JP2012238636A - Silicone-based sealing material composition - Google Patents

Silicone-based sealing material composition Download PDF

Info

Publication number
JP2012238636A
JP2012238636A JP2011104941A JP2011104941A JP2012238636A JP 2012238636 A JP2012238636 A JP 2012238636A JP 2011104941 A JP2011104941 A JP 2011104941A JP 2011104941 A JP2011104941 A JP 2011104941A JP 2012238636 A JP2012238636 A JP 2012238636A
Authority
JP
Japan
Prior art keywords
sealing material
silicone
weight
material composition
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011104941A
Other languages
Japanese (ja)
Other versions
JP5760664B2 (en
Inventor
Noriaki Terada
憲章 寺田
Hiroshi Mori
寛 森
Kenichi Takizawa
健一 滝沢
Hanako Kato
波奈子 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2011104941A priority Critical patent/JP5760664B2/en
Publication of JP2012238636A publication Critical patent/JP2012238636A/en
Application granted granted Critical
Publication of JP5760664B2 publication Critical patent/JP5760664B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor light emitting device using a silicone resin-based sealing material, which prevents color changes with time of a lead electrode to maintain brightness of the light emitting device.SOLUTION: A silicone-based sealing material composition containing (A) a bifunctional thermosetting silicone resin, (B) a polyfunctional thermosetting silicone resin and (C) a hardening catalyst has the following features. (1) The rate (weight ratio) of (B) present in the total amount of (A) and (B) is 0.5/100 or greater and less than 100/100. (2) The functional number of the component (B) is 2.5 or greater and 4.0 or less. (3) The weight average molecular weight of the component (B) is 1000 to 10000. (4) At a temperature of 80°C, (A) and (B) are immiscible with each other and the density of (B) is higher by 0.01 g/cmor more than that of (A).

Description

本発明は、半導体発光装置等に好適に使用できるシリコーン系封止材組成物及びこれによって封止された半導体発光装置に関する。   The present invention relates to a silicone-based encapsulant composition that can be suitably used for a semiconductor light emitting device and the like, and a semiconductor light emitting device encapsulated thereby.

発光ダイオード(Light Emitting Diode:以下適宜「LED」と略記する。)や半導体レーザー(以下両者をまとめて「LED等」と略記する。)等を用いた半導体発光デバイスにおいては、半導体発光素子を保護するために、透明の樹脂等によって封止することが一般に行われている。
このような半導体発光デバイス用封止材としては、エポキシ樹脂が広く用いられているが、LED等の高出力化、発光波長の短波長化により、エポキシ樹脂の劣化による変色やこれに伴う半導体発光デバイスの輝度低下が問題となってきた。
In a semiconductor light emitting device using a light emitting diode (hereinafter abbreviated as “LED” where appropriate), a semiconductor laser (hereinafter abbreviated as “LED etc.”) or the like, the semiconductor light emitting element is protected. Therefore, sealing with a transparent resin or the like is generally performed.
Epoxy resin is widely used as a sealing material for such semiconductor light-emitting devices, but due to higher output of LEDs, etc., and shorter emission wavelength, discoloration due to deterioration of epoxy resin and accompanying semiconductor light emission The decrease in device brightness has become a problem.

そのため、LED等の封止材として、耐熱性、耐光性が良好なシリコーン樹脂が用いられるようになっている。
しかしながら、シリコーン樹脂は水分やガスの透過性が高いため、半導体発光デバイスに含まれるリード電極等の金属部材の表面が酸化や硫化によって変色し、経時的に光反射率が低下し、従って発光装置の出力が低下するという問題が発生している。
Therefore, a silicone resin having good heat resistance and light resistance has been used as a sealing material for LEDs and the like.
However, since the silicone resin has a high moisture and gas permeability, the surface of a metal member such as a lead electrode included in the semiconductor light emitting device is discolored due to oxidation or sulfuration, and the light reflectance decreases with time. There is a problem that the output of.

これに対して、特許文献1に開示されるようにデバイス中の金属部分をガラス等の透光性の無機材料層で被覆する方法や、特許文献2のように発光装置のパッケージ底面を水蒸気透過性が低い変成シリコーン樹脂で被覆した上で、シリコーン樹脂系封止材層を形成する方法が提案されている。   On the other hand, as disclosed in Patent Document 1, a metal part in a device is coated with a light-transmitting inorganic material layer such as glass, or a package bottom surface of a light-emitting device is transmitted through water vapor as in Patent Document 2. A method of forming a silicone resin-based sealing material layer after coating with a modified silicone resin having low properties has been proposed.

特開2007−324256号公報JP 2007-324256 A 特開2009−170824号公報JP 2009-170824 A

本発明は、シリコーン樹脂系の封止材を用いた半導体発光装置において、従来技術のように予めリード電極として被覆されたものを用いることなく、封止材組成物を構成するシリコーン樹脂の水分やガスの透過性を低くすることにより、発光装置の輝度の低下を防止でき、長期にわたって高い輝度を維持することができるシリコーン系封止材組成物及びこれを用いた半導体発光装置を提供することを課題とする。   The present invention relates to a semiconductor light emitting device using a silicone resin-based sealing material, without using a material previously coated as a lead electrode as in the prior art, without the moisture content of the silicone resin constituting the sealing material composition. To provide a silicone-based encapsulant composition that can prevent a decrease in luminance of a light-emitting device and maintain high luminance over a long period of time by reducing gas permeability, and a semiconductor light-emitting device using the same Let it be an issue.

本発明者らは上記課題を解決すべく鋭意検討し、半導体発光デバイス用の封止材を構成するシリコーン樹脂として、特定の性状を有するシリコーン樹脂を組み合わせて用いることにより、水分や含イオウ化合物を含むイオウ類が封止材層から電極表面に到達することを抑制して電極表面の変色を防止し、リード電極の反射率を長期にわたって維持できることを見出し、本発明に到達した。   The present inventors have intensively studied to solve the above problems, and by using a combination of a silicone resin having specific properties as a silicone resin constituting a sealing material for a semiconductor light emitting device, moisture and a sulfur-containing compound can be used. The present inventors have found that sulfur containing sulfur can be prevented from reaching the electrode surface from the encapsulant layer to prevent discoloration of the electrode surface and maintain the reflectance of the lead electrode over a long period of time.

即ち本発明の要旨は以下のとおりである。
(1)(A)二官能熱硬化性シリコーン樹脂、(B)多官能熱硬化性シリコーン樹脂、及び(C)硬化触媒を含有してなるシリコーン系封止材組成物であって、以下の特徴を有するシリコーン系封止材組成物であり、以下の1)〜4)の特徴を有する組成物。
1)(A)と(B)との合計量中に(B)が占める比率、(B)/((A)+(B))(重量比)の値が、0.5/100以上、100/100未満
2)(B)成分の官能数が2.5以上4.0以下
3)(B)成分の重量平均分子量が1000〜10000
4)80℃において、(A)と(B)とは相溶せず、かつ当該温度での(B)の密度が(A)の密度よりも0.01g/cm以上高い。
(2)また、本発明は、
(A)と(B)とを含む液状組成物及び(C)を含む液状組成物とから構成される二液型組成物である上記(1)に記載のシリコーン系封止材組成物が好ましい態様である。
(3)また、本発明は、
(A)と(B)のいずれか一方の融点が25℃以下であり、他方の融点が30〜100℃である上記(1)又は(2)に記載の組成物も好ましい態様である。
(4)さらに、本発明は、
(A)と(B)との合計量中に(B)が占める比率、(B)/((A)+(B))の値が、1/100〜50/100(重量比)である上記(1)〜(3)のいずれかに記載の組成物がより好ましい態様である。
(5)また、本発明は、
(C)硬化触媒の含有量が、(A)と(B)との合計量に対して、0.01〜0.5重量%である上記(1)〜(4)のいずれかに記載の組成物が好ましい態様である。
(6)また、本発明は、
(C)硬化触媒が金属成分としてスズ(Sn)、亜鉛(Zn)、鉄(Fe)、チタン(Ti)、ジルコニウム(Zr)、ビスマス(Bi)、ハフニウム(Hf)、イットリウム(Y)、アルミニウム(Al)、ホウ素(B)及びガリウム(Ga)からなる群から選ばれる少なくとも一種の金属の有機錯体又は有機酸塩である上記(1)〜(5)のいずれかに記載の組成物が好ましい態様である。
(7)また、本発明は、
上記(A)〜(C)の各成分に加えて、さらに(D)重量平均分子量が300〜800の多官能ポリオルガノシロキサンを、(A)と(B)との合計量に対して0.05〜1重量%含有する上記(1)〜(6)のいずれかに記載の組成物が好ましい態様である。
(8)また、本発明の別の態様は、上記(1)〜(7)のいずれかに記載のシリコーン系封止材組成物によって封止されている半導体発光装置である。
That is, the gist of the present invention is as follows.
(1) A silicone-based encapsulant composition comprising (A) a bifunctional thermosetting silicone resin, (B) a polyfunctional thermosetting silicone resin, and (C) a curing catalyst, wherein: A composition having a characteristic of the following 1) to 4).
1) The ratio of (B) in the total amount of (A) and (B), the value of (B) / ((A) + (B)) (weight ratio) is 0.5 / 100 or more, Less than 100/100 2) Functionality of component (B) is 2.5 or more and 4.0 or less 3) Weight average molecular weight of component (B) is 1000 to 10,000
4) At 80 ° C., (A) and (B) are not compatible, and the density of (B) at the temperature is 0.01 g / cm 3 or more higher than the density of (A).
(2) The present invention also provides:
The silicone-based encapsulant composition according to the above (1), which is a two-part composition composed of a liquid composition containing (A) and (B) and a liquid composition containing (C), is preferred. It is an aspect.
(3) The present invention also provides:
The melting point of any one of (A) and (B) is 25 degrees C or less, and the composition as described in said (1) or (2) whose other melting point is 30-100 degreeC is also a preferable aspect.
(4) Furthermore, the present invention provides:
The ratio of (B) in the total amount of (A) and (B), the value of (B) / ((A) + (B)) is 1/100 to 50/100 (weight ratio). The composition according to any one of (1) to (3) is a more preferred embodiment.
(5) The present invention also provides:
(C) Content of a curing catalyst is 0.01-0.5 weight% with respect to the total amount of (A) and (B), Any one of said (1)-(4) A composition is a preferred embodiment.
(6) The present invention also provides:
(C) Tin (Sn), zinc (Zn), iron (Fe), titanium (Ti), zirconium (Zr), bismuth (Bi), hafnium (Hf), yttrium (Y), aluminum as a metal component as a curing catalyst The composition according to any one of (1) to (5) above, which is an organic complex or organic acid salt of at least one metal selected from the group consisting of (Al), boron (B) and gallium (Ga). It is an aspect.
(7) The present invention also provides:
In addition to the components (A) to (C) described above, (D) a polyfunctional polyorganosiloxane having a weight average molecular weight of 300 to 800 is added to the total amount of (A) and (B) by 0.00. The composition according to any one of the above (1) to (6), which contains 0.5 to 1% by weight, is a preferred embodiment.
(8) Moreover, another aspect of the present invention is a semiconductor light-emitting device that is sealed with the silicone-based sealing material composition according to any one of (1) to (7).

本発明のシリコーン系封止材組成物を用いることにより、リード電極の反射率を長期にわたって維持できる優れた半導体発光装置を提供することができる。   By using the silicone-based sealing material composition of the present invention, it is possible to provide an excellent semiconductor light emitting device capable of maintaining the reflectance of the lead electrode over a long period of time.

本発明の半導体発光装置の一態様を表す概念図である。It is a conceptual diagram showing the one aspect | mode of the semiconductor light-emitting device of this invention.

本発明は、特定のシリコーン系封止材組成物及び、この封止材組成物によって封止された半導体発光装置に関するものである。
以下、本発明について、シリコーン系封止材組成物及び半導体発光装置の具体的な態様について詳述するが、本発明はこれらの説明により限定されるものではない。
<1.組成物の構成成分>
本発明の半導体発光デバイス用シリコーン系封止材組成物は、(A)二官能熱硬化性シリコーン樹脂、(B)多官能熱硬化性シリコーン樹脂、及び(C)硬化触媒を必須成分とし、好ましくは、更に(D)重量平均分子量が300〜800の反応性ポリオルガノシロキサンを含んでなるシリコーン系封止材組成物であって、それぞれが特定の組成比及び特徴を有するものである。
The present invention relates to a specific silicone-based encapsulant composition and a semiconductor light emitting device encapsulated with the encapsulant composition.
Hereinafter, although specific embodiments of the silicone-based sealing material composition and the semiconductor light-emitting device are described in detail, the present invention is not limited to these descriptions.
<1. Components of composition>
The silicone-based encapsulant composition for semiconductor light-emitting devices of the present invention preferably comprises (A) a bifunctional thermosetting silicone resin, (B) a polyfunctional thermosetting silicone resin, and (C) a curing catalyst as essential components. Is a silicone-based encapsulant composition further comprising (D) a reactive polyorganosiloxane having a weight average molecular weight of 300 to 800, each having a specific composition ratio and characteristics.

以下、本発明に用いられる各構成成分について説明する。
1.1 (A)二官能熱硬化性シリコーン樹脂
本発明に用いられる(A)二官能熱硬化性シリコーン樹脂とは、シロキサン結合を主鎖とする有機性重合体であり、以下に示す一般組成式(1)で表される化合物の平均官能数が、約2になるものを言う。

(RSiO1/2(RSiO2/2(RSiO3/2(SiO4/2 ・・・(1)
但し、RからRはそれぞれ独立して、アルキル基やフェニル基等の炭化水素基である。また、これらRからRの部位がハロゲン原子やアルカリ金属原子により置換されることもあるが、このような場合、これらの原子はRからRには相当せず、上記式(1)においては酸素原子と見なしてカウントされる。
Hereinafter, each component used in the present invention will be described.
1.1 (A) Bifunctional thermosetting silicone resin (A) The bifunctional thermosetting silicone resin used in the present invention is an organic polymer having a siloxane bond as the main chain, and has the following general composition The average functional number of the compound represented by formula (1) is about 2.

(R 1 R 2 R 3 SiO 1/2 ) M (R 4 R 5 SiO 2/2 ) D (R 6 SiO 3/2 ) T (SiO 4/2 ) Q (1)
However, R 1 to R 6 are each independently a hydrocarbon group such as an alkyl group or a phenyl group. In addition, these R 1 to R 6 sites may be substituted with a halogen atom or an alkali metal atom. In such a case, these atoms do not correspond to R 1 to R 6 , and the above formula (1 ) Is counted as an oxygen atom.

M、D、TおよびQは0以上1未満であり、M+D+T+Q=1を満足する数である。 上記式(1)で表されるポリオルガノシロキサンを構成する単位は、1官能型[RSiO0.5](トリオルガノシルヘミオキサン)、2官能型[RSiO](ジオルガノシロキサン)、3官能型[RSiO1.5](オルガノシルセスキオキサン)、4官能型[SiO](シリケート)(但し、この記載ではRからRを、簡略化のためRとまとめて示している)であり、これら4種の単位の構成比率によって、ポリオルガノシロキサンとしての官能数が定まる。 M, D, T, and Q are 0 or more and less than 1, and M + D + T + Q = 1. The unit constituting the polyorganosiloxane represented by the above formula (1) is monofunctional [R 3 SiO 0.5 ] (triorganosyl hemioxane), bifunctional [R 2 SiO] (diorganosiloxane). ), Trifunctional [RSiO 1.5 ] (organosilsesquioxane), tetrafunctional [SiO 2 ] (silicate) (in this description, R 1 to R 6 are combined with R for simplification. The functional number of the polyorganosiloxane is determined by the composition ratio of these four types of units.

即ち、上記式(1)のポリオルガノシロキサンの官能数は下記式(2)によって算出できる。
官能数=(2×D+3×T+4×Q)/(D+T+Q) ・・・ (2)
なお、典型的な二官能熱硬化性シリコーン樹脂は、上記式(1)で全てが(RSiO2/2)の構成単位、即ち、ジオルガノシロキサン構造(−O−Si(R)(R)−O−)のみからなるポリオルガノシロキサンであり、この場合の官能数は2.0である。
That is, the functional number of the polyorganosiloxane of the above formula (1) can be calculated by the following formula (2).
Functional number = (2 × D + 3 × T + 4 × Q) / (D + T + Q) (2)
Note that typical bifunctional thermosetting silicone resins are all structural units of the formula (1) (R 4 R 5 SiO 2/2 ), that is, a diorganosiloxane structure (—O—Si (R 4). ) (R 5 ) —O—) only, and the functional number in this case is 2.0.

本発明においては、上記の通りこのような典型的な二官能熱硬化性シリコーン樹脂だけでなく、平均の官能数が約2となるような熱硬化性シリコーン樹脂を特に制限なく用いることができる。
このような二官能熱硬化性シリコーン樹脂の具体例としては、U111、U113D、U211、U213D、S111、S113D、S211、S213D、N111、N113D、N211、N213D(以上三菱化学(株)製)、YF3800、XF3905、YF3057、YF3807、YF3802、YF3897、XC96−723、YF3804(以上モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)、X−21−5841、KF9701(以上信越化学工業(株)製)等が挙げられる。
In the present invention, not only such a typical bifunctional thermosetting silicone resin as described above but also a thermosetting silicone resin having an average functional number of about 2 can be used without particular limitation.
Specific examples of such bifunctional thermosetting silicone resin include U111, U113D, U211, U213D, S111, S113D, S211, S213D, N111, N113D, N211, N213D (manufactured by Mitsubishi Chemical Corporation), YF3800. XF3905, YF3057, YF3807, YF3802, YF3897, XC96-723, YF3804 (manufactured by Momentive Performance Materials Japan GK), X-21-5841, KF9701 (manufactured by Shin-Etsu Chemical Co., Ltd.), etc. Can be mentioned.

1.2 (B)多官能熱硬化性シリコーン樹脂
本発明において用いる(B)多官能熱硬化性シリコーン樹脂とは、上記式(1)において、官能数が約3以上の熱硬化性シリコーン樹脂である。好ましい官能数は2.5以上4.0未満、より好ましくは2.8以上3.5以下である。
官能数が上記範囲にあることにより、加熱硬化時にシリコーン樹脂中に緊密な架橋構造が形成され、水分やイオウ類の透過性が低い、ガスバリア性に優れた硬化樹脂が形成できる。
官能数が2.5未満では、ガスバリア性が十分高くならず、また4.0では効果反応の制御性が悪くなり、均一な架橋構造が形成しにくくなり、結果的にガスバリア性が不十分になることがある。
1.2 (B) Multifunctional thermosetting silicone resin (B) The polyfunctional thermosetting silicone resin used in the present invention is a thermosetting silicone resin having a functional number of about 3 or more in the above formula (1). is there. The functional number is preferably 2.5 or more and less than 4.0, more preferably 2.8 or more and 3.5 or less.
When the functional number is in the above range, a tight cross-linked structure is formed in the silicone resin at the time of heat curing, and a cured resin having low gas and moisture permeability and excellent gas barrier properties can be formed.
When the functional number is less than 2.5, the gas barrier property is not sufficiently high, and when 4.0, the controllability of the effect reaction is deteriorated, and it is difficult to form a uniform crosslinked structure, resulting in insufficient gas barrier property. May be.

また、(B)成分としては、重量平均分子量が1000〜10000の範囲にあるものを用いる。重量平均分子量が1000未満では、(B)成分の連鎖長が短くなるため架橋の均一性が不十分となりやすく、ガスバリア性向上効果が十分得られない。一方10000を超過する場合は、硬化反応性が低下したり、溶融性が低くなって硬化反応が不十分となったり、分子鎖が長くなることで架橋点間距離が長くなりガスバリア性が低下することがある
このような多官能熱硬化性シリコーン樹脂の具体例としては、KR220L、KR242A、KR−271、KR−282、KR−300、KR311(以上信越化学工業(株)製)等が挙げられる。
Moreover, as (B) component, what has a weight average molecular weight of the range of 1000-10000 is used. When the weight average molecular weight is less than 1000, the chain length of the component (B) is shortened, so that the uniformity of cross-linking tends to be insufficient, and the gas barrier property improving effect cannot be sufficiently obtained. On the other hand, when it exceeds 10,000, the curing reactivity is lowered, the melting property is lowered, the curing reaction is insufficient, or the molecular chain is lengthened, so that the distance between the crosslinking points is increased and the gas barrier property is lowered. Specific examples of such a polyfunctional thermosetting silicone resin include KR220L, KR242A, KR-271, KR-282, KR-300, and KR311 (manufactured by Shin-Etsu Chemical Co., Ltd.). .

1.3 (C)硬化触媒
本発明において(C)硬化触媒は、上記(A)二官能熱硬化性シリコーン樹脂と(B)多官能熱硬化性シリコーン樹脂との混合物を脱水・脱アルコール縮合反応させることによる架橋促進のために用いられる。
1.3 (C) Curing Catalyst In the present invention, (C) curing catalyst is a dehydration / dealcoholization condensation reaction of a mixture of the above (A) bifunctional thermosetting silicone resin and (B) polyfunctional thermosetting silicone resin. It is used to promote crosslinking by

好ましい触媒としては、金属成分としてスズ(Sn)、亜鉛(Zn)、鉄(Fe)、チタン(Ti)、ジルコニウム(Zr)、ビスマス(Bi)、ハフニウム(Hf)、イットリウム(Y)、アルミニウム(Al)、ホウ素(B)及びガリウム(Ga)からなる群から選ばれる少なくとも一種の金属の有機錯体又は有機酸塩のような有機金属化合物触媒が挙げられる。   As a preferable catalyst, tin (Sn), zinc (Zn), iron (Fe), titanium (Ti), zirconium (Zr), bismuth (Bi), hafnium (Hf), yttrium (Y), aluminum (as a metal component) Examples thereof include organic metal compound catalysts such as organic complexes or organic acid salts of at least one metal selected from the group consisting of Al), boron (B), and gallium (Ga).

これらの中でもSn、Ti、Zn、Zr、Hf、Gaは、反応活性が高い点で好ましく、発光デバイスに用いる場合に電極腐食や光吸収が少なく適度な触媒活性を有し、ポリシロキサン鎖の不要な切断劣化が起こりにくいZrやHf、Gaが特に好ましい。
スズ(Sn)を含有する有機金属化合物触媒としては、テトラアルキルスズ、ジアルキルスズオキサイド、ジアルキルスズジカーボネート等(但しアルキル基やカルボン酸の炭素原子数は1〜10が好ましい)が挙げられる。
Among these, Sn, Ti, Zn, Zr, Hf, and Ga are preferable because of their high reaction activity. When used in light-emitting devices, they have moderate catalytic activity with little electrode corrosion and light absorption, and no polysiloxane chain is required. Zr, Hf, and Ga, which are difficult to cause severe cutting deterioration, are particularly preferable.
Examples of the organometallic compound catalyst containing tin (Sn) include tetraalkyltin, dialkyltin oxide, dialkyltin dicarbonate, etc. (however, the alkyl group or the carboxylic acid preferably has 1 to 10 carbon atoms).

チタン(Ti)を含有する有機金属化合物触媒としては、テトラアルコキシチタン又はそのオリゴマー(アルキル基の炭素原子数は3〜8が好ましい)や、チタンアセチルアセトナート等が挙げられる。
亜鉛(Zn)を含有する有機金属化合物触媒としては、亜鉛トリアセチルアセトネート、ステアリン酸亜鉛、ビス(アセチルアセトナト)亜鉛(II)(一水和物)等が挙げられる。
Examples of the organometallic compound catalyst containing titanium (Ti) include tetraalkoxy titanium or an oligomer thereof (the alkyl group preferably has 3 to 8 carbon atoms), titanium acetylacetonate, and the like.
Examples of the organometallic compound catalyst containing zinc (Zn) include zinc triacetylacetonate, zinc stearate, bis (acetylacetonato) zinc (II) (monohydrate), and the like.

ジルコニウム(Zr)を含有する有機金属化合物触媒としては、例えば、ジルコニウムテトラアセチルアセトネート、ジルコニウムジブトキシジアセチルアセトネート、ジルコニウムテトラアルコキシド(アルキル基の炭素原子数は3〜8が好ましい)、ジルコニル(2−エチルヘキサノエート)、及びジルコニウム(2−エチルヘキサノエート)などが挙げられる。   Examples of the organometallic compound catalyst containing zirconium (Zr) include zirconium tetraacetylacetonate, zirconium dibutoxydiacetylacetonate, zirconium tetraalkoxide (the number of carbon atoms in the alkyl group is preferably 3 to 8), zirconyl (2 -Ethyl hexanoate), zirconium (2-ethylhexanoate) and the like.

ハフニウム(Hf)を含有する有機金属化合物触媒としては、前記ジルコニウムと同様の形態の化合物が挙げられる。
ガリウム(Ga)を含有する有機金属化合物触媒としては、例えばガリウムトリアセチルアセトネート、ガリウムトリアルコキシド(アルキル基の炭素原子数は2〜8が好ましい)、ガリウムオクトエート、ガリウムラウレート、酢酸ガリウムなどを挙げることが出来る。
Examples of the organometallic compound catalyst containing hafnium (Hf) include compounds having the same form as zirconium.
Examples of organometallic compound catalysts containing gallium (Ga) include gallium triacetylacetonate, gallium trialkoxide (the alkyl group preferably has 2 to 8 carbon atoms), gallium octoate, gallium laurate, gallium acetate, and the like. Can be mentioned.

本発明において硬化触媒は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ及び比率で用いてもよい。また反応促進剤や反応抑制剤と併用してもよい。
硬化触媒の含有量は、(A)と(B)との合計量に対して、0.01〜0.5重量%(金属原子換算)であることが好ましく、より好ましくは0.03〜0.2重量%である。
硬化触媒の含有量が0.01重量%未満のように少量の場合は、硬化反応が遅くなり、硬化が所望の時間内に完了しないことがあり、一方、0.5重量%を超えて多量に用いると、縮合反応である硬化反応により発生する水やアルコールによる発泡が顕著になって良好な封止が行えなかったり、触媒の光吸収により封止材層の光透過率が低下したり、硬化後の樹脂の熱収縮が顕著になり封止材層がパッケージから剥離したりすることがある。
なお、硬化触媒の含有量は、その金属成分のICP分析により測定できる。
In the present invention, one type of curing catalyst may be used alone, or two or more types may be used in any combination and ratio. Moreover, you may use together with a reaction accelerator and reaction inhibitor.
The content of the curing catalyst is preferably 0.01 to 0.5% by weight (in terms of metal atoms), more preferably 0.03 to 0, based on the total amount of (A) and (B). .2% by weight.
When the content of the curing catalyst is small, such as less than 0.01% by weight, the curing reaction is slowed down and the curing may not be completed within the desired time, while the amount exceeding 0.5% by weight is large. When used in, the foaming due to water or alcohol generated by the curing reaction that is a condensation reaction becomes remarkable, and good sealing cannot be performed, or the light transmittance of the sealing material layer decreases due to light absorption of the catalyst, In some cases, the heat shrinkage of the resin after curing becomes significant, and the encapsulant layer may peel off from the package.
The content of the curing catalyst can be measured by ICP analysis of the metal component.

1.4 (D)重量平均分子量が300〜800の多官能ポリオルガノシロキサン
本発明のシリコーン系封止材組成物には、上記(A)〜(C)の必須成分に加えて、(D)重量平均分子量が300〜800の多官能ポリオルガノシロキサンを含有させることが好ましい。このような多官能ポリオルガノシロキサンは、上記(B)多官能熱硬化性シリコーン樹脂よりも重量平均分子量が低く、常温で液状であるため、組成物の取扱い性が改良されるとともに、加熱硬化反応時には、(B)とともに架橋反応に関与して、より緻密な架橋構造を形成し、得られる封止材層のガスバリア性向上に有効である。
1.4 (D) Polyfunctional polyorganosiloxane having a weight average molecular weight of 300 to 800 In addition to the essential components (A) to (C) described above, the silicone-based encapsulant composition of the present invention includes (D) It is preferable to contain a polyfunctional polyorganosiloxane having a weight average molecular weight of 300 to 800. Such a polyfunctional polyorganosiloxane has a weight average molecular weight lower than that of the polyfunctional thermosetting silicone resin (B) and is liquid at room temperature, so that the handleability of the composition is improved and the heat curing reaction is performed. In some cases, (B) is involved in the crosslinking reaction to form a denser crosslinked structure, which is effective for improving the gas barrier properties of the resulting sealing material layer.

このような(D)の含有量は、上記(A)と(B)との合計量に対して0.05〜1重量%とすることが好ましく、より好ましい含有量は0.1〜0.8重量%である。
含有量が0.05%未満では、(D)を含有させることによるガスバリア性向上効果が不十分となり、一方1重量%を超えて多量に添加すると、硬化反応時の低分子成分(水、アルコール等)の生成による発泡が著しくなり、封止材層の透明度が低下して光線透過率が低下する恐れがある。
The content of (D) is preferably 0.05 to 1% by weight with respect to the total amount of (A) and (B), and more preferably 0.1 to 0. 8% by weight.
If the content is less than 0.05%, the effect of improving gas barrier properties due to the inclusion of (D) becomes insufficient. On the other hand, if it is added in excess of 1% by weight, low molecular components (water, alcohol) during the curing reaction And the like), the foaming due to the generation of the sealing material layer may become remarkable, and the transparency of the sealing material layer may be lowered, and the light transmittance may be lowered.

(D)成分として使用できる多官能ポリオルガノシロキサンの具体例としては、信越化学工業(株)製KC−89S、KF−351A、KF353、KF6011、X−22−2516、KF410、FL−5、X−22−821、X−22−822、FL−100−100cs、KF−4003、KF−4917、KF−96、KF−50等が挙げられる。   Specific examples of the polyfunctional polyorganosiloxane that can be used as the component (D) include KC-89S, KF-351A, KF353, KF6011, X-22-2516, KF410, FL-5, X manufactured by Shin-Etsu Chemical Co., Ltd. -222-21, X-22-822, FL-100-100cs, KF-4003, KF-4917, KF-96, KF-50 and the like.

1.5 その他の成分
本願発明のシリコーン系封止材組成物には、その目的や効果を阻害しない範囲で、上記各成分以外に、例えば粘度、硬化速度、硬化物の硬度、触媒の溶解性向上、取扱い性の向上などの性状の調整や、硬化後に得られる封止材の光学特性、機械的特性、物理化学的特性を改良することを目的として、無機粒子、硬化速度調整剤、及び液状媒体等の添加物を含有させてもよい。
1.5 Other components In the silicone-based encapsulant composition of the present invention, in addition to the above components, for example, viscosity, curing rate, hardness of the cured product, solubility of the catalyst, as long as the purpose and effect thereof are not impaired. Inorganic particles, curing rate modifiers, and liquids for the purpose of adjusting properties such as improvement and handling, and improving the optical properties, mechanical properties, and physicochemical properties of the sealing material obtained after curing You may contain additives, such as a medium.

