JP2012240804A - Powder supply device - Google Patents

Powder supply device Download PDF

Info

Publication number
JP2012240804A
JP2012240804A JP2011113249A JP2011113249A JP2012240804A JP 2012240804 A JP2012240804 A JP 2012240804A JP 2011113249 A JP2011113249 A JP 2011113249A JP 2011113249 A JP2011113249 A JP 2011113249A JP 2012240804 A JP2012240804 A JP 2012240804A
Authority
JP
Japan
Prior art keywords
powder
trough
downstream end
light
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011113249A
Other languages
Japanese (ja)
Inventor
Mitsuo Maehara
光雄 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2011113249A priority Critical patent/JP2012240804A/en
Publication of JP2012240804A publication Critical patent/JP2012240804A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Jigging Conveyors (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a powder supply device that can perform proper supply by securing measuring accuracy of a flow rate of powder to a supply destination, even when a supply quantity of the powder per a unit time is a very small quantity.SOLUTION: This powder supply device includes: a dam part 9 for damming up a part of the powder pw trying to proceed to the downstream end 2a by vibration of a trough 2 by forming a projection shape of rising from a carrying surface 20, when supplying the powder to the supply destination by dropping from the downstream end 2a of the trough 2 by moving the powder pw existing on the carrying surface 20 of the trough 2 along the predetermined carrying direction X, by vibrating the trough 2 for receiving supply of the powder pw from a hopper 1 by an electromagnetic driving part 3; a light emitting part 40 for projecting the light to the powder pw dropping from the downstream end 2a; a light sensor 41 for receiving the light reflected by the powder pw, a flow rate detecting part 42 for detecting a quantity of dropped powder pw based on a light receiving quantity of the light sensor 41, and a vibration control part 5 for controlling the vibration excited by the electromagnetic driving part 3 to provide a powder carrying speed of becoming a target flow rate in a detecting value per the unit time by the flow rate detecting part 42.

Description

本発明は、振動により粉体を供給する粉体供給装置に関するものである。   The present invention relates to a powder supply apparatus that supplies powder by vibration.

粉体供給装置は、加振手段で加振する振動により粉体を供給先に供給する装置であり、単位時間あたりに所望量の粉体を供給すべく、粉体の供給量を推量して加振手段による振動を制御する装置である。   The powder supply device is a device that supplies powder to a supply destination by vibration that is vibrated by a vibration means. In order to supply a desired amount of powder per unit time, the powder supply amount is estimated. It is an apparatus for controlling vibrations by the vibration means.

この種の粉体供給装置の一例として特許文献1には、粉体を貯蔵するホッパと、ホッパから供給先へ粉体を搬送するための搬送路となる供給パイプと、供給パイプを加振する加振手段と、粉体の重量を含むホッパ及び搬送路の重量を測定するロードセルとを備え、粉体の供給に伴い測定される重量が減少することを利用して、ロードセルで検出した重量変化に基づき加振手段による振動をフィードバック制御する装置が開示されている。   As an example of this type of powder supply apparatus, Patent Document 1 discloses a hopper that stores powder, a supply pipe that serves as a conveyance path for conveying powder from the hopper to a supply destination, and a vibration of the supply pipe. Weight change detected by the load cell using the vibration means, a hopper including the weight of the powder, and a load cell for measuring the weight of the conveyance path, and the fact that the weight measured with the supply of the powder decreases. An apparatus for feedback-controlling vibrations by the vibration excitation means is disclosed.

特開平10−142034号公報JP 10-1442034 A

しかしながら、上記のような粉体の供給量を重量変化で推量する重量測定方式では、例えば毎分数グラムといった微量を供給しようとする場合に、ホッパや搬送路(供給パイプ)、加振手段を含めた数十キログラムに対し、グラム単位やミリグラム単位の重量変化を測定しなければならず、測定精度を確保することが困難である。そこで、このような単位時間あたりに微量の粉体を供給するために、供給先への粉体の流量を検出する新たな測定方式を備えた粉体供給装置が求められる。   However, in the weight measurement method in which the supply amount of powder as described above is estimated by a change in weight, for example, when a minute amount such as several grams per minute is to be supplied, a hopper, a conveyance path (supply pipe), and a vibration means are included. In addition, for a few tens of kilograms, it is necessary to measure a change in weight in grams or milligrams, and it is difficult to ensure measurement accuracy. Therefore, in order to supply such a small amount of powder per unit time, a powder supply apparatus having a new measurement method for detecting the flow rate of the powder to the supply destination is required.

本発明は、このような課題に着目してなされたものであって、その目的は、単位時間あたりの粉体の供給量が微量であっても、供給先への粉体の流量の測定精度を確保して適切な供給を可能とした粉体供給装置を提供することである。   The present invention has been made paying attention to such problems, and its purpose is to measure the flow rate of the powder to the supply destination even if the supply amount of the powder per unit time is very small. Is to provide a powder supply apparatus that can ensure proper supply.

本発明は、かかる目的を達成するために、次のような手段を講じたものである。   In order to achieve this object, the present invention takes the following measures.

すなわち、本発明に係る粉体供給装置は、ホッパから粉体の供給を受けるトラフを加振手段で振動させることにより、前記トラフの搬送面上にある粉体を所定の搬送方向に沿って移動させ前記トラフの下流端から落下させて供給先に供給する粉体供給装置であって、前記所定の搬送方向に交差する方向に沿って前記搬送面から起立する突状をなし、前記ホッパから供給され前記トラフの振動によって前記下流端に向かおうとする粉体の一部を塞き止める堰部と、前記堰部及び前記下流端を経由して当該下流端から落下する粉体に対して投光する発光部及び発光部から照射され粉体で反射した光を受光する光センサと、前記光センサの受光量に基づき前記下流端から落下した粉体の量を検出する流量検出部と、前記流量検出部による単位時間あたりの検出値が目標流量となる粉体の搬送速度を得られるように、前記加振手段で加振する振動を制御する振動制御部とを具備することを特徴とする。   That is, the powder supply apparatus according to the present invention moves the trough that receives the supply of powder from the hopper with the vibrating means, thereby moving the powder on the transport surface of the trough along a predetermined transport direction. A powder supply device that drops from the downstream end of the trough and supplies it to a supply destination, and has a protruding shape that rises from the transfer surface along a direction intersecting the predetermined transfer direction, and is supplied from the hopper And a weir portion that blocks a part of the powder that is directed to the downstream end by vibration of the trough, and throws against the powder falling from the downstream end via the weir portion and the downstream end. A light emitting unit that emits light, an optical sensor that receives light reflected from the powder emitted from the light emitting unit, a flow rate detection unit that detects the amount of powder falling from the downstream end based on the amount of light received by the optical sensor, and Unit time by the flow rate detector Ri of such detected values are obtained the conveying speed of the powder as a target flow rate, characterized by comprising a vibration control unit for controlling the vibration excitation by the exciting means.

このように、振動により搬送される粉体をトラフの下流端から落下させ、落下する粉体に発光部が投光してその反射光を光センサで検出し、反射光量に基づき落下した粉体の量を検出するので、粉体の流量が微量であっても、ホッパ及びトラフを含めて重量で測定する場合に比べて粉体の流量を精度良く検出することが可能となる。一方、トラフの搬送面上に盛られた粉体が固まった状態で下流端から落下すると、発光部の投光領域に進入する複数の粉体が投光方向に重合してしまい、光センサによる正確な供給量検出ができないと考えられるものの、本発明では、トラフの搬送面から起立する突状をなす堰部によって、下流端に向かおうとする複数の粉体が鉛直方向に重合しない状態で堰部の頂部を乗り越えるので、トラフの下流端から落下して発光部の投光領域に進入する粉体が投光方向に重合することが低減又は無くなり、光センサによる流量検出精度を確保できる。したがって、このような流量検出部による単位時間あたりの検出値が目標流量となる粉体の搬送速度を得られるように、トラフに加振する振動を制御するので、目標流量との誤差を低減又は無くした粉体供給装置を提供することが可能となる。   In this way, the powder transported by vibration is dropped from the downstream end of the trough, the light emitting part projects light onto the falling powder, the reflected light is detected by the optical sensor, and the powder dropped based on the amount of reflected light Therefore, even if the flow rate of the powder is very small, it is possible to detect the flow rate of the powder with higher accuracy than when measuring by weight including the hopper and the trough. On the other hand, if the powder piled up on the conveying surface of the trough falls from the downstream end in a solid state, a plurality of powders that enter the light projecting region of the light emitting unit are superposed in the light projecting direction, and the light sensor Although it is considered that accurate supply amount detection cannot be performed, in the present invention, a plurality of powders going to the downstream end are not superposed in the vertical direction by a protruding weir portion standing up from the trough conveying surface. Since it climbs over the top of the weir part, the powder falling from the downstream end of the trough and entering the light emitting area of the light emitting part is reduced or eliminated, and the flow rate detection accuracy by the optical sensor can be ensured. Therefore, the vibration to be applied to the trough is controlled so that the powder conveyance speed at which the detected value per unit time by the flow rate detection unit becomes the target flow rate can be obtained. It is possible to provide a lost powder supply apparatus.

発光部の投光領域に進入する複数の粉体が投光方向に重合することを低減して、適切な流量検出を可能とするためには、前記搬送面には、単一の粉体の通過を許容する溝幅に設定され且つ前記下流端から上流側に向かって延びる溝が、前記下流端に沿って複数配列して形成されており、前記溝によってガイドされる粉体の飛び出し方向が全ての溝で平面視同一方向を向くように設定されていることが好ましい。   In order to reduce a plurality of powders entering the light projecting region of the light emitting unit from being polymerized in the light projecting direction and to enable appropriate flow rate detection, a single powder is formed on the transport surface. A plurality of grooves that are set to have a groove width that allows passage and extend from the downstream end toward the upstream side are formed along the downstream end, and the protruding direction of the powder guided by the groove is It is preferable that all the grooves are set to face the same direction in plan view.

適切な流量検出を追求するためには、前記搬送面の上流側から下流側に向かうにつれて粉体の搬送速度が速くなるように振動角度が設定されていることが望ましい。   In order to pursue an appropriate flow rate detection, it is desirable that the vibration angle be set so that the powder conveyance speed increases from the upstream side to the downstream side of the conveyance surface.

空気中の酸素によって酸化してしまう粉体をその酸化を防止しつつ供給するためには、前記ホッパ及び前記トラフを少なくとも収める収容容器を備え、前記収容容器内は、真空環境又は不活性ガスを充填した減圧環境に設定されていることが効果的である。   In order to supply the powder which is oxidized by oxygen in the air while preventing the oxidation, the container includes a container for storing at least the hopper and the trough, and the container contains a vacuum environment or an inert gas. It is effective that the pressure is reduced and filled.

粉体の損傷やトラフの摩耗を低減するためには、前記粉体又は前記搬送面を帯電させる帯電手段を設けていることが望ましい。   In order to reduce powder damage and trough wear, it is desirable to provide charging means for charging the powder or the conveying surface.

本発明は、以上説明したように、トラフの下流端から落下させた粉体に発光部が投光してその反射光を光センサで検出し、反射光量に基づき落下した粉体の量を検出するので、粉体の流量が微量であっても、ホッパ及びトラフを含めて重量で測定する場合に比べて粉体の流量を精度良く検出することが可能となる。また、トラフの搬送面から起立する突状をなす堰部によって、下流端に向かおうとする複数の粉体が鉛直方向に重合しない状態で堰部の頂部を乗り越えるので、トラフの先端から落下して発光部の投光領域に進入する粉体が投光方向に重合することが抑制又は無くなり、光センサによる的確な流量検出精度を確保できる。したがって、このような流量検出部による単位時間あたりの検出値が目標流量となる粉体の搬送速度を得られるように、トラフに加振する振動を制御するので、目標流量との誤差を低減又は無くした粉体供給装置を提供することが可能となる。   In the present invention, as described above, the light emitting part projects light onto the powder dropped from the downstream end of the trough, and the reflected light is detected by an optical sensor, and the amount of powder dropped based on the amount of reflected light is detected. Therefore, even when the flow rate of the powder is very small, it is possible to detect the flow rate of the powder with higher accuracy than when measuring by weight including the hopper and the trough. In addition, the protruding dam that stands up from the trough transport surface climbs over the top of the dam in a state where a plurality of powders going to the downstream end do not overlap vertically, so it falls from the tip of the trough. As a result, the powder entering the light projecting region of the light emitting unit is suppressed or eliminated from being polymerized in the light projecting direction, and accurate flow rate detection accuracy by the optical sensor can be secured. Therefore, the vibration to be applied to the trough is controlled so that the powder conveyance speed at which the detected value per unit time by the flow rate detection unit becomes the target flow rate can be obtained. It is possible to provide a lost powder supply apparatus.

本発明の一実施形態に係る粉体供給装置を模試的に示す構成図。The block diagram which shows typically the powder supply apparatus which concerns on one Embodiment of this invention. トラフの構造を模式的に示す図。The figure which shows the structure of a trough typically. トラフの振動角度に関する説明図。Explanatory drawing regarding the vibration angle of a trough. 光センサの受光量と粉体の供給量との関係を示す図。The figure which shows the relationship between the light reception amount of an optical sensor, and the supply amount of powder. 光センサとトラフの下流端との位置関係を模式的に示す側面図。The side view which shows typically the positional relationship of an optical sensor and the downstream end of a trough.

以下、本発明の一実施形態に係る粉体供給装置を、図面を参照して説明する。   Hereinafter, a powder supply apparatus according to an embodiment of the present invention will be described with reference to the drawings.

粉体供給装置は、図1及び図2に示すように、供給対象物としての粉体pwを貯蔵するためのホッパ1と、ホッパ1から粉体pwの供給を受けて粉体pwを搬送するためのトラフ2と、トラフ2に振動を加振する加振手段としての電磁駆動部3とを備え、加振手段たる電磁駆動部3でトラフ2を振動させることにより、トラフ2の搬送面20上にある粉体pwを所定の搬送方向Xに沿って移動させ、トラフ2の下流端2aから落下させて供給先に供給する装置である。また、単位時間あたりに所望量の粉体pwを供給すべく、トラフ2の下流端2aから供給先に向けて落下する粉体pwの量(流量)を検出する流量検出手段4と、流量検出手段4での検出結果に基づき電磁駆動部3(加振手段)で加振する振動を制御する振動制御部5とを有する。さらに、例えば粉体pwが空気中の酸素によって酸化してしまう場合には、その粉体pwの酸化を防止するために、少なくともホッパ1及びトラフ2を収容する収容容器6を備えている。   As shown in FIGS. 1 and 2, the powder supply device transports the powder pw upon receiving the powder pw from the hopper 1 for storing the powder pw as a supply object, and the hopper 1. The trough 2 and the electromagnetic drive unit 3 as a vibration means for vibrating the trough 2 are vibrated, and the trough 2 is vibrated by the electromagnetic drive unit 3 as the vibration means. It is an apparatus that moves the powder pw on the top along a predetermined conveying direction X, drops it from the downstream end 2a of the trough 2, and supplies it to the supply destination. Further, in order to supply a desired amount of powder pw per unit time, a flow rate detection means 4 for detecting the amount (flow rate) of the powder pw falling from the downstream end 2a of the trough 2 toward the supply destination, and a flow rate detection A vibration control unit 5 that controls vibrations to be vibrated by the electromagnetic drive unit 3 (vibration unit) based on the detection result of the unit 4 is provided. Furthermore, for example, when the powder pw is oxidized by oxygen in the air, the container 6 for storing at least the hopper 1 and the trough 2 is provided in order to prevent the powder pw from being oxidized.

収容容器6は、図1に示すように、軸方向が水平方向となる横筒部60に、軸方向が鉛直方向となる縦筒部61を合わせた形状をなし、トラフ2を含むリニアフィーダLFとホッパ1とを主として収納する。収容容器6は、収容容器6内の収納空間SPを真空環境又は減圧環境にするための真空ポンプ62と、収容容器6内を窒素などの不活性ガスでパージするためのパージユニット63とを接続可能に構成されている。収容容器6内は、窒素パージを行い且つ減圧して、窒素などの不活性ガスを充填した減圧環境に設定されている。その真空度としての圧力は、8〜10torr(トール)に設定されている。   As shown in FIG. 1, the storage container 6 has a shape in which a horizontal cylinder 60 whose axial direction is horizontal and a vertical cylinder 61 whose axial direction is vertical are combined, and includes a trough 2. And the hopper 1 are mainly stored. The storage container 6 connects a vacuum pump 62 for making the storage space SP in the storage container 6 a vacuum environment or a reduced pressure environment, and a purge unit 63 for purging the storage container 6 with an inert gas such as nitrogen. It is configured to be possible. The inside of the storage container 6 is set to a reduced pressure environment in which a nitrogen purge is performed and the pressure is reduced, and an inert gas such as nitrogen is filled. The pressure as the degree of vacuum is set to 8 to 10 torr (torr).

トラフ2は、図2(a)に示すように、平面視ほぼ矩形状をなすと共に、その長手方向に直交する横断面が上向きコの字状をなしており、その長手方向を所定の搬送方向Xとして、所定の搬送方向Xに沿って粉体pwを搬送するための搬送面20が設定されている。図2(b)及び図2(c)に示すように、搬送面20には、単一の粉体pwの通過を許容する溝幅w1に設定され且つ下流端2aから上流側X2に向かって延びる溝21・21が、下流端2aに沿って複数配列して形成されている。溝21の横断面はU字状をなしており、溝幅w1は、粉体pwの径をw0としたときに、w0<w1<2×w0の条件を満たすように設定されている。本実施形態では、径w0が100〜500μmの粉体pwを搬送対象としている。また、全ての溝21・21を所定の搬送方向Xに沿って延びるように形成することで、溝21を構成する溝側壁21a・21aによってガイドさせる粉体pwの飛び出し方向が全ての溝21・21で平面視同一方向を向くように設定してある。なお、図1に示すように、トラフ2の下流端2aの下方には、落下した粉体pwを受けて供給先に案内するための漏斗状をなす回収部7が設けられている。   As shown in FIG. 2A, the trough 2 has a substantially rectangular shape in plan view, and a cross section perpendicular to the longitudinal direction has an upward U-shape, and the longitudinal direction is defined as a predetermined conveying direction. As X, a conveying surface 20 for conveying the powder pw along a predetermined conveying direction X is set. As shown in FIGS. 2B and 2C, the conveying surface 20 is set to have a groove width w1 that allows the passage of a single powder pw and from the downstream end 2a toward the upstream side X2. A plurality of extending grooves 21 and 21 are formed along the downstream end 2a. The cross section of the groove 21 is U-shaped, and the groove width w1 is set so as to satisfy the condition of w0 <w1 <2 × w0 when the diameter of the powder pw is w0. In the present embodiment, a powder pw having a diameter w0 of 100 to 500 μm is a conveyance target. Further, by forming all the grooves 21 and 21 so as to extend along the predetermined conveying direction X, the pop-out direction of the powder pw guided by the groove side walls 21a and 21a constituting the grooves 21 is set to all the grooves 21 and 21. 21 is set to face the same direction in plan view. As shown in FIG. 1, a funnel-shaped recovery unit 7 is provided below the downstream end 2a of the trough 2 to receive the dropped powder pw and guide it to the supply destination.

さらに、図1に示すように、トラフ2を可動に支持する支持手段8が設けられている。支持手段8は、トラフ2の底部が取り付けられる可動ブロック81と、上述した収容容器6の底部に防振ゴム85・85及びベース86を介して固定される固定ブロック82と、可動ブロック81と固定ブロック82とを連結し上流側X2及び下流側X1に対をなす板バネ83・84とを有する。加振手段たる電磁駆動部3は、可動ブロック81と固定ブロック82との間に構成され、両ブロック81・82間に電磁吸引力を作用させてトラフ2に振動を発生させるものである。具体的には、図示しないコイルを鉄心に巻回して構成される電磁石が固定ブロック82に取り付けられ、図示しないコイルに対して通電することにより、トラフ2に振動を加振し、この結果、図1に示すように、トラフ2の搬送面20上にある粉体pwが所定の搬送方向Xに向かって移動することになる。また、対をなす板バネ83・84のうち上流側X2にある板バネ83は、その板面が鉛直方向に沿って起立した姿勢で取り付けられているのに対し、下流側X1にある板バネ84は、その板面が鉛直方向に交差するように若干寝かせた姿勢で取り付けられている。すなわち、両板バネ83・84の姿勢を異ならせることにより、図3に模式的に示すように、トラフ2の上流側X2の振動方向と下流側X1の振動方向とを異ならせて、搬送面20の上流側X2から下流側X1に向かうにつれて粉体pwの搬送速度が速くなるように振動角度θが設定されている。なお、粉体pwの種類やトラフ2の材質などに応じて搬送速度が最も速くなる振動角度θが定まり、この最速の振動角度θよりも角度が小さくなるほど搬送速度が低下し、逆に、この最速の振動角度θよりも角度が大きくなるほど搬送速度が低下する。本実施形態では、上流側X2の振動角度に対し下流側X1の振動角度が最速の振動角度に近づくように、上流側X2から下流側X1に向かうにつれ振動角度を大きくなるように設定している。   Further, as shown in FIG. 1, support means 8 for movably supporting the trough 2 is provided. The support means 8 includes a movable block 81 to which the bottom of the trough 2 is attached, a fixed block 82 that is fixed to the bottom of the container 6 through the vibration isolating rubbers 85 and 85 and the base 86, and the movable block 81 to be fixed. Plate springs 83 and 84 are connected to the block 82 and paired with the upstream side X2 and the downstream side X1. The electromagnetic drive unit 3 serving as a vibration means is configured between the movable block 81 and the fixed block 82, and generates vibration in the trough 2 by applying an electromagnetic attractive force between the blocks 81 and 82. Specifically, an electromagnet formed by winding a coil (not shown) around an iron core is attached to the fixed block 82, and the trough 2 is vibrated by energizing the coil (not shown). As shown in FIG. 1, the powder pw on the transport surface 20 of the trough 2 moves toward a predetermined transport direction X. Further, the leaf spring 83 on the upstream side X2 of the pair of leaf springs 83 and 84 is attached in a posture in which the plate surface stands up along the vertical direction, whereas the leaf spring on the downstream side X1. 84 is mounted in a slightly laid posture such that its plate surface intersects the vertical direction. That is, by changing the postures of the two leaf springs 83 and 84, the vibration direction of the upstream side X2 of the trough 2 and the vibration direction of the downstream side X1 are made different as shown schematically in FIG. The vibration angle θ is set so that the conveying speed of the powder pw increases from the upstream side X2 to the downstream side X1. The vibration angle θ at which the conveyance speed becomes the fastest is determined according to the type of the powder pw, the material of the trough 2, and the like. The conveyance speed decreases as the angle becomes smaller than the fastest vibration angle θ. The conveyance speed decreases as the angle becomes larger than the fastest vibration angle θ. In the present embodiment, the vibration angle is set so as to increase from the upstream side X2 toward the downstream side X1 so that the vibration angle of the downstream side X1 approaches the fastest vibration angle with respect to the vibration angle of the upstream side X2. .

図1及び図2(a)に示すように、ホッパ1は、上部に補給口1a、下部に供給口1bを有する筒状をなし、下部が下方に向かうにつれて次第に狭まった漏斗状に形成されており、漏斗部の最下端にある供給口1bが所定の搬送方向Xに直交する方向に沿って長い長孔に形成されて、供給口1bと上記トラフ2の搬送面20とが近接する位置にホッパ1が収容容器6に固定具6Xを介して固定されている。ホッパ1に貯留される粉体pwは自重によりトラフ2に供給される。   As shown in FIGS. 1 and 2 (a), the hopper 1 has a cylindrical shape having a replenishing port 1a at the upper portion and a supplying port 1b at the lower portion, and is formed in a funnel shape that gradually narrows as the lower portion goes downward. In addition, the supply port 1b at the lowermost end of the funnel is formed as a long long hole along a direction orthogonal to the predetermined transport direction X, and the supply port 1b and the transport surface 20 of the trough 2 are close to each other. The hopper 1 is fixed to the storage container 6 via a fixture 6X. The powder pw stored in the hopper 1 is supplied to the trough 2 by its own weight.

流量検出手段4は、下流端2aから落下する粉体pwに対して投光するLED等の発光部40と、発光部40から照射され粉体pwで反射した光を受光する光センサ41と、光センサ41の受光量に基づき下流端2aから落下した粉体pwの量を検出する流量検出部42とを有している。発光部40及び光センサ41は、トラフ2の下方に位置するようにブラケット43を介してベース86に取り付けられている。発光部40による光の投光方向は、斜め上を向くように設定されており、投光先には、光の反射を防止するための反射防止板44が鉛直方向に延びて上記回収部7を足場として設けられている。なお、反射防止板44は、回収部7の役割も担っている。また、粉体が、搬送面20の下流端2aのいずれの部位から落下しても、光を照射可能とするために、複数の発光部40を搬送方向Xに直交する方向に沿って複数配置している。これに合わせて、図5に示すように、光センサ41も搬送方向Xに直交する方向(トラフの幅方向)に沿って複数配置している。複数の光センサ41・41は、受光漏れを無くすべく、各々の受光面41aの一部を鉛直方向に重合させて、トラフ2の幅方向に沿って千鳥状に配置している。   The flow rate detection means 4 includes a light emitting unit 40 such as an LED that projects light onto the powder pw falling from the downstream end 2a, an optical sensor 41 that receives light emitted from the light emitting unit 40 and reflected by the powder pw, And a flow rate detection unit 42 that detects the amount of the powder pw dropped from the downstream end 2a based on the amount of light received by the optical sensor 41. The light emitting unit 40 and the optical sensor 41 are attached to the base 86 via the bracket 43 so as to be positioned below the trough 2. The light projecting direction of the light emitting unit 40 is set so as to face obliquely upward, and an antireflection plate 44 for preventing light reflection extends in the vertical direction at the light projecting destination, and the collecting unit 7. As a scaffolding. The antireflection plate 44 also serves as the collection unit 7. In addition, even if the powder falls from any part of the downstream end 2a of the transport surface 20, a plurality of light emitting units 40 are arranged along the direction orthogonal to the transport direction X so that light can be irradiated. doing. In accordance with this, as shown in FIG. 5, a plurality of optical sensors 41 are also arranged along a direction orthogonal to the transport direction X (the trough width direction). The plurality of optical sensors 41 and 41 are arranged in a staggered manner along the width direction of the trough 2 by overlapping a part of each light receiving surface 41a in the vertical direction so as to eliminate light reception leakage.

上記図1に示すように、トラフ2の振動によって粉体pwを下流端2aから落下させ、落下する粉体pwに発光部40が投光してその反射光を光センサ41で検出し、反射光量に基づき落下した粉体pwの量(流量)を検出するように構成した場合には、トラフ2の搬送面20上に盛られた粉体pwが固まった状態で下流端2aから落下すると、発光部40の投光領域に進入する複数の粉体pwが発光部40の投光方向に重合してしまい、光センサ41による正確な供給量検出ができなくなることが考えられる。   As shown in FIG. 1, the powder pw is dropped from the downstream end 2a by the vibration of the trough 2, the light emitting unit 40 projects the falling powder pw, the reflected light is detected by the optical sensor 41, and the reflected light is reflected. When configured to detect the amount (flow rate) of the powder pw dropped based on the amount of light, if the powder pw piled on the conveying surface 20 of the trough 2 falls from the downstream end 2a in a solid state, It is conceivable that a plurality of powders pw that enter the light projecting region of the light emitting unit 40 are superposed in the light projecting direction of the light emitting unit 40, making it impossible to accurately detect the supply amount by the optical sensor 41.

そこで、本実施形態では、図1及び図2(a)に示すように、搬送面20のうちホッパ1から粉体pwが供給される部位の下流側X1には、所定の搬送方向Xに直交する方向に沿って搬送面20から起立する突状をなし、ホッパ1から供給されトラフ2の振動によって下流端2aに向かおうとする粉体pwの一部を塞き止める堰部9が設けられている。このような堰部9を設けると、トラフ2の振動によって下流端2aに向かおうとする複数の粉体pwが鉛直方向Yに重合しない状態で突状の頂部を乗り越えて、下流端2aに移動し、トラフ2の下流端2aから落下して発光部40の投光領域に進入する粉体pwが投光方向に重合することを低減又は無くしている。   Therefore, in the present embodiment, as shown in FIGS. 1 and 2A, the downstream side X1 of the portion of the conveying surface 20 to which the powder pw is supplied from the hopper 1 is orthogonal to the predetermined conveying direction X. A weir portion 9 is provided that has a protruding shape standing up from the conveying surface 20 along the direction to be closed and blocks a part of the powder pw supplied from the hopper 1 and going toward the downstream end 2a by the vibration of the trough 2. ing. When such a weir portion 9 is provided, the plurality of powders pw going to the downstream end 2a due to the vibration of the trough 2 get over the protruding top without moving in the vertical direction Y and move to the downstream end 2a. In addition, the powder pw falling from the downstream end 2a of the trough 2 and entering the light projecting region of the light emitting unit 40 is reduced or eliminated from being polymerized in the light projecting direction.

図1に示すように、流量検出部42は、収容容器6外に設けられた、図示しないCPU、メモリ及びインターフェイスを具備するマイクロコンピュータユニットにより構成される制御部Co(コントローラともいう)で実現されるもので、図4に示すように、或る圧力下において粉体pwの供給量と光センサ41による受光量とを関連付けた受光情報45を予めメモリに記憶しておき、光センサ41で検出された単位時間あたりの受光量と上記受光情報45とに基づき下流端2aから落下した粉体pwの量を検出する。なお、粉体pwの供給量と受光量との関係はほぼリニアな関係であるが、圧力に応じてその勾配が変化する。   As shown in FIG. 1, the flow rate detection unit 42 is realized by a control unit Co (also referred to as a controller) that is provided outside the container 6 and includes a microcomputer unit that includes a CPU, a memory, and an interface (not shown). As shown in FIG. 4, received light information 45 in which a supply amount of the powder pw and a received light amount by the optical sensor 41 are associated with each other under a certain pressure is previously stored in a memory and detected by the optical sensor 41. Based on the received light amount per unit time and the received light information 45, the amount of the powder pw dropped from the downstream end 2a is detected. The relationship between the supply amount of the powder pw and the amount of received light is a substantially linear relationship, but the gradient changes according to the pressure.

図1に戻り、振動制御部5は、制御部Coで実現されるもので、流量検出部42による単位時間あたりの検出値が目標流量となる粉体の搬送速度を得られるように、加振手段たる電磁駆動部3で加振する振動を制御する。具体的には、目標となる光量になるように、振動周波数を一定に維持した状態で電磁駆動部3に印加する電圧を制御する。例えば、検出した光量が目標光量に足りない場合には、印加する電圧を大きくする。すると、それに伴い電流も大きくなるので、トラフ2に加振される振動の振幅が大きくなり、粉体pwの搬送速度が増し、その結果、落下する粉体pwの量が増えて、検出される光量が目標光量に向けて増加することになる。逆に、検出した光量が目標光量を上回る場合には、印加する電圧を小さくする。すると、それに伴い電流も小さくなるので、トラフ2に加振される振動の振幅が小さくなり、粉体pwの搬送速度が減り、その結果、落下する粉体の量が減少して、検出される光量が目標光量に向けて減少することになる。なお、本実施形態では、電圧制御方式を採用しているが、検出した光量に応じて電流値を変化させる電流制御方式や、検出した光量に応じて周波数を変化させる周波数制御方式を採用してもよい。   Returning to FIG. 1, the vibration control unit 5 is realized by the control unit Co. The vibration control unit 5 vibrates the powder so that the detected value per unit time by the flow rate detection unit 42 can obtain the conveyance speed of the powder. The vibration to be vibrated by the electromagnetic drive unit 3 is controlled. Specifically, the voltage applied to the electromagnetic drive unit 3 is controlled in a state where the vibration frequency is kept constant so that the target light amount is obtained. For example, when the detected light quantity is insufficient for the target light quantity, the applied voltage is increased. As a result, the current also increases, so that the amplitude of the vibration excited by the trough 2 increases, the conveyance speed of the powder pw increases, and as a result, the amount of the falling powder pw increases and is detected. The amount of light increases toward the target amount of light. On the contrary, when the detected light quantity exceeds the target light quantity, the applied voltage is reduced. As a result, the current also decreases, so that the amplitude of the vibration excited on the trough 2 decreases, the conveyance speed of the powder pw decreases, and as a result, the amount of the falling powder decreases and is detected. The amount of light decreases toward the target amount of light. In this embodiment, the voltage control method is adopted, but a current control method that changes the current value according to the detected light amount and a frequency control method that changes the frequency according to the detected light amount are adopted. Also good.

上記構成において、粉体pwの搬送を行っているときに、減圧環境から通常の大気状態(1気圧)に戻すと、一時的に大量の粉体pwが供給されることが分かった。これは、減圧環境では、収容容器6内の水分が少ない状態すなわち湿度が低い状態であるので、粉体pwが静電気を帯電して、堰部9から下流端2aに至るまでの搬送面20の全面に粉体pwが付着した状態になり、付着した粉体pwの上を別の粉体pwが移動する状態になるものと考えられる。そして、減圧環境から通常の大気状態に戻すと、収容容器6内の湿度が戻り、粉体pwの帯電が失われて、付着が解除されて、付着していた大量の粉体pwが搬送されるものと考えられる。すなわち、本実施形態では、収容容器6内を真空環境又は減圧環境にする真空ポンプ等の手段が、粉体pwを帯電させる帯電手段6Xを兼ねており、これによって、振動によって移動する粉体pwが直接トラフに接触しなくなり、搬送される粉体pwがトラフ2によって削られることやトラフ2自体が摩耗することを抑制するものと考えられる。勿論、トラフ2自体に電圧印加することにより搬送面20を帯電させる帯電手段を設け、搬送面20の帯電により粉体pwを付着するように構成してもよい。   In the above configuration, it was found that a large amount of powder pw is temporarily supplied when the powder pw is being transported and returned to the normal atmospheric state (1 atm) from the reduced pressure environment. This is because in the reduced pressure environment, the moisture in the container 6 is low, that is, the humidity is low, so that the powder pw is charged with static electricity and the conveying surface 20 from the weir portion 9 to the downstream end 2a is charged. It is considered that the powder pw is attached to the entire surface, and another powder pw moves on the attached powder pw. Then, when returning to the normal atmospheric state from the reduced pressure environment, the humidity in the container 6 returns, the charge of the powder pw is lost, the adhesion is released, and a large amount of the adhered powder pw is conveyed. It is thought that. That is, in the present embodiment, a means such as a vacuum pump that places the inside of the container 6 in a vacuum environment or a reduced pressure environment also serves as the charging means 6X that charges the powder pw, and thereby the powder pw that moves by vibration. Is not directly in contact with the trough, and it is considered that the powder pw to be conveyed is prevented from being scraped by the trough 2 and from being worn out. Of course, a charging means for charging the conveying surface 20 by applying a voltage to the trough 2 itself may be provided, and the powder pw may be adhered by charging the conveying surface 20.

以上のように、本実施形態に係る粉体供給装置は、ホッパ1から粉体pwの供給を受けるトラフ2を加振手段たる電磁駆動部3で振動させることにより、トラフ2の搬送面20上にある粉体pwを所定の搬送方向Xに沿って移動させトラフ2の下流端2aから落下させて供給先に供給する粉体供給装置であって、所定の搬送方向Xに直交する方向に沿って搬送面20から起立する突状をなし、ホッパ1から供給されトラフ2の振動によって下流端2aに向かおうとする粉体pwの一部を塞き止める堰部9と、堰部9及び下流端2aを経由して下流端2aから落下する粉体pwに対して投光する発光部40及び発光部40から照射され粉体pwで反射した光を受光する光センサ41と、光センサ41の受光量に基づき下流端2aから落下した粉体pwの量を検出する流量検出部42と、流量検出部42による単位時間あたりの検出値が目標流量となる粉体pwの搬送速度を得られるように、加振手段たる電磁駆動部3で加振する振動を制御する振動制御部5とを具備している。   As described above, the powder supply apparatus according to the present embodiment vibrates the trough 2 that receives the supply of the powder pw from the hopper 1 with the electromagnetic drive unit 3 that serves as the vibration means, so Is a powder supply device that moves the powder pw along the predetermined conveyance direction X, drops it from the downstream end 2a of the trough 2, and supplies it to the supply destination, along the direction orthogonal to the predetermined conveyance direction X A weir portion 9 that has a protruding shape standing from the conveying surface 20 and blocks a part of the powder pw supplied from the hopper 1 and directed to the downstream end 2a by the vibration of the trough 2, and the weir portion 9 and the downstream A light emitting unit 40 that projects light onto the powder pw falling from the downstream end 2a via the end 2a, a light sensor 41 that receives the light irradiated from the light emitting unit 40 and reflected by the powder pw, Powder dropped from downstream end 2a based on the amount of light received A flow rate detection unit 42 that detects the amount of pw, and an electromagnetic drive unit 3 that serves as a vibration means so as to obtain a conveyance speed of the powder pw at which the detection value per unit time by the flow rate detection unit 42 becomes a target flow rate. And a vibration control unit 5 that controls vibrations to be vibrated.

このように、振動により搬送される粉体pwをトラフ2の下流端2aから落下させ、落下する粉体pwに発光部40が投光してその反射光を光センサ41で検出し、反射光量に基づき落下した粉体pwの量を検出するので、粉体pwの流量が微量であっても、ホッパ1及びトラフ2を含めて重量で測定する場合に比べて粉体pwの流量を精度良く検出することが可能となる。一方、トラフ2の搬送面20上に盛られた粉体pwが固まった状態で下流端2aから落下すると、発光部40の投光領域に進入する複数の粉体pwが投光方向に重合してしまい、光センサ41による正確な供給量検出ができないと考えられるものの、本実施形態では、トラフ2の搬送面20から起立する突状をなす堰部9によって、下流端2aに向かおうとする複数の粉体pwが鉛直方向に重合しない状態で堰部9の頂部を乗り越えるので、トラフ2の下流端2aから落下して発光部40の投光領域に進入する粉体pwが投光方向に重合することが抑制又は無くなり、光センサ41による流量検出精度を確保できる。したがって、このような流量検出部42による単位時間あたりの検出値が目標流量となる粉体pwの搬送速度を得られるように、トラフ2に加振する振動を制御するので、目標流量との誤差を低減又は無くした粉体供給装置を提供することが可能となる。   In this way, the powder pw conveyed by vibration is dropped from the downstream end 2a of the trough 2, the light emitting unit 40 projects the falling powder pw, and the reflected light is detected by the optical sensor 41. Since the amount of the powder pw that has dropped is detected based on the above, even if the flow rate of the powder pw is very small, the flow rate of the powder pw is more accurate than when measuring by weight including the hopper 1 and trough 2. It becomes possible to detect. On the other hand, when the powder pw piled up on the conveying surface 20 of the trough 2 is solidified and falls from the downstream end 2a, a plurality of powders pw entering the light projecting region of the light emitting unit 40 are superposed in the light projecting direction. Therefore, although it is considered that accurate detection of the supply amount by the optical sensor 41 cannot be performed, in the present embodiment, the dam portion 9 that protrudes from the conveying surface 20 of the trough 2 tries to go to the downstream end 2a. Since the plurality of powders pw does not overlap in the vertical direction and climbs over the top of the dam part 9, the powder pw that falls from the downstream end 2a of the trough 2 and enters the light projecting region of the light emitting unit 40 in the light projecting direction. Polymerization is suppressed or eliminated, and the flow rate detection accuracy by the optical sensor 41 can be secured. Therefore, since the vibration to be applied to the trough 2 is controlled so that the detected value per unit time by the flow rate detection unit 42 can obtain the conveyance speed of the powder pw having the target flow rate, an error from the target flow rate is controlled. It is possible to provide a powder supply apparatus that reduces or eliminates the above.

特に、本実施形態では、搬送面20には、単一の粉体pwの通過を許容する溝幅w1に設定され且つ下流端2aから上流側X2に向かって延びる溝21が、下流端2aに沿って複数配列して形成されており、溝21を構成する溝側壁21a・21aによってガイドされる粉体pwの飛び出し方向が全ての溝21・21で平面視同一方向を向くように設定されているので、下流端2aに沿って形成された複数の溝21・21によって複数の粉体pwが平面視同一方向に向かって飛び出し、発光部40の投光領域に進入するので、複数の粉体pwが投光方向に重合することを低減して、適切な流量検出が可能となる。   In particular, in the present embodiment, a groove 21 that is set to a groove width w1 that allows passage of a single powder pw and extends from the downstream end 2a toward the upstream side X2 is formed in the downstream end 2a. Are formed so that the protruding direction of the powder pw guided by the groove side walls 21a and 21a constituting the groove 21 is set so that all the grooves 21 and 21 face the same direction in plan view. Therefore, the plurality of powders pw jump out in the same direction in plan view by the plurality of grooves 21 and 21 formed along the downstream end 2a and enter the light projecting region of the light emitting unit 40. It is possible to reduce pw polymerization in the light projecting direction and to detect an appropriate flow rate.

さらに、本実施形態では、搬送面20の上流側X2から下流側X1に向かうにつれて粉体pwの搬送速度が速くなるように振動角度が設定されているので、複数の粉体pwが搬送方向に沿って前後に連なっている場合でも、進み側にある粉体pwの速度が遅れ側にある粉体pwの速度よりも速くなって、粉体pw同士が前後に分離するので、これら粉体pwが投光領域に進入したときに投光方向に重合することを低減して、より適切な流量検出が可能となる。   Furthermore, in this embodiment, since the vibration angle is set so that the conveyance speed of the powder pw increases from the upstream side X2 to the downstream side X1 of the conveyance surface 20, a plurality of powders pw are arranged in the conveyance direction. Since the speed of the powder pw on the advancing side is faster than the speed of the powder pw on the lagging side and the powder pw separates back and forth, It is possible to reduce the amount of polymerization in the light projecting direction when the light enters the light projecting region, and to detect the flow rate more appropriately.

さらにまた、本実施形態では、ホッパ1及びトラフ2を少なくとも収める収容容器6を備え、収容容器6内は、不活性ガスを充填した減圧環境に設定されているので、空気中の酸素によって酸化してしまう粉体pwをその酸化を防止しつつ供給することが可能となる。   Furthermore, in the present embodiment, the storage container 6 that stores at least the hopper 1 and the trough 2 is provided, and the interior of the storage container 6 is set in a reduced pressure environment filled with an inert gas, so that it is oxidized by oxygen in the air. It becomes possible to supply the powder pw that will be produced while preventing its oxidation.

その他、真空環境又は減圧環境では、容器内の水分が低減すなわち湿度が下がり、粉体が静電気を帯びてトラフ2の搬送面20に付着しやすくなる。本実施形態では、粉体pwを帯電させる帯電手段6Xとして、収容容器6内を真空環境又は減圧環境にする真空ポンプ62等の手段が設けられているので、粉体pwが帯電して搬送面20が粉体pwで覆われると、振動によって移動する粉体pwがトラフ2に直接接触しなくなり、搬送される粉体pwがトラフ2によって削られて損傷することやトラフ2自体が摩耗することを抑制することが可能となる。   In addition, in a vacuum environment or a reduced pressure environment, the moisture in the container is reduced, that is, the humidity is lowered, and the powder is easily charged with static electricity and easily adheres to the transport surface 20 of the trough 2. In the present embodiment, as the charging means 6X for charging the powder pw, means such as a vacuum pump 62 for providing the inside of the container 6 in a vacuum environment or a reduced pressure environment is provided. When 20 is covered with the powder pw, the powder pw moving by vibration does not directly contact the trough 2, and the conveyed powder pw is scraped by the trough 2 and damaged or the trough 2 itself is worn. Can be suppressed.

以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   As mentioned above, although embodiment of this invention was described based on drawing, it should be thought that a specific structure is not limited to these embodiment. The scope of the present invention is shown not only by the above description of the embodiments but also by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.

例えば、本実施形態では、堰部9は、所定の搬送方向Xに直交する方向に沿って設けられているが、搬送方向Xに交差する方向に沿って設けられていてもよい。また、本実施形形態では、溝21は、堰部9と下流端2aとの間の途中部位から下流端2aまで搬送方向Xに沿って形成されているが、堰部9から下流端2aまで搬送方向Xに沿って形成してもよい。また、本実施形態では、溝21は、横断面U字状に形成されているが、上向きコの字状や他の形状に形成されていてもよい。また、溝21は、搬送方向Xに沿って形成されているが、これに限定されるものではない。   For example, in this embodiment, the dam portion 9 is provided along a direction orthogonal to the predetermined transport direction X, but may be provided along a direction intersecting the transport direction X. Moreover, in this embodiment, although the groove | channel 21 is formed along the conveyance direction X from the middle part between the dam part 9 and the downstream end 2a to the downstream end 2a, from the dam part 9 to the downstream end 2a You may form along the conveyance direction X. FIG. Moreover, in this embodiment, although the groove | channel 21 is formed in the cross-sectional U shape, you may be formed in the upward U-shape or other shapes. Moreover, although the groove | channel 21 is formed along the conveyance direction X, it is not limited to this.

なお、各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   The specific configuration of each part is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

1…ホッパ
2…トラフ
2a…下流端
20…搬送面
21…溝
3…加振手段(電磁駆動部)
40…発光部
41…光センサ
42…流量検出部
5…振動制御部
6…収容容器
6X…帯電手段
9…堰部
pw…粉体
w1…溝幅
X…搬送方向
X1…下流側
X2…上流側
DESCRIPTION OF SYMBOLS 1 ... Hopper 2 ... Trough 2a ... Downstream end 20 ... Conveying surface 21 ... Groove 3 ... Excitation means (electromagnetic drive part)
40 ... Light emitting part 41 ... Optical sensor 42 ... Flow rate detection part 5 ... Vibration control part 6 ... Container 6X ... Charging means 9 ... Weir part pw ... Powder w1 ... Groove width X ... Conveyance direction X1 ... Downstream side X2 ... Upstream side

Claims (5)

ホッパから粉体の供給を受けるトラフを加振手段で振動させることにより、前記トラフの搬送面上にある粉体を所定の搬送方向に沿って移動させ前記トラフの下流端から落下させて供給先に供給する粉体供給装置であって、
前記所定の搬送方向に交差する方向に沿って前記搬送面から起立する突状をなし、前記ホッパから供給され前記トラフの振動によって前記下流端に向かおうとする粉体の一部を塞き止める堰部と、
前記堰部及び前記下流端を経由して当該下流端から落下する粉体に対して投光する発光部及び発光部から照射され粉体pwで反射した光を受光する光センサと、
前記光センサの受光量に基づき前記下流端から落下した粉体の量を検出する流量検出部と、
前記流量検出部による単位時間あたりの検出値が目標流量となる粉体の搬送速度を得られるように、前記加振手段で加振する振動を制御する振動制御部とを具備することを特徴とする粉体供給装置。
The trough that receives the supply of powder from the hopper is vibrated by the vibrating means, whereby the powder on the trough transport surface is moved along a predetermined transport direction and dropped from the downstream end of the trough to be supplied to A powder supply device for supplying to
A projecting shape standing from the conveying surface in a direction intersecting the predetermined conveying direction is formed, and a part of the powder supplied from the hopper and directed to the downstream end is blocked by vibration of the trough. A weir,
A light emitting unit that projects the powder falling from the downstream end via the weir unit and the downstream end, and a light sensor that receives the light irradiated from the light emitting unit and reflected by the powder pw;
A flow rate detector for detecting the amount of powder falling from the downstream end based on the amount of light received by the photosensor;
A vibration control unit for controlling vibrations to be vibrated by the vibration means so that a conveyance speed of the powder having a detection value per unit time by the flow rate detection unit as a target flow rate can be obtained. Powder supply device.
前記搬送面には、単一の粉体の通過を許容する溝幅に設定され且つ前記下流端から上流側に向かって延びる溝が、前記下流端に沿って複数配列して形成されており、前記溝によってガイドされる粉体の飛び出し方向が全ての溝で平面視同一方向を向くように設定されている請求項1に記載の粉体供給装置。   The conveying surface is formed with a plurality of grooves that are set to a groove width that allows passage of a single powder and that extend from the downstream end toward the upstream side along the downstream end, The powder supply apparatus according to claim 1, wherein the protruding direction of the powder guided by the groove is set so as to face the same direction in plan view in all the grooves. 前記搬送面の上流側から下流側に向かうにつれて粉体の搬送速度が速くなるように振動角度が設定されている請求項1又は2に記載の粉体供給装置。   3. The powder supply apparatus according to claim 1, wherein the vibration angle is set such that the powder conveyance speed increases from the upstream side toward the downstream side of the conveyance surface. 前記ホッパ及び前記トラフを少なくとも収める収容容器を備え、前記収容容器内は、真空環境又は不活性ガスを充填した減圧環境に設定されている請求項1〜3のいずれかに記載の粉体供給装置。   The powder supply apparatus according to any one of claims 1 to 3, further comprising a storage container for storing at least the hopper and the trough, wherein the storage container is set in a vacuum environment or a reduced pressure environment filled with an inert gas. . 前記粉体又は前記搬送面を帯電させる帯電手段を設けている請求項1〜4のいずれかに記載の粉体供給装置。   The powder supply apparatus according to claim 1, further comprising a charging unit configured to charge the powder or the transport surface.
JP2011113249A 2011-05-20 2011-05-20 Powder supply device Pending JP2012240804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011113249A JP2012240804A (en) 2011-05-20 2011-05-20 Powder supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011113249A JP2012240804A (en) 2011-05-20 2011-05-20 Powder supply device

Publications (1)

Publication Number Publication Date
JP2012240804A true JP2012240804A (en) 2012-12-10

Family

ID=47462901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011113249A Pending JP2012240804A (en) 2011-05-20 2011-05-20 Powder supply device

Country Status (1)

Country Link
JP (1) JP2012240804A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105600501A (en) * 2015-12-25 2016-05-25 广东基泰智能设备有限公司 Powder scattering device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107027U (en) * 1983-12-26 1985-07-20 積水化成品工業株式会社 Vibratory feeding device
JPS6258278A (en) * 1985-09-09 1987-03-13 Seikosha Co Ltd Toner transferring device for electrophotographic recording
JPH02198909A (en) * 1988-10-04 1990-08-07 Satake Eng Co Ltd Vibration supply method of granular substance, or the like
JPH10142034A (en) * 1996-11-08 1998-05-29 Aisan Ind Co Ltd Power supplying device
JP2000247427A (en) * 1999-02-27 2000-09-12 Ishida Co Ltd Vibration type conveyance device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107027U (en) * 1983-12-26 1985-07-20 積水化成品工業株式会社 Vibratory feeding device
JPS6258278A (en) * 1985-09-09 1987-03-13 Seikosha Co Ltd Toner transferring device for electrophotographic recording
JPH02198909A (en) * 1988-10-04 1990-08-07 Satake Eng Co Ltd Vibration supply method of granular substance, or the like
JPH10142034A (en) * 1996-11-08 1998-05-29 Aisan Ind Co Ltd Power supplying device
JP2000247427A (en) * 1999-02-27 2000-09-12 Ishida Co Ltd Vibration type conveyance device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105600501A (en) * 2015-12-25 2016-05-25 广东基泰智能设备有限公司 Powder scattering device
CN105600501B (en) * 2015-12-25 2017-10-31 广东基泰智能设备有限公司 Dusting device

Similar Documents

Publication Publication Date Title
US20090114665A1 (en) Vibrating Bowl, Vibrating Bowl Feeder, and Vacuum Deposition System
TWI442040B (en) A measurement unit for a gas flow, and a measurement method
CN104755396B (en) Transport dimension limit large area panel method and device
JP5957215B2 (en) Conveyor belt equipment
CN103534557B (en) For measuring the system and method for bulk solids flow of material
TW200922853A (en) Automatic roll feeder
CN110636982A (en) Weighing system in magnetic suspension conveying system
CN101846884B (en) Coating device
JPWO2017038269A1 (en) Purge apparatus, purge stocker, and purge method
US11123983B2 (en) Inkjet printer with substrate flatness detection
JP2010195436A (en) Dispensing/packing machine
JP5150709B2 (en) Catalyst filling machine and catalyst filling method using the same
CN102420160A (en) Wafer supply system
CN104303028A (en) Weighing device for piece goods
JP2012240804A (en) Powder supply device
KR101884715B1 (en) Method and device for coating a metal strip with a coating material which is at first still liquid
JP2018028217A (en) Fixed position detector and elevator type parking device using the same
CN107117462A (en) Determine the conveying body phase of at least one suspension for the position of suspension supply unit and/or the apparatus and method of orientation
JP2009029517A (en) Weighing filler
JP2006176217A (en) Yard crane control device
CN217172148U (en) Vibration loading attachment
CN108120388B (en) Inspection apparatus
JP7060796B2 (en) Weight filling device
JP5762347B2 (en) Roll body transport device
JP7105043B2 (en) Container supply unit and automatic analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150714