JP2012241705A - Axial flow turbine windmill of flat plate blade with curved plate or cylinder as front edge - Google Patents

Axial flow turbine windmill of flat plate blade with curved plate or cylinder as front edge Download PDF

Info

Publication number
JP2012241705A
JP2012241705A JP2011127728A JP2011127728A JP2012241705A JP 2012241705 A JP2012241705 A JP 2012241705A JP 2011127728 A JP2011127728 A JP 2011127728A JP 2011127728 A JP2011127728 A JP 2011127728A JP 2012241705 A JP2012241705 A JP 2012241705A
Authority
JP
Japan
Prior art keywords
turbine
axial
blade
flow
flow turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011127728A
Other languages
Japanese (ja)
Other versions
JP2012241705A5 (en
JP5780636B2 (en
Inventor
Kunio Irabe
邦夫 伊良部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of the Ryukyus NUC
Original Assignee
University of the Ryukyus NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of the Ryukyus NUC filed Critical University of the Ryukyus NUC
Priority to JP2011127728A priority Critical patent/JP5780636B2/en
Publication of JP2012241705A publication Critical patent/JP2012241705A/en
Publication of JP2012241705A5 publication Critical patent/JP2012241705A5/ja
Application granted granted Critical
Publication of JP5780636B2 publication Critical patent/JP5780636B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Wind Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To develop an axial flow turbine windmill which can be made lightweight and manufactured easily, is rotated in the same direction at all the time even in an outgoing/incoming flow, and is operable in a wide low and middle rotation speed area and in which a startup time is short, by solving a disadvantage in a wells turbine conventionally used for wave farm, e.g., the length of a startup time or torque maintenance in a low rotation area and proposing a high-efficiency and low-priced turbine utilizing wave power for middle-type and small-type distributed power sources, namely, by combining a blade plate having uniform thickness with a structure (cylinder or curved plate or the like) having a curvature.SOLUTION: A blade plate body has uniform thickness and has no torsion. Therefore, in comparison with a conventional wing-type axial flow turbine, a turbine can be made lightweight and manufactured easily, and thereby reducing costs for manufacturing facilities. At the same time, in the axial flow turbine windmill, roundness such as a cylinder is added to a front edge of the blade plate, and thereby remarkably shortening a startup time from stop to normal rotation. Therefore, since an axial load torque during stop can be enlarged, a performance to maintain rotations even in low and middle rotation speed area is provided and an operating range is widened.

Description

本発明は、新規な形状を有する平板羽根の軸流タービン風車に関する。  The present invention relates to a flat-blade axial turbine turbine having a novel shape.

波浪や風などの自然エネルギーを有効利用することは、資源の少ない我が国にとって解決すべき重要な課題の一つであり、多様化するエネルギー資源の相乗効果を計る上でも開発し、普及しなければならない技術的課題である。  Effective use of natural energy such as waves and winds is one of the important issues to be solved for Japan with limited resources, and it must be developed and disseminated in order to measure the synergistic effects of diversifying energy resources. This is a technical problem that must be avoided.

波の上下運動によるエネルギーを空気の圧力及び往復流に変換して利用する装置の一つには、対称翼形ブレードを有するウエルズタービンがある。このウエルズタービンは、往復流に対して常に同一方向に回転するが、一方、始動時から定常回転に達するまで起動時間が長く、かつその起動時間の途中において、回転数が急激に増加するジャンピングを有し、中速回転以下では耐負荷性が急減して急停止に至ることなどが指摘されている。起動時間が長いことは、長周期の波を利用する際に不利であり、回転数におけるジャンピング現象は、接続機器の振動や騒音を増加させることがある。しかしながら、このウエルズタービンは、波の上下運動を空気の圧力エネルギーとその速度エネルギーに変換して利用するため、同タービンを海面に垂直に立てた筒内に収納するが、往復流に対しても常に一定の方向に回転するために、流れの向きを切替えるための方向切替弁を不要としており、そのことによって装置が簡易なものとなる。  One of the devices that convert the energy generated by the up-and-down motion of the waves into air pressure and reciprocating flow is a Wells turbine having symmetrical airfoil blades. This Wells turbine always rotates in the same direction with respect to the reciprocating flow, but on the other hand, the start-up time is long from the start to the steady rotation, and jumping in which the number of rotations rapidly increases during the start-up time. However, it has been pointed out that the load resistance decreases suddenly at a medium speed or less, leading to a sudden stop. A long start-up time is disadvantageous when a long-period wave is used, and a jumping phenomenon in the number of rotations may increase vibration and noise of connected devices. However, this Wells turbine uses the vertical motion of the wave by converting it into pressure energy and velocity energy of the air, so that the turbine is housed in a cylinder standing perpendicular to the sea surface. Since it always rotates in a certain direction, a direction switching valve for switching the direction of flow is not required, which simplifies the apparatus.

例えば、特公平6−89645号公報は、ウエルズタービンの改良特許であるが、本技術は従来のウエルズタービンの持つ欠点、例えば、起動時間がかかり、又、低トルクでは停止するなどが改善されていないばかりか、2葉タービンの形状の為に製作費が膨大になる。また、特公平6−89645号公報では、ウエルズタービンの改良を提案しているが、本技術は従来のウエルズタービンの持つ欠点、例えば、起動時間がかかり、又、低トルクでは停止するなどが改善されていないばかりか、2葉タービンの形状の為に製作費が膨大になる。また、特開平10−176649号公報では波力により発生した空気流を使った発電機を示しているが、一方向の空気流でしか回転しない為に、空気の流れを制御する弁が必要となり、過大な設備になる。  For example, Japanese Patent Publication No. 6-89645 is an improved patent for Wells turbine, but the present technology has improved the disadvantages of conventional Wells turbines, such as long start-up time and stopping at low torque. Not only is there a huge production cost due to the shape of the two-leaf turbine. Japanese Patent Publication No. 6-89645 proposes an improvement of the Wells turbine. However, the present technology improves the disadvantages of the conventional Wells turbine, such as a long start time and a stop at a low torque. Not only has it been done, but the production costs are huge due to the shape of the two-leaf turbine. Japanese Patent Application Laid-Open No. 10-176649 shows a generator using an air flow generated by wave power. However, since it rotates only in one direction of air flow, a valve for controlling the air flow is required. Too much equipment.

特公平6−89645号公報Japanese Patent Publication No. 6-89645 特開平10−176649号公報JP-A-10-176649

このように、ウエルズタービンに代表される海洋の波力を利用した発電タービンは、起動時間が長く、また、低トルクで停止する或いは設備費が高いなどの欠点を有している。  As described above, the power generation turbine using the wave power of the ocean typified by the Wells turbine has disadvantages such as a long start-up time, a low torque and a high facility cost.

本発明は、ウエルズタービンの欠点を改善して、短い起動時間で所定の回転数に達するタービン、或いは作動回転数域の広い製作が容易な低コストのタービンを開発することを目的とする。本タービンが実用化されれば、波力発電用や風力発電用、あるいは揚水装置や交通機関の駆動源として大いに利用され、社会的にも大きな貢献ができる。  An object of the present invention is to improve the drawbacks of the Wells turbine and to develop a turbine that reaches a predetermined rotational speed in a short start-up time or a low-cost turbine that can be easily manufactured in a wide operating rotational speed range. If this turbine is put to practical use, it can be used greatly as a driving source for wave power generation, wind power generation, pumping equipment and transportation, and can contribute greatly to society.

上記の目的を達成するために、本発明者は鋭意検討の結果本発明を完成するに至った。即ち、本発明の第一は、複数枚の厚さ一様な羽根がハブの外周に配列されており、各羽根の回転方向の前縁に、対称的な曲率の構造物を有する軸流タービン風車である。  In order to achieve the above object, the present inventor has completed the present invention as a result of intensive studies. That is, the first aspect of the present invention is an axial flow turbine in which a plurality of blades of uniform thickness are arranged on the outer periphery of the hub, and a symmetric curvature structure is formed on the leading edge in the rotation direction of each blade. It is a windmill.

本発明の第二は、羽根が2−8枚である軸流タービン風車である。  The second aspect of the present invention is an axial turbine turbine having 2 to 8 blades.

本発明の第三は、羽根の厚さが2−10mmである軸流タービン風車である。  A third aspect of the present invention is an axial turbine turbine having a blade thickness of 2 to 10 mm.

本発明の第四は、羽根がアルミニウム、鉄、繊維強化プラスチック、木材から選ばれる少なくとも1種の材料からなる軸流タービン風車である。特に軽量化及び剛性のアップの為に中空ハニカム構造などは好ましい。  A fourth aspect of the present invention is an axial-flow turbine wind turbine in which the blades are made of at least one material selected from aluminum, iron, fiber reinforced plastic, and wood. In particular, a hollow honeycomb structure or the like is preferable in order to reduce weight and increase rigidity.

本発明の第五は、タービンの外形が高々5mの軸流タービン風車である。  The fifth aspect of the present invention is an axial-flow turbine wind turbine having a turbine outer shape of at most 5 m.

本発明の第六は、羽根の弦長に対して曲率を有する構造物の幅の比が0.05−0.3である軸流タービン風車である。  A sixth aspect of the present invention is an axial turbine turbine having a width ratio of a structure having a curvature with respect to a blade chord length of 0.05 to 0.3.

本発明の第七は、羽根とハブが一枚の材料からなる軸流タービン風車である。  A seventh aspect of the present invention is an axial turbine turbine having a blade and a hub made of a single material.

本発明の第八は、羽根とハブを別個に製作し、組付けて組み合わせる軸流タービン風車である。  The eighth aspect of the present invention is an axial-flow turbine wind turbine in which blades and a hub are separately manufactured, assembled and combined.

本発明の第九は、曲率が円、楕円或いは放物線である軸流タービン風車である。  A ninth aspect of the present invention is an axial turbine turbine having a curvature that is a circle, an ellipse, or a parabola.

本発明の第十は、曲率を有する構造物の外端が開放した構造或いは閉じた構造である軸流タービン風車である。  The tenth aspect of the present invention is an axial-flow turbine wind turbine having a structure in which an outer end of a structure having a curvature is opened or closed.

本発明の第十一は、無負荷時において静止状態から定常回転数に至るまでの起動時間が同サイズのウエルズタービンに比べて1/5以下である軸流タービン風車である。  An eleventh aspect of the present invention is an axial-flow turbine wind turbine in which the start-up time from a stationary state to a steady rotational speed when no load is applied is 1/5 or less compared to a Wells turbine of the same size.

本発明の第十二は、周速比0と周速比4でのトルク係数の比が1以上である軸流タービン風車である。  A twelfth aspect of the present invention is an axial-flow turbine wind turbine in which the ratio of the torque coefficient at the peripheral speed ratio 0 and the peripheral speed ratio 4 is 1 or more.

本発明の軸流タービン風車は、ウエルズタービンと同じく、軸方向の流体の往復流に追従して常に同一方向に回転するタービン型風車であるが、従来のウエルズタービンの欠点を改善したことが特徴である。例えば、無回転から所定の回転数までの起動時間を大幅に短縮し、かつ低回転数域においても高トルクを発生しながら回転を持続して稼動する可能にした。又、ウエルズタービンでは設備コストが高く発電のコストパフォーマンスに課題があったが本発明は円周上に配列した複数の矩形または扇形の平板羽根に曲根や円筒などを組み付けた構造であるため、製作が比較的容易で、かつ製造設備を廉価に製造できること等も大きな特徴であり、比較的小規模の分散電力用発電機として実用性に優れる。  The axial-flow turbine wind turbine of the present invention is a turbine-type wind turbine that always rotates in the same direction following the reciprocating flow of the fluid in the axial direction, like the Wells turbine, but is characterized by improving the drawbacks of the conventional Wells turbine. It is. For example, the start-up time from no rotation to a predetermined number of revolutions is greatly shortened, and it is possible to continue the rotation while generating a high torque even in a low revolution number region. In addition, although the equipment cost is high in Wells turbine, there is a problem in the cost performance of power generation, but since the present invention is a structure in which a curved root or a cylinder is assembled to a plurality of rectangular or fan-shaped flat blades arranged on the circumference, It is relatively easy to manufacture and can be manufactured at low cost, and is also highly practical as a relatively small scale generator for distributed power.

したがって、当該風車は、海洋の波に伴う空気の往復流や通常の風のエネルギーを機械的エネルギーへ変換して利用する場合に好ましい。特に中低速回転数域で高トルクを発生して運転することができるので、低回転数で稼動する機械装置や、変速機などを介した発電機の駆動力源として活用できる。特に適当な波高の海域や沿岸、あるいは適当な風力域にある地域や離島などにおいて設置でき、そのための製造施設や関連事業の創出に効果があり、それらの地域や離島などの分散電源や動力源として活用できる。  Therefore, the windmill is preferable when the reciprocating flow of air accompanying ocean waves and the energy of normal wind are converted into mechanical energy for use. In particular, since it can be operated by generating a high torque in the middle and low speed range, it can be used as a driving force source for a generator via a mechanical device operating at a low speed or a transmission. It can be installed especially in sea areas and coasts with appropriate wave heights, or in areas or remote islands with appropriate wind power areas, and it is effective in creating manufacturing facilities and related businesses for that purpose. Distributed power sources and power sources in those areas and remote islands Can be used as

軸流タービン風車の全体概略Outline of axial turbine turbine 羽根前縁に組み付ける曲板または円筒Curved plate or cylinder assembled to the blade leading edge 図3写真Aは4枚羽根の前縁円筒を有するタービン、図3写真Bは6枚羽根の前縁円筒を有するタービンである。3A shows a turbine having a four-blade leading edge cylinder, and FIG. 3B shows a turbine having a six-blade leading edge cylinder. 流れの速度と羽根に作用する流体力の関係Relationship between flow velocity and fluid force acting on blades トルク係数CTと周速比λの関係 記号CMF4Taにおいては、CMFTは前縁円筒付き軸流タービン風車を、数字4は羽根を、添字aは円筒外端に溝(slit)を有する場合を示す。以下、同様。Relationship between Torque Coefficient CT and Peripheral Speed Ratio λ In the symbol CMF4Ta, CMFT indicates an axial-flow turbine wind turbine with a leading edge cylinder, numeral 4 indicates a blade, and subscript a indicates a case where a slit is provided at the outer end of the cylinder. The same applies hereinafter. 出力係数CLと周速比λの関係Relationship between output coefficient CL and peripheral speed ratio λ 起動時間の比較Comparison of startup time

本発明は図1に示すように、平板のハブと複数の羽根からなる極めてシンプルな構造である。流体による往復流を一定方向の回転力に変える為に、羽根の前縁に、対称的な曲率の構造物を有することが特徴である。こうしたシンプルな構成、材料の為に形状の設計は非常に自由にでき、又、製作費も従来のウエルズタービンに比べて大幅に低下する。推進力を出すための曲率をもつ構造物は円筒をつけたものでも良いし、半円筒を取り付けたものでもよい。或いは、放物線、楕円、他任意の曲率を有してもよいが、流体に対して最適な曲率は計算で求めることができる。また、製作コストやメンテナンスの容易さも考慮して選定すればいい。また、本発明のタービンの羽根の枚数は、2枚以上であれば偶数、奇数を問わないが、コスト・性能のバランスで設定すればいい。好ましくは、2−8枚程度である。8枚以上になると製作が面倒なばかりか、重量増加、コスト増加になる。羽根の材質は軽くて剛性が高いものほど大型化、軽量化ができるので好ましいが、好ましくは、アルミニウム、鉄、繊維強化プラスチック、木材などの材料の1種或いはこれらを組み合わせて作ることができる。ハブと羽根を合わせてタービンを形成するがこの外形は余りに大きくなると、発電システムの設備が課題になり実用性がなくなる。従って、高々5m程度である。好ましくは、1−3m程度の小中規摸分散電源として用いる。羽根とハブは別々に作ってリベットやねじ止め或いは溶接で固定してもいいが、或いは、ハブ部と羽根部を一枚の材料から切り出してもよい。3m程度の比較的小型のタービンではこうしたことも大いに可能であり、コスト低減やメンテナンスも容易になる。  As shown in FIG. 1, the present invention has a very simple structure comprising a flat hub and a plurality of blades. In order to change the reciprocating flow by the fluid into a rotational force in a certain direction, it is characterized by having a structure with a symmetrical curvature at the leading edge of the blade. Because of this simple structure and material, the design of the shape can be made very free, and the manufacturing cost is greatly reduced compared with the conventional Wells turbine. The structure having a curvature for generating a propulsive force may be a cylinder or a half cylinder. Alternatively, it may have a parabola, an ellipse, or any other curvature, but the optimal curvature for the fluid can be calculated. In addition, the manufacturing cost and the ease of maintenance should be taken into consideration. Further, the number of blades of the turbine of the present invention may be an even number or an odd number as long as it is two or more, but it may be set in a balance of cost and performance. Preferably, it is about 2-8 sheets. When the number is 8 or more, the production is not only troublesome but also the weight and cost increase. The blade material is preferably lighter and more rigid because it can be made larger and lighter, but it is preferably made of one or a combination of materials such as aluminum, iron, fiber reinforced plastic, and wood. The hub and blades are combined to form a turbine, but if this outer shape becomes too large, the facilities of the power generation system become a problem and the utility is lost. Therefore, it is about 5 m at most. Preferably, it is used as a small-medium-standard distributed power source of about 1-3 m. The blade and hub may be made separately and fixed by rivets, screwing or welding, or the hub and blade portions may be cut out from a single piece of material. This is also possible with a relatively small turbine of about 3 m, which reduces costs and facilitates maintenance.

「曲率を有する構造物の幅と羽根の弦長との比は、前縁円筒の場合に関連しては、本発明では好ましくは0.05−0.3である。この比が0.05より小さくなると、推力が十分に得られないという問題が生じ、0.3より大きくなると構造物の後方流れの剥離域が過大になり、減速しやすく、十分な回転速度が得られなくなる恐れがある。又、設計費も増大する。従来使用されているウエルズタービンではこの比、すなわち羽根最大厚比は、0.12−0.3程度であり、本発明とは下限値が大きく異なる。曲率を有する構造物は全面、後面、或いは上下の端面部は閉じていても良いし、流体の流れを制御する為にどこか開放していてもよい。特に、後面の一部開放は回転の推力にもなり好ましい。開放部の形状、大きさは運転状態等により最適化することができる。  “The ratio of the width of the structure with curvature to the chord length of the blade is preferably 0.05-0.3 in the present invention in the context of the leading edge cylinder. If it becomes smaller, there will be a problem that sufficient thrust cannot be obtained, and if it becomes larger than 0.3, the separation area of the rear flow of the structure becomes excessive, it is easy to decelerate, and there is a possibility that sufficient rotation speed cannot be obtained. This ratio, that is, the blade maximum thickness ratio is about 0.12-0.3, and the lower limit is greatly different from the present invention. The entire structure, the rear surface, or the upper and lower end surfaces of the structure may be closed, or may be opened somewhere to control the flow of fluid. The shape and size of the open part depends on the operating condition, etc. It can be optimized Ri.

本発明は、上述したように単純な構造よりなるために軽量であることも特徴である。従って、微小な流体の流れでも回転が開始する。これは従来のウエルズタービンに比べて大きな特徴である。例えば、同一条件で無負荷時においてタービンの静止状態から所定の回転を有する定常回転数に至るまでの起動時間は通常のウエルズタービンに比べて1/5以下である。即ち、稼働時間が大幅に増えることを示す。又、従来のウエルズタービンでは低回転になるとトルクが0になったが、本発明のタービンは殆ど低速域まで所定のトルクを維持し低回転での発電に有利である。例えば、周速比0と周速比4でのトルク係数の比が1以上である。  The present invention is also characterized in that it is lightweight because it has a simple structure as described above. Accordingly, rotation starts even with a minute fluid flow. This is a significant feature compared to conventional Wells turbines. For example, the start-up time from the stationary state of the turbine to the steady rotational speed having a predetermined rotation under no load under the same conditions is 1/5 or less compared to a normal Wells turbine. That is, it shows that the operating time is greatly increased. Further, in the conventional Wells turbine, the torque becomes zero when the rotation is low, but the turbine of the present invention maintains a predetermined torque almost to a low speed region and is advantageous for power generation at a low rotation. For example, the ratio of the torque coefficient between the peripheral speed ratio 0 and the peripheral speed ratio 4 is 1 or more.

以下、実施例を示して本発明を詳細に説明するが本発明は何ら実施例にて制限されるものではない。  EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated in detail, this invention is not restrict | limited at all by an Example.

実施例1
本発明のタービンは、代表的な形状としては[図1]のような形状を有している。ここでは、性能の検証のために[図1]における羽根前縁▲2▼が直径16mmの円筒を有する模型を作製して実験を行った。厚み2mmのアルミニウム板を用い、それぞれ切込みを入れて作成した。羽根車の外径は360mmであり、羽根の内外径=260/360=0.722、弦長は110mm、羽根幅50mmとして、前縁に直径16mmの円筒を縦方向に幅2mmの切り込み(スリット)を付けて組み付けた。車板の厚さは2mm、ベアリングにて軸受に固定する車軸の太さは16mmとした。
Example 1
The turbine of the present invention has a typical shape as shown in FIG. Here, in order to verify the performance, an experiment was carried out by producing a model in which the blade leading edge (2) in FIG. 1 has a cylinder with a diameter of 16 mm. Each aluminum plate having a thickness of 2 mm was used to make cuts. The outer diameter of the impeller is 360 mm, the inner and outer diameters of the blades = 260/360 = 0.722, the chord length is 110 mm, the blade width is 50 mm, and a cylinder with a diameter of 16 mm at the front edge is cut in a vertical direction with a width of 2 mm (slit ) And assembled. The thickness of the wheel plate was 2 mm, and the thickness of the axle fixed to the bearing with a bearing was 16 mm.

[図2]は前縁部の曲率を有する構造体(円筒)の形状を示す。この材料にはアルミニウムを用いた。両円筒は内側を斜めに切り込んで尖らせ、外端部は蓋を被せてある。両円筒の相違は、外端近くに回転方向下流側に適当な大きさの開口を付けてあるかどうかである。[図2](1)は開口を設けていない場合であり、[図2](2)は開口を設けてある場合である。実験は、吹き出し型の小型風洞(テストセクションの直径370mm、長さ1300mm)に取り付けて、送風機(定格毎分流量200m、5.5kW)により空気を吸い込み、供試の当該風車を駆動して、回転数とトルクを同時に変化させて測定した。FIG. 2 shows the shape of the structure (cylinder) having the curvature of the front edge. Aluminum was used for this material. Both cylinders are sharply cut and sharpened on the inside, and the outer end is covered with a lid. The difference between the two cylinders is whether or not an appropriately sized opening is provided near the outer end on the downstream side in the rotational direction. [FIG. 2] (1) is a case where no opening is provided, and [FIG. 2] (2) is a case where an opening is provided. The experiment was carried out by installing in a blow-out small wind tunnel (test section diameter 370 mm, length 1300 mm), sucking air with a blower (rated flow rate 200 m 3 , 5.5 kW), and driving the wind turbine under test. The measurement was performed by changing the rotation speed and the torque simultaneously.

また、[図3](写真A)および[図3](写真B)は同様にして作成したそれぞれ羽根数が4枚(CMF4T)と6枚(CMF6T)のタービン羽根車である。車板は厚さ2mmのアルミニウム板、羽根前縁の円筒は肉厚1mm、外径16mmのアルミニウム円筒によって製作した。  [FIG. 3] (Photo A) and [FIG. 3] (Photo B) are turbine impellers having four blades (CMF4T) and six blades (CMF6T), respectively, which were similarly prepared. The vehicle plate was made of an aluminum plate having a thickness of 2 mm, and the cylinder at the blade leading edge was made of an aluminum cylinder having a thickness of 1 mm and an outer diameter of 16 mm.

[図4](a)および[図4](b)は、本発明のタービンの回転の原理を示す。前縁円筒の平板羽根に速度Vの流れが当たることによって羽根周りの圧力分布に基づく抗力Dと揚力Lの発生によって、羽根が速度uで前進していく場合の速度の三角形と力の関係を示す。αは相対速度Wに対する羽根の迎角である。  [FIG. 4] (a) and [FIG. 4] (b) show the principle of rotation of the turbine of the present invention. The relation between the speed triangle and force when the blade moves forward at the speed u due to the generation of the drag D and lift L based on the pressure distribution around the blade due to the flow of the velocity V hitting the flat plate blade of the leading edge cylinder. Show. α is the angle of attack of the blade with respect to the relative speed W.

[図5]は上記で作成したタービン羽根についてのトルク係数Cと周速比λ(=羽根車の外周速度/風速)の実験結果を示す。図中のWT6は、6枚羽根のウエルズタービン(比較例)を示し、他はすべて曲板または円筒を前縁に組み付けた平板羽根の軸流タービン風車(CMF4Tb,CMF6Taほか:本発明例)を示す。添字の”a”は、曲率を有する構造体(円筒)の先端部に開口を設けない場合([図2](1)に対応)を、”b”は設けた場合([図2](2)に対応)を示す。この図から、WT6は周速比が約15まで達し、かつ負荷トルクも大きくなっているが、中速度比(約7)以下では計測不可であり、急激に停止になっている。即ちウエルズタービンの欠点を顕著に表している。一方、本発明の6枚羽根(CMF6TaおよびCMF6Tb)は、最大周速比がほぼ7程度でWT6の約半分であるが、Cは同程度である。開口の有無は周速度にわずかながら影響している。また、4枚羽根、およびその他の羽根車では、Cあるいは周速比λがわずかに小さくなっている。FIG. 5 shows the experimental results of the torque coefficient CT and the peripheral speed ratio λ (= the peripheral speed / wind speed of the impeller) for the turbine blades created above. WT6 in the figure indicates a six-blade wells turbine (comparative example), and all others are flat-blade axial turbine turbines (CMF4Tb, CMF6Ta, etc .: examples of the present invention) in which curved plates or cylinders are assembled at the leading edge. Show. The subscript “a” indicates the case where no opening is provided at the tip of the structure (cylinder) having a curvature (corresponding to [FIG. 2] (1)), and the case where “b” is provided ([FIG. 2] ( Corresponds to 2). From this figure, the WT 6 has a peripheral speed ratio of up to about 15 and a large load torque, but cannot be measured at a medium speed ratio (about 7) or less and is suddenly stopped. In other words, it clearly represents the shortcomings of Wells turbine. Meanwhile, six-blade of the present invention (CMF6Ta and CMF6Tb) is the maximum peripheral speed ratio is approximately half of WT6 almost 7 about, C T are comparable. The presence or absence of the opening slightly affects the peripheral speed. Further, four-blade, and the other impeller is smaller slightly C T or the peripheral speed ratio lambda.

[図6]は出力係数C{=(トルク×角速度)/(風の運動エネルギ)}と周速比λの関係を示す実験結果である。図中の記号は図5に対応している。この図から、WT6(比較例)はλ=7においてCが0.3まで達しているが、これ以下の周速比域では回転停止により出力が得られていない。一方、本発明の6枚羽根CMF6TaおよびCMF6Tbでは、周速比が約4において最大C=0.1程度であるが、負荷トルクの増加により周速比がさらに低下しても回転を持続していることがわかる。同様に4枚羽根、およびその他の羽根車についても、Cは低いが低周速比λにおいて稼動可能であることを示している。[FIG. 6] is an experimental result showing the relationship between the output coefficient C P {= (torque × angular velocity) / (wind kinetic energy)} and the peripheral speed ratio λ. The symbols in the figure correspond to those in FIG. From this figure, WT 6 (Comparative Example) is C P has reached 0.3 at lambda = 7, which following the tip speed ratio range is not output can be obtained by the rotation stop. On the other hand, in the six-blade CMF6Ta and CMF6Tb of the present invention, the maximum C P is about 0.1 when the peripheral speed ratio is about 4, but the rotation continues even if the peripheral speed ratio further decreases due to an increase in load torque. You can see that Similarly four-blade, and for the other impeller, C P indicates that low is susceptible operated at low peripheral speed ratio lambda.

次に[図7]は、各羽根車について始動時から定常回転に達するまでの回転数n(rpm)と経過時間t(s、秒)の関係を示す。この図から、WT6(比較例)の起動時間は、45秒とかなり長く、一方、本発明のタービン(CMF4Tb,CMF6Taほか)の起動時間は、5秒程度とかなり短く、WT6のほぼ1/9といえる。  Next, FIG. 7 shows the relationship between the rotational speed n (rpm) and the elapsed time t (s, seconds) from the start to the steady rotation for each impeller. From this figure, the start-up time of WT6 (comparative example) is considerably long as 45 seconds, while the start-up time of the turbine of the present invention (CMF4Tb, CMF6Ta, etc.) is considerably short as about 5 seconds, which is almost 1/9 of WT6. It can be said.

当該風車は、海洋の波に伴う空気の往復流や通常の風のエネルギーを機械的エネルギーへ変換して利用する場合に、特に中低速回転数域で高トルクを発生して運転することができるので、低回転数で稼動する機械装置や、変速機などを介した発電機の駆動力源として活用できる。特に適当な波高の海域や沿岸、あるいは適当な風力域にある地域や離島などにおいて設置でき、そのための製造施設や関連事業の創出に効果があり、それらの地域や離島などの電源や動力源となり得る。  The windmill can be operated with high torque generated especially in the medium and low speed range when the reciprocating flow of air accompanying ocean waves and the energy of normal wind are converted into mechanical energy. Therefore, it can be used as a driving force source for a generator that operates at a low rotational speed or through a transmission. In particular, it can be installed in sea areas and coasts with appropriate wave heights, or in areas or remote islands that are in an appropriate wind area, which is effective in creating manufacturing facilities and related businesses, and is a power source and power source for those areas and remote islands. obtain.

▲1▼ ハブ(hub,根元部)
▲2▼ 前縁円筒または前縁曲板
▲3▼ 羽根平
▲4▼ 軸孔
▲5▼ 留めネジ孔
▲6▼ 円筒留めネジ
(1) Hub (hub, root)
▲ 2 ▼ Leading edge cylinder or leading edge curved plate ▲ 3 ▼ Feather flat ▲ 4 ▼ Shaft hole ▲ 5 ▼ Fastening screw hole ▲ 6 ▼ Cylindrical fastening screw

Claims (12)

複数枚の厚さ一様な羽根がハブの外周に配列されており、各羽根の回転方向の前縁に、対称的な曲率の構造物を有する軸流タービン風車。  An axial-flow turbine wind turbine in which a plurality of blades having a uniform thickness are arranged on the outer periphery of a hub, and a structure having a symmetrical curvature is provided on the leading edge in the rotation direction of each blade. 羽根が2−8枚である請求項1記載の軸流タービン風車。  The axial-flow turbine windmill according to claim 1, wherein the number of blades is 2-8. 羽根の厚さが2−10mmである請求項1記載の軸流タービン風車。  The axial-flow turbine wind turbine according to claim 1, wherein the blade has a thickness of 2 to 10 mm. 羽根の材質がアルミニウム、鉄、繊維強化プラスチック、木材から選ばれる少なくとも1種の材料からなる請求項1〜3記載の軸流タービン風車。  The axial-flow turbine windmill according to claims 1 to 3, wherein the blade is made of at least one material selected from aluminum, iron, fiber reinforced plastic, and wood. タービンの外形が高々5mである請求項1記載の軸流タービン風車。  The axial-flow turbine wind turbine according to claim 1, wherein an outer shape of the turbine is at most 5 m. 羽根の弦長に対して曲率を有する構造物の幅の比が0.05−0.3である請求項1記載の軸流タービン風車。  The axial flow turbine wind turbine according to claim 1, wherein a ratio of a width of a structure having a curvature to a chord length of a blade is 0.05 to 0.3. 羽根とハブが一枚の材料からなる請求項1記載の軸流タービン風車。  The axial turbine turbine according to claim 1, wherein the blade and the hub are made of a single material. 羽根とハブを別個に製作し、組付けて組み合わせる請求項1記載の軸流タービン風車。  The axial turbine turbine according to claim 1, wherein the blades and the hub are separately manufactured, assembled and combined. 曲率が円、楕円或いは放物線である請求項1記載の軸流タービン風車。  The axial turbine turbine according to claim 1, wherein the curvature is a circle, an ellipse, or a parabola. 曲率を有する構造物の外端が開放した構造或いは閉じた構造である請求項1記載の軸流タービン風車。  The axial-flow turbine wind turbine according to claim 1, wherein the outer end of the structure having a curvature is an open structure or a closed structure. 無負荷時において静止状態から定常回転数に至るまでの起動時間が同サイズのウエルズタービンに比べて1/5以下である請求項1記載の軸流タービン風車。  The axial-flow turbine wind turbine according to claim 1, wherein the startup time from a stationary state to a steady rotational speed when no load is applied is 1/5 or less compared to a Wells turbine of the same size. 周速比0と周速比4でのトルク係数の比が1以上である請求項1記載の軸流タービン風車。  The axial-flow turbine wind turbine according to claim 1, wherein the ratio of the torque coefficient between the peripheral speed ratio 0 and the peripheral speed ratio 4 is 1 or more.
JP2011127728A 2011-05-19 2011-05-19 Axial turbine turbine with flat blades with a curved plate or cylinder as the leading edge Expired - Fee Related JP5780636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011127728A JP5780636B2 (en) 2011-05-19 2011-05-19 Axial turbine turbine with flat blades with a curved plate or cylinder as the leading edge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011127728A JP5780636B2 (en) 2011-05-19 2011-05-19 Axial turbine turbine with flat blades with a curved plate or cylinder as the leading edge

Publications (3)

Publication Number Publication Date
JP2012241705A true JP2012241705A (en) 2012-12-10
JP2012241705A5 JP2012241705A5 (en) 2014-06-26
JP5780636B2 JP5780636B2 (en) 2015-09-16

Family

ID=47463666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011127728A Expired - Fee Related JP5780636B2 (en) 2011-05-19 2011-05-19 Axial turbine turbine with flat blades with a curved plate or cylinder as the leading edge

Country Status (1)

Country Link
JP (1) JP5780636B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220561A (en) * 1999-01-28 2000-08-08 Naoyoshi Hosoda Wind power generator
JP2007205359A (en) * 2007-04-26 2007-08-16 Univ Of Ryukyus Thin wing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220561A (en) * 1999-01-28 2000-08-08 Naoyoshi Hosoda Wind power generator
JP2007205359A (en) * 2007-04-26 2007-08-16 Univ Of Ryukyus Thin wing

Also Published As

Publication number Publication date
JP5780636B2 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP3451085B1 (en) Windmill for wind power generation
RU2330791C2 (en) Shpadi propeller (versions) and development of its blades
US20110027084A1 (en) Novel turbine and blades
US20050002783A1 (en) Diffuser-augmented wind turbine
KR20030085113A (en) Turbine for free flowing water
US20120128500A1 (en) Turbines
KR20100100876A (en) A power generator
US8137052B1 (en) Wind turbine generator
EP2250346A2 (en) Shrouded turbine blade design
US9046075B2 (en) Wind turbine generator
JP5047182B2 (en) Wind sail receptor
CA2590918A1 (en) Diffuser-augmented wind turbine
CN201433854Y (en) Helical flexible blade turbine
Golecha et al. Review on Savonius rotor for harnessing wind energy
JP6954739B2 (en) Rotor for generator
AU2008235238B2 (en) Wind wheel
US20100295314A1 (en) Floating wind turbine
JP5780636B2 (en) Axial turbine turbine with flat blades with a curved plate or cylinder as the leading edge
US20230175473A1 (en) Turbine with secondary rotors
Sarathi et al. Study on Wind Turbine and Its Aerodynamic Performance
CN103147909B (en) Lift-type ellipsoid vacuum magnetic suspension wind turbine
CN203130360U (en) Lifting type oval vacuum magnetic levitation wind turbine
JP5805913B1 (en) Wind turbine blade and wind power generator equipped with the same
JP2012241705A5 (en)
US20160222942A1 (en) Wind Turbine Having a Wing-Shaped Turbine Blade

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140501

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140502

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150710

R150 Certificate of patent or registration of utility model

Ref document number: 5780636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees