, when the flow of the refrigerant passing through the flow path switching valve 51 switched to the second mode is described, reference is made to FIG. 9B.

(3−3)流路切換弁51の第3形態
次に、図6Aは第3形態に切り換わった第1弁室101を本体10の中心軸と直交する面で切断したときの流路切換弁51の断面図であり、図6Bは第3形態に切り換わった第2弁室102を本体10の中心軸と直交する面で切断したときの流路切換弁51の断面図である。
(3-3) Third Mode of Channel Switching Valve 51 Next, FIG. 6A shows channel switching when the first valve chamber 101 switched to the third mode is cut along a plane orthogonal to the central axis of the main body 10. FIG. 6B is a cross-sectional view of the flow path switching valve 51 when the second valve chamber 102 switched to the third configuration is cut along a plane orthogonal to the central axis of the main body 10.

図6A、図6Bにおいて、流路切換弁51が第3形態に切り換わることによって、第1弁室101では、流通管200の一端が第3配管接続部13と対峙する。第1配管接続部11から流入した冷媒は、第3配管接続部13側が流通管200に塞き止められているので、第5配管接続部15に向かう。図1において、第5配管接続部15を出た冷媒は室外熱交換器46の第2室外熱交換部46bに送られる。   6A and 6B, the flow path switching valve 51 is switched to the third configuration, so that one end of the flow pipe 200 faces the third pipe connection portion 13 in the first valve chamber 101. The refrigerant that has flowed in from the first pipe connection portion 11 is directed to the fifth pipe connection portion 15 because the third pipe connection portion 13 side is blocked by the flow pipe 200. In FIG. 1, the refrigerant that has exited the fifth pipe connection portion 15 is sent to the second outdoor heat exchange portion 46 b of the outdoor heat exchanger 46.

第2弁室102では、流通管200の他端が第4配管接続部14と対峙している。第4配管接続部14から入った冷媒は、流通管200に塞き止められ第2配管接続部12へ流れることはできないので、流通管200内を通って第1弁室101に向う。流通管200は第3配管接続部13と連通しているので、流通管200を通過した冷媒は第3配管接続部13を経由して室外熱交換器46の第1室外熱交換部46aに送られる。   In the second valve chamber 102, the other end of the flow pipe 200 faces the fourth pipe connection portion 14. Since the refrigerant that has entered from the fourth pipe connection portion 14 is blocked by the flow pipe 200 and cannot flow to the second pipe connection section 12, the refrigerant passes through the flow pipe 200 toward the first valve chamber 101. Since the circulation pipe 200 communicates with the third pipe connection part 13, the refrigerant that has passed through the circulation pipe 200 is sent to the first outdoor heat exchange part 46 a of the outdoor heat exchanger 46 via the third pipe connection part 13. It is done.

図9Cは、第3形態に切り換わった流路切換弁51の各配管接続部間の連通状態を示す経路図である。図9Cにおいて、流路切換弁51が第3形態へ切り換わったことによって、第1配管接続部11と第5配管接続部15とが連通し、且つ第4配管接続部14と第3配管接続部13とが連通する。以後、第3形態に切り換わった流路切換弁51を通過する冷媒の流れを説明するときは、図9Cを参照する。   FIG. 9C is a route diagram illustrating a communication state between the pipe connection portions of the flow path switching valve 51 switched to the third mode. In FIG. 9C, when the flow path switching valve 51 is switched to the third configuration, the first pipe connection portion 11 and the fifth pipe connection portion 15 communicate with each other, and the fourth pipe connection portion 14 and the third pipe connection. The part 13 communicates. Hereinafter, when the flow of the refrigerant passing through the flow path switching valve 51 switched to the third mode is described, reference is made to FIG. 9C.

(3−4)流路切換弁51の第4形態
次に、図7Aは第4形態に切り換わった第1弁室101を本体10の中心軸と直交する面で切断したときの流路切換弁51の断面図であり、図7Bは第4形態に切り換わった第2弁室102を本体10の中心軸と直交する面で切断したときの流路切換弁51の断面図である。
(3-4) Fourth Mode of Channel Switching Valve 51 Next, FIG. 7A shows channel switching when the first valve chamber 101 switched to the fourth mode is cut along a plane orthogonal to the central axis of the main body 10. FIG. 7B is a cross-sectional view of the flow path switching valve 51 when the second valve chamber 102 switched to the fourth form is cut along a plane orthogonal to the central axis of the main body 10.

図7A、図7Bにおいて、流路切換弁51が第4形態に切り換わることによって、第1弁室101では、流通管200の一端が第5配管接続部15と対峙する。第5配管接続部15側が流通管200に塞き止められているので、第1配管接続部11と第3配管接続部13とが連通する。但し、第4形態では、第1配管接続部11と第3配管接続部13のいずれにも冷媒は流れない。   7A and 7B, the flow path switching valve 51 is switched to the fourth configuration, so that one end of the flow pipe 200 faces the fifth pipe connection portion 15 in the first valve chamber 101. Since the fifth pipe connection part 15 side is blocked by the flow pipe 200, the first pipe connection part 11 and the third pipe connection part 13 communicate with each other. However, in the fourth embodiment, the refrigerant does not flow through either the first pipe connection portion 11 or the third pipe connection portion 13.

第2弁室102では、流通管200の他端が第2配管接続部12及び第4配管接続部14のいずれとも対峙していないので、第4配管接続部14から入った冷媒は、塞き止められることなく第2配管接続部12へ流れる。図1において、第2配管接続部12を出た冷媒は、第2バイパス路62を経由して圧縮機5の吸入側へ送られる。   In the second valve chamber 102, the other end of the flow pipe 200 does not face either the second pipe connection part 12 or the fourth pipe connection part 14, so that the refrigerant entering from the fourth pipe connection part 14 is blocked. It flows to the 2nd piping connection part 12 without being stopped. In FIG. 1, the refrigerant that has exited the second pipe connection portion 12 is sent to the suction side of the compressor 5 via the second bypass passage 62.

図9Dは、第4形態に切り換わった流路切換弁51の各配管接続部間の連通状態を示す経路図である。図9Dにおいて、流路切換弁51が第4形態へ切り換わったことによって、第4配管接続部14と第2配管接続部12とが連通する。以後、第4形態に切り換わった流路切換弁51を通過する冷媒の流れを説明するときは、図9Dを参照する。   FIG. 9D is a route diagram illustrating a communication state between the pipe connection portions of the flow path switching valve 51 switched to the fourth mode. In FIG. 9D, the 4th pipe connection part 14 and the 2nd pipe connection part 12 are connected by the flow-path switching valve 51 switching to the 4th form. Hereinafter, when the flow of the refrigerant passing through the flow path switching valve 51 switched to the fourth mode is described, reference is made to FIG. 9D.

(3−5)流路切換弁51の第5形態
次に、図8Aは第5形態に切り換わった第1弁室101を本体10の中心軸と直交する面で切断したときの流路切換弁51の断面図であり、図8Bは第5形態に切り換わった第2弁室102を本体10の中心軸と直交する面で切断したときの流路切換弁51の断面図である。
(3-5) Fifth Mode of Channel Switching Valve 51 Next, FIG. 8A shows channel switching when the first valve chamber 101 switched to the fifth mode is cut along a plane orthogonal to the central axis of the main body 10. FIG. 8B is a cross-sectional view of the flow path switching valve 51 when the second valve chamber 102 switched to the fifth form is cut along a plane orthogonal to the central axis of the main body 10.

図8A、図8Bにおいて、流路切換弁51が第5形態に切り換わることによって、第1弁室101では、流通管200の一端が第1配管接続部11と対峙する。第3配管接続部13側、及第5配管接続部15側が流通管200に塞き止められているので、第1配管接続部11は第3配管接続部13及び第5配管接続部15のいずれとも連通しない。   8A and 8B, the flow path switching valve 51 is switched to the fifth configuration, so that one end of the flow pipe 200 faces the first pipe connection portion 11 in the first valve chamber 101. Since the third pipe connection part 13 side and the fifth pipe connection part 15 side are blocked by the flow pipe 200, the first pipe connection part 11 is either the third pipe connection part 13 or the fifth pipe connection part 15. It does not communicate with either.

第2弁室102では、流通管200の他端が第2配管接続部12と対峙している。第2配管接続部12から入った冷媒は、流通管200に塞き止められ第4配管接続部14へ流れることはできないので、流通管200内を通って第1弁室101に向う。流通管200は第1配管接続部11と連通しているので、流通管200を通過した冷媒は第1配管接続部11を経由して膨張弁7に送られる。   In the second valve chamber 102, the other end of the flow pipe 200 faces the second pipe connection portion 12. Since the refrigerant that has entered from the second pipe connection part 12 is blocked by the flow pipe 200 and cannot flow to the fourth pipe connection part 14, the refrigerant passes through the flow pipe 200 toward the first valve chamber 101. Since the flow pipe 200 communicates with the first pipe connection portion 11, the refrigerant that has passed through the flow pipe 200 is sent to the expansion valve 7 via the first pipe connection portion 11.

図9Eは、第5形態に切り換わった流路切換弁51の各配管接続部間の連通状態を示す経路図である。図9Eにおいて、流路切換弁51が第5形態へ切り換わったことによって、第2配管接続部12と第1配管接続部11とが連通する。以後、第5形態に切り換わった流路切換弁51を通過する冷媒の流れを説明するときは、図9Eを参照する。   FIG. 9E is a route diagram illustrating a communication state between the pipe connection portions of the flow path switching valve 51 switched to the fifth mode. In FIG. 9E, when the flow path switching valve 51 is switched to the fifth configuration, the second pipe connection part 12 and the first pipe connection part 11 communicate with each other. Hereinafter, when the flow of the refrigerant passing through the flow path switching valve 51 switched to the fifth mode is described, reference is made to FIG. 9E.

(4)運転時の冷媒の流れ
(4−1)暖房運転時の冷媒の流れ
ここでは、図1及び図9Aを用いて、暖房運転時の冷媒の流れを説明する。図1において、制御部8は、四路切換弁2を暖房運転用経路(実線で表示)に切り換え、圧縮機5の吐出側と室内熱交換器40のガス側とを接続するとともに圧縮機5の吸入側と室外熱交換器46のガス側とを接続する。さらに、制御部8は、膨張弁7の開度を冷媒が減圧される程度まで絞るとともに、開閉弁71を閉にし、第2膨張弁40cを全開若しくは減圧を意図しない開度にし、さらに、流路切換弁51を図9Aに示す第1形態へ切り換える。
(4) Refrigerant Flow During Operation (4-1) Refrigerant Flow During Heating Operation Here, the refrigerant flow during heating operation will be described with reference to FIGS. 1 and 9A. In FIG. 1, the control unit 8 switches the four-way switching valve 2 to a heating operation path (indicated by a solid line), connects the discharge side of the compressor 5 and the gas side of the indoor heat exchanger 40, and the compressor 5. Are connected to the gas side of the outdoor heat exchanger 46. Further, the control unit 8 narrows the opening of the expansion valve 7 to such an extent that the refrigerant is depressurized, closes the on-off valve 71, sets the second expansion valve 40c to an opening not intended to be fully opened or depressurized, The path switching valve 51 is switched to the first form shown in FIG. 9A.

上記条件のもと、冷媒は圧縮機5に吸入され、高圧まで圧縮された後に吐出される。圧縮機5から吐出された高圧の冷媒は、四路切換弁2を通じて室内熱交換器40に送られる。なお、圧縮機5と四路切換弁2とを結ぶ配管の途中からバイパス路61が分岐しているので、圧縮機5から吐出された冷媒の一部がバイパス路61に流れようとするが、開閉弁71が閉じられているので、冷媒がバイパス路61を流れることはない。   Under the above conditions, the refrigerant is sucked into the compressor 5 and is discharged after being compressed to a high pressure. The high-pressure refrigerant discharged from the compressor 5 is sent to the indoor heat exchanger 40 through the four-way switching valve 2. In addition, since the bypass path 61 is branched from the middle of the pipe connecting the compressor 5 and the four-way switching valve 2, a part of the refrigerant discharged from the compressor 5 tends to flow into the bypass path 61. Since the on-off valve 71 is closed, the refrigerant does not flow through the bypass passage 61.

室内熱交換器40では、第2膨張弁40cが全開若しくは減圧を意図しない程度に開いているので、第1室内熱交換部40aと第2室内熱交換部40bとはともに凝縮器として機能する。室内熱交換器40において凝縮した高圧の冷媒は、膨張弁7に送られて低圧まで減圧され、流路切換弁51の第1配管接続部11に入る。流路切換弁51は、第1形態に切り換わっているので、第1配管接続部11と第3配管接続部13とが連通し、第1配管接続部11と第5配管接続部15とが連通している。冷媒は、第3配管接続部13に向う冷媒と第5配管接続部15に向う冷媒とに分流し、室外熱交換器46の第1室外熱交換部46a及び第2室外熱交換部46bの双方に流れる。   In the indoor heat exchanger 40, since the second expansion valve 40c is opened to the extent that it is not intended to be fully opened or depressurized, both the first indoor heat exchanger 40a and the second indoor heat exchanger 40b function as a condenser. The high-pressure refrigerant condensed in the indoor heat exchanger 40 is sent to the expansion valve 7 and depressurized to a low pressure, and enters the first pipe connection portion 11 of the flow path switching valve 51. Since the flow path switching valve 51 is switched to the first form, the first pipe connection part 11 and the third pipe connection part 13 communicate with each other, and the first pipe connection part 11 and the fifth pipe connection part 15 are connected. Communicate. The refrigerant is divided into a refrigerant directed to the third pipe connection part 13 and a refrigerant directed to the fifth pipe connection part 15, and both the first outdoor heat exchange part 46 a and the second outdoor heat exchange part 46 b of the outdoor heat exchanger 46. Flowing into.

冷媒は、室外熱交換器46の第1室外熱交換部46a及び第2室外熱交換部46bそれぞれにおいて、室外空気と熱交換を行って蒸発する。室外熱交換器46において蒸発した低圧の冷媒は、四路切換弁2を通じて、再び、圧縮機5に吸入される。   The refrigerant evaporates by exchanging heat with outdoor air in each of the first outdoor heat exchanger 46a and the second outdoor heat exchanger 46b of the outdoor heat exchanger 46. The low-pressure refrigerant evaporated in the outdoor heat exchanger 46 is again sucked into the compressor 5 through the four-way switching valve 2.

(4−2)冷房運転時の冷媒の流れ
ここでは、図1及び図9Aを用いて、冷房運転時の冷媒の流れを説明する。図1において、制御部8は、四路切換弁2を冷房運転用経路(点線で表示)に切り換え、圧縮機5の吐出側と室外熱交換器46のガス側とを接続するとともに圧縮機5の吸入側と室内熱交換器40のガス側とを接続する。
(4-2) Flow of Refrigerant During Cooling Operation Here, the flow of the refrigerant during the cooling operation will be described with reference to FIGS. 1 and 9A. In FIG. 1, the control unit 8 switches the four-way switching valve 2 to a cooling operation path (indicated by a dotted line), connects the discharge side of the compressor 5 and the gas side of the outdoor heat exchanger 46, and the compressor 5. And the gas side of the indoor heat exchanger 40 are connected.

さらに、制御部8は、膨張弁7の開度を冷媒が減圧される程度まで絞るとともに、開閉弁71を閉にし、第2膨張弁40cを全開若しくは減圧を意図しない開度にし、さらに、流路切換弁51を図9Aに示す第1形態へ切り換える。   Further, the control unit 8 narrows the opening of the expansion valve 7 to such an extent that the refrigerant is depressurized, closes the on-off valve 71, sets the second expansion valve 40c to an opening not intended to be fully opened or depressurized, The path switching valve 51 is switched to the first form shown in FIG. 9A.

上記条件のもと、冷媒は圧縮機5に吸入され、高圧まで圧縮された後に吐出される。圧縮機5から吐出された高圧の冷媒は、四路切換弁2を通じて室外熱交換器46に送られる。なお、圧縮機5と四路切換弁2とを結ぶ配管の途中からバイパス路61が分岐しているので、圧縮機5から吐出された冷媒の一部がバイパス路61に流れようとするが、開閉弁71が閉じられているので、冷媒がバイパス路61を流れることはない。   Under the above conditions, the refrigerant is sucked into the compressor 5 and is discharged after being compressed to a high pressure. The high-pressure refrigerant discharged from the compressor 5 is sent to the outdoor heat exchanger 46 through the four-way switching valve 2. In addition, since the bypass path 61 is branched from the middle of the pipe connecting the compressor 5 and the four-way switching valve 2, a part of the refrigerant discharged from the compressor 5 tends to flow into the bypass path 61. Since the on-off valve 71 is closed, the refrigerant does not flow through the bypass passage 61.

冷媒は、室外熱交換器40の入口で、第1室外熱交換部46aに入る冷媒および第2室外熱交換部46bに入る冷媒に分流し、第1室外熱交換部46a及び第2室外熱交換部46bそれぞれにおいて、室外空気と熱交換を行って凝縮する。   The refrigerant is divided into the refrigerant entering the first outdoor heat exchange section 46a and the refrigerant entering the second outdoor heat exchange section 46b at the entrance of the outdoor heat exchanger 40, and the first outdoor heat exchange section 46a and the second outdoor heat exchange section are exchanged. In each part 46b, it condenses by exchanging heat with outdoor air.

第1室外熱交換部46aで凝縮した高圧の冷媒は、流路切換弁51の第3配管接続部13に流入する。また、第2室外熱交換部46bで凝縮した高圧の冷媒は、流路切換弁51の第5配管接続部15に流入する。流路切換弁51は、第1形態に切り換わっているので、第1配管接続部11と第3配管接続部13とが連通し、第1配管接続部11と第5配管接続部15とが連通している。   The high-pressure refrigerant condensed in the first outdoor heat exchange part 46 a flows into the third pipe connection part 13 of the flow path switching valve 51. Further, the high-pressure refrigerant condensed in the second outdoor heat exchange part 46 b flows into the fifth pipe connection part 15 of the flow path switching valve 51. Since the flow path switching valve 51 is switched to the first form, the first pipe connection part 11 and the third pipe connection part 13 communicate with each other, and the first pipe connection part 11 and the fifth pipe connection part 15 are connected. Communicate.

第3配管接続部13及び第5配管接続部15に流入した冷媒は、流路切換弁51内部で合流し、第1配管接続部11を通って膨張弁7に至る。冷媒は、膨張弁7で低圧まで減圧され、室内熱交換器40に入る。   The refrigerant that has flowed into the third pipe connection part 13 and the fifth pipe connection part 15 merges inside the flow path switching valve 51 and reaches the expansion valve 7 through the first pipe connection part 11. The refrigerant is decompressed to a low pressure by the expansion valve 7 and enters the indoor heat exchanger 40.

室内熱交換器40では、第2膨張弁40cが全開若しくは減圧を意図しない程度に開いているので、第1室内熱交換部40aと第2室内熱交換部40bとはともに蒸発器として機能する。室内熱交換器40において蒸発した低圧の冷媒は、四路切換弁2を通じて、再び、圧縮機5に吸入される。   In the indoor heat exchanger 40, since the second expansion valve 40c is opened to the extent that it is not intended to be fully opened or depressurized, both the first indoor heat exchanger 40a and the second indoor heat exchanger 40b function as an evaporator. The low-pressure refrigerant evaporated in the indoor heat exchanger 40 is again sucked into the compressor 5 through the four-way switching valve 2.

(4−3)除霜運転時の冷媒の流れ
ここでは、図1、図9B及び図9Cを用いて、除霜運転時の冷媒の流れを説明する。前提条件として、制御部8が暖房運転中に室外熱交換器46が着霜したと判断し、流路切換弁51を図9Bに示す第2形態へ切り換え、開閉弁71を開にする。四路切換弁2、膨張弁7および第2膨張弁40cの状態は、暖房運転時の状態が維持されている。
(4-3) Flow of Refrigerant During Defrosting Operation Here, the flow of the refrigerant during the defrosting operation will be described with reference to FIGS. 1, 9B, and 9C. As a precondition, the controller 8 determines that the outdoor heat exchanger 46 has been frosted during the heating operation, switches the flow path switching valve 51 to the second form shown in FIG. 9B, and opens the on-off valve 71. The states of the four-way switching valve 2, the expansion valve 7 and the second expansion valve 40c are maintained during the heating operation.

上記条件のもと、冷媒は圧縮機5に吸入され、高圧まで圧縮された後に吐出される。圧縮機5から吐出された高圧の冷媒は、四路切換弁2を通じて室内熱交換器40に送られる。また、圧縮機5と四路切換弁2とを結ぶ配管の途中からバイパス路61が分岐しているので、圧縮機5から吐出された冷媒の一部はバイパス路61に入る。開閉弁71は開いているので、冷媒はバイパス路61を流れて流路切換弁51の第4配管接続部14に送られる。   Under the above conditions, the refrigerant is sucked into the compressor 5 and is discharged after being compressed to a high pressure. The high-pressure refrigerant discharged from the compressor 5 is sent to the indoor heat exchanger 40 through the four-way switching valve 2. Further, since the bypass passage 61 branches off from the middle of the pipe connecting the compressor 5 and the four-way switching valve 2, a part of the refrigerant discharged from the compressor 5 enters the bypass passage 61. Since the on-off valve 71 is open, the refrigerant flows through the bypass passage 61 and is sent to the fourth pipe connection portion 14 of the flow path switching valve 51.

室内熱交換器40では、第2膨張弁40cが全開若しくは減圧を意図しない程度に開いているので、第1室内熱交換部40aと第2室内熱交換部40bとはともに凝縮器として機能する。室内熱交換器40において凝縮した高圧の冷媒は、膨張弁7に送られて低圧まで減圧され、流路切換弁51の第1配管接続部11に入る。流路切換弁51は、第2形態に切り換わっているので、第1配管接続部11と第3配管接続部13とが連通し、第4配管接続部14と第5配管接続部15とが連通している。それゆえ、膨張弁7から入った低圧の冷媒は第1室外熱交換部46aに流れ、バイパス路61から入った高温・高圧の冷媒が第2室外熱交換部46bに流れる。   In the indoor heat exchanger 40, since the second expansion valve 40c is opened to the extent that it is not intended to be fully opened or depressurized, both the first indoor heat exchanger 40a and the second indoor heat exchanger 40b function as a condenser. The high-pressure refrigerant condensed in the indoor heat exchanger 40 is sent to the expansion valve 7 and depressurized to a low pressure, and enters the first pipe connection portion 11 of the flow path switching valve 51. Since the flow path switching valve 51 is switched to the second configuration, the first pipe connection part 11 and the third pipe connection part 13 communicate with each other, and the fourth pipe connection part 14 and the fifth pipe connection part 15 are connected. Communicate. Therefore, the low-pressure refrigerant entering from the expansion valve 7 flows to the first outdoor heat exchange unit 46a, and the high-temperature / high-pressure refrigerant entering from the bypass passage 61 flows to the second outdoor heat exchange unit 46b.

低圧の冷媒は、第1室外熱交換部46aにおいて室外空気と熱交換を行って蒸発する。高温・高圧の冷媒は、第2室外熱交換部46bにおいて放熱して第2室外熱交換部46bの表面に付着した霜を融かす。第1室外熱交換部46aで蒸発した冷媒、および第2室外熱交換部46bで放熱した冷媒は、室外熱交換器46の出口で合流し、四路切換弁2を通じて、再び、圧縮機5に吸入される。   The low-pressure refrigerant evaporates by exchanging heat with outdoor air in the first outdoor heat exchange section 46a. The high-temperature and high-pressure refrigerant dissipates heat in the second outdoor heat exchange unit 46b and melts frost adhering to the surface of the second outdoor heat exchange unit 46b. The refrigerant evaporated in the first outdoor heat exchange unit 46a and the refrigerant dissipated in the second outdoor heat exchange unit 46b merge at the outlet of the outdoor heat exchanger 46, and again enter the compressor 5 through the four-way switching valve 2. Inhaled.

制御部8は、第2室外熱交換部46bの霜が融けたと判断したとき、例えば、第2室外熱交換部46bに設置された温度センサから霜が融けたと判断したとき、流路切換弁51を第3形態へ切り換える。このとき、第1配管接続部11と第5配管接続部15とが連通し、第4配管接続部14と第3配管接続部13とが連通する。それゆえ、膨張弁7から入った低圧の冷媒が第2室外熱交換部46bに流れ、バイパス路61から入った高温・高圧の冷媒が第1室外熱交換部46aに流れる。   When the controller 8 determines that the frost in the second outdoor heat exchanger 46b has melted, for example, when the controller 8 determines that the frost has melted from the temperature sensor installed in the second outdoor heat exchanger 46b, the flow path switching valve 51 Is switched to the third mode. At this time, the 1st piping connection part 11 and the 5th piping connection part 15 are connected, and the 4th piping connection part 14 and the 3rd piping connection part 13 are connecting. Therefore, the low-pressure refrigerant entering from the expansion valve 7 flows to the second outdoor heat exchange unit 46b, and the high-temperature and high-pressure refrigerant entering from the bypass passage 61 flows to the first outdoor heat exchange unit 46a.

低圧の冷媒は、第2室外熱交換部46bにおいて室外空気と熱交換を行って蒸発する。高温・高圧の冷媒は、第1室外熱交換部46aにおいて放熱して第1室外熱交換部46aの表面に付着した霜を融かす。第2室外熱交換部46bで蒸発した冷媒、および第1室外熱交換部46aで放熱した冷媒は、室外熱交換器46の出口で合流し、四路切換弁2を通じて、再び、圧縮機5に吸入される。   The low-pressure refrigerant evaporates by exchanging heat with outdoor air in the second outdoor heat exchange section 46b. The high-temperature and high-pressure refrigerant dissipates heat in the first outdoor heat exchange unit 46a and melts frost attached to the surface of the first outdoor heat exchange unit 46a. The refrigerant evaporated in the second outdoor heat exchanging part 46b and the refrigerant dissipated in the first outdoor heat exchanging part 46a merge at the outlet of the outdoor heat exchanger 46, and again enter the compressor 5 through the four-way switching valve 2. Inhaled.

なお、室外温度が氷点下でないとき、霜は自然に融解するので、制御部8は室外温度センサ91の検出温度が所定値以上(好ましくは5°C以上)のとき開閉弁71を閉状態にして高圧・高温冷媒を導入することなく除霜運転を行う。   Since the frost naturally melts when the outdoor temperature is not below freezing point, the control unit 8 closes the on-off valve 71 when the detected temperature of the outdoor temperature sensor 91 is equal to or higher than a predetermined value (preferably 5 ° C or higher). Perform defrosting operation without introducing high-pressure / high-temperature refrigerant.

(4−4)圧縮機起動時の冷媒の流れ
ここでは、図1及び図9Dを用いて、圧縮機起動時の冷媒の流れを説明する。図1において、制御部8は、四路切換弁2を暖房運転用経路(実線で表示)に切り換え、圧縮機5の吐出側と室内熱交換器40のガス側とを接続するとともに圧縮機5の吸入側と室外熱交換器46のガス側とを接続する。さらに、制御部8は、膨張弁7を閉じ、開閉弁71を開き、第2膨張弁40cを全開若しくは減圧を意図しない開度にし、さらに、流路切換弁51を図9Dに示す第4形態へ切り換える。
(4-4) Refrigerant Flow When Compressor Starts Here, the refrigerant flow when the compressor is started will be described with reference to FIGS. 1 and 9D. In FIG. 1, the control unit 8 switches the four-way switching valve 2 to a heating operation path (indicated by a solid line), connects the discharge side of the compressor 5 and the gas side of the indoor heat exchanger 40, and the compressor 5. Are connected to the gas side of the outdoor heat exchanger 46. Further, the control unit 8 closes the expansion valve 7, opens the on-off valve 71, opens the second expansion valve 40c to an opening that is not intended to be fully opened or depressurized, and the flow path switching valve 51 is a fourth mode shown in FIG. 9D. Switch to.

上記条件のもとで、冷媒は圧縮機5に吸入され、高圧まで圧縮された後に吐出される。膨張弁7が閉じられているので、四路切換弁2から室内熱交換器40を経て膨張弁7に至る経路には冷媒は流れない。他方、圧縮機5と四路切換弁2とを結ぶ配管の途中からバイパス路61が分岐しているので、圧縮機5から吐出された冷媒はバイパス路61に入る。開閉弁71が開いているので、冷媒はバイパス路61を流れる。流路切換弁51は、第4形態に切り換わっているので、第4配管接続部14と第2配管接続部12とが連通している。それゆえ、バイパス路61から入った冷媒が第2バイパス路62に流れる。第2バイパス路62を流れる冷媒は、四路切換弁2を通じて、再び、圧縮機5に吸入される。   Under the above conditions, the refrigerant is sucked into the compressor 5 and is discharged after being compressed to a high pressure. Since the expansion valve 7 is closed, the refrigerant does not flow through the path from the four-way switching valve 2 to the expansion valve 7 via the indoor heat exchanger 40. On the other hand, since the bypass passage 61 is branched from the middle of the pipe connecting the compressor 5 and the four-way switching valve 2, the refrigerant discharged from the compressor 5 enters the bypass passage 61. Since the on-off valve 71 is open, the refrigerant flows through the bypass passage 61. Since the flow path switching valve 51 is switched to the fourth configuration, the fourth pipe connection part 14 and the second pipe connection part 12 communicate with each other. Therefore, the refrigerant that has entered from the bypass passage 61 flows into the second bypass passage 62. The refrigerant flowing through the second bypass passage 62 is again sucked into the compressor 5 through the four-way switching valve 2.

一般に、低外気温のとき、暖房運転開始直前の圧縮機5は冷えている上に、圧縮機5の熱容量が大きく、暖房運転が開始されてから室内熱交換器40に高温冷媒が循環するようになるまで一定の時間を要する。それゆえ、暖房運転性能の観点から見れば、上記の制御によって速やかに圧縮機温度を上昇させることが好ましい。   In general, when the outside air temperature is low, the compressor 5 immediately before the start of the heating operation is cooled, the heat capacity of the compressor 5 is large, and the high temperature refrigerant circulates in the indoor heat exchanger 40 after the heating operation is started. It takes a certain time to become. Therefore, from the viewpoint of heating operation performance, it is preferable to quickly increase the compressor temperature by the above control.

(4−5)再熱除湿運転時の冷媒の流れ
ここでは、図1及び図9Eを用いて、再熱除湿運転時の冷媒の流れを説明する。図1において、制御部8は、四路切換弁2を冷房運転用経路(点線で表示)に切り換え、圧縮機5の吐出側と室外熱交換器46のガス側とを接続するとともに圧縮機5の吸入側と室内熱交換器40のガス側とを接続する。
(4-5) Refrigerant Flow During Reheat Dehumidification Operation Here, the refrigerant flow during the reheat dehumidification operation will be described with reference to FIGS. 1 and 9E. In FIG. 1, the control unit 8 switches the four-way switching valve 2 to a cooling operation path (indicated by a dotted line), connects the discharge side of the compressor 5 and the gas side of the outdoor heat exchanger 46, and the compressor 5. And the gas side of the indoor heat exchanger 40 are connected.

さらに、制御部8は、膨張弁7の開度を全開若しくは減圧を意図しない開度にするとともに、開閉弁71を閉じ、第2膨張弁40cの開度を冷媒が減圧される程度まで絞り、さらに、流路切換弁51を図9Eに示す第5形態へ切り換える。   Furthermore, the control unit 8 sets the opening of the expansion valve 7 to an opening that is not fully opened or depressurized, closes the on-off valve 71, and throttles the opening of the second expansion valve 40c to such an extent that the refrigerant is depressurized. Further, the flow path switching valve 51 is switched to the fifth mode shown in FIG. 9E.

上記条件のもと、冷媒は圧縮機5に吸入され、高圧まで圧縮された後に吐出される。圧縮機5から吐出された高圧の冷媒は、四路切換弁2を通じて室外熱交換器46に送られる。なお、圧縮機5と四路切換弁2とを結ぶ配管の途中からバイパス路61が分岐しているので、圧縮機5から吐出された冷媒の一部がバイパス路61に流れようとするが、開閉弁71が閉じられているので、冷媒がバイパス路61を流れることはない。   Under the above conditions, the refrigerant is sucked into the compressor 5 and is discharged after being compressed to a high pressure. The high-pressure refrigerant discharged from the compressor 5 is sent to the outdoor heat exchanger 46 through the four-way switching valve 2. In addition, since the bypass path 61 is branched from the middle of the pipe connecting the compressor 5 and the four-way switching valve 2, a part of the refrigerant discharged from the compressor 5 tends to flow into the bypass path 61. Since the on-off valve 71 is closed, the refrigerant does not flow through the bypass passage 61.

冷媒は、室外熱交換器46の入口で、第1室外熱交換部46aに入る冷媒、第2室外熱交換部46bに入る冷媒、及び第2バイパス路62へ流れる冷媒に分流する。但し、第1室外熱交換部46a及び第2室外熱交換部46bそれぞれは、第2バイパス路62に比べて流路抵抗が大きいので、ほとんどの冷媒が第2バイパス路62を通って流路切換弁51の第2配管接続部12に向う。   The refrigerant is split at the inlet of the outdoor heat exchanger 46 into a refrigerant that enters the first outdoor heat exchange unit 46 a, a refrigerant that enters the second outdoor heat exchange unit 46 b, and a refrigerant that flows to the second bypass path 62. However, since each of the first outdoor heat exchange section 46a and the second outdoor heat exchange section 46b has a larger flow resistance than the second bypass path 62, most of the refrigerant switches the flow path through the second bypass path 62. It goes to the second pipe connection part 12 of the valve 51.

流路切換弁51は、第5形態に切り換わっているので、第2配管接続部12と第1配管接続部11とが連通している。第2配管接続部12に流入した冷媒は、第1配管接続部11を通って膨張弁7に至る。膨張弁7の開度は、全開若しくは減圧を意図しない開度になっているので、冷媒は膨張弁7で減圧されることなく、室内熱交換器40の第1室内熱交換部40aに入る。   Since the flow path switching valve 51 is switched to the fifth mode, the second pipe connection part 12 and the first pipe connection part 11 communicate with each other. The refrigerant that has flowed into the second pipe connection part 12 reaches the expansion valve 7 through the first pipe connection part 11. Since the opening degree of the expansion valve 7 is an opening degree that is not intended to be fully opened or depressurized, the refrigerant enters the first indoor heat exchanger 40a of the indoor heat exchanger 40 without being depressurized by the expansion valve 7.

室内熱交換器40内では、冷媒は第1室内熱交換部40aと第2室内熱交換部40bとの間で第2膨張弁40cによって減圧されるので、第1室内熱交換部40aが凝縮器として、第2室内熱交換部40bが蒸発器として機能する。   In the indoor heat exchanger 40, the refrigerant is decompressed by the second expansion valve 40c between the first indoor heat exchange unit 40a and the second indoor heat exchange unit 40b, so that the first indoor heat exchange unit 40a is a condenser. As a result, the second indoor heat exchange unit 40b functions as an evaporator.

つまり、冷媒は、第1室内熱交換部40aで室内空気と熱交換して凝縮し、第2室内熱交換部40bで室内空気と熱交換器して蒸発する。第2室内熱交換部40bにおいて蒸発した低圧の冷媒は、四路切換弁2を通じて、再び、圧縮機5に吸入される。   That is, the refrigerant exchanges heat with the indoor air in the first indoor heat exchange unit 40a and condenses, and evaporates by exchanging with the indoor air in the second indoor heat exchange unit 40b. The low-pressure refrigerant evaporated in the second indoor heat exchange unit 40b is again sucked into the compressor 5 through the four-way switching valve 2.

ここで、室外熱交換器46を凝縮器として機能させずに、室内熱交換器40の第1室内熱交換部40aだけを凝縮器として機能させたとき、余剰冷媒が生じる。なぜなら、必要冷媒量は、室外熱交換器46が凝縮器として機能することを前提に設定されているので、室外熱交換器40に比べて容量が小さい第1室内熱交換部40aを凝縮器として機能させた場合、室外熱交換器46と第1室内熱交換部40aとの容量差に応じた冷媒を貯留することができないからである。余剰冷媒が第1室内熱交換部40aに流れ込むと、高圧圧力が高くなり圧縮機5の負荷が増大するので、圧縮機5のエネルギー消費も増大し、好ましくない。   Here, when the outdoor heat exchanger 46 does not function as a condenser and only the first indoor heat exchange part 40a of the indoor heat exchanger 40 functions as a condenser, surplus refrigerant is generated. Because the required amount of refrigerant is set on the assumption that the outdoor heat exchanger 46 functions as a condenser, the first indoor heat exchanger 40a having a smaller capacity than the outdoor heat exchanger 40 is used as a condenser. This is because, when the function is performed, it is not possible to store the refrigerant corresponding to the capacity difference between the outdoor heat exchanger 46 and the first indoor heat exchange unit 40a. If the surplus refrigerant flows into the first indoor heat exchanging portion 40a, the high pressure increases and the load on the compressor 5 increases, which increases the energy consumption of the compressor 5 and is not preferable.

しかしながら、この空気調和機300では、室外熱交換器46の入口は開放されているので、余剰冷媒は室外熱交換器46内に貯留される。よって、圧縮機5の負荷増大が回避される。   However, in this air conditioner 300, since the inlet of the outdoor heat exchanger 46 is open, excess refrigerant is stored in the outdoor heat exchanger 46. Therefore, an increase in the load on the compressor 5 is avoided.

(5)特徴
(5−1)
空気調和機300では、流路切換弁51が、第1形態、第2形態、及び第3形態のいずれかに切り換わるための切換機構を有している。第1形態とは、膨張弁7から入った冷媒を第1室外熱交換部46aおよび第2室外熱交換部46bの双方に流す形態である。第2形態とは、膨張弁7から入った冷媒を第1室外熱交換部46aに流し、且つバイパス路61から入った冷媒を第2室外熱交換部46bに流す形態である。第3形態とは、膨張弁7から入った冷媒を第2室外熱交換部46bに流し、且つバイパス路61から入った冷媒を第1室外熱交換部46aに流す形態である。制御部8は、除霜運転を行うとき、流路切換弁51を第2形態または第3形態へ切り換え、バイパス路61の開閉弁71を開状態にする。なお、開閉弁71はバイパス路61に配置され、開閉弁71が開のときバイパス路61には圧縮機5からの吐出冷媒の一部が流路切換弁51に向って流れる。
(5) Features (5-1)
In the air conditioner 300, the flow path switching valve 51 has a switching mechanism for switching to one of the first form, the second form, and the third form. The first form is a form in which the refrigerant that has entered from the expansion valve 7 flows through both the first outdoor heat exchange unit 46a and the second outdoor heat exchange unit 46b. The second form is a form in which the refrigerant that has entered from the expansion valve 7 is caused to flow to the first outdoor heat exchange part 46a, and the refrigerant that has entered from the bypass passage 61 is caused to flow to the second outdoor heat exchange part 46b. A 3rd form is a form which flows the refrigerant | coolant which entered from the expansion valve 7 to the 2nd outdoor heat exchange part 46b, and flows the refrigerant | coolant which entered from the bypass path 61 to the 1st outdoor heat exchange part 46a. When performing the defrosting operation, the controller 8 switches the flow path switching valve 51 to the second form or the third form, and opens the on-off valve 71 of the bypass passage 61. The on-off valve 71 is disposed in the bypass passage 61, and when the on-off valve 71 is open, a part of the refrigerant discharged from the compressor 5 flows toward the passage switching valve 51 in the bypass passage 61.

この結果、空気調和機300では、室外熱交換器46の第1室外熱交換部46a及び第2室外熱交換部46bのいずれか一方使用して暖房運転を継続しながら、他方にはバイパス路61から高圧・高温冷媒を導入して除霜することができる。それゆえ、暖気供給が停止することなく除霜が行われる。   As a result, in the air conditioner 300, the heating operation is continued by using one of the first outdoor heat exchange unit 46a and the second outdoor heat exchange unit 46b of the outdoor heat exchanger 46, while the bypass passage 61 is provided on the other side. The high-pressure and high-temperature refrigerant can be introduced through the defrosting. Therefore, defrosting is performed without stopping the warm air supply.

(5−2)
空気調和機300では、制御部8は、流路切換弁51を第1形態へ切り換える前に、一旦、第4形態へ切り換える。第4形態とは、バイパス路61から入った冷媒を第2バイパス路62へ流す形態である。なお、第2バイパス路62は、暖房運転時における室外熱交換器46の出口と流路切換弁51とを繋いでいる。
(5-2)
In the air conditioner 300, the control unit 8 temporarily switches to the fourth mode before switching the flow path switching valve 51 to the first mode. The fourth form is a form in which the refrigerant that has entered from the bypass passage 61 flows to the second bypass passage 62. The second bypass passage 62 connects the outlet of the outdoor heat exchanger 46 and the flow path switching valve 51 during the heating operation.

この結果、空気調和機300では、暖房運転のための圧縮機起動時、圧縮機5から吐出された高圧・高温のガス冷媒の一部が、バイパス路61、流路切換弁51および第2バイパス路62の順で流れ、再び圧縮機5に戻るので、圧縮機5の温度が速やかに上昇する。   As a result, in the air conditioner 300, when the compressor for heating operation is started, a part of the high-pressure and high-temperature gas refrigerant discharged from the compressor 5 is passed through the bypass passage 61, the flow path switching valve 51, and the second bypass. Since it flows in order of the path 62 and returns to the compressor 5 again, the temperature of the compressor 5 rises rapidly.

(5−3)
空気調和機300では、制御部8が再熱除湿運転を行うとき、流路切換弁51を第5形態へ切り換える。第5形態とは、第2バイパス路62から入った冷媒を膨張弁7へ流す形態である。
(5-3)
In the air conditioner 300, when the control unit 8 performs the reheat dehumidifying operation, the flow path switching valve 51 is switched to the fifth mode. The fifth form is a form in which the refrigerant that has entered from the second bypass passage 62 flows to the expansion valve 7.

この結果、再熱除湿運転時に発生する余剰冷媒は室外熱交換器46内に貯留されるようになる。それゆえ、余剰冷媒によって再熱除湿運転に支障をきたすようなことは回避される。   As a result, surplus refrigerant generated during the reheat dehumidification operation is stored in the outdoor heat exchanger 46. Therefore, it is avoided that the refrigerating and dehumidifying operation is hindered by the excess refrigerant.

以上のように、本発明によれば、暖房運転を継続しながら除霜運転を行うことができるので、蒸気圧縮式冷凍サイクルを利用する冷凍装置に有用である。   As described above, according to the present invention, since the defrosting operation can be performed while continuing the heating operation, it is useful for a refrigeration apparatus using a vapor compression refrigeration cycle.

5 圧縮機
7 膨張弁(減圧器)
8 制御部
10 本体
20 弁体(可動部材)
40 室内熱交換器
40a 第1室内熱交換部
40b 第2室内熱交換部
40c 第2膨張弁(減圧部)
46 室外熱交換器
46a 第1室外熱交換部
46b 第2室外熱交換部
51 流路切換弁
61 バイパス路
62 第2バイパス路
91 室外温度センサ
300 空気調和機
5 Compressor 7 Expansion valve (pressure reducer)
8 Control unit 10 Main body 20 Valve body (movable member)
40 indoor heat exchanger 40a first indoor heat exchange part 40b second indoor heat exchange part 40c second expansion valve (decompression part)
46 outdoor heat exchanger 46a 1st outdoor heat exchange part 46b 2nd outdoor heat exchange part 51 Flow path switching valve 61 Bypass path 62 Second bypass path 91 Outdoor temperature sensor 300 Air conditioner

特開平11−132603号公報JP-A-11-132603

Claims (4)

圧縮機(5)、凝縮器、減圧器(7)、蒸発器の順で冷媒が循環する蒸気圧縮式冷凍サイクルを利用する空気調和機であって、
暖房運転時には前記凝縮器となり、冷房運転時には前記蒸発器となる室内熱交換器(40)と、
暖房運転時には前記蒸発器となり、冷房運転時には前記凝縮器となる室外熱交換器(46)と、
前記減圧器(7)と前記室外熱交換器(46)との間に配置される流路切換弁(51)と、
前記圧縮機(5)からの吐出冷媒の一部を前記流路切換弁(51)に導くためのバイパス路(61)と、
前記バイパス路(61)に配置される開閉弁(71)と、
少なくとも前記流路切換弁(51)および前記開閉弁(71)を制御する制御部(8)と、
を備え、
前記室外熱交換器(46)は、
第1室外熱交換部(46a)と
前記第1室外熱交換部(46a)と並列に接続される第2室外熱交換部(46b)と、
を有し、
前記流路切換弁(51)は、
複数のポートが設けられている平面状の第1弁シート(201)を有し、前記ポートを介して前記減圧器(7)、前記第1室外熱交換部(46a)および前記第2室外熱交換部(46b)と通じ得る第1弁室(101)と、
複数のポートが設けられている平面状の第2弁シート(202)を有し、前記ポートを介して少なくとも前記バイパス路(61)と通じ得る第2弁室(102)と、
前記第1弁室(101)と前記第2弁室(102)とを仕切り、且つ一端が前記第1弁シート(201)に近接し他端が前記第2弁シート(202)に近接する流通管(200)を有する弁体(20)と、
前記弁体(20)を回転させる駆動部(30)と、
を含み、
さらに、前記流路切換弁(51)は、
前記流通管(200)の一端が前記第1弁シート(201)のいずれの前記ポートにも対峙しないことによって、前記減圧器(7)から入った冷媒を前記第1室外熱交換部(46a)および前記第2室外熱交換部(46b)の双方に流す第1形態、
前記流通管(200)の一端が前記第2室外熱交換部(46b)に通じる前記第1弁シート(201)の前記ポートに対峙し、且つ他端が前記バイパス路(61)に通じる前記第2弁シート(202)の前記ポートに対峙することによって、前記減圧器(7)から入った冷媒を前記第1室外熱交換部(46a)に流し、且つ前記バイパス路(61)から入った冷媒を前記第2室外熱交換部(46b)に流す第2形態、及び、
前記流通管(200)の一端が前記第1室外熱交換部(46a)に通じる前記第1弁シート(201)の前記ポートに対峙し、且つ他端が前記バイパス路(61)に通じる前記第2弁シート(202)の前記ポートに対峙することによって、前記減圧器(7)から入った冷媒を前記第2室外熱交換部(46b)に流し、且つ前記バイパス路(61)から入った冷媒を前記第1室外熱交換部(46a)に流す第3形態、
のいずれかへの切り換えを行い、
前記制御部(8)は、除霜運転を行うとき、前記流路切換弁(51)を第2形態または第3形態へ切り換え、前記開閉弁(71)を開状態にする、
空気調和機。
An air conditioner using a vapor compression refrigeration cycle in which refrigerant circulates in the order of a compressor (5), a condenser, a decompressor (7), and an evaporator,
An indoor heat exchanger (40) that becomes the condenser during heating operation and the evaporator during cooling operation;
An outdoor heat exchanger (46) that serves as the evaporator during heating operation and serves as the condenser during cooling operation;
A flow path switching valve (51) disposed between the pressure reducer (7) and the outdoor heat exchanger (46);
A bypass path (61) for guiding a part of refrigerant discharged from the compressor (5) to the flow path switching valve (51);
An on-off valve (71) disposed in the bypass passage (61);
A control unit (8) for controlling at least the flow path switching valve (51) and the on-off valve (71);
With
The outdoor heat exchanger (46)
A first outdoor heat exchange section (46a) and a second outdoor heat exchange section (46b) connected in parallel with the first outdoor heat exchange section (46a),
Have
The flow path switching valve (51)
A planar first valve seat (201) provided with a plurality of ports is provided, and the pressure reducer (7), the first outdoor heat exchange section (46a), and the second outdoor heat are passed through the ports. A first valve chamber (101) capable of communicating with the exchange part (46b);
A second valve chamber (102) having a planar second valve seat (202) provided with a plurality of ports, and communicating with at least the bypass passage (61) via the ports;
The first valve chamber (101) and the second valve chamber (102) are partitioned, and one end is close to the first valve seat (201) and the other end is close to the second valve seat (202). A valve body (20) having a tube (200);
A drive unit (30) for rotating the valve body (20);
Including
Furthermore, the flow path switching valve (51)
Since one end of the flow pipe (200) does not face any of the ports of the first valve seat (201), the refrigerant that has entered from the pressure reducer (7) is transferred to the first outdoor heat exchanger (46a). And a first mode that flows to both of the second outdoor heat exchange section (46b),
One end of the flow pipe (200) faces the port of the first valve seat (201) communicating with the second outdoor heat exchange part (46b), and the other end communicates with the bypass path (61). By facing the port of the two-valve seat (202), the refrigerant entered from the pressure reducer (7) flows into the first outdoor heat exchange section (46a) and enters the bypass path (61). In the second outdoor heat exchange section (46b), and
One end of the flow pipe (200) faces the port of the first valve seat (201) communicating with the first outdoor heat exchange part (46a), and the other end communicates with the bypass path (61). By facing the port of the two-valve seat (202), the refrigerant entered from the pressure reducer (7) flows into the second outdoor heat exchange section (46b) and enters the bypass passage (61). A third mode in which the air flows through the first outdoor heat exchange section (46a),
Switch to one of the
When performing the defrosting operation, the control unit (8) switches the flow path switching valve (51) to the second form or the third form, and opens the on-off valve (71).
Air conditioner.
室外温度を検出する室外温度センサ(91)をさらに備え、
前記制御部(8)は、前記室外温度センサ(91)の検出温度が所定温度以上のとき、前記開閉弁(71)を閉状態にする、
請求項2に記載の空気調和機。
An outdoor temperature sensor (91) for detecting the outdoor temperature;
The controller (8) closes the on-off valve (71) when the temperature detected by the outdoor temperature sensor (91) is equal to or higher than a predetermined temperature.
The air conditioner according to claim 2.
暖房運転時における前記室外熱交換器(46)の出口と前記第2弁室(102)の1つの前記ポートとを繋ぐ第2バイパス路(62)をさらに備え、
前記流路切換弁(51)は、
前記第1形態、
前記第2形態、
前記第3形態、及び、
前記流通管(200)の端が前記第2弁シート(202)のいずれの前記ポートにも対峙しないことによって、前記バイパス路(61)から入った冷媒を前記第2バイパス路(62)へ流す第4形態、
のいずれかへの切り換えが可能であり、
前記制御部(8)は、前記流路切換弁(51)を第1形態へ切り換える前に、第4形態へ切り換える、
請求項2に記載の空気調和機。
A second bypass (62) connecting the outlet of the outdoor heat exchanger (46) during heating operation and the one port of the second valve chamber (102);
The flow path switching valve (51)
The first form,
Said second form,
The third form, and
Since the end of the flow pipe (200) does not face any port of the second valve seat (202), the refrigerant that has entered from the bypass path (61) flows into the second bypass path (62). 4th form,
It is possible to switch to either
The controller (8) switches to the fourth mode before switching the flow path switching valve (51) to the first mode.
The air conditioner according to claim 2.
前記室内熱交換器(40)は、
第1室内熱交換部(40a)と、
第2室内熱交換部(40b)と、
前記第1室内熱交換部(40a)と前記第2室内熱交換部(40b)との間に接続される減圧部(40c)と、
を有し、
前記流路切換弁(51)は、
前記第1形態、
前記第2形態、
前記第3形態、
前記第4形態、及び、
前記流通管(200)の一端が前記減圧器(7)に通じる前記第1弁シート(201)の前記ポートに対峙し、且つ他端が前記第2バイパス路(62)に通じる前記第2弁シート(202)の前記ポートに対峙することによって、前記第2バイパス路(62)から入った冷媒を前記減圧器(7)へ流す第5形態、
のいずれかへの切り換えが可能であり、
前記制御部(8)は、暖房運転時とは逆のサイクルによって前記圧縮機(5)から吐出された冷媒を前記第1室内熱交換部(40a)に流す再熱除湿運転を行うとき、前記流路切換弁(51)を、第5形態へ切り換える、
請求項4に記載の空気調和機。
The indoor heat exchanger (40)
A first indoor heat exchange section (40a);
A second indoor heat exchange section (40b);
A decompression section (40c) connected between the first indoor heat exchange section (40a) and the second indoor heat exchange section (40b);
Have
The flow path switching valve (51)
The first form,
Said second form,
The third form,
The fourth form, and
The second valve with one end of the flow pipe (200) facing the port of the first valve seat (201) leading to the pressure reducer (7) and the other end leading to the second bypass passage (62) A fifth mode in which the refrigerant entering from the second bypass passage (62) flows to the decompressor (7) by facing the port of the seat (202);
It is possible to switch to either
The controller (8) performs the reheat dehumidification operation in which the refrigerant discharged from the compressor (5) through the cycle opposite to that during the heating operation is caused to flow to the first indoor heat exchange unit (40a). Switching the flow path switching valve (51) to the fifth configuration;
The air conditioner according to claim 4.
JP2011114873A 2011-05-23 2011-05-23 Air conditioner Active JP5627536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011114873A JP5627536B2 (en) 2011-05-23 2011-05-23 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011114873A JP5627536B2 (en) 2011-05-23 2011-05-23 Air conditioner

Publications (2)

Publication Number Publication Date
JP2012242047A true JP2012242047A (en) 2012-12-10
JP5627536B2 JP5627536B2 (en) 2014-11-19

Family

ID=47463942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011114873A Active JP5627536B2 (en) 2011-05-23 2011-05-23 Air conditioner

Country Status (1)

Country Link
JP (1) JP5627536B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051408A1 (en) * 2016-09-13 2018-03-22 三菱電機株式会社 Air conditioner
WO2018189805A1 (en) * 2017-04-11 2018-10-18 三菱電機株式会社 Refrigeration cycle device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059664A (en) * 1999-08-20 2001-03-06 Fujitsu General Ltd Air conditioner
US20040129012A1 (en) * 2002-01-14 2004-07-08 Feuerecker Guenther Heating/cooling circuit for an air-conditioning system of a motor vehicle, air-conditioning system and a method for controlling the same
JP2008121736A (en) * 2006-11-09 2008-05-29 Fuji Koki Corp Motor driven valve
JP2009047385A (en) * 2007-08-22 2009-03-05 Hitachi Appliances Inc Equipment using refrigerating cycle, and air conditioner
WO2011048724A1 (en) * 2009-10-22 2011-04-28 ダイキン工業株式会社 Flow path switching valve, and air conditioner provided therewith

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059664A (en) * 1999-08-20 2001-03-06 Fujitsu General Ltd Air conditioner
US20040129012A1 (en) * 2002-01-14 2004-07-08 Feuerecker Guenther Heating/cooling circuit for an air-conditioning system of a motor vehicle, air-conditioning system and a method for controlling the same
JP2008121736A (en) * 2006-11-09 2008-05-29 Fuji Koki Corp Motor driven valve
JP2009047385A (en) * 2007-08-22 2009-03-05 Hitachi Appliances Inc Equipment using refrigerating cycle, and air conditioner
WO2011048724A1 (en) * 2009-10-22 2011-04-28 ダイキン工業株式会社 Flow path switching valve, and air conditioner provided therewith

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051408A1 (en) * 2016-09-13 2018-03-22 三菱電機株式会社 Air conditioner
JPWO2018051408A1 (en) * 2016-09-13 2019-07-18 三菱電機株式会社 Air conditioner
EP3514462A4 (en) * 2016-09-13 2020-01-15 Mitsubishi Electric Corporation Air conditioner
WO2018189805A1 (en) * 2017-04-11 2018-10-18 三菱電機株式会社 Refrigeration cycle device
EP3611443A4 (en) * 2017-04-11 2020-02-26 Mitsubishi Electric Corporation Refrigeration cycle device

Also Published As

Publication number Publication date
JP5627536B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5581987B2 (en) Air conditioner
KR100661663B1 (en) Refrigerator and controlling method for the same
US9506674B2 (en) Air conditioner including a bypass pipeline for a defrosting operation
JP3775358B2 (en) Refrigeration equipment
JP6599002B2 (en) Air conditioner
JP5172012B2 (en) Air conditioner
JP6545354B2 (en) Heat pump apparatus and air conditioner
JP4001171B2 (en) Refrigeration equipment
JP4360203B2 (en) Refrigeration equipment
JP6678332B2 (en) Outdoor unit and control method for air conditioner
WO2006025427A1 (en) Refrigerating device
CN103620325B (en) Conditioner
WO2006013834A1 (en) Freezing apparatus
JP4909093B2 (en) Multi-type air conditioner
WO2005033593A1 (en) Freezer
JP3956784B2 (en) Refrigeration equipment
WO2015140951A1 (en) Air conditioner
JP2006071137A (en) Refrigeration unit
JP2001056159A (en) Air conditioner
WO2013046647A1 (en) Heat pump
JP6057871B2 (en) Heat pump system and heat pump type water heater
EP3217120B1 (en) Outdoor unit for air conditioner
JP5627536B2 (en) Air conditioner
EP3517855B1 (en) Heat exchanger and refrigeration cycle device
JP2010002112A (en) Refrigerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140930

R150 Certificate of patent or registration of utility model

Ref document number: 5627536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250