無機粒子としては、封止材組成物の粘度を調整したり、得られる封止材層の光散乱性、屈折率、寸法安定性、機械的強度を改良したりする目的で、例えば、シリカ、チタニア、アルミナや窒化ケイ素、窒化ホウ素、炭化ケイ素、窒化アルミニウムなどの無機粒子を用いることができる。
無機粒子の平均粒径は、その添加目的に応じて適宜選択されるが、一般に1nm〜100μmの範囲から選ばれることが多い。
As the inorganic particles, for the purpose of adjusting the viscosity of the encapsulant composition or improving the light scattering property, refractive index, dimensional stability, mechanical strength of the obtained encapsulant layer, for example, silica, Inorganic particles such as titania, alumina, silicon nitride, boron nitride, silicon carbide, and aluminum nitride can be used.
The average particle size of the inorganic particles is appropriately selected according to the purpose of addition, but is generally selected from a range of 1 nm to 100 μm in many cases.

無機粒子の使用量も添加目的に応じて調整すればよいが、通常、(A)と(B)との合計重量に対して0.01〜10重量%程度が用いられる。
硬化速度調整剤は、硬化反応時の過度の発泡を制御するために、その速度を調整(遅延)させるために用いられ、例えば3−ヒドロキシ−3−メチル−1−ブチン、3−ヒドロキシ−3−フェニル−1−ブチン等の脂肪族不飽和結合を含有する化合物、有機リン化合物、有機イオウ化合物、窒素含有化合物、有機過酸化物等が挙げられ、これらを併用してもかまわない。
Although the usage-amount of an inorganic particle should just be adjusted according to the addition objective, Usually, about 0.01 to 10 weight% is used with respect to the total weight of (A) and (B).
The curing speed adjusting agent is used to adjust (delay) the speed in order to control excessive foaming during the curing reaction. For example, 3-hydroxy-3-methyl-1-butyne, 3-hydroxy-3 -A compound containing an aliphatic unsaturated bond such as phenyl-1-butyne, an organic phosphorus compound, an organic sulfur compound, a nitrogen-containing compound, an organic peroxide and the like may be mentioned, and these may be used in combination.

硬化速度調整剤は、その目的とする調整の度合いに応じて必要量を添加すればよいが、例えば、使用する(C)硬化触媒1モルに対して、0.1〜100モル程度添加することが好ましく、より好ましくは1〜50モル程度である。
硬化速度調整剤は単独で使用してもよく、2種以上を併用してもよい。
本発明のシリコーン系封止材組成物には、用いる(A)または(B)のシリコーン樹脂や触媒の溶解性向上、組成物の粘度、硬化速度、或いは硬化物の硬度などの調整のために上記各成分以外の液状媒体を添加してもよい。
The curing rate modifier may be added in a necessary amount depending on the degree of adjustment intended, but for example, about 0.1 to 100 mol is added to 1 mol of the (C) curing catalyst to be used. Is preferable, and more preferably about 1 to 50 mol.
A curing rate modifier may be used independently and may use 2 or more types together.
The silicone-based sealing material composition of the present invention is used for improving the solubility of the silicone resin or catalyst (A) or (B) used, adjusting the viscosity of the composition, the curing rate, or the hardness of the cured product. You may add liquid media other than said each component.

このような液状媒体としては、水酸基やヒドロシリル基を有しない脂肪族系炭化水素などの有機溶剤やシリコーンオイルなどを使用することができる。
前記液状媒体の使用量は、シリコーン系封止材組成物の使用形態に応じて適宜選択すればよいが、揮発性の有機溶剤を用いる場合は、その使用量に注意が必要である。これについては、別項(3.)で説明する。
As such a liquid medium, an organic solvent such as an aliphatic hydrocarbon having no hydroxyl group or hydrosilyl group, silicone oil, or the like can be used.
The amount of the liquid medium used may be appropriately selected according to the usage form of the silicone-based sealing material composition. However, when a volatile organic solvent is used, attention should be paid to the amount used. This will be described in another section (3.).

また後述するように、蛍光体をこの組成物中に添加して、半導体発光装置とした時に、半導体発光素子から射出される励起光を蛍光に変換する機能を有する封止材層とすることもできる。このような目的で用いる蛍光体は、半導体発光素子の励起光の波長に応じて適宜選択される。   Further, as will be described later, when a phosphor is added to the composition to form a semiconductor light emitting device, a sealing material layer having a function of converting excitation light emitted from the semiconductor light emitting element into fluorescence can be obtained. it can. The phosphor used for such purpose is appropriately selected according to the wavelength of the excitation light of the semiconductor light emitting device.

例えば、白色光を発する発光装置であれば、青色励起光を発する半導体発光素子を用いて黄色の蛍光体を封止材組成物に含ませるか、又は緑色及び赤色の蛍光体を封止材組成物に含ませることで、あるいは、紫色励起光を発する半導体発光素子を用いて青色及び黄色の蛍光体を封止材組成物に含ませるか、又は青色、緑色、及び赤色の蛍光体を封止材組成物に含ませることで白色光を生成することができる。   For example, in the case of a light emitting device that emits white light, a yellow phosphor is included in the encapsulant composition using a semiconductor light emitting element that emits blue excitation light, or green and red phosphors are encapsulated in the encapsulant composition. Or blue and yellow phosphors are included in the encapsulant composition using a semiconductor light emitting device that emits purple excitation light, or blue, green, and red phosphors are encapsulated. White light can be generated by inclusion in the material composition.

<2.構成成分の組成、特性>
2.1 (A)と(B)との合計量中に(B)が占める比率
本発明の半導体発光デバイス用シリコーン系封止材組成物においては、上記(A)二官能熱硬化性シリコーン樹脂と(B)多官能熱硬化性シリコーン樹脂との合計量中に(B)が占める比率、即ち「(B)/((A)+(B))」の値はその重量比として、0.5/100以上、100/100未満である。
<2. Composition and characteristics of constituents>
2.1 Ratio of (B) in the total amount of (A) and (B) In the silicone-based encapsulant composition for a semiconductor light-emitting device of the present invention, the (A) bifunctional thermosetting silicone resin And (B) the ratio of (B) in the total amount of the polyfunctional thermosetting silicone resin, that is, the value of “(B) / ((A) + (B))” is 0. 5/100 or more and less than 100/100.

(B)の含有量が0.5/100未満ではガスバリア性が不十分となり、リード電極の光沢保持性が低下する傾向となる。一方(B)成分が100%になると、硬化速度が著しく速くなり、硬化反応の制御性が低下するとともに、硬化後の硬度が高くなり、封止材が割れたり剥離しやすくなったりし、また硬化時の発泡が多くなって封止材層の光透過率が低下し、或いは成形時の収縮が顕著となる恐れがある。   When the content of (B) is less than 0.5 / 100, the gas barrier property is insufficient, and the gloss retention of the lead electrode tends to be lowered. On the other hand, when the component (B) is 100%, the curing rate is remarkably increased, the controllability of the curing reaction is lowered, the hardness after curing is increased, and the sealing material is easily cracked or peeled off. There is a risk that foaming at the time of curing increases and the light transmittance of the encapsulant layer decreases, or shrinkage at the time of molding becomes significant.

この(B)に比べ(A)二官能熱硬化性シリコーン樹脂は収縮が少なく応力緩和しやすいので、(B)多官能熱硬化性シリコーン樹脂と併用することで、硬化収縮による応力が緩和されて剥離を防ぐ効果が発現すると考えられる。
封止材の剥離性と成形時の発泡のバランスを考慮すると、より好ましい重量比は、1/100以上、50/100以下、更に好ましくは3/100以上15/100以下、特に好ましいのは5/100以上、10/100以下である。
Compared to (B), (A) the bifunctional thermosetting silicone resin has less shrinkage and is easy to relieve stress. By using this together with (B) polyfunctional thermosetting silicone resin, the stress due to curing shrinkage is relieved. It is thought that the effect which prevents peeling is expressed.
Considering the balance between the releasability of the sealing material and foaming at the time of molding, a more preferable weight ratio is 1/100 or more and 50/100 or less, more preferably 3/100 or more and 15/100 or less, and particularly preferably 5 / 100 or more and 10/100 or less.

2.2 (A)及び(B)の性状
本発明に用いるシリコーン樹脂である(A)及び(B)は、それぞれ上記の特性を有する他に、硬化が進行する状態の温度である80℃において、(A)と(B)とが相溶しないことと、当該温度(80℃)における、(B)の密度が(A)の密度よりも0.01g/cm以上高いことが必要である。
2.2 Properties of (A) and (B) The silicone resins (A) and (B) used in the present invention have the above-mentioned properties, respectively, and at 80 ° C., which is the temperature at which curing proceeds. , (A) and (B) are incompatible with each other, and the density of (B) at the temperature (80 ° C.) is required to be 0.01 g / cm 3 or more higher than the density of (A). .

本発明の封止材組成物では、上記2種類のシリコーン樹脂を使用し、(B)である架橋反応性の多官能シリコーン樹脂が、硬化過程で(A)と相溶性がないために、溶融した系内で両者が相分離することとなる。しかも硬化温度に近い80℃の条件で(B)の密度が(A)よりも0.01g/cm3以上高いことより、主に(B)成分が液化した封止材組成物中で沈降して底部のリード電極付近に集まり、そこで高度の架橋反応を起こすことで、リード電極の表面をガスバリア性の高い層で覆うこととなるため、水分やイオウ含有化合物等のイオウ類がリード電極に接近することを防ぐことができる。 In the sealing material composition of the present invention, the above-mentioned two types of silicone resins are used, and the crosslinking reactive polyfunctional silicone resin (B) is incompatible with (A) in the curing process. Both will phase separate in the system. Moreover, since the density of (B) is higher than that of (A) by 0.01 g / cm 3 or more under the condition of 80 ° C. close to the curing temperature, it mainly settles in the encapsulant composition in which component (B) is liquefied. As a result, the surface of the lead electrode is covered with a layer having a high gas barrier property by gathering in the vicinity of the lead electrode at the bottom and causing a high degree of crosslinking reaction there, so that sulfur such as moisture and sulfur-containing compounds approach the lead electrode. Can be prevented.

これによって本願発明の光沢維持効果が得られるものと考えられる。
ここで、(A)と(B)とが相溶しない、とは、例えば等量の(A)及び(B)を混合して、80℃に温度を調整したところで、その混合液を撹拌した時に、両者が一つの均一相を形成することなく、例えば濁った状態となったり、あるいは相分離したりすることで、相溶していないことが判断できる。
As a result, it is considered that the gloss maintaining effect of the present invention can be obtained.
Here, (A) and (B) are incompatible with each other. For example, when equal amounts of (A) and (B) are mixed and the temperature is adjusted to 80 ° C., the mixture is stirred. Sometimes it can be determined that they are not compatible by forming a homogeneous phase, for example, in a cloudy state or by phase separation.

上記相溶性の評価の際の、(A)と(B)との比率は、封止材組成物として用いようとしている具体的な比率を用いるのがよい。
なお、密度測定は、例えば予め重量を測定してある容量100mlのガラス(パイレックス(登録商標))製メスシリンダーに試料を、液体であれば約10ml分秤取して重量を測定し、その上で80℃の恒温器中に1〜2時間放置した後取り出して、直ちにその体積を確認し、この体積と先に測定した試料の重量から80℃での密度を求めることができる。また試料が常温で固体の場合は、例えば約10g程度の試料をメスシリンダーに秤取して重量を測定し、次いで上記と同様にメスシリンダーごと80℃の恒温器中に1〜2時間放置し溶解させて80℃における体積を測定し、80℃での密度を算出できる。
As the ratio of (A) and (B) in the evaluation of the compatibility, it is preferable to use a specific ratio that is going to be used as a sealing material composition.
For example, the density is measured in a glass (pyrex (registered trademark)) measuring cylinder having a volume of 100 ml, which has been previously weighed. Then, after leaving it in an incubator at 80 ° C. for 1-2 hours, it is taken out and its volume is immediately confirmed, and the density at 80 ° C. can be determined from this volume and the weight of the sample measured previously. If the sample is solid at room temperature, for example, about 10 g of the sample is weighed in a graduated cylinder and weighed, and then left in an incubator at 80 ° C. for 1 to 2 hours together with the graduated cylinder. After dissolving, the volume at 80 ° C. is measured, and the density at 80 ° C. can be calculated.

2.3 (A)と(B)の融点
本発明において用いる(A)と(B)は、そのいずれか一方の融点が25℃以下であり、他方の融点が30〜100℃であることが好ましい。
(A)と(B)がこのような融点を持つことで、上記したような加熱硬化時の密度差に基づく挙動がより顕著に発現するとともに、沈降部分においてリード電極をより均一な被膜によって被覆することが可能となる。
より好ましい融点の関係は、一方の融点が20℃以下であり、他方の融点が60℃〜80℃であることである。
2.3 Melting point of (A) and (B) In (A) and (B) used in the present invention, either one has a melting point of 25 ° C. or lower and the other melting point is 30 to 100 ° C. preferable.
Since (A) and (B) have such a melting point, the behavior based on the density difference at the time of heat curing as described above appears more remarkably, and the lead electrode is covered with a more uniform coating in the settled portion. It becomes possible to do.
A more preferable melting point relationship is that one melting point is 20 ° C. or lower and the other melting point is 60 ° C. to 80 ° C.

融点が25℃以下の成分は常温で液体であり、この中にもう一方の、融点が30〜100℃の成分を、例えば径1mm以下のように微細に粉砕した状態で混合すると、両成分は化学組成の類似によりほぼ均一に分散することができ、また微細粒径の成分によるチクソトロピー性が発現して分散状態を安定に保つことができる。
また上記の硬化過程において得られる皮膜も厚さにむらがない均一な膜とすることができる。
A component having a melting point of 25 ° C. or lower is a liquid at room temperature, and when another component having a melting point of 30 to 100 ° C. is mixed in a finely pulverized state having a diameter of 1 mm or less, for example, both components are Due to the similarity in chemical composition, it can be dispersed almost uniformly, and thixotropy due to the component having a fine particle diameter can be expressed to keep the dispersed state stable.
In addition, the film obtained in the above curing process can be a uniform film with no unevenness in thickness.

<3.シリコーン系封止材組成物>
上記の各成分をそれぞれの好適組成範囲で配合、含有させることによって本発明のシリコーン系封止材組成物を製造することができる。
このような封止材組成物は、上記各成分(A)〜(C)を全て含む一液型の組成物であっても、また(A)成分と(B)成分を一方の液状組成物、(C)縮合触媒を他方の液状組成物とする、二液型の組成物であってもよい。このとき、二つの液状組成物の少なくとも一方が、所定の混合比率で各成分を混合した場合でも、常温では液状にならない場合や、二液を使用する場合に極端にその用いる容量が異なる場合などは、安定な液状組成物としたり、使用量のバランスを取ったりするために、前記した有機溶剤を適宜併用することが好ましい。
<3. Silicone Sealant Composition>
The silicone type sealing material composition of this invention can be manufactured by mix | blending and containing said each component in each suitable composition range.
Even if such a sealing material composition is a one-component composition containing all of the above components (A) to (C), the component (A) and the component (B) are used as one liquid composition. (C) A two-component composition in which the condensation catalyst is the other liquid composition may be used. At this time, even when at least one of the two liquid compositions is mixed with each component at a predetermined mixing ratio, when it does not become liquid at room temperature, or when the capacity used is extremely different when using two liquids, etc. In order to obtain a stable liquid composition or balance the amount used, it is preferable to use the above-mentioned organic solvent in combination as appropriate.

有機溶剤の種類や使用量は、その目的に応じて定めればよいが、例えば液状組成物の沸点が40〜200℃、好ましくは50〜150℃となるように有機溶剤を選択し、またその含有割合は、通常少ないほど好ましいが、最大でも組成物中に20重量%程度とすることが好ましい。
液状組成物の沸点が前記範囲より低い温度であると溶剤の引火性による安全上の問題が生じることがあり、一方前記範囲より高い温度では硬化後も有機溶剤が封止材層中に残存し、透過率の低下が起きる可能性がある。
The type and amount of the organic solvent may be determined according to the purpose. For example, the organic solvent is selected so that the boiling point of the liquid composition is 40 to 200 ° C, preferably 50 to 150 ° C. The content ratio is usually preferably as small as possible, but is preferably about 20% by weight in the composition at the maximum.
When the boiling point of the liquid composition is lower than the above range, there may be a safety problem due to the flammability of the solvent. On the other hand, at a temperature higher than the above range, the organic solvent remains in the encapsulant layer even after curing. A decrease in transmittance may occur.

また有機溶剤の含有割合が上記範囲を超える場合は、封止材を加熱硬化させる際の溶剤の揮発により硬化収縮が起こることがあり、更にはその溶解力によって本来分離すべき(A)、(B)両成分が均一溶液となって、本発明の効果を得られないこともある。
更に、硬化時に溶剤が気化するため、その気泡によって硬化後の封止材の光透過性が悪化することもある。
Further, when the content ratio of the organic solvent exceeds the above range, curing shrinkage may occur due to volatilization of the solvent when the sealing material is heat-cured, and it should be originally separated by its dissolving power (A), ( B) Both components may become a uniform solution, and the effects of the present invention may not be obtained.
Furthermore, since the solvent is vaporized during the curing, the light transmittance of the cured sealing material may be deteriorated by the bubbles.

好ましい有機溶剤の含有割合の上限は10重量%、さらに好ましくは7重量%である。
本発明のシリコーン系封止材組成物は、二液型として用いる方が、保管時の安定性が良好となるので好ましい。
一液型とすると、使用時の簡便性は高くなるが、保管に際して冷凍庫に保管したり、あるいは使用可能期間を短く限定したりする等の配慮が必要となる。
The upper limit of the content of the preferred organic solvent is 10% by weight, more preferably 7% by weight.
The silicone-based sealing material composition of the present invention is preferably used as a two-pack type because the stability during storage becomes good.
When the one-pack type is used, the convenience at the time of use becomes high, but it is necessary to consider such as storing in a freezer at the time of storage or limiting the usable period to be short.

<4.半導体発光装置>
上記本発明のシリコーン系封止材組成物は半導体発光デバイスの封止材として好ましく使用できる。
本発明の半導体発光装置は、リード電極に相当する金属部材とこの金属部材の一部を露出させることができる底面と側面とを有する凹部を形成した樹脂成形体とからなるパッケージと、前記凹部内に配置され、前記金属部材と電気的に接続された発光素子と、この凹部内に充填された封止材とを少なくとも備えてなるものである。
この半導体発光装置において、上記本発明に係るシリコーン系封止材組成物を封止材として用いることにより、水分や含イオウ化合物等のイオウ類の透過性を低くすることができ、リード電極等の金属部材の反射率を、長期間にわたって効果的に維持することができる。
<4. Semiconductor light emitting device>
The silicone-based sealing material composition of the present invention can be preferably used as a sealing material for semiconductor light-emitting devices.
The semiconductor light-emitting device of the present invention includes a package comprising a metal member corresponding to a lead electrode and a resin molded body having a recess having a bottom surface and a side surface from which a part of the metal member can be exposed, And a light emitting element electrically connected to the metal member and a sealing material filled in the recess.
In this semiconductor light emitting device, by using the silicone-based encapsulant composition according to the present invention as an encapsulant, the permeability of sulfur such as moisture and sulfur-containing compounds can be reduced, and lead electrodes and the like can be reduced. The reflectance of the metal member can be effectively maintained over a long period.

半導体発光装置の具体例を図1に示す。
半導体発光装置5は、一般に半導体発光素子2、装置全体の外殻を構成する樹脂成形体1、半導体発光素子2とリード電極4とを電気的に接続するボンディングワイヤ、半導体発光素子を封止する封止材3、半導体発光素子に電気を供給するリード電極4等から構成される。なお、リード電極等の導電性金属配線および絶縁性の樹脂成形体からなる構成をパッケージと称する。
リード電極の材質は特段制限されず、銀(Ag)、アルミニウム(Al)、白金族元素、ニッケル(Ni)等の銀白色を呈する金属の1種類、又は2種類以上含むものが例示され、中でも光反射率が高い銀又は銀合金が好ましく用いられる。
A specific example of a semiconductor light emitting device is shown in FIG.
The semiconductor light-emitting device 5 generally seals the semiconductor light-emitting element 2, the resin molded body 1 constituting the outer shell of the entire device, the bonding wire that electrically connects the semiconductor light-emitting element 2 and the lead electrode 4, and the semiconductor light-emitting element. It is comprised from the sealing material 3, the lead electrode 4 etc. which supply electricity to a semiconductor light-emitting device. In addition, the structure which consists of conductive metal wirings, such as a lead electrode, and an insulating resin molding is called a package.
The material of the lead electrode is not particularly limited, and examples thereof include one containing two or more kinds of silver-white metals such as silver (Ag), aluminum (Al), platinum group elements, nickel (Ni), etc. Silver or a silver alloy having a high light reflectance is preferably used.

リード電極4の光反射率は、例えば波長460nmの光について、70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることが更に好ましい。光反射率が高いリード電極を用いることにより、発光装置全体の発光効率が高くなる。
パッケージを構成する樹脂成形体1は、半導体発光装置の外形構造を維持するとともに、全方向に射出される半導体発光素子からの光を、半導体発光装置の光の射出方向に反射させることで、半導体発光装置の光出力を向上させ、かつ正負のリード電極を絶縁するという機能も有している。
For example, the light reflectance of the lead electrode 4 is preferably 70% or more, more preferably 80% or more, and still more preferably 85% or more for light having a wavelength of 460 nm. By using a lead electrode having a high light reflectance, the light emission efficiency of the entire light emitting device is increased.
The resin molded body 1 constituting the package maintains the outer structure of the semiconductor light emitting device and reflects light from the semiconductor light emitting element emitted in all directions in the light emitting direction of the semiconductor light emitting device. It also has the functions of improving the light output of the light emitting device and insulating the positive and negative lead electrodes.

本発明の半導体発光装置に用いることができる反射材としては、絶縁性があって、光を反射することができるものであれば、その種類は特に制限されないが、半導体発光素子からパッケージ底面に向かう光が集中する範囲は、光エネルギーにより反射材やリード電極が劣化しやすく、経時的な半導体発光装置の輝度低下につながるため、本発明に用いる反射材は耐久性の高い材料であることが好ましい。   The reflective material that can be used in the semiconductor light emitting device of the present invention is not particularly limited as long as it has an insulating property and can reflect light. In the light concentration range, the reflective material and the lead electrode are likely to be deteriorated by light energy, leading to a decrease in luminance of the semiconductor light emitting device over time. Therefore, the reflective material used in the present invention is preferably a highly durable material. .

具体的には、セラミックスなどの非樹脂タイプの反射材、及びシリコーン樹脂やポリアミド樹脂などの樹脂タイプの反射材が好ましく用いられ、中でも、成形性の観点やコストの観点から樹脂タイプの反射材が好ましい。
このような樹脂タイプの反射材の材質としては、本発明のシリコーン系封止材組成物と樹脂組成が近似する、シリコーン樹脂を用いたものが、両者間の密着性が良好となり、成形時や使用時の剥離等の恐れが小さくなるため好ましい。シリコーン樹脂系の反射材には、主成分である熱硬化性ポリオルガノシロキサン以外にチタニアやアルミナ等の光反射性フィラーを含んでいることが一般的である。
Specifically, non-resin-type reflectors such as ceramics and resin-type reflectors such as silicone resins and polyamide resins are preferably used. Among these, resin-type reflectors are used from the viewpoint of moldability and cost. preferable.
As a material of such a resin-type reflective material, the silicone-based encapsulant composition of the present invention is similar to the resin composition, and the one using a silicone resin has good adhesion between the two, at the time of molding or This is preferable because there is less risk of peeling during use. In general, the silicone resin-based reflective material contains a light-reflective filler such as titania or alumina in addition to the thermosetting polyorganosiloxane as the main component.

また反射材の形状についても特段の制限はないが、図1のように側面がテーパを有するカップ型であることが、光に指向性を持たせることができるので好ましい。
上記のパッケージ型構造を有する半導体発光装置の他に、半導体発光装置の形態として、基板上に発光素子を直接搭載して封止材層で封止したチップオンボード実装用の配線基板としてもよい。
Further, the shape of the reflecting material is not particularly limited, but a cup shape having a tapered side surface as shown in FIG. 1 is preferable because it can provide directivity to light.
In addition to the semiconductor light emitting device having the package type structure described above, as a form of the semiconductor light emitting device, a wiring substrate for chip-on-board mounting in which a light emitting element is directly mounted on a substrate and sealed with a sealing material layer may be used. .

更に、前述した通り蛍光体を本発明のシリコーン系封止材組成物に含有させて、発光素子を封止すると同時に、白色光等所望の波長の光を発光装置から取り出すようにすることも可能である。
本発明の発光装置は、例えば以下(1)、(2)のような手順で製造することができる。
Furthermore, as described above, the phosphor can be contained in the silicone-based encapsulant composition of the present invention so that the light emitting element is sealed, and at the same time, light having a desired wavelength such as white light can be extracted from the light emitting device. It is.
The light emitting device of the present invention can be manufactured, for example, according to the following procedures (1) and (2).

(1)発光装置の組み立て
市販される半導体発光装置用のパッケージを用い、所望の発光波長(例えば460nm等)を有する半導体発光素子を上記パッケージの凹部に露出しているリード電極上に導電性ダイボンド材を用いて設置した後、該ダイボンド材を加熱硬化して、半導体発光素子をパッケージ上に搭載し、金線等のボンディングワイヤーを用いて該パッケージの他方のリード電極と半導体発光素子とを接続する。
(1) Assembly of light emitting device Using a commercially available package for a semiconductor light emitting device, a semiconductor light emitting element having a desired light emission wavelength (eg, 460 nm) is conductively bonded to the lead electrode exposed in the recess of the package. After installing using a material, the die bond material is cured by heating, the semiconductor light emitting device is mounted on the package, and the other lead electrode of the package is connected to the semiconductor light emitting device using a bonding wire such as a gold wire. To do.

(2)半導体発光素子の封止
続いて、このパッケージ凹部へ、開口部上縁と同じ高さになるように封止材組成物を滴下・装入し、引き続き所定の温度条件で封止材組成物を加熱硬化させて、半導体発光素子を封止し、半導体発光装置を製造する。
本発明の半導体発光装置は、上記特定のシリコーン系封止材組成物を用いるので、耐イオウ性が優れており、リード電極の反射率を長期にわたって維持できる優れた半導体発光装置となる。
(2) Sealing of semiconductor light emitting device Subsequently, a sealing material composition is dropped and charged into the recess of the package so as to be the same height as the upper edge of the opening, and the sealing material is subsequently kept under a predetermined temperature condition. The composition is heat-cured to seal the semiconductor light-emitting element, thereby manufacturing a semiconductor light-emitting device.
Since the semiconductor light-emitting device of the present invention uses the above specific silicone-based encapsulant composition, the semiconductor light-emitting device is excellent in sulfur resistance and can be an excellent semiconductor light-emitting device capable of maintaining the reflectance of the lead electrode over a long period of time.

以下、実施例を用いて本発明の具体的な実施形態をさらに詳細に説明するが、本発明は、これらの実施例により何ら限定されるものではない。
1.シリコーン系封止材組成物の調製
(1)シリコーン樹脂
本実施例の組成物に用いたシリコーン樹脂は以下の通りである。
(A)成分
(A)成分の二官能熱硬化性シリコーン樹脂としては、三菱化学(株)製「S111」(主成分:ジメチルポリオルガノシロキサン、重量平均分子量:13000、官能度:2.08、常温で液体、密度:0.98g/ml)を使用した。
(B)成分
実施例に用いた(B)多官能熱硬化性シリコーン樹脂は以下のようにして調製した。
1Lのセパラブルフラスコにメチルトリクロロシラン100重量部、トルエン200重量部を入れ、循環冷却器で冷却しながら、水10重量部、メタノール50重量部、
及びイソプロパノール10重量部の混合液を、内温を0℃に維持した状態で10時間かけて滴下した。滴下終了後、20分間80℃に加熱して溶媒の混合アルコールを還流した。その後室温まで冷却し、内温が30℃を超えないように冷却しながら、水10重量部を30分間かけて滴下した。更に水25重量部を10分間で滴下後、50℃で1時間攪拌した。
Hereinafter, specific embodiments of the present invention will be described in more detail using examples, but the present invention is not limited to these examples.
1. Preparation of Silicone Sealant Composition (1) Silicone Resin The silicone resin used in the composition of this example is as follows.
(A) Component As the bifunctional thermosetting silicone resin of the component (A), “S111” (main component: dimethylpolyorganosiloxane, weight average molecular weight: 13000, functionality: 2.08, manufactured by Mitsubishi Chemical Corporation) Liquid at normal temperature, density: 0.98 g / ml) was used.
(B) component (B) polyfunctional thermosetting silicone resin used for the Example was prepared as follows.
In a 1 L separable flask, 100 parts by weight of methyltrichlorosilane and 200 parts by weight of toluene were placed, and while cooling with a circulation cooler, 10 parts by weight of water, 50 parts by weight of methanol,
And 10 parts by weight of isopropanol was added dropwise over 10 hours with the internal temperature maintained at 0 ° C. After completion of the dropwise addition, the mixed alcohol of the solvent was refluxed by heating to 80 ° C. for 20 minutes. Thereafter, the mixture was cooled to room temperature, and 10 parts by weight of water was added dropwise over 30 minutes while cooling so that the internal temperature did not exceed 30 ° C. Further, 25 parts by weight of water was added dropwise over 10 minutes, followed by stirring at 50 ° C. for 1 hour.

水200重量部を投入後静置し、分離した有機層を採取して中性になるまで水で繰り返し洗浄した。分液した有機層から水を加熱脱水した。濾過後、更に減圧下で水を留去して融点75〜80℃の、無色透明の熱硬化性シラノール基を有する化合物を得た。
得られた化合物は、メチルトリメトキシシランオリゴマーを主成分とする、重量平均分子量4000、官能度3.15、融点75〜80℃、密度1.14g/cmの多官能熱硬化性シリコーン樹脂であった。
200 parts by weight of water was added and allowed to stand, and the separated organic layer was collected and washed repeatedly with water until neutral. Water was dehydrated by heating from the separated organic layer. After filtration, water was further distilled off under reduced pressure to obtain a colorless and transparent thermosetting silanol group compound having a melting point of 75 to 80 ° C.
The obtained compound is a polyfunctional thermosetting silicone resin having a weight average molecular weight of 4000, a functionality of 3.15, a melting point of 75 to 80 ° C., and a density of 1.14 g / cm 3 , mainly composed of methyltrimethoxysilane oligomer. there were.

比較例に用いる(B)成分に対応する成分としては、常温で液体の(即ち融点が30℃以下の)多官能熱硬化性シリコーン化合物である、「KC89S」(信越化学工業社製)を使用した。   As a component corresponding to the component (B) used in the comparative example, “KC89S” (manufactured by Shin-Etsu Chemical Co., Ltd.), which is a polyfunctional thermosetting silicone compound that is liquid at room temperature (that is, a melting point of 30 ° C. or less), is used. did.

(2)二液型封止材組成物
1)第一液
下記の(A)成分と(B)成分を、表1に示す比率で混合して封止材組成物の第一液とした。なお、上記で調製した(B)成分は常温で固体であるので、封止材の第一液を調製するに際しては、約100μmの粒径になるまで粉砕した上で、(A)成分と混合し、分散液の形として使用した。
但し、比較例1では(B)成分を単独で用い、比較例2では(A)成分のみを用いた。また比較例3は上記で調製した多官能熱硬化性シリコーン樹脂に代えて、常温で液状の多官能熱硬化性シリコーン化合物である上記「KC89S」を使用した。
(2) Two-pack type sealing material composition 1) First liquid The following components (A) and (B) were mixed at the ratio shown in Table 1 to obtain a first liquid of the sealing material composition. In addition, since the component (B) prepared above is solid at room temperature, when preparing the first liquid of the sealing material, it is pulverized to a particle size of about 100 μm and then mixed with the component (A). And used as a dispersion form.
However, in Comparative Example 1, the component (B) was used alone, and in Comparative Example 2, only the component (A) was used. In Comparative Example 3, “KC89S”, which is a polyfunctional thermosetting silicone compound that is liquid at room temperature, was used in place of the polyfunctional thermosetting silicone resin prepared above.

2)第二液
(C)硬化触媒として、ジルコニウムテトラ(2−エチルヘキサノエート)を2重量%含む脂肪族炭化水素系溶媒溶液を第二液として使用した。
2) Second liquid (C) As the curing catalyst, an aliphatic hydrocarbon solvent solution containing 2% by weight of zirconium tetra (2-ethylhexanoate) was used as the second liquid.

第二液の使用量は(A)と(B)との合計量に対して、金属ジルコニウムとして0.1重量%となるように調整した。
2.封止材の硬化とイオウ雰囲気曝露試験
銀のリード電極を有するパッケージ(金森藤平商事製、”High Power LED Package 90×90)に、上記の二液型封止材組成物を混合の上、パッケージの縁まで注入して、150℃の恒温オーブン中で3時間加熱し、封止材組成物を硬化させた。
The usage-amount of the 2nd liquid was adjusted so that it might become 0.1 weight% as a metal zirconium with respect to the total amount of (A) and (B).
2. Curing of encapsulant and exposure test to sulfur atmosphere Mix the above two-component encapsulant composition into a package having a silver lead electrode (“High Power LED Package 90 × 90” manufactured by Kanamori Tohei Corp.) The sealing material composition was cured by heating in a constant temperature oven at 150 ° C. for 3 hours.

封止されたパッケージを幅5cm、長さ8cmの大型スライドグラスに両面テープを用いて貼り付け、イオウ粉末1gを万遍なく広げたシャーレ(直径6cm、深さ1.5cm)に、パッケージを貼り付けた側がイオウ粉末と対向するように、載置した。
このシャーレを、更に大型シャーレ(直径15cm、深さ4.5cm)中に格納し、シャーレの上蓋をかぶせた上で、該大型シャーレの側面をフッ素樹脂製のシールテープ((株)スリーボンド製)を用いて密封した。
これを80℃の恒温オーブン中で6時間保持した後、取り出してパッケージの変色状態を以下に示す方法で評価した。
The sealed package is affixed to a large slide glass with a width of 5 cm and a length of 8 cm using double-sided tape, and the package is affixed to a petri dish (diameter 6 cm, depth 1.5 cm) in which 1 g of sulfur powder has been spread evenly. It was mounted so that the attached side faced the sulfur powder.
This petri dish was further stored in a large petri dish (diameter 15 cm, depth 4.5 cm), and the petri dish was covered with an upper lid, and the side of the large petri dish was sealed with a fluororesin seal tape (manufactured by Three Bond Co., Ltd.). And sealed.
This was held in a constant temperature oven at 80 ° C. for 6 hours, and then taken out and evaluated for the discoloration state of the package by the following method.

3.測定・評価
(1)光反射率
反射率測定器(コニカミノルタ(株)製、CM−2600d)を用いて、350nm〜750nmにおけるパッケージの反射率を測定した。
封止する前のパッケージ及び各封止材組成物により封止したパッケージを、測定器のプローブにセットしてイオウ雰囲気曝露試験前後の反射率を測定した。
測定の結果、上記の波長範囲の全範囲で、サンプル間での反射率の順位が変動していなかったので、光反射率の評価は代表的な波長として550nmを用いて、この波長における光反射率の維持率を用いて行った。
3. Measurement / Evaluation (1) Light reflectance The reflectance of the package at 350 nm to 750 nm was measured using a reflectance measuring device (CM-2600d, manufactured by Konica Minolta Co., Ltd.).
The package before sealing and the package sealed with each sealing material composition were set on the probe of the measuring instrument, and the reflectance before and after the sulfur atmosphere exposure test was measured.
As a result of the measurement, the order of the reflectivity between the samples did not change in the entire range of the above wavelength range. Therefore, the light reflectivity was evaluated using 550 nm as a representative wavelength, and the light reflectivity at this wavelength was used. The rate maintenance rate was used.

(2)着色度
目視にてイオウ雰囲気曝露前後の未封止パッケージ及び封止したパッケージの着色状況を観察し、以下の基準で評価した。
(2) Coloring degree The coloring conditions of the unsealed package and the sealed package before and after exposure to the sulfur atmosphere were visually observed and evaluated according to the following criteria.

◎:着色は見られない
○:部分的に僅かな着色があることもあるが、ほとんど着色は見られない
△:明らかに着色が見られる
×:著しい着色が見られる
A: No coloration is observed. B: A slight coloration may be observed partially, but almost no coloration is observed. Δ: Clear coloration is clearly observed. X: Significant coloration is observed.

(3)発泡
封止されたパッケージについて、イオウ雰囲気曝露前に封止材層の発泡状態を観察し、以下の基準で評価した。
○:発泡は見られない
△:少量の発泡が見られる
×:発泡が著しい
(3) Foaming About the sealed package, the foaming state of the sealing material layer was observed before exposure to the sulfur atmosphere, and evaluated according to the following criteria.
○: No foaming is observed Δ: Small amount of foaming is observed ×: Foaming is remarkable

4.結果の評価
(1)(A)成分、(B)成分が本願で特定される特性値を有していて、かつ本願で規定する組成比となっている、実施例1〜5は、(A)成分が単独で用いられた比較例2に比べて、反射率の維持も着色の程度も良好である。同様に(B)成分が単独で用いられた比較例1と比べても発泡性が抑えられて優れた反射率を維持している。
(2)(B)成分の分子量規定から低く外れたものを用いた比較例3は、対応する実施例3と比べると、反射率の維持率が低くなっており、耐イオウ性が不十分であることが見られる。
4). Evaluation of results (1) Examples 1 to 5 in which (A) component and (B) component have characteristic values specified in the present application and have a composition ratio specified in the present application, ) As compared with Comparative Example 2 in which the component is used alone, the reflectance is maintained and the degree of coloring is good. Similarly, even in comparison with Comparative Example 1 in which the component (B) is used alone, the foamability is suppressed and an excellent reflectance is maintained.
(2) In Comparative Example 3 using a component (B) that deviates from the molecular weight regulation, the reflectance retention rate is lower than the corresponding Example 3, and the sulfur resistance is insufficient. It is seen that there is.

Figure 2012238636
Figure 2012238636

1 樹脂成形体
2 半導体発光素子
3 封止材
4 リード電極
5 半導体発光装置
DESCRIPTION OF SYMBOLS 1 Resin molding 2 Semiconductor light-emitting device 3 Sealing material 4 Lead electrode 5 Semiconductor light-emitting device

Claims (8)

(A)二官能熱硬化性シリコーン樹脂、(B)多官能熱硬化性シリコーン樹脂、及び(C)硬化触媒を含有してなるシリコーン系封止材組成物であって、以下の特徴を有するシリコーン系封止材組成物。
1)(A)と(B)との合計量中に(B)が占める比率、(B)/((A)+(B))(重量比)の値が、0.5/100以上、100/100未満
2)(B)成分の官能数が2.5以上4.0以下
3)(B)成分の重量平均分子量が1000〜10000
4)80℃において、(A)と(B)とは相溶せず、かつ当該温度での(B)の密度が(A)の密度よりも0.01g/cm以上高い。
A silicone-based sealing material composition comprising (A) a bifunctional thermosetting silicone resin, (B) a polyfunctional thermosetting silicone resin, and (C) a curing catalyst, the silicone having the following characteristics System sealing material composition.
1) The ratio of (B) in the total amount of (A) and (B), the value of (B) / ((A) + (B)) (weight ratio) is 0.5 / 100 or more, Less than 100/100 2) Functionality of component (B) is 2.5 or more and 4.0 or less 3) Weight average molecular weight of component (B) is 1000 to 10,000
4) At 80 ° C., (A) and (B) are not compatible, and the density of (B) at the temperature is 0.01 g / cm 3 or more higher than the density of (A).
(A)と(B)とを含む液状組成物及び(C)を含む液状組成物とから構成される二液型組成物であることを特徴とする請求項1に記載のシリコーン系封止材組成物。   2. The silicone-based sealing material according to claim 1, which is a two-component composition comprising a liquid composition containing (A) and (B) and a liquid composition containing (C). Composition. (A)と(B)のいずれか一方の融点が25℃以下であり、他方の融点が30〜100℃であることを特徴とする請求項1又は2に記載のシリコーン系封止材組成物。   The melting point of any one of (A) and (B) is 25 ° C. or lower, and the other melting point is 30 to 100 ° C. 3. The silicone-based sealing material composition according to claim 1 or 2, . (A)と(B)との合計量中に(B)が占める比率、(B)/((A)+(B))(重量比)が1/100以上、50/100以下であることを特徴とする請求項1〜3のいずれか1項に記載のシリコーン系封止材組成物。   The ratio of (B) in the total amount of (A) and (B), (B) / ((A) + (B)) (weight ratio) is 1/100 or more and 50/100 or less. The silicone type sealing material composition according to any one of claims 1 to 3. (C)硬化触媒の含有量が、(A)と(B)との合計量に対して、0.01〜0.5重量%であることを特徴とする請求項1〜4のいずれか1項に記載のシリコーン系封止材組成物。   (C) Content of a curing catalyst is 0.01 to 0.5 weight% with respect to the total amount of (A) and (B), The any one of Claims 1-4 characterized by the above-mentioned. The silicone-based sealing material composition according to Item. (C)硬化触媒が金属成分としてスズ(Sn)、亜鉛(Zn)、鉄(Fe)、チタン(Ti)、ジルコニウム(Zr)、ビスマス(Bi)、ハフニウム(Hf)、イットリウム(Y)、アルミニウム(Al)、ホウ素(B)及びガリウム(Ga)からなる群から選ばれる少なくとも一種の金属の有機錯体又は有機酸塩であることを特徴とする請求項1〜5のいずれか1項に記載のシリコーン系封止材組成物。   (C) Tin (Sn), zinc (Zn), iron (Fe), titanium (Ti), zirconium (Zr), bismuth (Bi), hafnium (Hf), yttrium (Y), aluminum as a metal component as a curing catalyst The organic complex or organic acid salt of at least one metal selected from the group consisting of (Al), boron (B), and gallium (Ga), according to any one of claims 1 to 5, Silicone-based sealing material composition. さらに(D)重量平均分子量が300〜800の多官能ポリオルガノシロキサンを、(A)と(B)との合計量に対して0.05〜1重量%含有することを特徴とする請求項1〜6のいずれか1項に記載のシリコーン系封止材組成物。   Furthermore, (D) 0.05 to 1 weight% of polyfunctional polyorganosiloxanes having a weight average molecular weight of 300 to 800 are contained with respect to the total amount of (A) and (B). The silicone type sealing material composition of any one of -6. 請求項1〜7のいずれか1項に記載のシリコーン系封止材組成物によって封止されていることを特徴とする半導体発光装置。
A semiconductor light-emitting device which is sealed with the silicone-based sealing material composition according to claim 1.
JP2011104941A 2011-05-10 2011-05-10 Silicone-based encapsulant composition and semiconductor light emitting device Expired - Fee Related JP5760664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011104941A JP5760664B2 (en) 2011-05-10 2011-05-10 Silicone-based encapsulant composition and semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011104941A JP5760664B2 (en) 2011-05-10 2011-05-10 Silicone-based encapsulant composition and semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2012238636A true JP2012238636A (en) 2012-12-06
JP5760664B2 JP5760664B2 (en) 2015-08-12

Family

ID=47461310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011104941A Expired - Fee Related JP5760664B2 (en) 2011-05-10 2011-05-10 Silicone-based encapsulant composition and semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP5760664B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017592A1 (en) * 2014-07-28 2016-02-04 住友化学株式会社 Silicone-based sealant composition and semiconductor light-emitting device
JP2016146434A (en) * 2015-02-09 2016-08-12 住友化学株式会社 Method for manufacturing semiconductor light-emitting device and semiconductor light-emitting device
JPWO2019176828A1 (en) * 2018-03-12 2021-03-25 リンテック株式会社 Curable composition, cured product, method for producing cured product, and method for using curable composition
CN113637849A (en) * 2021-08-06 2021-11-12 昆山祁御新材料科技有限公司 AlSn alloy separation and recovery method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266195A (en) * 1988-04-19 1989-10-24 Bridgestone Corp Electroviscous fluid
JPH11236508A (en) * 1997-11-19 1999-08-31 Shin Etsu Chem Co Ltd Organopolysiloxane composition
JP2001200150A (en) * 2000-01-20 2001-07-24 Dow Corning Toray Silicone Co Ltd Flame-retarded organic resin composition
JP2005105217A (en) * 2003-10-01 2005-04-21 Dow Corning Toray Silicone Co Ltd Curable organopolysiloxane composition and semiconductor device
JP2007116139A (en) * 2005-09-22 2007-05-10 Mitsubishi Chemicals Corp Member for semiconductor light-emitting device, method of manufacturing the same, and semiconductor light-emitting device using the same
JP2008214512A (en) * 2007-03-05 2008-09-18 Toshiba Corp Silicone resin composition and semiconductor device
JP2009235265A (en) * 2008-03-27 2009-10-15 Shin Etsu Chem Co Ltd Curable silicone rubber composition and photosemiconductor device using the same as sealing material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266195A (en) * 1988-04-19 1989-10-24 Bridgestone Corp Electroviscous fluid
JPH11236508A (en) * 1997-11-19 1999-08-31 Shin Etsu Chem Co Ltd Organopolysiloxane composition
JP2001200150A (en) * 2000-01-20 2001-07-24 Dow Corning Toray Silicone Co Ltd Flame-retarded organic resin composition
JP2005105217A (en) * 2003-10-01 2005-04-21 Dow Corning Toray Silicone Co Ltd Curable organopolysiloxane composition and semiconductor device
JP2007116139A (en) * 2005-09-22 2007-05-10 Mitsubishi Chemicals Corp Member for semiconductor light-emitting device, method of manufacturing the same, and semiconductor light-emitting device using the same
JP2008214512A (en) * 2007-03-05 2008-09-18 Toshiba Corp Silicone resin composition and semiconductor device
JP2009235265A (en) * 2008-03-27 2009-10-15 Shin Etsu Chem Co Ltd Curable silicone rubber composition and photosemiconductor device using the same as sealing material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017592A1 (en) * 2014-07-28 2016-02-04 住友化学株式会社 Silicone-based sealant composition and semiconductor light-emitting device
KR20170037954A (en) 2014-07-28 2017-04-05 스미또모 가가꾸 가부시키가이샤 Silicone-based sealant composition and semiconductor light-emitting device
JPWO2016017592A1 (en) * 2014-07-28 2017-04-27 住友化学株式会社 Silicone-based encapsulant composition and semiconductor light emitting device
CN106661425A (en) * 2014-07-28 2017-05-10 住友化学株式会社 Silicone-based sealant composition and semiconductor light-emitting device
US10011720B2 (en) 2014-07-28 2018-07-03 Sumitomo Chemical Company, Limited Silicone-based encapsulating material composition and semiconductor light-emitting device
CN106661425B (en) * 2014-07-28 2018-12-21 住友化学株式会社 Silicone-based Encapulant composition and semiconductor light-emitting apparatus
JP2016146434A (en) * 2015-02-09 2016-08-12 住友化学株式会社 Method for manufacturing semiconductor light-emitting device and semiconductor light-emitting device
JPWO2019176828A1 (en) * 2018-03-12 2021-03-25 リンテック株式会社 Curable composition, cured product, method for producing cured product, and method for using curable composition
JP7310047B2 (en) 2018-03-12 2023-07-19 リンテック株式会社 Curable composition, cured product, method for producing cured product, and method for using curable composition
CN113637849A (en) * 2021-08-06 2021-11-12 昆山祁御新材料科技有限公司 AlSn alloy separation and recovery method
CN113637849B (en) * 2021-08-06 2023-02-03 昆山祁御新材料科技有限公司 AlSn alloy separation and recovery method

Also Published As

Publication number Publication date
JP5760664B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP5060654B2 (en) Sealant for optical semiconductor device and optical semiconductor device
JP5552748B2 (en) Curable polysiloxane composition, and cured polysiloxane using the same, optical member, member for aerospace industry, semiconductor light emitting device, lighting device, and image display device
KR101607108B1 (en) Resin composition for encapsulating optical semiconductor element and optical semiconductor device
JP5971835B2 (en) Curable silicone resin composition and light emitting diode device using the same
JP5332921B2 (en) Semiconductor light emitting device, lighting device, and image display device
CN103509345B (en) Curable resin composition, it cured article and use the optical semiconductor device of this cured article
JP2016211003A (en) Two-pack type curable polyorganosiloxane composition for semiconductor light emitting device, polyorganosiloxane-cured article obtained by curing the composition and production method therefor
CN104813491B (en) Light emitting diode
KR20120138679A (en) Encapsulating sheet and optical semiconductor element device
JP5760664B2 (en) Silicone-based encapsulant composition and semiconductor light emitting device
JP2013124324A (en) Curable polyorganosiloxane composition and polyorganosiloxane cured material obtained by curing the composition
TW200901400A (en) Resin composition for encapsulating light-emitting diode and lamp
JP5910340B2 (en) LED device and manufacturing method thereof
JP6417878B2 (en) Curable organopolysiloxane composition for semiconductor light emitting device sealing material, cured organopolysiloxane obtained by curing the composition, and semiconductor light emitting device sealed using the same
JP5768816B2 (en) Wavelength conversion element and method for manufacturing the same, light emitting device and method for manufacturing the same
JP2009120732A (en) Resin composition for optical semiconductor, sealing agent for optical semiconductor, die-bonding material for optical semiconductor, underfilling material for optical semiconductor, and semiconductor element using them
JP5693063B2 (en) Encapsulant for optical semiconductor device and optical semiconductor device using the same
JP4951147B1 (en) Curable composition for optical semiconductor device
TWI791554B (en) Curable organopolysiloxane composition and optical semiconductor device
JPWO2010098285A1 (en) Encapsulant for optical semiconductor device and optical semiconductor device using the same
JP2009224754A (en) Semiconductor light emitting device, lighting apparatus, and image display device
WO2013035736A1 (en) Curable composition for optical semiconductor device
JP2014156577A (en) Curable composition for optical semiconductor device, and optical semiconductor device using the same
WO2014004969A1 (en) Polyorganometallosiloxane, curable polymer compositions, cured product thereof, and optical semiconductor device
JP6244851B2 (en) Thermosetting silicone composition and liquid for providing thermosetting silicone composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150525

R150 Certificate of patent or registration of utility model

Ref document number: 5760664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees