JP2012241659A - Power generation device using residual pressure of water supply facility - Google Patents

Power generation device using residual pressure of water supply facility Download PDF

Info

Publication number
JP2012241659A
JP2012241659A JP2011114441A JP2011114441A JP2012241659A JP 2012241659 A JP2012241659 A JP 2012241659A JP 2011114441 A JP2011114441 A JP 2011114441A JP 2011114441 A JP2011114441 A JP 2011114441A JP 2012241659 A JP2012241659 A JP 2012241659A
Authority
JP
Japan
Prior art keywords
angular velocity
turbine
flow rate
water
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011114441A
Other languages
Japanese (ja)
Other versions
JP5779403B2 (en
Inventor
Masahiko Suzuki
雅彦 鈴木
Yasushi Obata
靖 小幡
Tatsuya Yamaguchi
達也 山口
Yasutaka Fujimoto
康孝 藤本
Takahiro Minobe
隆博 美濃部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Original Assignee
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC filed Critical Yokohama National University NUC
Priority to JP2011114441A priority Critical patent/JP5779403B2/en
Publication of JP2012241659A publication Critical patent/JP2012241659A/en
Application granted granted Critical
Publication of JP5779403B2 publication Critical patent/JP5779403B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Abstract

PROBLEM TO BE SOLVED: To provide a power generation device using residual pressure of a water supply facility, and always properly controlling a pressure reducing amount without complicating a structure due to measuring equipment.SOLUTION: The rotation angular speed of a hydraulic turbine 11 is detected by an angular speed detection part 14, and an estimated flow rate of the hydraulic turbine 11 is calculated from the relationship between the angular speed detected by the angular speed detection part 14 and the characteristics of the hydraulic turbine 11. The torque of a power generator 12 by an inverter 13 is controlled based on the estimated flow rate Q so that the pressure reducing amount by the hydraulic turbine 11 becomes a target pressure reducing amount. Accordingly, the power generator 12 can be controlled to achieve the target pressure reducing amount without detecting water pressure and a flow rate from flowing water, and the measuring equipment such as a pressure gage and a flow meter becomes unnecessary. With this, the structure can be simplified and reduced in cost, and contribution can be made on the spread of the power generation device 10 capable of using surplus pressure of the water supply facility.

Description

本発明は、水道施設の配水管路に設置され、配水管路の水道水を減圧しながら発電する水道施設の残圧利用発電装置に関するものである。   The present invention relates to a power generation apparatus using residual pressure in a water supply facility that is installed in a water distribution pipeline of a water supply facility and generates power while reducing tap water in the distribution pipeline.

従来、水道施設においては、ダム湖等の水源から浄水場を経て一般家庭や各種施設等の需要家に配水しているが、需要家に十分に水道水が行き届くように高圧力で配水している。この場合、需要家に配水される水は高圧力では使用することができないため、需要家に配水される手前で減圧弁を用いて減圧している。しかしながら、この減圧による余剰圧力は有効に利用されていないため、送水圧が持つエネルギーの大半が損失されているのが現状である。   Conventionally, in water supply facilities, water is distributed from water sources such as dam lakes to consumers such as ordinary households and various facilities through water purification plants, but water is distributed at a high pressure so that tap water can reach the consumers sufficiently. Yes. In this case, since the water distributed to the consumer cannot be used at high pressure, the pressure is reduced using the pressure reducing valve before the water is distributed to the consumer. However, since the surplus pressure due to this depressurization is not effectively used, most of the energy of the water supply pressure is lost at present.

また、減圧時の余剰圧力を発電に利用するようにしたものとして、減圧弁に代えて水力発電機を設け、発電機の発電負荷による水車の回転抵抗よって水車の下流側を減圧するようにしたものが知られている(例えば、特許文献1または2参照)。   In addition, as the surplus pressure at the time of decompression is used for power generation, a hydroelectric generator is provided instead of the pressure reducing valve, and the downstream side of the water turbine is decompressed by the rotational resistance of the water turbine due to the power generation load of the generator. Those are known (for example, see Patent Document 1 or 2).

特開2006−22745号公報JP 2006-22745 A 特開2002−242813号公報JP 2002-242813 A

ところで、前述のように発電機の水車によって配水管路の水道水を減圧する場合、減圧量が所定の目標減圧量になるように発電機を制御しているが、貯水池の水位の変化や上流側の圧送ポンプの吐出圧の変動等により発電機の上流側の水圧が変化したり、或いは需要家の水道使用状況により発電機の下流側の水圧が変化するため、このような水圧の変化に応じて発電機を制御する必要がある。そこで、従来では、水車の上流側と下流側にそれぞれ圧力計や流量計を設け、目標減圧量になるように発電機をフィードバック制御している。   By the way, as described above, when the tap water in the distribution pipe is depressurized by the water turbine of the generator, the generator is controlled so that the depressurization amount becomes the predetermined target depressurization amount. Because the water pressure on the upstream side of the generator changes due to fluctuations in the discharge pressure of the pressure pump on the side, or the water pressure on the downstream side of the generator changes depending on the water usage status of the consumer, this change in water pressure It is necessary to control the generator accordingly. Therefore, conventionally, pressure gauges and flow meters are provided on the upstream side and downstream side of the water turbine, respectively, and the generator is feedback-controlled so that the target pressure reduction amount is obtained.

しかしながら、水車の上流側と下流側にそれぞれ圧力計や流量計を設ける場合、これらの計測機器により装置の構造が複雑になり、コストの増加を来すという問題点があった。   However, when a pressure gauge and a flow meter are provided on the upstream side and the downstream side of the water turbine, respectively, there has been a problem that the structure of the apparatus becomes complicated by these measuring devices, resulting in an increase in cost.

本発明は前記問題点に鑑みてなされたものであり、その目的とするところは、計測機器による構造の複雑化を来すことなく減圧量を常に的確に制御することのできる水道施設の残圧利用発電装置を提供することにある。   The present invention has been made in view of the above-mentioned problems, and the object of the present invention is to provide a residual pressure of a water supply facility that can always accurately control the amount of pressure reduction without complicating the structure of the measuring instrument. It is to provide a power generation device.

本発明は前記目的を達成するために、水道水が流通する配水管路に設けられた水車と、水車の回転によって発電する発電機とを備え、発電機の発電負荷による水車の回転抵抗よって水車の下流側を減圧するようにした水道施設の残圧利用発電装置において、前記水車の回転角速度を検出する角速度検出手段と、角速度検出手段によって検出された角速度と水車の特性との関係から水車の推定流量を算出し、水車による減圧量が目標減圧量になるように前記推定流量に基づいて発電機のトルクを制御する制御手段とを備えている。   In order to achieve the above-mentioned object, the present invention includes a water turbine provided in a distribution pipe through which tap water circulates, and a generator that generates electric power by rotating the water turbine, and the water turbine is caused by the rotational resistance of the water turbine caused by the power generation load of the generator. In the power generation apparatus using residual pressure in a water supply facility that depressurizes the downstream side of the turbine, the angular velocity detection means for detecting the rotational angular velocity of the turbine, and the relationship between the angular velocity detected by the angular velocity detection means and the characteristics of the turbine, Control means for calculating the estimated flow rate and controlling the torque of the generator based on the estimated flow rate so that the reduced pressure amount by the water wheel becomes the target reduced pressure amount.

これにより、角速度検出手段によって検出された水車の角速度と水車の特性との関係から算出した推定流量に基づいて、水車による減圧量が目標減圧量になるように発電機のトルクが制御されることから、流水から水圧や流量を検出することなく目標減圧量になるように発電機を制御することができる。   As a result, the torque of the generator is controlled based on the estimated flow rate calculated from the relationship between the angular velocity of the turbine detected by the angular velocity detection means and the characteristics of the turbine, so that the amount of decompression by the turbine becomes the target decompression amount. Therefore, the generator can be controlled so that the target pressure reduction amount is obtained without detecting the water pressure or flow rate from the flowing water.

また、本発明は前記目的を達成するために、水道水が流通する配水管路に設けられた水車と、水車の回転によって発電する発電機とを備え、発電機の発電負荷による水車の回転抵抗よって水車の下流側を減圧するようにした水道施設の残圧利用発電装置において、前記水車の回転角速度を検出する角速度検出手段と、角速度検出手段によって検出された角速度と水車の特性との関係から水車の推定流量を算出し、水車の流量が目標流量になるように前記推定流量に基づいて発電機のトルクを制御する制御手段とを備えている。   In order to achieve the above object, the present invention includes a water wheel provided in a water distribution pipe through which tap water circulates, and a generator that generates electric power by rotating the water wheel, and the rotational resistance of the water wheel due to the power generation load of the generator. Therefore, in the power generation apparatus using residual pressure of a water supply facility that depressurizes the downstream side of the water turbine, from the relationship between the angular velocity detection means for detecting the rotational angular velocity of the water turbine, and the angular velocity detected by the angular velocity detection means and the characteristics of the water turbine. Control means for calculating the estimated flow rate of the water turbine and controlling the torque of the generator based on the estimated flow rate so that the flow rate of the water turbine becomes the target flow rate.

これにより、角速度検出手段によって検出された水車の角速度と水車の特性との関係から算出した推定流量に基づいて、水車の流量が目標流量になるように発電機のトルクが制御されることから、流水から水圧や流量を検出することなく目標流量になるように発電機を制御することができる。   Thereby, based on the estimated flow rate calculated from the relationship between the angular velocity of the water turbine detected by the angular velocity detection means and the characteristics of the water turbine, the torque of the generator is controlled so that the flow rate of the water turbine becomes the target flow rate. The generator can be controlled to achieve the target flow rate without detecting the water pressure or flow rate from the flowing water.

また、本発明は前記目的を達成するために、水道水が流通する配水管路に設けられた水車と、水車の回転によって発電する発電機とを備え、発電機の発電負荷による水車の回転抵抗よって水車の下流側を減圧するようにした水道施設の残圧利用発電装置において、前記水車の回転角速度を検出する角速度検出手段と、角速度検出手段によって検出された角速度と水車の特性との関係から水車の推定流量を算出し、水車による減圧量が目標減圧量になるように前記推定流量に基づいて水車の回転角速度を制御する制御手段とを備えている。   In order to achieve the above object, the present invention includes a water wheel provided in a water distribution pipe through which tap water circulates, and a generator that generates electric power by rotating the water wheel, and the rotational resistance of the water wheel due to the power generation load of the generator. Therefore, in the power generation apparatus using residual pressure of a water supply facility that depressurizes the downstream side of the water turbine, from the relationship between the angular velocity detection means for detecting the rotational angular velocity of the water turbine, and the angular velocity detected by the angular velocity detection means and the characteristics of the water turbine. Control means for calculating the estimated flow rate of the water turbine and controlling the rotational angular velocity of the water wheel based on the estimated flow rate so that the reduced pressure amount by the water wheel becomes the target reduced pressure amount.

これにより、角速度検出手段によって検出された水車の角速度と水車の特性との関係から算出した推定流量に基づいて、水車による減圧量が目標減圧量になるように発電機の角速度が制御されることから、流水から水圧や流量を検出することなく目標減圧量になるように発電機を制御することができる。   Thereby, based on the estimated flow rate calculated from the relationship between the angular velocity of the turbine detected by the angular velocity detection means and the characteristics of the turbine, the angular velocity of the generator is controlled so that the amount of decompression by the turbine becomes the target decompression amount. Therefore, the generator can be controlled so that the target pressure reduction amount is obtained without detecting the water pressure or flow rate from the flowing water.

また、本発明は前記目的を達成するために、水道水が流通する配水管路に設けられた水車と、水車の回転によって発電する発電機とを備え、発電機の発電負荷による水車の回転抵抗よって水車の下流側を減圧するようにした水道施設の残圧利用発電装置において、前記水車の回転角速度を検出する角速度検出手段と、角速度検出手段によって検出された角速度と水車の特性との関係から水車の推定流量を算出し、水車の流量が目標流量になるように前記推定流量に基づいて水車の回転角速度を制御する制御手段とを備えている。   In order to achieve the above object, the present invention includes a water wheel provided in a water distribution pipe through which tap water circulates, and a generator that generates electric power by rotating the water wheel, and the rotational resistance of the water wheel due to the power generation load of the generator. Therefore, in the power generation apparatus using residual pressure of a water supply facility that depressurizes the downstream side of the water turbine, from the relationship between the angular velocity detection means for detecting the rotational angular velocity of the water turbine, and the angular velocity detected by the angular velocity detection means and the characteristics of the water turbine. Control means for calculating an estimated flow rate of the water turbine and controlling a rotational angular velocity of the water turbine based on the estimated flow rate so that the flow rate of the water turbine becomes a target flow rate.

これにより、角速度検出手段によって検出された水車の角速度と水車の特性との関係から算出した推定流量に基づいて、水車の流量が目標流量になるように発電機の角速度が制御されることから、流水から水圧や流量を検出することなく目標流量になるように発電機を制御することができる。   Thereby, based on the estimated flow rate calculated from the relationship between the angular velocity of the turbine detected by the angular velocity detection means and the characteristics of the turbine, the angular velocity of the generator is controlled so that the flow rate of the turbine becomes the target flow rate. The generator can be controlled to achieve the target flow rate without detecting the water pressure or flow rate from the flowing water.

本発明によれば、流水から水圧や流量を検出することなく発電機を制御することができるので、圧力計や流量計等の計測機器が不要となる。これにより、構造の簡素化と低コスト化を図ることができるので、水道施設の余剰圧力を利用可能な発電装置の普及に貢献することができる。   According to the present invention, the generator can be controlled without detecting the water pressure or flow rate from the flowing water, so that a measuring device such as a pressure gauge or a flow meter is not necessary. Thereby, since the structure can be simplified and the cost can be reduced, it is possible to contribute to the popularization of power generation devices that can use surplus pressure in water facilities.

本発明の第1の実施形態を示す水道施設の概略図Schematic of the water supply facility showing the first embodiment of the present invention 発電装置の構成図Configuration diagram of power generator 制御部の動作を示すフローチャートFlow chart showing operation of control unit 制御系を示すブロック線図Block diagram showing the control system 水車特性曲線を示す線図Diagram showing characteristic curve of water turbine 水車効率曲線を示す線図Diagram showing turbine efficiency curve 本発明の第2の実施形態に係る制御部の動作を示すフローチャートThe flowchart which shows operation | movement of the control part which concerns on the 2nd Embodiment of this invention. 制御系を示すブロック線図Block diagram showing the control system 本発明の第3の実施形態に係る制御部の動作を示すフローチャートThe flowchart which shows operation | movement of the control part which concerns on the 3rd Embodiment of this invention. 制御系を示すブロック線図Block diagram showing the control system 本発明の第4の実施形態に係る制御部の動作を示すフローチャートThe flowchart which shows operation | movement of the control part which concerns on the 4th Embodiment of this invention. 制御系を示すブロック線図Block diagram showing the control system

図1乃至図6は本発明の第1の実施形態を示すもので、水道施設の配水管路の水道水を減圧しながら発電する発電装置に関するものである。   FIG. 1 thru | or 6 shows the 1st Embodiment of this invention, and is related with the electric power generating apparatus which generates electric power, depressurizing the tap water of the distribution pipe line of a water supply facility.

同図に示す水道施設は、ダム湖等の水源1から浄水場2及び貯水池3を経て一般家庭や各種施設等の需要家4に配水するもので、需要家4に十分に水道水が行き届くようにポンプ5によって高圧力で配水するようになっている。この場合、貯水池3と需要家4との間の配水管路6には、需要家4に配水される水道水を減圧するための発電装置10が設けられ、発電装置10で発電された電力は所定の電力利用先7に供給されるようになっている。   The water supply facility shown in the figure distributes water from a water source 1 such as a dam lake to a consumer 4 such as a general household or various facilities via a water purification plant 2 and a reservoir 3, so that the tap water can reach the customer 4 sufficiently. The pump 5 distributes water at a high pressure. In this case, the water distribution line 6 between the reservoir 3 and the customer 4 is provided with a power generation device 10 for depressurizing tap water distributed to the customer 4, and the power generated by the power generation device 10 is The power is supplied to a predetermined power usage destination 7.

本実施形態の発電装置10は、配水管路6に設けられた水車11と、水車11の回転によって発電する発電機12と、発電機12に任意のトルクを付与可能なインバータ13と、水車11の回転角速度を検出する角速度検出部14と、水車11による減圧量が目標減圧量になるようにインバータ13のトルクを制御する制御部15とを備えている。   The power generation device 10 according to the present embodiment includes a water wheel 11 provided in the water distribution pipe 6, a power generator 12 that generates power by the rotation of the water wheel 11, an inverter 13 that can apply arbitrary torque to the power generator 12, and the water wheel 11. Are provided with an angular velocity detection unit 14 that detects the rotational angular velocity of the motor 13 and a control unit 15 that controls the torque of the inverter 13 so that the amount of pressure reduction by the water turbine 11 becomes the target pressure reduction amount.

水車11は、例えば周知のフランシス形ポンプ逆転水車からなり、配水管路6を流通する水によって回転するようになっている。   The water turbine 11 is composed of, for example, a well-known Francis-type pump reversing water turbine, and is rotated by water flowing through the water distribution pipe 6.

発電機12は、例えば商用周波数の交流電力を発生する周知の同期発電機からなり、水車11と一体に回転するようになっている。   The generator 12 is a known synchronous generator that generates AC power of commercial frequency, for example, and rotates integrally with the water turbine 11.

インバータ13は、発電機12で発電された電力を電力利用先7に供給するとともに、水車11の回転抵抗となるトルクを制御可能に構成されている。   The inverter 13 is configured to supply the electric power generated by the generator 12 to the power usage destination 7 and to control the torque that becomes the rotational resistance of the water turbine 11.

角速度検出部14は、インバータ13の電圧角速度または電流角速度から水車11の回転角速度を検出するように構成されている。   The angular velocity detection unit 14 is configured to detect the rotational angular velocity of the water turbine 11 from the voltage angular velocity or current angular velocity of the inverter 13.

制御部15は、マイクロコンピュータによって構成され、後述するプログラムによってインバータ13へのトルク指令値を制御するようになっている。   The control unit 15 is constituted by a microcomputer, and controls a torque command value to the inverter 13 by a program described later.

以上のように構成された発電装置10においては、配水管路6を流通する水道水によって水車11が回転し、インバータ13による発電機12の発電負荷(水車11の回転抵抗)によって水車11の下流側が減圧されるとともに、発電機12で発電された電力がインバータ13を介して電力利用先7に供給される。その際、減圧量(水車11の上流側と下流側との圧力差)が所定の目標減圧量になるように、インバータ13による発電機12のトルクが制御部15によって制御される。   In the power generation device 10 configured as described above, the water turbine 11 is rotated by tap water flowing through the water distribution pipe 6, and downstream of the water turbine 11 by the power generation load of the generator 12 by the inverter 13 (rotational resistance of the water turbine 11). While the pressure is reduced, the power generated by the generator 12 is supplied to the power usage destination 7 via the inverter 13. At that time, the torque of the generator 12 by the inverter 13 is controlled by the control unit 15 so that the pressure reduction amount (pressure difference between the upstream side and the downstream side of the water turbine 11) becomes a predetermined target pressure reduction amount.

ここで、制御部15の動作について、図3のフローチャートを参照して説明する。まず、角速度検出部14によって水車11の回転角速度ωを検出し(S1)、回転角速度ωと水車11の特性との関係に基づいて、トルク指令値Tref と回転角速度ωから水車11の流量Qを推定する(S2)。次に、目標減圧量Href を実現するためのトルク指令値Tref を推定流量Qから算出するとともに(S3)、推定流量Qから減圧量Hを推定する(S4)。続いて、推定減圧量Hと目標減圧量Href との差分をとり、減圧量のフィードバック項(PI制御項)をトルク指令値Tref に加えるとともに(S5)、所定の目標角速度ωref と角速度ωとの差分をとり、角速度のフィードバック項(P制御項)をトルク指令値Tref に加える(S6)。そして、このトルク指令値Tref をインバータ13に出力し(S7)、所定時間経過後(S8)、前記ステップS1に戻ってステップS1〜S8の動作を繰り返す。 Here, operation | movement of the control part 15 is demonstrated with reference to the flowchart of FIG. First, the rotational angular velocity ω of the water turbine 11 is detected by the angular velocity detector 14 (S1), and the flow rate Q of the water turbine 11 is determined from the torque command value T ref and the rotational angular velocity ω based on the relationship between the rotational angular velocity ω and the characteristics of the water turbine 11. Is estimated (S2). Next, a torque command value T ref for realizing the target pressure reduction amount H ref is calculated from the estimated flow rate Q (S3), and the pressure reduction amount H is estimated from the estimated flow rate Q (S4). Subsequently, a difference between the estimated pressure reduction amount H and the target pressure reduction amount H ref is calculated, and a feedback term (PI control term) of the pressure reduction amount is added to the torque command value T ref (S5), and a predetermined target angular velocity ω ref and angular velocity are added. The difference from ω is taken, and the angular velocity feedback term (P control term) is added to the torque command value T ref (S6). The torque command value T ref is output to the inverter 13 (S7), and after a predetermined time has elapsed (S8), the process returns to step S1 and the operations of steps S1 to S8 are repeated.

また、制御部15は、図4のブロック線図に示すように、流量推定器16、トルク指令値設定器17、減圧量推定器18、第1の比較器19、第2の比較器20、第1の加算器21及び第2の加算器22を備えている。流量推定器16は、水車11の特性と回転角速度ωとの関係から推定流量Qを算出するようになっており、水車11の特性は予め実験等によって得られる。トルク指令値設定器17は、水車11の効率特性に基づく関数を用いて推定流量Qと目標減圧量Href からトルク指令値Tref を算出するようになっている。減圧量推定器18は水車11の性能に基づく関数を用いて推定流量Qから推定減圧量Hを算出するようになっている。第1の比較器19は目標減圧量Href と推定減圧量Hとの偏差を求めるようになっており、その偏差はPI要素23によって比例積分演算された後、第1の加算器21によってトルク指令値Tref に加算される。また、第2の比較器20は目標角速度ωref と角速度ωとの偏差を求めるようになっており、その偏差はP要素24によって比例演算された後、第2の加算器22によってトルク指令値Tref に加算される。この場合、目標角速度ωref には、定格速度または効率最大角度が設定される。 Further, as shown in the block diagram of FIG. 4, the control unit 15 includes a flow rate estimator 16, a torque command value setter 17, a pressure reduction amount estimator 18, a first comparator 19, a second comparator 20, A first adder 21 and a second adder 22 are provided. The flow rate estimator 16 calculates the estimated flow rate Q from the relationship between the characteristics of the water wheel 11 and the rotational angular velocity ω, and the characteristics of the water wheel 11 are obtained in advance by experiments or the like. The torque command value setter 17 calculates a torque command value T ref from the estimated flow rate Q and the target pressure reduction amount H ref using a function based on the efficiency characteristics of the water turbine 11. The decompression amount estimator 18 calculates an estimated decompression amount H from the estimated flow rate Q using a function based on the performance of the water turbine 11. The first comparator 19 calculates a deviation between the target pressure reduction amount H ref and the estimated pressure reduction amount H. The deviation is proportionally integrated by the PI element 23, and then the first adder 21 performs torque. It is added to the command value Tref . The second comparator 20 calculates a deviation between the target angular velocity ω ref and the angular velocity ω. The deviation is proportionally calculated by the P element 24 and then the torque command value is calculated by the second adder 22. Added to Tref. In this case, a rated speed or a maximum efficiency angle is set as the target angular speed ω ref .

ここで、前記推定流量Qと推定減圧量Hの算出方法について説明する。まず、推定流量Qの算出には、前述したように水車の特性を用いるので、以下のように実験により水車特性と水車効率を求める。   Here, a method of calculating the estimated flow rate Q and the estimated reduced pressure H will be described. First, as described above, since the characteristics of the water turbine are used for calculating the estimated flow rate Q, the characteristics of the water turbine and the efficiency of the water turbine are obtained by experiments as follows.

この実験では、計算式に用いる変数π1 ,π2 を式(1)(2)のように定義し、通水により回転する水車の角速度ω[rad/s]、損失水頭h[m]、流量Q[m3 /s]を測定することにより、図5に示すように変数π1 ,π2 による水車特性曲線を作成する。尚、d[m]は水車(羽根車)の直径、g[m/s2 ]は重力定数である。 In this experiment, the variables π1 and π2 used in the calculation formula are defined as in the formulas (1) and (2), the angular velocity ω [rad / s], the loss head h [m], and the flow rate Q of the turbine rotated by water flow. By measuring [m 3 / s], a turbine characteristic curve with variables π1 and π2 is created as shown in FIG. D [m] is the diameter of the water wheel (impeller), and g [m / s 2 ] is the gravity constant.

π1 =Q/ωd3 …(1)
π2 =gh/d2ω2 …(2)
次に、インバータにトルク指令値を与えた後、バルブで流量を調整しながら回転数を目標の数値にそろえ、回転する水車の角速度ω、減圧量H、流量Q、トルク指令値、発電電流を測定し、図6に示すように水車と発電機の効率と変数π1 による水車効率曲線を作成する。
π1 = Q / ωd 3 (1)
π 2 = gh / d 2 ω 2 (2)
Next, after giving the torque command value to the inverter, adjust the flow rate with the valve and adjust the rotation speed to the target value, and adjust the angular speed ω, decompression amount H, flow rate Q, torque command value, and generated current of the rotating turbine Then, as shown in FIG. 6, the turbine efficiency curve is created by the efficiency of the turbine and the generator and the variable π1.

また、流水が持つエネルギーと水車が行う仕事の関係式は、エネルギー保存の法則より、以下の式(3) で表される。ここで、ηは水車のエネルギー効率(0≦η≦1)、ρ[kg/m3 ]は水の密度、T[N/m]は水車(発電機)のトルクである。 In addition, the relational expression between the energy of running water and the work performed by the water turbine is expressed by the following formula (3) from the law of energy conservation. Here, η is the energy efficiency (0 ≦ η ≦ 1) of the turbine, ρ [kg / m 3 ] is the density of water, and T [N / m] is the torque of the turbine (generator).

η(Q)ρghQ=Tω …(3)
そして、式(3) と、図5の水車特性曲線を近似して得られる関数と、図6の水車効率曲線を近似して得られる関数とを用い、変数π1 ,π2 についての方程式を導き、これを解いてπ1 ,π2 を求めることにより、以下の式(4)(5)により推定流量Qと推定減圧量Hを算出する。
η (Q) ρghQ = Tω (3)
Then, using Equation (3), a function obtained by approximating the turbine characteristic curve of FIG. 5 and a function obtained by approximating the turbine efficiency curve of FIG. 6, an equation for variables π1 and π2 is derived, By solving this and obtaining π 1 and π 2, the estimated flow rate Q and the estimated reduced pressure H are calculated by the following equations (4) and (5).

Q=ωd3π1 …(4)
h=d2ω2π2 /g …(5)
次に、前記トルク指令値Tref の設定方法について説明する。トルク指令値Tref は、前述したように水車11の効率特性に基づく関数を用いて推定流量Qから算出するとともに、減圧量Hのフィードバック項と角速度ωのフィードバック項を加算することにより、以下の式(6) から求められる。
Q = ωd 3 π1 (4)
h = d 2 ω 2 π 2 / g (5)
Next, a method for setting the torque command value T ref will be described. The torque command value T ref is calculated from the estimated flow rate Q using the function based on the efficiency characteristics of the water turbine 11 as described above, and the feedback term of the decompression amount H and the feedback term of the angular velocity ω are added to obtain the following: It can be obtained from equation (6).

ref =η(Q)ρgQHref/ω
+GH(s)(Href−H)
+Gω(s)(ωref−ω) …(6)
ここで、右辺第1項は前記式(3) より導かれる。右辺第2項は、減圧量Hのフィードバック項(PI制御項)であり、GH(s)はそのフィードバックコントローラである。また、右辺第3項は、角速度ωのフィードバック項(P制御項)であり、Gω(s)はそのフィードバックコントローラである。
T ref = η (Q) ρgQH ref / ω
+ GH (s) ( Href- H)
+ Gω (s) (ω ref −ω) (6)
Here, the first term on the right side is derived from the equation (3). The second term on the right side is a feedback term (PI control term) of the decompression amount H, and G H (s) is the feedback controller. The third term on the right side is a feedback term (P control term) of the angular velocity ω, and Gω (s) is the feedback controller.

このように、本実施形態によれば、水道水が流通する配水管路6に設けられた水車11と、水車11の回転によって発電する発電機12とを備え、発電機12の発電負荷による水車11の回転抵抗よって水車11の下流側を減圧するようにしたので、減圧による余剰圧力を電力に変換して電力利用先7で有効に利用することができる。例えば、電力利用先7としては、通常は街路灯等の補助電源として利用することができるが、災害や発電設備の事故、或いは電力不足による停電時には、一般家庭や各種施設等に電力を供給することも可能である。その際、一部の地域で停電している場合には、その地域に設置されている発電装置10の電力を利用するだけでなく、近隣の他の地域の発電装置10の電力を停電地域に送電するようにすれば、より効果的に停電時の有効利用を図ることができる。   Thus, according to this embodiment, the water turbine 11 provided in the water distribution pipe 6 through which tap water circulates and the generator 12 that generates electric power by the rotation of the water turbine 11, and the water turbine by the power generation load of the generator 12. Since the downstream side of the water turbine 11 is depressurized by the rotational resistance of 11, the surplus pressure due to the depressurization can be converted into electric power and used effectively at the power usage destination 7. For example, the power usage destination 7 can usually be used as an auxiliary power source such as a street light, but supplies power to ordinary homes and various facilities in the event of a disaster, a power generation facility accident, or a power failure due to power shortage. It is also possible. At that time, when a power failure occurs in some area, not only the power of the power generation apparatus 10 installed in that area is used, but also the power of the power generation apparatus 10 in other nearby areas is used as the power failure area. If power is transmitted, effective use during a power outage can be achieved more effectively.

また、本実施形態では、水車11の回転角速度ωを角速度検出部14によって検出し、角速度検出部14によって検出された角速度ωと水車11の特性との関係から水車11の推定流量Qを算出し、水車11による減圧量Hが目標減圧量Href になるように推定流量Qに基づいてインバータ13による発電機12のトルクを制御するようにしたので、流水から水圧や流量を検出することなく目標減圧量になるように発電機12を制御することができ、圧力計や流量計等の計測機器が不要となる。これにより、構造の簡素化と低コスト化を図ることができるので、水道施設の余剰圧力を利用可能な発電装置10の普及に貢献することができる。 In the present embodiment, the rotational angular velocity ω of the water turbine 11 is detected by the angular velocity detector 14, and the estimated flow rate Q of the water turbine 11 is calculated from the relationship between the angular velocity ω detected by the angular velocity detector 14 and the characteristics of the water turbine 11. Since the torque of the generator 12 by the inverter 13 is controlled based on the estimated flow rate Q so that the pressure reduction amount H by the water turbine 11 becomes the target pressure reduction amount Href , the target can be obtained without detecting the water pressure or the flow rate from running water. The generator 12 can be controlled so that the amount of pressure is reduced, and a measuring instrument such as a pressure gauge or a flow meter is not required. Thereby, since the structure can be simplified and the cost can be reduced, it is possible to contribute to the popularization of the power generation apparatus 10 that can use the surplus pressure of the water supply facility.

更に、水車11の回転角速度ωに基づいて推定流量Qを算出するようにしているので、水車11の回転数に依存することなくトルクを制御することができ、流量の変化により回転数が変動する環境下においても流量と減圧量との関係を的確に求めることができる。   Further, since the estimated flow rate Q is calculated based on the rotational angular velocity ω of the water turbine 11, the torque can be controlled without depending on the rotational speed of the water turbine 11, and the rotational speed fluctuates due to a change in the flow rate. Even in an environment, the relationship between the flow rate and the reduced pressure amount can be determined accurately.

また、推定流量Qから算出した推定減圧量Hと目標減圧量Href との差分をPI要素23によって比例積分演算してトルク指令値Tref に加算するようにしたので、目標減圧量に追従するための適切なトルク指令を与えることができる。 In addition, since the difference between the estimated pressure reduction amount H calculated from the estimated flow rate Q and the target pressure reduction amount H ref is proportionally integrated by the PI element 23 and added to the torque command value T ref , the target pressure reduction amount is followed. Therefore, an appropriate torque command can be given.

更に、角速度検出部14によって検出された回転角速度ωと所定の目標角速度ωref との差分をP要素24によって比例演算してトルク指令値Tref に加算するようにしたので、水車11の回転数を安定させることができる。 Further, since the difference between the rotational angular velocity ω detected by the angular velocity detecting unit 14 and the predetermined target angular velocity ω ref is proportionally calculated by the P element 24 and added to the torque command value T ref , the rotational speed of the water wheel 11 Can be stabilized.

また、発電機12にインバータ13によってトルクを付与するようにしたので、発電機12で発電した電力をインバータ13を介して電力利用先7に出力することができ、実用化に際して極めて有利である。   Further, since the torque is applied to the generator 12 by the inverter 13, the power generated by the generator 12 can be output to the power usage destination 7 via the inverter 13, which is extremely advantageous for practical use.

この場合、インバータ13から水車11の回転角速度ωを検出するようにしたので、角速度を検出するための専用の計測機器を必要とせず、構造の簡素化を図る上で極めて有利である。   In this case, since the rotational angular velocity ω of the water turbine 11 is detected from the inverter 13, a dedicated measuring device for detecting the angular velocity is not required, which is extremely advantageous in simplifying the structure.

図7及び図8は本発明の第2の実施形態を示すもので、前記実施形態と同等の構成部分には同一の符号を付して示す。   7 and 8 show a second embodiment of the present invention, and the same reference numerals are given to the same components as those in the previous embodiment.

前記第1の実施形態では、インバータ13によって発電機12のトルクを制御することにより、減圧量を制御するようにしたものを示したが、本実施形態では、インバータ13によって発電機12のトルクを制御することにより、水車11の流量を制御するようにしている。   In the first embodiment, the amount of pressure reduction is controlled by controlling the torque of the generator 12 by the inverter 13. However, in this embodiment, the torque of the generator 12 is controlled by the inverter 13. By controlling, the flow rate of the water turbine 11 is controlled.

本実施形態の制御部15は、図7のフローチャートに示すように、まず、角速度検出部14によって水車11の回転角速度ωを検出し(S10)、回転角速度ωと水車11の特性との関係に基づいて、トルク指令値Tref と回転角速度ωから水車11の流量Qを推定する(S11)。次に、推定流量Qから減圧量Hを推定するとともに(S12)、目標流量Qref を実現するためのトルク指令値Tref を推定減圧量Hから算出する(S13)。続いて、推定流量Qと目標流量Qref との差分をとり、流量のフィードバック項(PI制御項)をトルク指令値Tref に加えるとともに(S14)、所定の目標角速度ωref と角速度ωとの差分をとり、角速度のフィードバック項(P制御項)をトルク指令値Tref に加える(S15)。そして、このトルク指令値Tref をインバータ13に出力し(S16)、所定時間経過後(S17)、前記ステップS10に戻ってステップS10〜S17の動作を繰り返す。 As shown in the flowchart of FIG. 7, the control unit 15 of the present embodiment first detects the rotational angular velocity ω of the water turbine 11 by the angular velocity detection unit 14 (S10), and determines the relationship between the rotational angular velocity ω and the characteristics of the water turbine 11. Based on the torque command value T ref and the rotational angular velocity ω, the flow rate Q of the water turbine 11 is estimated (S11). Next, the pressure reduction amount H is estimated from the estimated flow rate Q (S12), and a torque command value T ref for realizing the target flow rate Q ref is calculated from the estimated pressure reduction amount H (S13). Subsequently, the difference between the estimated flow rate Q and the target flow rate Q ref is calculated, a flow rate feedback term (PI control term) is added to the torque command value T ref (S14), and the predetermined target angular velocity ω ref and angular velocity ω The difference is taken and an angular velocity feedback term (P control term) is added to the torque command value T ref (S15). The torque command value T ref is output to the inverter 13 (S16), and after a predetermined time has elapsed (S17), the process returns to step S10 and the operations of steps S10 to S17 are repeated.

また、本実施形態の制御部15は、図8のブロック線図に示すように、流量推定器16、トルク指令値設定器17、減圧量推定器18、第1の比較器19、第2の比較器20、第1の加算器21及び第2の加算器22を備えている。流量推定器16は、水車11の特性と回転角速度ωとの関係から推定流量Qを算出するようになっており、水車11の特性は予め実験等によって得られる。減圧量推定器18は水車11の性能に基づく関数を用いて推定流量Qから推定減圧量Hを算出するようになっている。トルク指令値設定器17は、水車11の効率特性に基づく関数を用いて推定減圧量Hと目標流量Qref からトルク指令値Tref を算出するようになっている。第1の比較器19は目標流量Qref と推定流量Qとの偏差を求めるようになっており、その偏差はPI要素23によって比例積分演算された後、第1の加算器21によってトルク指令値Tref に加算される。また、第2の比較器20は目標角速度ωref と角速度ωとの偏差を求めるようになっており、その偏差はP要素24によって比例演算された後、第2の加算器22によってトルク指令値Tref に加算される。この場合、目標角速度ωref には、定格速度または効率最大角度が設定される。 Further, as shown in the block diagram of FIG. 8, the control unit 15 of the present embodiment includes a flow rate estimator 16, a torque command value setting unit 17, a decompression amount estimator 18, a first comparator 19, and a second comparator. A comparator 20, a first adder 21, and a second adder 22 are provided. The flow rate estimator 16 calculates the estimated flow rate Q from the relationship between the characteristics of the water wheel 11 and the rotational angular velocity ω, and the characteristics of the water wheel 11 are obtained in advance by experiments or the like. The decompression amount estimator 18 calculates an estimated decompression amount H from the estimated flow rate Q using a function based on the performance of the water turbine 11. The torque command value setter 17 calculates a torque command value T ref from the estimated pressure reduction amount H and the target flow rate Q ref using a function based on the efficiency characteristics of the water turbine 11. The first comparator 19 obtains a deviation between the target flow rate Q ref and the estimated flow rate Q. The deviation is subjected to a proportional-integral calculation by the PI element 23, and then the torque command value is obtained by the first adder 21. Added to Tref. The second comparator 20 calculates a deviation between the target angular velocity ω ref and the angular velocity ω. The deviation is proportionally calculated by the P element 24 and then the torque command value is calculated by the second adder 22. Added to Tref. In this case, a rated speed or a maximum efficiency angle is set as the target angular speed ω ref .

次に、前記トルク指令値Tref の設定方法について説明する。トルク指令値Tref は、前述したように水車11の効率特性に基づく関数を用いて推定流量Qから算出するとともに、流量Qのフィードバック項と角速度ωのフィードバック項を加算することにより、以下の式(7) から求められる。 Next, a method for setting the torque command value T ref will be described. The torque command value T ref is calculated from the estimated flow rate Q using the function based on the efficiency characteristics of the water turbine 11 as described above, and the following equation is obtained by adding the feedback term of the flow rate Q and the feedback term of the angular velocity ω. Calculated from (7).

ref =η(Q)ρghQref/ω
+GQ(s)(Qref−Q)
+Gω(s)(ωref−ω) …(7)
ここで、右辺第1項は前記式(3) より導かれる。右辺第2項は、流量Qのフィードバック項(PI制御項)であり、GQ(s)はそのフィードバックコントローラである。また、右辺第3項は、角速度ωのフィードバック項(P制御項)であり、Gω(s)はそのフィードバックコントローラである。尚、推定流量Qの算出方法は、第1の実施形態と同様である。
T ref = η (Q) ρghQ ref / ω
+ G Q (s) (Q ref −Q)
+ Gω (s) (ω ref −ω) (7)
Here, the first term on the right side is derived from the equation (3). The second term on the right side is a feedback term (PI control term) of the flow rate Q, and G Q (s) is the feedback controller. The third term on the right side is a feedback term (P control term) of the angular velocity ω, and Gω (s) is the feedback controller. The method for calculating the estimated flow rate Q is the same as that in the first embodiment.

このように、本実施形態によれば、水車11の回転角速度ωを角速度検出部14によって検出し、角速度検出部14によって検出された角速度ωと水車11の特性との関係から水車11の推定流量Qを算出し、水車11の流量Qが目標流量Qref になるように推定流量Qに基づいてインバータ13による発電機12のトルクを制御するようにしたので、前記実施形態と同様、流水から水圧や流量を検出することなく目標流量になるように発電機12を制御することができ、圧力計や流量計等の計測機器が不要となる。尚、その他の効果は、前記実施形態と同様である。 Thus, according to the present embodiment, the rotational angular velocity ω of the water turbine 11 is detected by the angular velocity detection unit 14, and the estimated flow rate of the water turbine 11 is determined from the relationship between the angular velocity ω detected by the angular velocity detection unit 14 and the characteristics of the water turbine 11. Q is calculated, and the torque of the generator 12 by the inverter 13 is controlled based on the estimated flow Q so that the flow Q of the water turbine 11 becomes the target flow Q ref. Further, the generator 12 can be controlled so as to achieve the target flow rate without detecting the flow rate, and a measuring instrument such as a pressure gauge or a flow meter is not necessary. Other effects are the same as those of the above embodiment.

図9及び図10は本発明の第3の実施形態を示すもので、前記実施形態と同等の構成部分には同一の符号を付して示す。   FIG. 9 and FIG. 10 show a third embodiment of the present invention, and the same reference numerals are given to the same components as those in the previous embodiment.

前記第1及び第2の実施形態では、発電機12のトルクを制御可能なインバータ13を用いたが、本実施形態のインバータ13は発電機12の回転角速度を制御可能に構成されている。即ち、前記第1及び第2の実施形態では、インバータ13によって発電機12のトルクを制御することにより、減圧量または流量を制御するようにしたものを示したが、本実施形態では、インバータ13によって発電機12の回転角速度を制御することにより、減圧量を制御するようにしている。   In the first and second embodiments, the inverter 13 that can control the torque of the generator 12 is used. However, the inverter 13 of the present embodiment is configured to be able to control the rotational angular velocity of the generator 12. That is, in the first and second embodiments, the pressure reduction amount or the flow rate is controlled by controlling the torque of the generator 12 by the inverter 13, but in this embodiment, the inverter 13 Thus, the amount of pressure reduction is controlled by controlling the rotational angular velocity of the generator 12.

本実施形態の制御部15は、図9のフローチャートに示すように、まず、角速度検出部14によって水車11の回転角速度ωを検出し(S20)、回転角速度ωと水車11の特性との関係に基づいて、発電機トルクTと回転角速度ωから水車11の流量Qを推定する(S21)。次に、目標減圧量Href を実現するための角速度指令値ωref を推定流量Qから算出するとともに(S22)、推定流量Qから減圧量Hを推定する(S23)。続いて、推定減圧量Hと目標減圧量Href との差分をとり、減圧量のフィードバック項(PI制御項)を角速度指令値ωref に加える(S24)。そして、この角速度指令値ωref をインバータ13に出力し(S25)、所定時間経過後(S26)、前記ステップS20に戻ってステップS20〜S26の動作を繰り返す。 As shown in the flowchart of FIG. 9, the control unit 15 of the present embodiment first detects the rotational angular velocity ω of the water turbine 11 by the angular velocity detection unit 14 (S20), and determines the relationship between the rotational angular velocity ω and the characteristics of the water turbine 11. Based on the generator torque T and the rotational angular velocity ω, the flow rate Q of the water turbine 11 is estimated (S21). Next, an angular velocity command value ω ref for realizing the target pressure reduction amount H ref is calculated from the estimated flow rate Q (S22), and the pressure reduction amount H is estimated from the estimated flow rate Q (S23). Subsequently, a difference between the estimated pressure reduction amount H and the target pressure reduction amount H ref is calculated, and a feedback term (PI control term) of the pressure reduction amount is added to the angular velocity command value ω ref (S24). The angular velocity command value ω ref is output to the inverter 13 (S25), and after a predetermined time has elapsed (S26), the process returns to step S20 to repeat the operations of steps S20 to S26.

また、本実施形態の制御部15は、図10のブロック線図に示すように、流量推定器16、角速度指令値設定器25、減圧量推定器18、比較器26及び加算器27を備えている。流量推定器16は、回転角速度ωと水車11の特性との関係に基づいて、発電機トルクTと回転角速度ωから推定流量Qを算出するようになっており、水車11の特性は予め実験等によって得られる。角速度指令値設定器25は、水車11の効率特性に基づく関数を用いて推定流量Qと目標減圧量Href から角速度指令値ωref を算出するようになっている。減圧量推定器18は水車11の性能に基づく関数を用いて推定流量Qから推定減圧量Hを算出するようになっている。比較器26は目標減圧量Href と推定減圧量Hとの偏差を求めるようになっており、その偏差はPI要素23によって比例積分演算された後、加算器27によって角速度指令値ωref に加算される。 Further, as shown in the block diagram of FIG. 10, the control unit 15 of the present embodiment includes a flow rate estimator 16, an angular velocity command value setter 25, a decompression amount estimator 18, a comparator 26, and an adder 27. Yes. The flow rate estimator 16 calculates an estimated flow rate Q from the generator torque T and the rotational angular velocity ω on the basis of the relationship between the rotational angular velocity ω and the characteristics of the water turbine 11. Obtained by. The angular velocity command value setter 25 calculates an angular velocity command value ω ref from the estimated flow rate Q and the target pressure reduction amount H ref using a function based on the efficiency characteristics of the water turbine 11. The decompression amount estimator 18 calculates an estimated decompression amount H from the estimated flow rate Q using a function based on the performance of the water turbine 11. The comparator 26 obtains a deviation between the target pressure reduction amount H ref and the estimated pressure reduction amount H. The deviation is proportionally integrated by the PI element 23 and then added to the angular velocity command value ω ref by the adder 27. Is done.

次に、前記角速度指令値ωref の設定方法について説明する。角速度指令値ωref は、前述したように水車11の効率特性に基づく関数を用いて推定流量Qから算出するとともに、減圧量Hのフィードバック項を加算することにより、以下の式(8) から求められる。 Next, a method for setting the angular velocity command value ω ref will be described. The angular velocity command value ω ref is calculated from the estimated flow rate Q using the function based on the efficiency characteristics of the water turbine 11 as described above, and is obtained from the following equation (8) by adding the feedback term of the pressure reduction amount H. It is done.

ωref =η(Q)ρgQHref/T
+GH(s)(Href−H) …(8)
ここで、右辺第1項は前記式(3) より導かれる。右辺第2項は、減圧量Hのフィードバック項(PI制御項)であり、GH(s)はそのフィードバックコントローラである。尚、推定流量Qと推定減圧量Hの算出方法は、第1の実施形態と同様である。
ω ref = η (Q) ρgQH ref / T
+ G H (s) (H ref −H) (8)
Here, the first term on the right side is derived from the equation (3). The second term on the right side is a feedback term (PI control term) of the decompression amount H, and G H (s) is the feedback controller. The method for calculating the estimated flow rate Q and the estimated pressure reduction amount H is the same as in the first embodiment.

このように、本実施形態によれば、水車11の回転角速度ωを角速度検出部14によって検出し、角速度検出部14によって検出された角速度ωと水車11の特性との関係から水車11の推定流量Qを算出し、水車11による減圧量Hが目標減圧量Href になるように推定流量Qに基づいてインバータ13による発電機12の角速度を制御するようにしたので、前記実施形態と同様、流水から水圧や流量を検出することなく目標減圧量になるように発電機12を制御することができ、圧力計や流量計等の計測機器が不要となる。尚、その他の効果は、前記実施形態と同様である。 Thus, according to the present embodiment, the rotational angular velocity ω of the water turbine 11 is detected by the angular velocity detection unit 14, and the estimated flow rate of the water turbine 11 is determined from the relationship between the angular velocity ω detected by the angular velocity detection unit 14 and the characteristics of the water turbine 11. calculating a Q, since to control the angular velocity of the generator 12 by the inverter 13 based on the estimated flow rate Q as pressure reduction amount H by waterwheel 11 becomes equal to the target pressure reduction amount H ref, as in the embodiment, running water Therefore, it is possible to control the generator 12 so that the target pressure reduction amount is obtained without detecting the water pressure or the flow rate from the measuring device, and a measuring instrument such as a pressure gauge or a flow meter becomes unnecessary. Other effects are the same as those of the above embodiment.

図11及び図12は本発明の第4の実施形態を示すもので、前記実施形態と同等の構成部分には同一の符号を付して示す。   FIG. 11 and FIG. 12 show a fourth embodiment of the present invention, and the same reference numerals are given to the same components as those in the previous embodiment.

前記第1及び第2の実施形態では、発電機12のトルクを制御可能なインバータ13を用いたが、本実施形態のインバータ13は発電機12の回転角速度を制御可能に構成されている。即ち、前記第1及び第2の実施形態では、インバータ13によって発電機12のトルクを制御することにより、減圧量または流量を制御するようにしたものを示したが、本実施形態では、インバータ13によって発電機12の回転角速度を制御することにより、流量を制御するようにしている。   In the first and second embodiments, the inverter 13 that can control the torque of the generator 12 is used. However, the inverter 13 of the present embodiment is configured to be able to control the rotational angular velocity of the generator 12. That is, in the first and second embodiments, the pressure reduction amount or the flow rate is controlled by controlling the torque of the generator 12 by the inverter 13, but in this embodiment, the inverter 13 Thus, the flow rate is controlled by controlling the rotational angular velocity of the generator 12.

本実施形態の制御部15は、図11のフローチャートに示すように、まず、角速度検出部14によって水車11の回転角速度ωを検出し(S30)、回転角速度ωと水車11の特性との関係に基づいて、発電機トルクTと回転角速度ωから水車11の流量Qを推定する(S31)。次に、推定流量Qから減圧量Hを推定するとともに(S32)、目標流量Qref を実現するための角速度指令値ωref を推定減圧量Hから算出する(S33)。続いて、推定流量Qと目標流量Qref との差分をとり、流量のフィードバック項(PI制御項)を角速度指令値ωref に加える(S34)。そして、この角速度指令値ωref をインバータ13に出力し(S35)、所定時間経過後(S36)、前記ステップS30に戻ってステップS30〜S36の動作を繰り返す。 As shown in the flowchart of FIG. 11, the control unit 15 of the present embodiment first detects the rotational angular velocity ω of the water turbine 11 by the angular velocity detection unit 14 (S30), and determines the relationship between the rotational angular velocity ω and the characteristics of the water turbine 11. Based on the generator torque T and the rotational angular velocity ω, the flow rate Q of the water turbine 11 is estimated (S31). Next, the depressurization amount H is estimated from the estimated flow rate Q (S32), and the angular velocity command value ω ref for realizing the target flow rate Qref is calculated from the estimated depressurization amount H (S33). Subsequently, the difference between the estimated flow rate Q and the target flow rate Q ref is taken, and a flow rate feedback term (PI control term) is added to the angular velocity command value ω ref (S34). The angular velocity command value ω ref is output to the inverter 13 (S35), and after a predetermined time has elapsed (S36), the process returns to step S30 to repeat the operations of steps S30 to S36.

また、本実施形態の制御部15は、図12のブロック線図に示すように、流量推定器16、減圧量推定器18、角速度指令値設定器25、比較器26及び加算器27を備えている。流量推定器16は、回転角速度ωと水車11の特性との関係に基づいて、発電機トルクTと回転角速度ωから推定流量Qを算出するようになっており、水車11の特性は予め実験等によって得られる。減圧量推定器18は水車11の性能に基づく関数を用いて推定流量Qから推定減圧量Hを算出するようになっている。角速度指令値設定器25は、水車11の効率特性に基づく関数を用いて推定減圧量Hと目標流量Qref から角速度指令値ωref を算出するようになっている。比較器26は目標流量Qref と推定流量Qとの偏差を求めるようになっており、その偏差はPI要素23によって比例積分演算された後、加算器27によって角速度指令値ωref に加算される。 Further, as shown in the block diagram of FIG. 12, the control unit 15 of the present embodiment includes a flow rate estimator 16, a pressure reduction amount estimator 18, an angular velocity command value setting unit 25, a comparator 26, and an adder 27. Yes. The flow rate estimator 16 calculates an estimated flow rate Q from the generator torque T and the rotational angular velocity ω on the basis of the relationship between the rotational angular velocity ω and the characteristics of the water turbine 11. Obtained by. The decompression amount estimator 18 calculates an estimated decompression amount H from the estimated flow rate Q using a function based on the performance of the water turbine 11. The angular velocity command value setter 25 calculates an angular velocity command value ω ref from the estimated pressure reduction amount H and the target flow rate Q ref using a function based on the efficiency characteristics of the water turbine 11. The comparator 26 obtains a deviation between the target flow rate Q ref and the estimated flow rate Q. The deviation is proportionally integrated by the PI element 23 and then added to the angular velocity command value ω ref by the adder 27. .

次に、前記角速度指令値ωref の設定方法について説明する。角速度指令値ωref は、前述したように水車11の効率特性に基づく関数を用いて推定流量Qから算出するとともに、流量Qのフィードバック項を加算することにより、以下の式(9) から求められる。 Next, a method for setting the angular velocity command value ω ref will be described. The angular velocity command value ω ref is calculated from the estimated flow rate Q using the function based on the efficiency characteristics of the water turbine 11 as described above, and is obtained from the following equation (9) by adding the feedback term of the flow rate Q. .

ωref =η(Q)ρghQref/T
+GQ(s)(Qref−Q) …(9)
ここで、右辺第1項は前記式(3) より導かれる。右辺第2項は、流量Qのフィードバック項(PI制御項)であり、GH(s)はそのフィードバックコントローラである。尚、推定流量Qの算出方法は、第1の実施形態と同様である。
ω ref = η (Q) ρghQ ref / T
+ G Q (s) (Q ref −Q) (9)
Here, the first term on the right side is derived from the equation (3). The second term on the right side is a feedback term (PI control term) of the flow rate Q, and G H (s) is the feedback controller. The method for calculating the estimated flow rate Q is the same as that in the first embodiment.

このように、本実施形態によれば、水車11の回転角速度ωを角速度検出部14によって検出し、角速度検出部14によって検出された角速度ωと水車11の特性との関係から水車11の推定流量Qを算出し、水車11の流量Qが目標流量Qref になるように推定流量Qに基づいてインバータ13による発電機12の角速度を制御するようにしたので、前記実施形態と同様、流水から水圧や流量を検出することなく目標流量になるように発電機12を制御することができ、圧力計や流量計等の計測機器が不要となる。尚、その他の効果は、前記実施形態と同様である。 Thus, according to the present embodiment, the rotational angular velocity ω of the water turbine 11 is detected by the angular velocity detection unit 14, and the estimated flow rate of the water turbine 11 is determined from the relationship between the angular velocity ω detected by the angular velocity detection unit 14 and the characteristics of the water turbine 11. Q is calculated, and the angular velocity of the generator 12 by the inverter 13 is controlled based on the estimated flow Q so that the flow Q of the water turbine 11 becomes the target flow Q ref. Further, the generator 12 can be controlled so as to achieve the target flow rate without detecting the flow rate, and a measuring instrument such as a pressure gauge or a flow meter is not necessary. Other effects are the same as those of the above embodiment.

10…発電装置、11…水車、12…発電機、13…インバータ、14…角速度検出部、15…制御部。   DESCRIPTION OF SYMBOLS 10 ... Power generation device, 11 ... Water wheel, 12 ... Generator, 13 ... Inverter, 14 ... Angular velocity detection part, 15 ... Control part.

Claims (11)

水道水が流通する配水管路に設けられた水車と、水車の回転によって発電する発電機とを備え、発電機の発電負荷による水車の回転抵抗よって水車の下流側を減圧するようにした水道施設の残圧利用発電装置において、
前記水車の回転角速度を検出する角速度検出手段と、
角速度検出手段によって検出された角速度と水車の特性との関係から水車の推定流量を算出し、水車による減圧量が目標減圧量になるように前記推定流量に基づいて発電機のトルクを制御する制御手段とを備えた
ことを特徴とする水道施設の残圧利用発電装置。
A water supply facility equipped with a water turbine provided in a distribution pipe through which tap water circulates and a generator that generates electricity by rotating the turbine, and the downstream side of the turbine is depressurized by the rotational resistance of the turbine caused by the power generation load of the generator In the residual pressure power generation device of
Angular velocity detection means for detecting the rotational angular velocity of the water wheel;
Control that calculates the estimated flow rate of the water turbine from the relationship between the angular velocity detected by the angular velocity detection means and the characteristics of the turbine, and controls the torque of the generator based on the estimated flow rate so that the reduced pressure amount by the turbine becomes the target reduced pressure amount A power generation device using residual pressure of a water supply facility.
前記制御手段を、前記推定流量から算出した推定減圧量と目標減圧量との差分を比例積分演算してトルク指令値に加算するように構成した
ことを特徴とする請求項1記載の水道施設の残圧利用発電装置。
2. The water supply facility according to claim 1, wherein the control unit is configured to perform a proportional-integral operation on a difference between an estimated pressure reduction amount calculated from the estimated flow rate and a target pressure reduction amount, and to add to a torque command value. Residual pressure generator.
水道水が流通する配水管路に設けられた水車と、水車の回転によって発電する発電機とを備え、発電機の発電負荷による水車の回転抵抗よって水車の下流側を減圧するようにした水道施設の残圧利用発電装置において、
前記水車の回転角速度を検出する角速度検出手段と、
角速度検出手段によって検出された角速度と水車の特性との関係から水車の推定流量を算出し、水車の流量が目標流量になるように前記推定流量に基づいて発電機のトルクを制御する制御手段とを備えた
ことを特徴とする水道施設の残圧利用発電装置。
A water supply facility equipped with a water turbine provided in a distribution pipe through which tap water circulates and a generator that generates electricity by rotating the turbine, and the downstream side of the turbine is depressurized by the rotational resistance of the turbine caused by the power generation load of the generator In the residual pressure power generation device of
Angular velocity detection means for detecting the rotational angular velocity of the water wheel;
Control means for calculating the estimated flow rate of the water turbine from the relationship between the angular velocity detected by the angular velocity detection means and the characteristics of the water turbine, and for controlling the torque of the generator based on the estimated flow rate so that the flow rate of the water turbine becomes the target flow rate; A power generation device using residual pressure in a water supply facility.
前記制御手段を、前記推定流量と目標流量との差分を比例積分演算してトルク指令値に加算するように構成した
ことを特徴とする請求項3記載の水道施設の残圧利用発電装置。
The residual pressure utilization power generation apparatus of the water supply facility according to claim 3, wherein the control means is configured to perform a proportional-integral calculation on a difference between the estimated flow rate and the target flow rate and to add the torque command value.
前記制御手段を、角速度検出手段によって検出された角速度と所定の目標角速度との差分を比例演算してトルク指令値に加算するように構成した
ことを特徴とする請求項1、2、3または4記載の水道施設の残圧利用発電装置。
The control means is configured to proportionally calculate a difference between an angular velocity detected by the angular velocity detection means and a predetermined target angular velocity and add it to a torque command value. Power generation equipment using residual pressure of the water supply facility described.
水道水が流通する配水管路に設けられた水車と、水車の回転によって発電する発電機とを備え、発電機の発電負荷による水車の回転抵抗よって水車の下流側を減圧するようにした水道施設の残圧利用発電装置において、
前記水車の回転角速度を検出する角速度検出手段と、
角速度検出手段によって検出された角速度と水車の特性との関係から水車の推定流量を算出し、水車による減圧量が目標減圧量になるように前記推定流量に基づいて水車の回転角速度を制御する制御手段とを備えた
ことを特徴とする水道施設の残圧利用発電装置。
A water supply facility equipped with a water turbine provided in a distribution pipe through which tap water circulates and a generator that generates electricity by rotating the turbine, and the downstream side of the turbine is depressurized by the rotational resistance of the turbine caused by the power generation load of the generator In the residual pressure power generation device of
Angular velocity detection means for detecting the rotational angular velocity of the water wheel;
Control for calculating the estimated flow rate of the turbine based on the relationship between the angular velocity detected by the angular velocity detection means and the characteristics of the turbine, and controlling the rotational angular velocity of the turbine based on the estimated flow rate so that the reduced pressure amount by the turbine becomes the target reduced pressure amount A power generation device using residual pressure of a water supply facility.
前記制御手段を、前記推定流量から算出した推定減圧量と目標減圧量との差分を比例積分演算して角速度指令値に加算するように構成した
ことを特徴とする請求項6記載の水道施設の残圧利用発電装置。
The water supply facility according to claim 6, wherein the control unit is configured to perform a proportional-integral operation on a difference between the estimated pressure reduction amount calculated from the estimated flow rate and the target pressure reduction amount and add the difference to the angular velocity command value. Residual pressure generator.
水道水が流通する配水管路に設けられた水車と、水車の回転によって発電する発電機とを備え、発電機の発電負荷による水車の回転抵抗よって水車の下流側を減圧するようにした水道施設の残圧利用発電装置において、
前記水車の回転角速度を検出する角速度検出手段と、
角速度検出手段によって検出された角速度と水車の特性との関係から水車の推定流量を算出し、水車の流量が目標流量になるように前記推定流量に基づいて水車の回転角速度を制御する制御手段とを備えた
ことを特徴とする水道施設の残圧利用発電装置。
A water supply facility equipped with a water turbine provided in a distribution pipe through which tap water circulates and a generator that generates electricity by rotating the turbine, and the downstream side of the turbine is depressurized by the rotational resistance of the turbine caused by the power generation load of the generator In the residual pressure power generation device of
Angular velocity detection means for detecting the rotational angular velocity of the water wheel;
Control means for calculating an estimated flow rate of the water turbine from the relationship between the angular velocity detected by the angular velocity detection means and the characteristics of the turbine, and for controlling the rotational angular speed of the turbine based on the estimated flow rate so that the flow rate of the turbine becomes the target flow rate; A power generation device using residual pressure in a water supply facility.
前記制御手段を、前記推定流量と目標流量との差分を比例積分演算して角速度指令値に加算するように構成した
ことを特徴とする請求項8記載の水道施設の残圧利用発電装置。
The residual pressure utilization power generation apparatus of a water supply facility according to claim 8, wherein the control means is configured to perform a proportional-integral calculation on a difference between the estimated flow rate and a target flow rate and add the result to an angular velocity command value.
前記発電機に水車の回転抵抗となる発電負荷を付与するインバータを備えた
ことを特徴とする請求項1乃至9の何れか一項に記載の水道施設の残圧利用発電装置。
The residual pressure utilization power generation apparatus of the water supply facility as described in any one of Claim 1 thru | or 9 provided with the inverter which provides the electric power generation load used as the rotation resistance of a water turbine to the said generator.
前記角速度検出手段をインバータから水車の回転角速度を検出するように構成した
ことを特徴とする請求項10記載の水道施設の残圧利用発電装置。
The residual pressure utilization power generation apparatus of the water supply facility according to claim 10, wherein the angular velocity detection means is configured to detect a rotational angular velocity of a water turbine from an inverter.
JP2011114441A 2011-05-23 2011-05-23 Power generation equipment using residual pressure in water supply facilities Expired - Fee Related JP5779403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011114441A JP5779403B2 (en) 2011-05-23 2011-05-23 Power generation equipment using residual pressure in water supply facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011114441A JP5779403B2 (en) 2011-05-23 2011-05-23 Power generation equipment using residual pressure in water supply facilities

Publications (2)

Publication Number Publication Date
JP2012241659A true JP2012241659A (en) 2012-12-10
JP5779403B2 JP5779403B2 (en) 2015-09-16

Family

ID=47463630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011114441A Expired - Fee Related JP5779403B2 (en) 2011-05-23 2011-05-23 Power generation equipment using residual pressure in water supply facilities

Country Status (1)

Country Link
JP (1) JP5779403B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014217229A (en) * 2013-04-26 2014-11-17 ダイキン工業株式会社 Fluid device
JP2015096791A (en) * 2013-11-15 2015-05-21 アズビル株式会社 Turbine flow control device
JP2016008511A (en) * 2014-06-20 2016-01-18 国立大学法人 東京大学 Wave-power generator
KR20160117359A (en) 2015-03-31 2016-10-10 아즈빌주식회사 Turbine type flow rate control apparatus
KR20160117360A (en) 2015-03-31 2016-10-10 아즈빌주식회사 Turbine type flow rate control apparatus
CN107347856A (en) * 2017-08-21 2017-11-17 台州市路桥奇勇农业机械有限公司 A kind of power spraye with hydroelectric generation function

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257026A (en) * 2001-03-05 2002-09-11 Kubota Corp Method of controlling operation of residual pressure recovering generator device in water service facility
JP2004076637A (en) * 2002-08-14 2004-03-11 Hashimoto Sangyo Kk Water supply and discharge generator and water supply and discharge generation system
JP2006258095A (en) * 2005-02-17 2006-09-28 Kubota Corp Water turbine, water turbine power generating device and method for operating water turbine power generating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257026A (en) * 2001-03-05 2002-09-11 Kubota Corp Method of controlling operation of residual pressure recovering generator device in water service facility
JP2004076637A (en) * 2002-08-14 2004-03-11 Hashimoto Sangyo Kk Water supply and discharge generator and water supply and discharge generation system
JP2006258095A (en) * 2005-02-17 2006-09-28 Kubota Corp Water turbine, water turbine power generating device and method for operating water turbine power generating device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014217229A (en) * 2013-04-26 2014-11-17 ダイキン工業株式会社 Fluid device
JP2015096791A (en) * 2013-11-15 2015-05-21 アズビル株式会社 Turbine flow control device
CN104654535A (en) * 2013-11-15 2015-05-27 阿自倍尔株式会社 Turbo type flow control device
CN104654535B (en) * 2013-11-15 2017-07-14 阿自倍尔株式会社 Turbine type flow control device
JP2016008511A (en) * 2014-06-20 2016-01-18 国立大学法人 東京大学 Wave-power generator
CN106016577A (en) * 2015-03-31 2016-10-12 阿自倍尔株式会社 Turbine-type flow rate controlling device
KR20160117360A (en) 2015-03-31 2016-10-10 아즈빌주식회사 Turbine type flow rate control apparatus
JP2016194257A (en) * 2015-03-31 2016-11-17 アズビル株式会社 Turbine type flow control device
KR20160117359A (en) 2015-03-31 2016-10-10 아즈빌주식회사 Turbine type flow rate control apparatus
KR101857343B1 (en) * 2015-03-31 2018-05-11 아즈빌주식회사 Turbine type flow rate control apparatus
KR101857344B1 (en) * 2015-03-31 2018-05-11 아즈빌주식회사 Turbine type flow rate control apparatus
US10119415B2 (en) 2015-03-31 2018-11-06 Azbil Corporation Turbine-type flow rate controlling device
US10122241B2 (en) 2015-03-31 2018-11-06 Azbil Corporation Turbine-type flow rate controlling device
CN107347856A (en) * 2017-08-21 2017-11-17 台州市路桥奇勇农业机械有限公司 A kind of power spraye with hydroelectric generation function

Also Published As

Publication number Publication date
JP5779403B2 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP5779403B2 (en) Power generation equipment using residual pressure in water supply facilities
JP4575272B2 (en) Distributed power system and system stabilization method
Rohmer et al. Modeling and experimental results of an Archimedes screw turbine
Sarasúa et al. Dynamic response and governor tuning of a long penstock pumped-storage hydropower plant equipped with a pump-turbine and a doubly fed induction generator
Yang et al. Experimental investigation of theoretical stability regions for ultra-low frequency oscillations of hydropower generating systems
JP4775181B2 (en) Isolated operation detection device, isolated operation detection method thereof, and power conditioner incorporating the isolated operation detection device
US20100066086A1 (en) Apparatus and system for pitch angle control of wind turbine
JP6342203B2 (en) Wind farm output control device, method, and program
US9641113B2 (en) System and method for controlling a power generation system based on PLL errors
KR101129625B1 (en) Apparatus and Method of Power control
JP2012130146A (en) Self-supporting power supply system adjustment device and adjustment method for self-supporting power supply system
US20150249413A1 (en) System and method for adjusting current regulator gains applied within a power generation system
JP2010019222A (en) Pressure control method and pressure control system of pump
WO2012081174A1 (en) Adjustment apparatus for independent power-supply system, and method of adjusting independent power-supply system
KR101292630B1 (en) water pressure control type water power generator
JP5041889B2 (en) Energy recovery system
JP2012140902A5 (en)
JP6375161B2 (en) Renewable energy power plant control system
JP7336172B2 (en) Control device for hydrogen system, hydrogen generation system, and control method for hydrogen system
KR102086483B1 (en) Small hydro power maintenance system and method of providing it
JP2010025028A (en) Output electric power fluctuation restraining device of wind power generator
CN104300558B (en) Calculating method and system for active power shortage of micro-grid
JP6763745B2 (en) Hydropower systems, hydropower methods and hydropower programs
US20140175908A1 (en) Method of regulating the power of an energy conversion installation and energy conversion installation driven by such a method
KR20090105342A (en) Power generation system using voltage control and driving method of the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20110613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110613

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140219

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150713

R150 Certificate of patent or registration of utility model

Ref document number: 5779403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees