JP2012237478A - Regenerator - Google Patents

Regenerator Download PDF

Info

Publication number
JP2012237478A
JP2012237478A JP2011105594A JP2011105594A JP2012237478A JP 2012237478 A JP2012237478 A JP 2012237478A JP 2011105594 A JP2011105594 A JP 2011105594A JP 2011105594 A JP2011105594 A JP 2011105594A JP 2012237478 A JP2012237478 A JP 2012237478A
Authority
JP
Japan
Prior art keywords
regenerator
granular
cylinder
grains
accommodated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011105594A
Other languages
Japanese (ja)
Other versions
JP5790989B2 (en
Inventor
Shinji Masuyama
新二 増山
Takenori Numazawa
健則 沼澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Institute of National Colleges of Technologies Japan
Original Assignee
National Institute for Materials Science
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Institute of National Colleges of Technologies Japan filed Critical National Institute for Materials Science
Priority to JP2011105594A priority Critical patent/JP5790989B2/en
Publication of JP2012237478A publication Critical patent/JP2012237478A/en
Application granted granted Critical
Publication of JP5790989B2 publication Critical patent/JP5790989B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a regenerator that not only can store at least two kinds of granular storage mediums on an axial perpendicular cross sectional face of the regenerator in a separated state but also can largely enhance the degree of freedom of the arrangement of the granular storage mediums in the axial section of the regenerator when at least the two kinds of granular storage mediums are assembled and stored in the regenerator.SOLUTION: The regenerator 100A stores at least two kinds of granular storage mediums 14, 15, and 16 in a tube body 9 in a state that the granular storage mediums are separated from one another. At least a part of an area in the axial direction of the regenerator is arranged in a state that at least two kinds of granular storage mediums 15 and 16 are separated in the axial perpendicular section of the regenerator 100A.

Description

本発明は、GM(ギフォード・マクマホン)冷凍機、パルスチューブ冷凍機、スターリングサイクル冷凍機、ビルミエサイクル冷凍機、ソルベイサイクル冷凍機、エリクソンサイクル冷凍機、又は、これを予冷段に使った冷凍システム等に用いるのに好適な、極低温蓄冷器及び冷凍機、並びに、これを用いた超伝導電磁石装置、MRI装置、クライオポンプ等に使用する蓄冷器に関する。   The present invention relates to a GM (Gifford McMahon) refrigerator, a pulse tube refrigerator, a Stirling cycle refrigerator, a Birmier cycle refrigerator, a Solvay cycle refrigerator, an Ericsson cycle refrigerator, or a refrigeration system using this in a precooling stage. The present invention relates to a cryogenic regenerator and refrigerator suitable for use in, and the like, and a regenerator used for a superconducting electromagnet device, an MRI device, a cryopump and the like using the same.

従来、不活性ガスを断熱膨張させることでガスの温度を低下させて、その冷熱を蓄冷器に蓄冷して利用する技術が様々な分野において利用されている。
このような冷却機構を利用する分野、例えば,GM冷凍機、パルスチューブ冷凍機、スターリングサイクル冷凍機、ビルミエサイクル冷凍機、ソルベイサイクル冷凍機、エリクソンサイクル冷凍機、又は、これを予冷段に使った冷凍システム等に用いるのに好適な、極低温蓄冷器及び冷凍機、並びに、これを用いた超伝導電磁石装置、MRI装置、クライオポンプ等に関する分野では、蓄冷効率が高くて高い冷凍能力を有する蓄冷器が望まれてきた。
2. Description of the Related Art Conventionally, techniques for reducing the temperature of gas by adiabatic expansion of an inert gas and storing the cold energy in a regenerator are used in various fields.
Fields using such a cooling mechanism, for example, GM refrigerator, pulse tube refrigerator, Stirling cycle refrigerator, Birmier cycle refrigerator, Solvay cycle refrigerator, Ericsson cycle refrigerator, or the precooling stage In the fields related to cryogenic regenerators and refrigerators suitable for use in refrigeration systems, and superconducting electromagnet devices, MRI devices, cryopumps, etc. using the same, they have high refrigerating efficiency and high refrigerating capacity. A regenerator has been desired.

本発明に係る蓄冷器を利用する冷熱発生機構の一例について図12を参照しながら詳細する。
図12は本発明に係る蓄冷器を使用可能な冷温発生機構の一例である冷凍機の概略を示す模式図である。
この蓄冷器は、例えば、2段式GM冷凍機1に利用されるものであり、例えば、図12に示すように、圧縮機6から高圧の冷媒ガスが高圧ガス配管7aから高圧ガスバルブ23aを介して1段シリンダ2から2段シリンダ3に供給された後、高圧ガスバルブ23b及び高圧ガス配管7bを介して圧縮機6に回収される過程において発生する冷熱を蓄冷するために用いられるものである。
図12に示すような冷凍機1では、1段シリンダ2と2段シリンダ3に1段蓄冷器2aと2段蓄冷器3aがそれぞれ収容され、これらの1段蓄冷器2a,2段蓄冷器3aが一体となった状態で、駆動モータ4により駆動されて、図12中の紙面上下方向に往復動作し、その際に1段蓄冷器2a,2段蓄冷器3aのそれぞれの下端側が冷却される仕組みになっている。
そして、2段蓄冷器3aには、2段蓄冷材3bとして単数又は複数種類の金属、合金、セラミックス等からなる粒状又はメッシュ状の物質が収容されている。
上述のような冷凍機1の冷却部は、一体的に連続形成された1段シリンダ2と2段シリンダ3にそれぞれ収容された1段蓄冷器2aと2段蓄冷器3aとで構成され、1段蓄冷器2aの下端(図12中の符号Rで示す位置)の1段冷却ステージ2cは約40Kまで冷やされ、2段シリンダ3の下端の(図12中の符号Qで示す位置)2段冷却ステージ3cは、例えば、7K以下まで冷やされる。よって、下記明細書中においては、2段蓄冷器3aの1段シリンダ2の1段冷却ステージ2c側に配置される端部を高温端側(図12中の符号Pで示す位置)と呼び、2段蓄冷器3aの2段冷却ステージ3c側に配される端部を冷温端側(図12中の符号Qで示す位置)と呼ぶ。
また、特に図示しないが、2段冷却ステージ3cには電気ヒータが取り付けられ、その電気入力によって熱負荷を印加することにより、2段冷却ステージ3cの冷却能力が測定できるようになっている。
An example of the cold heat generation mechanism using the regenerator according to the present invention will be described in detail with reference to FIG.
FIG. 12 is a schematic diagram showing an outline of a refrigerator that is an example of a cold temperature generating mechanism that can use the regenerator according to the present invention.
This regenerator is used, for example, in the two-stage GM refrigerator 1, and, for example, as shown in FIG. 12, high-pressure refrigerant gas from the compressor 6 passes through the high-pressure gas pipe 7a through the high-pressure gas valve 23a. After being supplied from the first-stage cylinder 2 to the second-stage cylinder 3, it is used for storing cold heat generated in the process of being recovered by the compressor 6 through the high-pressure gas valve 23b and the high-pressure gas pipe 7b.
In the refrigerator 1 as shown in FIG. 12, a first-stage regenerator 2a and a two-stage regenerator 3a are accommodated in a first-stage cylinder 2 and a second-stage cylinder 3, respectively. Is driven by the drive motor 4 to reciprocate in the vertical direction of the paper in FIG. 12, and at this time, the lower ends of the first stage regenerator 2a and the second stage regenerator 3a are cooled. It is structured.
The two-stage regenerator 3a accommodates a granular or mesh substance made of one or more kinds of metals, alloys, ceramics, etc. as the two-stage regenerator material 3b.
The cooling unit of the refrigerator 1 as described above includes a first-stage regenerator 2a and a two-stage regenerator 3a respectively accommodated in a first-stage cylinder 2 and a second-stage cylinder 3 that are integrally formed continuously. The first-stage cooling stage 2c at the lower end of the stage regenerator 2a (position indicated by the symbol R in FIG. 12) is cooled to about 40K, and the second stage (position indicated by the symbol Q in FIG. 12) at the lower end of the two-stage cylinder 3 The cooling stage 3c is cooled to, for example, 7K or less. Therefore, in the following specification, the end portion disposed on the first stage cooling stage 2c side of the first stage cylinder 2 of the two-stage regenerator 3a is referred to as a high temperature end side (position indicated by a symbol P in FIG. 12). An end portion of the two-stage regenerator 3a disposed on the second-stage cooling stage 3c side is referred to as a cold / warm end side (a position indicated by a symbol Q in FIG. 12).
Although not specifically shown, an electric heater is attached to the two-stage cooling stage 3c, and the cooling capacity of the two-stage cooling stage 3c can be measured by applying a heat load by the electric input.

なお、図12に示す冷凍機1において1段シリンダ2に供給された高圧ガスはガス通路2dから1段蓄冷材2b内に供給され、2段シリンダ3内の高圧ガスはガス通路3dから2段蓄冷器3a内に供給される仕組みになっている。また、1段蓄冷器2a,2段蓄冷器3aのそれぞれの下端側に形成される空間は、高圧ガスを断熱膨張させるための1段膨張空間2e,2段膨張空間3eである。さらに、1段蓄冷器2aの外周にはシール5が設けられており、高圧ガスを断熱膨張させる際の気密を高めている。また、2段蓄冷器3aと2段シリンダ3の間にもシールが設けられているが、図12ではその記載を省略している。
上述のような冷凍機1に代表されるような冷却機構に用いられる2段蓄冷器3a(以下の明細書中においては単に蓄冷器と呼ぶ)に関する先行技術としては以下に示すようなものが知られている。
In the refrigerator 1 shown in FIG. 12, the high-pressure gas supplied to the first-stage cylinder 2 is supplied from the gas passage 2d into the first-stage regenerator 2b, and the high-pressure gas in the second-stage cylinder 3 is two-stage from the gas passage 3d. It is a mechanism that is supplied into the regenerator 3a. The spaces formed at the lower ends of the first-stage regenerator 2a and the two-stage regenerator 3a are a first-stage expansion space 2e and a two-stage expansion space 3e for adiabatic expansion of the high-pressure gas. Further, a seal 5 is provided on the outer periphery of the first-stage regenerator 2a to enhance the airtightness when the high-pressure gas is adiabatically expanded. Further, a seal is also provided between the second-stage regenerator 3a and the second-stage cylinder 3, but the description thereof is omitted in FIG.
As the prior art relating to the two-stage regenerator 3a (hereinafter simply referred to as the regenerator) used in the cooling mechanism represented by the refrigerator 1 as described above, the following is known. It has been.

特許文献1には「極低温蓄冷器及び冷凍機」という名称で極低温蓄冷器及び冷凍機に関する発明が開示されている。
特許文献1に開示される2段蓄冷器31は、文献中の符号をそのまま用いて説明すると、蓄冷材32として、鉛32A以外に、体積比率で12〜30%のHoCu2(磁性蓄冷材)32Bと、15〜31%のGOS32Cを充填したことを特徴とするものである。
上記構成の特許文献1に開示される発明によれば、鉛以外の蓄冷材として、HoCu2とGOSを適切な体積比率で併用することにより、誘起磁場の影響を低減した上で、優れた冷凍能力を発揮させることができるという効果を有する。
Patent Document 1 discloses an invention relating to a cryogenic regenerator and refrigerator under the name of “cryogenic regenerator and refrigerator”.
2 stage regenerator 31 disclosed in Patent Document 1, will be described with reference as the sign of the literature, as the cold accumulating material 32, in addition to lead 32A, 12 to 30% of HoCu 2 (magnetic regenerator material) at a volume ratio 32B and 15 to 31% of GOS32C are filled.
According to the invention disclosed in Patent Document 1 having the above-described configuration, as a cold storage material other than lead, HoCu 2 and GOS are used together in an appropriate volume ratio, thereby reducing the influence of the induced magnetic field and providing excellent refrigeration. It has the effect that ability can be demonstrated.

特許文献2には「極低温冷凍機」という名称で、シリンダ内でのディスプレーサ(置換器)の往復動により冷媒ガスを膨脹させて寒冷を発生させる極低温冷凍機であって、発生した寒冷の一部を蓄える蓄冷器をディスプレーサに内蔵したタイプの極低温冷凍機の改良技術に関する発明が開示されている。
特許文献2に開示される極低温冷凍機は、文献中に記載される符号をそのまま用いて説明すると、シリンダ5と、該シリンダ5内に往復動可能に嵌装され、かつシリンダ5内に膨脹室20,21を区画形成するディスプレーサ18とを備え、該ディスプレーサ18の往復動により、圧縮機から供給された冷媒ガスを前記膨脹室20,21内で膨脹させて温度降下させるとともに、この温度降下した冷媒ガスをディスプレーサ18に内蔵した蓄冷器28,29を通過させることによって蓄冷するようにした極低温冷凍機において、前記蓄冷器28,29は、容器30内に多数の金属製蓄冷材31を収容してなるとともに、所定位置に通気性および非導電性を有する仕切り部材32,32a,32bを設けてなり、 前記仕切り部材32,32aは、蓄冷器28,29の冷媒ガス通過方向と平行な状態で配置されることを特徴とするものである。
特許文献2に開示される発明によれば、蓄冷器を仕切り部材によって区画することにより、全体としての発生磁場を著しく低減することができ、しかも、渦電流が抑制されるので、発熱も抑制でき、冷却効率を高めることができ、さらに蓄冷器の製造を簡単化することができる。
Patent Document 2 describes a cryogenic refrigerator that generates cold by expanding the refrigerant gas by a reciprocating motion of a displacer (substitution) in a cylinder, and is called “cryogenic refrigerator”. An invention relating to an improved technique of a cryogenic refrigerator of a type in which a regenerator for storing a part is built in a displacer is disclosed.
When the cryogenic refrigerator disclosed in Patent Document 2 is described using the reference numerals described in the document as they are, the cylinder 5 is fitted into the cylinder 5 so as to be able to reciprocate and expands into the cylinder 5. And a displacer 18 that defines the chambers 20 and 21, and the reciprocating motion of the displacer 18 causes the refrigerant gas supplied from the compressor to expand in the expansion chambers 20 and 21 to lower the temperature. In the cryogenic refrigerator in which the refrigerating gas is stored by passing through the regenerators 28 and 29 built in the displacer 18, the regenerators 28 and 29 store a large number of metal regenerator materials 31 in the container 30. The partition members 32, 32a, 32b having air permeability and non-conductivity are provided at predetermined positions, and the partition members 32, 32a are The regenerators 28 and 29 are arranged in parallel with the refrigerant gas passage direction.
According to the invention disclosed in Patent Document 2, by dividing the regenerator with the partition member, the generated magnetic field as a whole can be remarkably reduced, and furthermore, since eddy currents are suppressed, heat generation can also be suppressed. The cooling efficiency can be increased, and the manufacture of the regenerator can be simplified.

特開2001−248929号公報JP 2001-248929 A 特開平9−145180号公報Japanese Patent Laid-Open No. 9-145180

上述の特許文献1には、蓄冷器内に複数種類の粒状蓄冷材を互いに分離させた状態で収容する際の,個々の粒状蓄冷材の配置方法として、蓄冷器の軸方向に粒状蓄冷材を積層した状態で収容するという技術内容のみが開示されている。
他方、上述の特許文献2では蓄冷器内に、蓄冷器の軸方向に対して垂直又は水平に仕切り部材を配置するという技術内容が開示されているものの、特許文献2に開示される蓄冷器において使用される粒状蓄冷材は1種類(鉛)のみである。
さらに、特許文献2に開示される発明は、そもそも2種類以上の粒状蓄冷材を同時に収容するための技術ではなく、また、特許文献2に開示される発明の「発明の目的」は、蓄冷器内に2種類以上の粒状蓄冷材を収容する際に、蓄冷器の軸方向断面における粒状蓄冷材の配置の自由度を高めようとするものではない。
In the above-mentioned Patent Document 1, as a method for arranging individual granular regenerator materials when accommodating a plurality of types of granular regenerator materials in a state where they are separated from each other in the regenerator, granular regenerator materials are arranged in the axial direction of the regenerator. Only the technical content of accommodating in a stacked state is disclosed.
On the other hand, in the above-mentioned Patent Document 2, although the technical content of disposing a partition member perpendicularly or horizontally to the axial direction of the regenerator is disclosed in the regenerator, in the regenerator disclosed in Patent Document 2 The granular regenerator material used is only one type (lead).
Furthermore, the invention disclosed in Patent Document 2 is not originally a technique for simultaneously storing two or more types of granular regenerator materials, and the “object of the invention” of the invention disclosed in Patent Document 2 is a regenerator. When two or more kinds of granular regenerator materials are accommodated in the inside, it is not intended to increase the degree of freedom of the arrangement of the granular regenerator materials in the axial section of the regenerator.

従って、当業者が複数種類の粒状蓄冷材を組み合わせて収容した蓄冷器を構成しようとして,上述の特許文献1に開示される技術内容に、特許文献2に開示される技術内容を組み合わせたとしても、特許文献2中の図2に開示される仕切り部材32b,32bの間に1種類ずつ異なる種類の粒状蓄冷材を収容して,蓄冷器の軸方向に複数種類の粒状蓄冷材を積層させるという知見しか得られず、結果として、蓄冷器の軸方向における粒状蓄冷材の収容位置の自由度を大幅に高めることはできなかった。
加えて、蓄冷器内に複数種類の粒状蓄冷材を収容する場合で,かつ,蓄冷器の軸方向に複数種類の粒状蓄冷材を積層させて配置する場合は、後段において詳細に説明するが、使用する粒状蓄冷材を構成する材質の比熱により蓄冷器の軸方向における配置がある程度決まってしまうため、実質的に蓄冷器の軸方向断面において、粒状蓄冷材の配置を自由に変更することは難しかった。
従って、特許文献1に開示される技術内容に,特許文献2に開示される技術内容を組み合わせたとしても、蓄冷器の軸方向断面における粒状蓄冷材の配置の自由度を大幅に高めることはできなかった。
Therefore, even if those skilled in the art try to construct a regenerator that contains a combination of a plurality of types of granular regenerator materials, the technical content disclosed in Patent Document 1 described above may be combined with the technical content disclosed in Patent Document 2. , One type of granular regenerator material is accommodated between partition members 32b and 32b disclosed in FIG. 2 of Patent Document 2, and a plurality of types of granular regenerator materials are stacked in the axial direction of the regenerator. Only knowledge was obtained, and as a result, the degree of freedom of the storage position of the granular regenerator material in the axial direction of the regenerator could not be greatly increased.
In addition, in the case where a plurality of types of granular regenerator materials are accommodated in the regenerator and a plurality of types of granular regenerator materials are stacked in the axial direction of the regenerator, a detailed description will be given later. Since the arrangement of the regenerator in the axial direction is determined to some extent by the specific heat of the material constituting the granular regenerator used, it is difficult to change the arrangement of the granular regenerator freely in the axial cross section of the regenerator. It was.
Therefore, even if the technical content disclosed in Patent Document 1 is combined with the technical content disclosed in Patent Document 2, the degree of freedom of arrangement of the granular regenerator material in the axial cross section of the regenerator can be greatly increased. There wasn't.

本発明はかかる従来の事情に対処してなされたものでありその目的は、蓄冷器の軸方向垂直断面に少なくとも2種類の粒状蓄冷材を分離させた状態で収容可能にするとともに、それにより少なくとも2種類の粒状蓄冷材を組み合わせて蓄冷器内に収容する際に、蓄冷器の軸方向断面における粒状蓄冷材の配置の自由度を大幅に高めることができる蓄冷器を提供することにある。   The present invention has been made in response to such a conventional situation, and an object of the present invention is to make it possible to accommodate at least two kinds of granular regenerator materials in a state where they are separated from each other in the axial vertical cross section of the regenerator, thereby at least An object of the present invention is to provide a regenerator capable of greatly increasing the degree of freedom of arrangement of the granular regenerator material in the axial section of the regenerator when the two types of granular regenerator materials are combined and accommodated in the regenerator.

上記目的を達成するため請求項1記載の発明である蓄冷器は、筒体内に少なくとも2種類の粒状蓄冷材を互いに分離させた状態で収容してなる蓄冷器であって、蓄冷器の軸方向における領域の少なくとも一部は、蓄冷器の軸方向垂直断面に少なくとも2種類の粒状蓄冷材が分離された状態で配置されることを特徴とするものである。
上記構成の発明において、筒体はその内部に少なくとも2種類の粒状蓄冷材を収容して保持するとともに、その内部を熱交換作用のある高圧ガス(熱交換ガス)を流動させるという作用を有する。また、粒状蓄冷材は、その形態を粒状にすることで蓄冷材の表面積を増大させて,熱交換ガスとの接触面積を大きくして、冷熱を効率良く蓄冷するという作用を有する。さらに、異なる材質からなる複数種類の粒状蓄冷材を用いることで高い比熱を有している温度領域の異なる冷熱を1つの蓄冷器内において同時に蓄冷可能にするという作用を有する。
また、蓄冷器の軸方向における領域の少なくとも一部において、蓄冷器の軸方向垂直断面に少なくとも2種類の粒状蓄冷材を分離された状態で配置することで、筒体の軸方向断面における複数種類の粒状蓄冷材の配置を、「積層」以外の形態にすることを可能にするという作用を有する。
In order to achieve the above object, a regenerator according to claim 1 is a regenerator in which at least two types of granular regenerator materials are accommodated in a cylinder in a state where they are separated from each other, and the axial direction of the regenerator At least a part of the region is arranged in a state where at least two kinds of granular regenerator materials are separated from each other in a vertical cross section in the axial direction of the regenerator.
In the invention having the above-described configuration, the cylindrical body has an action of accommodating and holding at least two kinds of granular regenerator materials therein and flowing a high-pressure gas (heat exchange gas) having a heat exchange action therein. The granular regenerator material has an effect of increasing the surface area of the regenerator material by increasing the shape of the regenerator material, increasing the contact area with the heat exchange gas, and efficiently storing cold energy. Furthermore, by using a plurality of types of granular regenerator materials made of different materials, it has the effect of allowing cold energy of different temperature regions having high specific heat to be stored in one regenerator at the same time.
In addition, in at least a part of the region in the axial direction of the regenerator, by disposing at least two types of granular regenerator materials in the axial vertical cross section of the regenerator in a separated state, a plurality of types in the axial cross section of the cylinder It has the effect | action that it becomes possible to make arrangement | positioning of granular regenerator material into forms other than "lamination | stacking".

請求項2記載の発明である蓄冷器は、筒体内に少なくとも2種類の粒状蓄冷材を互いに分離させた状態で収容してなる蓄冷器であって、蓄冷器の軸方向断面は、少なくとも2種類の粒状蓄冷材が,蓄冷器の軸方向に並列して配置される領域を有することを特徴とするものである。
上記構成の発明における、筒体及び粒状蓄冷材の作用は、請求項1に記載される筒体及び粒状蓄冷材の作用と同じである。
また、蓄冷器の軸方向断面において、少なくとも2種類の粒状蓄冷材が,蓄冷器の軸方向に並列して配置される領域を有することで、蓄冷器の軸方向における領域の少なくとも一部において、蓄冷器の軸方向垂直断面に少なくとも2種類の粒状蓄冷材を分離された状態で配置させるという作用を有する。
よって、請求項2記載の発明は、請求項1記載の発明と同じ作用を有する。
A regenerator according to a second aspect of the present invention is a regenerator in which at least two kinds of granular regenerator materials are accommodated in a cylinder in a state of being separated from each other, and the axial cross section of the regenerator has at least two kinds. The granular regenerator material has a region arranged in parallel in the axial direction of the regenerator.
In the invention having the above-described configuration, the action of the cylindrical body and the granular cold storage material is the same as the action of the cylindrical body and the granular cold storage material described in claim 1.
Further, in the axial cross section of the regenerator, at least a part of the granular regenerator material has a region arranged in parallel in the axial direction of the regenerator, so that at least part of the region in the axial direction of the regenerator, It has the effect | action of arrange | positioning the at least 2 type of granular cold storage material in the state isolate | separated in the axial direction vertical cross section of a cool storage.
Therefore, the invention described in claim 2 has the same action as the invention described in claim 1.

請求項3記載の発明である蓄冷器は、筒体内に少なくとも2種類の粒状蓄冷材を互いに分離させた状態で収容してなる蓄冷器であって、筒体は、この筒体内に内挿される少なくとも1つの第2の筒体を備え、第2の筒体の内側に収容される粒状蓄冷材と、第2の筒体の外に配置される粒状蓄冷材は異なる種類の粒状蓄冷材であることを特徴とするものである。
上記構成の発明において、筒体及び粒状蓄冷材の作用は、請求項1に記載される筒体及び粒状蓄冷材の作用と同じである。
また、請求項3記載の発明において第2の筒体は、その内部に粒状蓄冷材を少なくとも1種類収容するという作用を有する。これにより、ある粒状蓄冷材の内部において,他の粒状蓄冷材を分離して収容保持するという作用を有する。
これにより、請求項3の蓄冷器の軸方向断面において、少なくとも2種類の粒状蓄冷材が,蓄冷器の軸方向に並んだ状態で配置される領域が形成される。この結果、蓄冷器の軸方向における領域の少なくとも一部において、蓄冷器の軸方向垂直断面に少なくとも2種類の粒状蓄冷材が分離されて配置されることになる。
よって、請求項3記載の発明も、請求項1記載の発明と同じ作用を有する。
A regenerator according to a third aspect of the present invention is a regenerator in which at least two kinds of granular regenerator materials are accommodated in a state of being separated from each other in the cylinder, and the cylinder is inserted into the cylinder. The granular regenerator material provided with at least one second cylinder and housed inside the second cylinder and the granular regenerator material arranged outside the second cylinder are different types of granular regenerator materials. It is characterized by this.
In the invention of the above configuration, the action of the cylinder and the granular cold storage material is the same as the action of the cylinder and the granular cold storage material described in claim 1.
Further, in the invention according to claim 3, the second cylinder has an action of accommodating at least one kind of the granular regenerator material therein. Thereby, it has the effect | action of isolate | separating and accommodating other granular cool storage materials inside a certain granular cool storage material.
Thereby, in the axial cross section of the regenerator of claim 3, a region is formed in which at least two kinds of granular regenerator materials are arranged in a state of being arranged in the axial direction of the regenerator. As a result, at least two types of granular regenerator materials are separated and arranged on the vertical cross section in the axial direction of the regenerator in at least a part of the region in the axial direction of the regenerator.
Therefore, the invention described in claim 3 has the same action as the invention described in claim 1.

請求項4記載の発明である蓄冷器は、請求項1又は請求項2に記載の蓄冷器であって、筒体の高温端側に第1の粒状蓄冷材であるPbが収容され、筒体の低温端側に第2の粒状蓄冷材であるHoCuが収容され、第2の粒状蓄冷材中に第3の粒状蓄冷材であるGdSが収容されることを特徴とするものである。
上記構成の発明は、請求項1又は請求項2に記載の発明と同じ作用に加えて、第1の粒状蓄冷材であるPbは、筒体の高温端側において10〜40K程度の冷熱を効率良く蓄冷するという作用を有する。それは、その温度領域で比熱が高く大きな熱容量を備えているという特性による。以下、同様の理由により、第2の粒状蓄冷材であるHoCuは、筒体の低温端側において7〜10K程度の冷熱を効率良く蓄冷するという作用を有する。さらに、第3の粒状蓄冷材であるGdSは、筒体の低温端側において3〜5K程度の冷熱を効率良く蓄冷するという作用を有する。
また、第3の粒状蓄冷材であるGdSを用いることで、第3の粒状蓄冷材の全てを第2の粒状蓄冷材に置き換えた場合に比べて、請求項4記載の蓄冷器の製造コストを廉価にするという作用を有する。
そして、筒体の冷温端側において第2の粒状蓄冷材中に第3の粒状蓄冷材が内包されることで、第1,第2,第3のそれぞれの粒状蓄冷材をこの順序で、筒体の軸方向における高温端側から冷温端側に向かって積層させた状態で配置した蓄冷器(特許文献1に開示されるもの)に比べて、請求項4記載の蓄冷器の蓄冷効率を向上させるという作用を有する。
A regenerator according to a fourth aspect of the present invention is the regenerator according to the first or second aspect, wherein the first granular regenerator material Pb is accommodated on the high temperature end side of the cylinder, and the cylinder HoCu 2 which is the second granular regenerator material is accommodated on the low temperature end side of the gas, and Gd 2 O 2 S which is the third granular regenerator material is accommodated in the second granular regenerator material. It is.
In addition to the same action as the invention described in claim 1 or claim 2, the invention having the above-described configuration is such that Pb, which is the first granular regenerator, efficiently cools about 10 to 40 K on the high temperature end side of the cylindrical body. It has the effect of storing cold well. This is due to the characteristic that the specific heat is high and the heat capacity is large in that temperature range. Hereinafter, for the same reason, HoCu 2 which is the second granular cold storage material has an effect of efficiently storing cold heat of about 7 to 10 K on the low temperature end side of the cylindrical body. Further, a third particulate cold accumulating material Gd 2 O 2 S has the effect of efficiently cool storage the cold of the order of 3~5K at the low temperature end of the tubular body.
In addition, the use of Gd 2 O 2 S as the third particulate cold accumulating material, compared with the case of replacing all of the third particulate cold accumulating material to the second particulate cold accumulating material, regenerator of claim 4, wherein This has the effect of reducing the manufacturing cost of the product.
Then, the third granular regenerator material is included in the second granular regenerator material on the cold end side of the cylinder, so that the first, second, and third granular regenerator materials are arranged in this order in the cylinder. The regenerator efficiency of the regenerator according to claim 4 is improved as compared with a regenerator (disclosed in Patent Document 1) arranged in a state of being laminated from the high temperature end side toward the cold temperature end side in the axial direction of the body. Has the effect of causing

請求項5記載の発明である蓄冷器は、請求項3記載の蓄冷器であって、筒体の高温端側に第1の粒状蓄冷材であるPbが収容され、筒体の低温端側に第2の粒状蓄冷材であるHoCuが収容され、第2の粒状蓄冷材中に,少なくとも1つの第2の筒体が内挿されて,この第2の筒体内に第3の粒状蓄冷材であるGdSが収容されることを特徴とするものである。
上記構成の発明は、請求項3記載の発明と同じ作用を有する。また、請求項5に記載の発明における第1,第2及び第3の粒状蓄冷材の作用は、請求項4記載の発明における第1,第2及び第3の粒状蓄冷材の作用と同じである。
請求項5記載の発明においても、第3の粒状蓄冷材であるGdSを用いることで、第3の粒状蓄冷材の全てを第2の粒状蓄冷材に置き換えた場合に比べて、請求項4記載の蓄冷器の製造コストを廉価にするという作用を有する。
そして、請求項5記載の発明も請求項4記載の発明と同様に、筒体の冷温端側において第2の粒状蓄冷材中に第2の筒体内に収容されて第3の粒状蓄冷材が内包された配置とすることで、第1,第2,第3のそれぞれの粒状蓄冷材をこの順で筒体の軸上における冷温端側から高温端側に向かって積層させた状態で配置した蓄冷器(特許文献1に開示されるもの)に比べて、請求項5記載の蓄冷器の蓄冷効率を向上させるという作用を有する。
The regenerator according to claim 5 is the regenerator according to claim 3, wherein Pb as the first granular regenerator material is accommodated on the high temperature end side of the cylinder, and on the low temperature end side of the cylinder. HoCu 2 as the second granular regenerator material is accommodated, and at least one second cylinder is inserted into the second granular regenerator material, and the third granular regenerator material is inserted into the second cylinder. Gd 2 O 2 S is accommodated.
The invention configured as described above has the same effect as that of the invention described in claim 3. The action of the first, second and third granular regenerators in the invention of claim 5 is the same as the action of the first, second and third granular regenerators in the invention of claim 4. is there.
Even in the invention according to claim 5, by using Gd 2 O 2 S which is the third granular regenerator, compared to the case where all of the third granular regenerator is replaced with the second granular regenerator, The manufacturing cost of the regenerator according to claim 4 is reduced.
And the invention of Claim 5 is accommodated in the 2nd granular cold storage material in the 2nd granular cold storage material in the cold end side of a cylindrical body similarly to the invention of Claim 4, and the 3rd granular cold storage material is By adopting the included arrangement, the first, second, and third granular regenerators were arranged in this order in a state of being laminated from the cold end side to the high temperature end side on the axis of the cylinder. Compared to a regenerator (disclosed in Patent Document 1), it has the effect of improving the regenerator efficiency of the regenerator according to claim 5.

請求項5記載の発明である蓄冷器は、請求項1乃至請求項5のいずれか1項に記載の蓄冷器であって、少なくとも2種類の粒状蓄冷材が配置される軸方向垂直断面において、少なくとも2種類の粒状蓄冷材の平均粒径は異なることを特徴とするものである 。
上記構成の発明は、請求項1乃至請求項5のそれぞれに記載の発明と同じ作用を有する。また、請求項6記載の発明において、「少なくとも2種類の粒状蓄冷材が配置される軸方向垂直断面において、少なくとも2種類の粒状蓄冷材の平均粒径は異なる」とは、筒体に収容される粒状蓄冷材が、例えば、2種類である場合は、2種類の粒状蓄冷材の平均粒径が同じでないことを意味している。また、筒体に収容される粒状蓄冷材が、例えば、3種類である場合は、3種類の粒状蓄冷材の平均粒径が全て異なる場合と、3種類の粒状蓄冷材のうちの1つ粒状蓄冷材の平均粒径のみが異なる場合の2つのパターンがある。さらに、筒体に収容される粒状蓄冷材が、例えば、4種類である場合は、3種類の粒状蓄冷材の内の少なくとも1つの平均粒径が異なっている場合と、4種類の粒状蓄冷材の平均粒径が全て異なっている場合の両方のパターンがある。
このような請求項6記載の発明においては、筒体内に収容される複数種類の粒状蓄冷材として平均粒径が異なるものを用いることにより、相対的に平均粒径が小さい粒状蓄冷材の充填率を高めるという作用を有する。これにより、粒状蓄冷材の平均粒径を変更することによりその粒状蓄冷材の蓄冷効率を設計可能にするという作用を有する。
また、請求項6記載の発明では、筒体に収容される粒状蓄冷材のうちの少なくとも1つの粒状蓄冷材の平均粒径を小さくした場合でも,筒体の軸方向垂直断面の全てがこの平均粒径の小さい粒状蓄冷材1種類により満たされるわけではないので、すなわち、筒体に収容される粒状蓄冷材のうちの少なくとも1つの粒状蓄冷材の平均粒径を小さくした場合でも,筒体の軸方向垂直断面にはそれより大きな平均粒径を有する他の粒状蓄冷材からなる領域が必ず存在することになるので、筒体内における熱交換ガスの流動性が著しく低下するのを妨げるという作用を有する。
A regenerator according to a fifth aspect of the present invention is the regenerator according to any one of the first to fifth aspects, wherein the at least two types of granular regenerator materials are arranged in an axially vertical cross section. The average particle size of at least two types of granular regenerator materials is different.
The invention having the above-described configuration has the same action as that of each of the first to fifth aspects. Further, in the invention according to claim 6, “the average particle diameter of at least two types of granular regenerator materials is different in an axial vertical cross section in which at least two types of granular regenerator materials are arranged” is contained in a cylinder. When there are two types of granular cold storage materials, for example, it means that the average particle diameters of the two types of granular cold storage materials are not the same. Moreover, for example, when there are three types of granular regenerator materials accommodated in the cylindrical body, the case where the average particle diameters of the three types of granular regenerator materials are all different from each other, and one of the three types of granular regenerator materials is granular. There are two patterns where only the average particle size of the regenerator material is different. Furthermore, when there are four types of granular regenerator materials accommodated in the cylindrical body, for example, when at least one of the three types of granular regenerator materials has a different average particle diameter, and four types of granular regenerator materials There are both patterns when the average particle diameters of all are different.
In the invention according to claim 6, the filling rate of the granular regenerator material having a relatively small average particle diameter is obtained by using a plurality of kinds of granular regenerator materials accommodated in the cylinder having different average particle diameters. It has the effect | action which raises. Thereby, it has the effect | action of enabling design of the cool storage efficiency of the granular cool storage material by changing the average particle diameter of a granular cool storage material.
Further, in the invention according to claim 6, even when the average particle size of at least one granular regenerator material among the granular regenerator materials accommodated in the cylinder is reduced, all of the axial vertical cross-sections of the cylinders are averaged. Since it is not necessarily filled with one kind of granular regenerator material having a small particle diameter, that is, even when the average particle size of at least one granular regenerator material contained in the tubular body is reduced, Since there is always a region made of other granular regenerator material having an average particle size larger than that in the vertical cross section in the axial direction, it prevents the fluidity of the heat exchange gas from significantly decreasing in the cylinder. Have.

本発明の請求項1又は請求項2に記載の発明によれば、1つの粒状蓄冷材中に他の粒状蓄冷材を内包させることができる。これにより、複数種類の粒状蓄冷材を組み合わせて蓄冷器を構成する場合に、筒体の軸方向断面に個々の粒状蓄冷材を単純に積層させるという配置以外の配置を実現することができる。よって、筒体内における複数種類の粒状蓄冷材の配置の自由度を大幅に高めることができる。また、複数種類の粒状蓄冷材を用いることで比熱が高くなる温度領域も複数存在することになり、蓄冷能力の向上を図ることが可能である。
この結果、既存の粒状蓄冷材の筒体内における配置を変更するだけで、蓄冷器の蓄冷効率を向上できる。
すなわち、従来の蓄冷器の製造コストと同程度の製造コストでより冷凍能力の高い蓄冷器を提供することができる。
According to invention of Claim 1 or Claim 2 of this invention, another granular cold storage material can be included in one granular cold storage material. Thereby, when configuring a regenerator by combining a plurality of types of granular regenerator materials, it is possible to realize an arrangement other than an arrangement in which individual granular regenerator materials are simply stacked on the axial cross section of the cylindrical body. Therefore, the freedom degree of arrangement | positioning of the multiple types of granular cold storage material in a cylinder can be raised significantly. In addition, there are a plurality of temperature regions in which specific heat increases by using a plurality of types of granular regenerator materials, and it is possible to improve the regenerator capacity.
As a result, the regenerator efficiency of the regenerator can be improved only by changing the arrangement of the existing granular regenerator material in the cylinder.
That is, it is possible to provide a regenerator having a higher refrigeration capacity at a manufacturing cost comparable to that of a conventional regenerator.

請求項3記載の発明は、請求項1,2に記載の発明において1つの粒状蓄冷材中に他の粒状蓄冷材を内包させた状態で配置させ際に、第2の筒体を使用するものでありその効果は請求項1記載の発明と同じである。
また、既存の金属製の管体を第2の筒体として用いることで、請求項3記載の蓄冷器の製造を容易にするとともに、その製造コストを廉価にすることができる。
The invention described in claim 3 uses the second cylindrical body in the invention described in claims 1 and 2 when the other granular cold storage material is placed in one granular cold storage material. The effect is the same as that of the first aspect of the invention.
In addition, by using an existing metal tube as the second cylinder, the manufacture of the regenerator according to claim 3 can be facilitated and the manufacturing cost can be reduced.

請求項4記載の発明によれば、請求項1記載の発明と同じ効果に加えて、第1,第2,第3のそれぞれの粒状蓄冷材をこの順で、筒体の軸上における高温端側から冷温端側に向かって積層させた蓄冷器(特許文献1に開示される蓄冷器)に比べて、冷凍能力を向上することができる。
すなわち、請求項4記載の発明によれば、第2の粒状蓄冷材の一部を第3の粒状蓄冷材に置換した場合でもその冷凍能力を、第1及び第2の粒状蓄冷材のみからなる蓄冷器に近づけることができる。
よって、従来と同じ粒状蓄冷材を用いながら、より冷凍能力の高い蓄冷器を提供することができる。
According to the invention described in claim 4, in addition to the same effect as that of the invention described in claim 1, the first, second, and third granular regenerators are arranged in this order in the high temperature end on the axis of the cylinder. The refrigerating capacity can be improved as compared with a regenerator (a regenerator disclosed in Patent Document 1) laminated from the side toward the cold end side.
That is, according to invention of Claim 4, even when it replaces a part of 2nd granular cold storage material with the 3rd granular cold storage material, the refrigerating capacity consists only of the 1st and 2nd granular cold storage material. Can be close to a regenerator.
Therefore, it is possible to provide a regenerator having a higher refrigerating capacity while using the same granular regenerator material as in the past.

請求項5記載の発明は、請求項3記載の発明と同じ効果を有する。
また、請求項5記載の発明は、請求項4記載の発明における第2の蓄冷材と第3の蓄冷材の分離に、特に、第2の筒体を用いたものであり、請求項4記載の発明と同じ効果を有する。
The invention according to claim 5 has the same effect as the invention according to claim 3.
The invention according to claim 5 is the one in which the second cylindrical body is used for the separation of the second regenerator material and the third regenerator material in the invention according to claim 4. This has the same effect as the present invention.

請求項6記載の発明によれば、請求項1乃至請求項5に記載されるそれぞれの発明と同じ効果に加えて、筒体内における熱交換ガスの流動性を保ちながら、平均粒径がより小さい粒状蓄冷材の充填率を高めることができる。
これにより、特定の粒状蓄冷材の平均粒径を小さくして,その収容割合を大きくした場合に、蓄冷器の蓄冷効率が低下するのを防止することができる。
According to the invention described in claim 6, in addition to the same effects as the inventions described in claims 1 to 5, the average particle size is smaller while maintaining the fluidity of the heat exchange gas in the cylinder. The filling rate of the granular regenerator material can be increased.
Thereby, when the average particle diameter of a specific granular cool storage material is made small and the accommodation ratio is made large, it can prevent that the cool storage efficiency of a cool storage device falls.

(a)は本発明の実施例1に係る蓄冷器の断面図であり、(b)は本発明の実施例1に係る蓄冷器の内部における粒状蓄冷材の配置を示す斜視図であり、(c)図1(b)中のA−A線矢視断面図である。(A) is sectional drawing of the regenerator which concerns on Example 1 of this invention, (b) is a perspective view which shows arrangement | positioning of the granular cool storage material in the inside of the regenerator which concerns on Example 1 of this invention, ( c) It is an AA arrow directional cross-sectional view in FIG.1 (b). 各蓄熱材の温度と比熱の関係を示すグラフである。It is a graph which shows the relationship between the temperature of each thermal storage material, and specific heat. 本発明の実施例1に係る蓄冷器と比較例に係る蓄冷器における各温度における冷凍能力を比較したグラフである。It is the graph which compared the refrigerating capacity in each temperature in the regenerator which concerns on Example 1 of this invention, and the regenerator which concerns on a comparative example. (a),(b)はいずれも本発明の実施例1に係る蓄冷器の冷凍能力試験に用いた比較例に係る蓄冷器内の粒状蓄冷材の種類と第1の筒体内における配置を示す概念図である。(A), (b) shows the kind and arrangement | positioning in a 1st cylinder of the granular regenerator material in the regenerator which concerns on the comparative example used for the refrigerating capacity test of the regenerator which concerns on Example 1 of this invention. It is a conceptual diagram. 本発明の実施例1に係る蓄冷器と比較例に係る蓄冷器における各温度での冷凍能力を比較したグラフである。It is the graph which compared the refrigerating capacity in each temperature in the regenerator which concerns on Example 1 of this invention, and the regenerator which concerns on a comparative example. 本発明の実施例1に係る蓄冷器の冷凍能力試験に供試した蓄冷器内に収容されるそれぞれの粒状蓄冷材の配置とその割合を示した図である。It is the figure which showed arrangement | positioning and the ratio of each granular regenerator material accommodated in the regenerator tested for the refrigerating capacity test of the regenerator which concerns on Example 1 of this invention. (a)〜(e)はいずれも本発明の実施例1に係る蓄冷器の内部におけるHoCu粒とGOS粒の配置の他の例を示す斜視図である。(A) ~ (e) is a perspective view showing another example of any arrangement of HoCu 2 grain and GOS grains in the interior of the regenerator according to the first embodiment of the present invention. (a)は本発明の実施例2に係る蓄冷器の内部における粒状蓄冷材集合体の外形を示す概念図であり、(b)〜(d)はいずれも本発明の実施例2に係る蓄冷器の内部における粒状蓄冷材の配置例を示す断面図である。(A) is a conceptual diagram which shows the external shape of the granular cool storage material aggregate | assembly in the inside of the regenerator which concerns on Example 2 of this invention, (b)-(d) are all the cool storage which concerns on Example 2 of this invention. It is sectional drawing which shows the example of arrangement | positioning of the granular cool storage material inside a container. (a)〜(c)はいずれも本発明の実施例2に係る蓄冷器の内部における粒状蓄冷材の配置例を示す断面図である。(A)-(c) is sectional drawing which shows the example of arrangement | positioning of the granular cool storage material in the inside of the cool storage device which concerns on Example 2 of this invention. (a)〜(c)はいずれも本発明の実施例2に係る蓄冷器の内部における粒状蓄冷材の配置例を示す断面図である。(A)-(c) is sectional drawing which shows the example of arrangement | positioning of the granular cool storage material in the inside of the cool storage device which concerns on Example 2 of this invention. (a),(b)はともに本発明の実施例2に係る蓄冷器の内部における粒状蓄冷材の配置例を示す断面図である。(A), (b) is sectional drawing which shows the example of arrangement | positioning of the granular cool storage material in the inside of the cool storage device which concerns on Example 2 of this invention. 本発明に係る蓄冷器を使用可能な冷温発生機構の一例である冷凍機の概略を示す模式図である。It is a schematic diagram which shows the outline of the refrigerator which is an example of the cold temperature generation | occurrence | production mechanism which can use the regenerator which concerns on this invention.

本発明の実施の形態に係る蓄冷器について実施例1及び実施例2を参照しながら詳細に説明する。   The regenerator according to the embodiment of the present invention will be described in detail with reference to Example 1 and Example 2.

本発明の実施例1に係る蓄冷器について図1乃至図7を参照しながら詳細に説明する。
本発明に係る蓄冷器は、先の図12に示されるような冷凍機1に代表される冷却機構を有する装置や機構に利用されるものであり、先の図12に示すもの以外にも、例えば、パルスチューブ冷凍機、スターリングサイクル冷凍機、ビルミエサイクル冷凍機、ソルベイサイクル冷凍機、エリクソンサイクル冷凍機、又は、これを予冷段に使った冷凍システム等に用いるのに好適な、極低温蓄冷器及び冷凍機、並びに、これを用いた超伝導電磁石装置、MRI装置、クライオポンプ等に利用可能である。
また、本発明に係る蓄冷器は、従来技術に係る蓄冷器に比べて特に、蓄冷器を構成する筒体内に収容される複数種類の粒状蓄冷材の配置の仕方に特徴を有するものである。
図1(a)は本発明の実施例1に係る蓄冷器の断面図であり、(b)は本発明の実施例1に係る蓄冷器の内部における粒状蓄冷材の配置を示す斜視図であり、(c)は図1(b)中のA−A線矢視断面図である。
図1(a)〜(c)に示すように、実施例1に係る蓄冷器100Aは、金属製の第1の筒体9の高温端側(図1(a)中の符号Pで示す側)の端部側に粒状蓄冷材のPb粒14が第1の筒体9の中ほどまで充填され、このPb粒14上で,かつ,第1の筒体9の低温端側(図1(a)中の符号Qで示す側)の端部側には粒状蓄冷材のHoCu粒15が充填され、さらに、第1の筒体9の軸上で,HoCu粒15中に粒状蓄冷材であるGOS粒16からなる棒状の塊が内包されるものである。なお、GOSとは粒状蓄冷材を構成するGdSの略称である。
このように、第1の筒体9内に収容される粒状蓄冷材集合体101は、Pb粒14,HoCu粒15及びGOS粒16により構成されている。
The regenerator according to the first embodiment of the present invention will be described in detail with reference to FIGS. 1 to 7.
The regenerator according to the present invention is used in a device or mechanism having a cooling mechanism represented by the refrigerator 1 as shown in FIG. 12, and in addition to the one shown in FIG. For example, a cryogenic cold storage suitable for use in a pulse tube refrigerator, a Stirling cycle refrigerator, a Burmese cycle refrigerator, a Solvay cycle refrigerator, an Ericsson cycle refrigerator, or a refrigeration system using this in a precooling stage. The present invention can be used for a refrigerator, a refrigerator, a superconducting electromagnet device, an MRI device, a cryopump and the like using the same.
The regenerator according to the present invention is particularly characterized by the arrangement of a plurality of types of granular regenerator materials accommodated in the cylinders constituting the regenerator as compared with the regenerator according to the prior art.
Fig.1 (a) is sectional drawing of the regenerator which concerns on Example 1 of this invention, (b) is a perspective view which shows arrangement | positioning of the granular cool storage material in the inside of the regenerator which concerns on Example 1 of this invention. (C) is an AA arrow directional cross-sectional view in FIG.1 (b).
As shown in FIGS. 1A to 1C, the regenerator 100 </ b> A according to the first embodiment is a high temperature end side of the metal first cylindrical body 9 (a side indicated by a symbol P in FIG. 1A). ) Is filled to the middle of the first cylindrical body 9, and the Pb grain 14 of the granular regenerator material is filled on the Pb grain 14 and at the low temperature end side of the first cylindrical body 9 (FIG. 1 ( a) the end side of the side indicated by the symbol Q) is filled with HoCu 2 grains 15 of the granular regenerator material, and further on the axis of the first cylindrical body 9, the granular regenerator material in the HoCu 2 grains 15 A rod-shaped lump made of GOS grains 16 is included. GOS is an abbreviation for Gd 2 O 2 S that constitutes the granular regenerator material.
As described above, the granular regenerator material aggregate 101 accommodated in the first cylindrical body 9 is composed of the Pb particles 14, the HoCu 2 particles 15, and the GOS particles 16.

また、実施例1に係る蓄冷器100Aでは、図1(a)に示すように、第1の筒体9内における高圧ガス(熱交換ガス)の流動を可能にしながら,第1の筒体9中に粒状蓄冷材集合体101を収容保持するために、第1の筒体9の高温端側(図1中の符号Pを参照)、及び、低温端側(図1中の符号Qを参照)のそれぞれに、目の粗い第1のメッシュ体11と、不織繊維層であるフェルト13と、第1のメッシュ体11よりもより目の細かい第2のメッシュ体12とからなる通気積層体102が設けられている。
さらに、第1の筒体9の軸方向に積層される2種類の粒状蓄冷材の境界には、第1の筒体9内における高圧ガスの流動を可能にしながら、2種類粒状蓄冷材を分離するために、不織繊維層であるフェルト13の上下面に第2のメッシュ体12を配設した通気分離層103を配置している。
なお、通気積層体102の構成は、あくまでも一例であり、通気積層体102の構造については,粒状蓄冷材集合体101を第1の筒体9内に収容保持することが可能で,かつ,第1の筒体9への高圧ガスの流入や第1の筒体9からの高圧ガスの排出を可能にするものであれば、通気積層体102を構成する個々の要素やその組み合わせ方を自由に変更することが可能である。また、通気分離層103の構成についても第1の筒体9の軸方向に積層して収容される複数種類の粒状蓄冷材を確実に分離しながら,第1の筒体9内の高圧ガスの流動を妨げないよう構成されるのであれば、通気分離層103を構成する個々の要素やその組み合わせ方を自由に変更することが可能である。
Further, in the regenerator 100A according to the first embodiment, as shown in FIG. 1A, the first cylindrical body 9 is allowed to flow while allowing the high-pressure gas (heat exchange gas) to flow in the first cylindrical body 9. In order to accommodate and hold the granular regenerator material assembly 101 therein, the first cylindrical body 9 has a high temperature end side (see P in FIG. 1) and a low temperature end side (see Q in FIG. 1). ) Each of the air-permeable laminate including the first mesh body 11 having a coarse mesh, the felt 13 which is a non-woven fiber layer, and the second mesh body 12 having a finer mesh than the first mesh body 11. 102 is provided.
Furthermore, at the boundary between the two types of granular regenerators stacked in the axial direction of the first cylinder 9, the two types of granular regenerators are separated while allowing the flow of high-pressure gas in the first cylinder 9 In order to achieve this, a ventilation separation layer 103 in which the second mesh body 12 is disposed is disposed on the upper and lower surfaces of the felt 13 that is a non-woven fiber layer.
The configuration of the ventilation laminate 102 is merely an example, and the structure of the ventilation laminate 102 can accommodate and hold the granular regenerator material assembly 101 in the first cylindrical body 9, and As long as it allows inflow of high-pressure gas into one cylinder 9 and discharge of high-pressure gas from the first cylinder 9, the individual elements constituting the gas-permeable laminate 102 and the combination thereof can be freely set. It is possible to change. In addition, with respect to the configuration of the ventilation separation layer 103, the high-pressure gas in the first cylinder 9 is separated while reliably separating a plurality of types of granular regenerator materials that are stacked and accommodated in the axial direction of the first cylinder 9. If it is configured so as not to hinder the flow, it is possible to freely change the individual elements constituting the ventilation separation layer 103 and the combination thereof.

さらに、実施例1に係る蓄冷器100Aでは、図1(a)に示すように、第1の筒体9内に収容されるHoCu粒15とその内部に内包されるGOS粒16との分離は、第1の筒体9よりも小さい直径を有する第2の筒体10により行っている。
より具体的には、実施例1に係る蓄冷器100Aでは、第1の筒体9の高温端側に通気積層体102を設けてからPb粒14を充填した後,Pb粒14上に通気分離層103を設け,この通気積層体102上に,第1の筒体9よりも小さい口径を有する第2の筒体10を第1の筒体9に内挿して、第1の筒体9と第2の筒体10の間にHoCu粒15を充填し、第1の筒体9の低温端側に通気積層体102を取り付けている。なお、第2の筒体10の中空部にはGOS粒16が充填され、その両端部に通気積層体102がそれぞれ設けられて、第2の筒体10からのGOS粒16の流出を防止している。つまり、実施例1に係る蓄冷器100Aでは、第2の筒体10により、第1の筒体9中のHoCu粒15とGOS粒16の分離が行われている。
なお、第1の筒体9内において第2の筒体10を用いて複数種類の粒状蓄冷材の分離を行う場合、第2の筒体10の両端部のそれぞれにも上述のような通気積層体102を設けて、第2の筒体10内に高圧ガスの流動を可能にしながら粒状蓄冷材を収容保持するとよい。
また、図1(a)には第1の筒体9の端部に設けられる通気積層体102と,第2の筒体10の端部に設けられる通気積層体102との間に粒状蓄冷材を設けない場合を例に挙げているが、第1の筒体9の端部に設けられる通気積層体102と,第2の筒体10の端部に設けられる通気積層体102との間に粒状蓄冷材(実施例1に係る蓄冷器100Aの場合には、例えば、HoCu粒15)を設けてもよい。
Furthermore, in the regenerator 100A according to the first embodiment, as shown in FIG. 1A, the separation between the HoCu 2 grains 15 accommodated in the first cylinder 9 and the GOS grains 16 contained therein is separated. Is performed by the second cylinder 10 having a smaller diameter than the first cylinder 9.
More specifically, in the regenerator 100 </ b> A according to the first embodiment, the ventilation stack 102 is provided on the high temperature end side of the first cylindrical body 9, the Pb particles 14 are filled, and then the air separation is performed on the Pb particles 14. A layer 103 is provided, and a second cylinder 10 having a smaller diameter than the first cylinder 9 is inserted into the first cylinder 9 on the ventilation laminate 102, The HoCu 2 grains 15 are filled between the second cylinders 10, and the ventilation laminate 102 is attached to the low temperature end side of the first cylinder 9. The hollow portion of the second cylinder 10 is filled with the GOS grains 16, and the gas-permeable laminates 102 are provided at both ends thereof to prevent the GOS grains 16 from flowing out of the second cylinder 10. ing. That is, in the regenerator 100 </ b > A according to the first embodiment, the HoCu 2 grains 15 and the GOS grains 16 in the first cylinder 9 are separated by the second cylinder 10.
In the case where a plurality of types of granular regenerator materials are separated using the second cylinder 10 in the first cylinder 9, the above-described ventilation lamination is also applied to each of both end portions of the second cylinder 10. A body 102 may be provided to accommodate and hold the granular regenerator material while allowing the flow of high-pressure gas in the second cylinder 10.
Further, FIG. 1A shows a granular regenerator between the ventilation laminate 102 provided at the end of the first cylinder 9 and the ventilation laminate 102 provided at the end of the second cylinder 10. Is provided as an example, but between the ventilation laminate 102 provided at the end of the first cylinder 9 and the ventilation laminate 102 provided at the end of the second cylinder 10. A granular regenerator material (in the case of the regenerator 100A according to the first embodiment, for example, HoCu 2 grains 15) may be provided.

このような実施例1に係る蓄冷器100Aでは、図1(c)に示すように、第1の筒体9内に収容される粒状蓄冷材集合体101は、第1の筒体9の中心軸17の軸方向断面において、Pb粒14上にHoCu粒15のみならずGOS粒16もが積層された状態になる。このとき、第1の筒体9の軸方向断面において、HoCu粒15とGOS粒16とは第1の筒体9の軸方向に並列している。
すなわち、実施例1に係る蓄冷器100Aの軸方向断面は、少なくとも2種類の粒状蓄冷材が,蓄冷器100A(第1の筒体9)の軸方向に並列して配置される領域を有した状態になる。
また、この状態を別の言葉で言い換えると、実施例1に係る蓄冷器100Aは、蓄冷器100A(第1の筒体9)の軸方向における領域の少なくとも一部において、第1の筒体9の軸方向垂直断面に少なくとも2種類の粒状蓄冷材が分離されて配置されている,とも表現することができる(図1(b)を参照)。
In the regenerator 100 </ b> A according to the first embodiment, as shown in FIG. 1C, the granular regenerator material aggregate 101 accommodated in the first cylinder 9 is the center of the first cylinder 9. In the axial section of the shaft 17, not only the HoCu 2 grains 15 but also the GOS grains 16 are stacked on the Pb grains 14. At this time, the HoCu 2 grains 15 and the GOS grains 16 are juxtaposed in the axial direction of the first cylinder 9 in the axial section of the first cylinder 9.
That is, the axial cross section of the regenerator 100A according to the first embodiment has a region in which at least two types of granular regenerator materials are arranged in parallel in the axial direction of the regenerator 100A (first cylinder 9). It becomes a state.
In other words, in other words, the regenerator 100A according to the first embodiment includes the first cylinder 9 in at least a part of the region in the axial direction of the regenerator 100A (first cylinder 9). It can also be expressed that at least two types of granular cold storage materials are separated and arranged in the vertical cross section in the axial direction (see FIG. 1B).

ここで、実施例1に係る蓄冷器100Aに使用される粒状蓄冷材について説明を加える。
図2は各蓄熱材の温度と比熱の関係を示すグラフである。なお、図2中のX軸は温度(K)を、Y軸は比熱(J/cmK)を示している。
図2に示す3種類の蓄熱材のうち、Pb,HoCuはいずれも10Kを超えた領域において温度が高くなるにつれて比熱が高くなる傾向が認められた。
他方、5〜10Kの温度領域では、HoCuの比熱が比較的高く、GOSは4〜5K程度のときに特に高い比熱を有している。
また、先の図12に示す冷凍機1に代表される冷却機構においては、2段蓄冷器3aの高温端側(図12中の符号Pで示す側)における高圧ガス(熱交換ガス)の温度は40K程度であり、2段蓄冷器3aの内部を高温端側から低温端側に向かって流動する際に、2段蓄冷器3a内に収容される蓄冷材により熱交換されて2段蓄冷器3aの低温端側(図12中の符号Qで示す側)では、2段蓄冷器3a内に収容される蓄冷材の材質にもよるが高圧ガス(熱交換ガス)の温度を7Kにまで冷却することが可能である。
従って、上述のような冷却機構を考慮すれば、図12に示す2段蓄冷器3aの高温端側(図12中の符号Pで示す側)にPb粒14を収容し、次いで、2段蓄冷器3aの低温端側(図12中の符号Qで示す側)に向かうにつれてHoCu粒15、GOS粒16の順でそれぞれの粒状蓄冷材を2段蓄冷器3aの軸方向に積層した状態で収容することが最も合理的でかつ最良であるとも考えられる。
Here, the granular regenerator material used for the regenerator 100A according to the first embodiment will be described.
FIG. 2 is a graph showing the relationship between the temperature and specific heat of each heat storage material. In FIG. 2, the X axis represents temperature (K), and the Y axis represents specific heat (J / cm 3 K).
Among the three types of heat storage materials shown in FIG. 2, Pb and HoCu 2 were found to have a tendency to increase in specific heat as the temperature increased in a region exceeding 10K.
On the other hand, in the temperature range of 5 to 10K, the specific heat of HoCu 2 is relatively high, and GOS has a particularly high specific heat when it is about 4 to 5K.
In the cooling mechanism represented by the refrigerator 1 shown in FIG. 12, the temperature of the high-pressure gas (heat exchange gas) on the high temperature end side (the side indicated by the symbol P in FIG. 12) of the two-stage regenerator 3a. Is about 40K, and when the inside of the two-stage regenerator 3a flows from the high temperature end side toward the low temperature end side, heat is exchanged by the regenerator material accommodated in the two-stage regenerator 3a and the two-stage regenerator On the low temperature end side of 3a (the side indicated by symbol Q in FIG. 12), the temperature of the high pressure gas (heat exchange gas) is cooled to 7K, depending on the material of the regenerator material accommodated in the two-stage regenerator 3a. Is possible.
Therefore, considering the cooling mechanism as described above, the Pb particles 14 are accommodated on the high temperature end side (the side indicated by the symbol P in FIG. 12) of the two-stage regenerator 3a shown in FIG. In the state where the respective granular regenerators are stacked in the axial direction of the two-stage regenerator 3a in the order of HoCu 2 grains 15 and GOS grains 16 toward the low temperature end side (the side indicated by the symbol Q in FIG. 12) of the apparatus 3a. Containment is also considered the most reasonable and best.

しかしながら、図12に示す2段蓄冷器3aにおいて、Pb粒14、HoCu粒15、GOS粒16の3種類の粒状蓄冷材をこの順序で、第1の筒体9の軸方向断面における高温端側から低温端側に向かって積層してなる2段蓄冷器3aと、Pb粒14とHoCu粒15の2種類の粒状蓄冷材をこの順序で高温端側から低温端側に向かって積層してなる2段蓄冷器3aの冷凍能力を比較すると、後者の2段蓄冷器3aの冷凍能力の方が広範囲の温度領域において優れている。
その一方で、HoCu(HoCu粒15)は極めて高価な蓄冷材であるにもかかわらず、Pb粒14とHoCu粒15の2種類の粒状蓄冷材を用いた2段蓄冷器3a(後者の蓄冷器)が一般に普及している。
よって、このような事情からPb粒14と、HoCu粒15と、GOS粒16の3種類を用いた2段蓄冷器3aの冷凍能力の向上が望まれていた。
これに対して発明者らは鋭意研究の結果、図12に示す冷凍機1に代表される冷却機構に用いられる蓄冷器の第1の筒体9内に収容される粒状蓄冷材集合体101の配置を変えることにより、従来と同じPb粒14と、HoCu粒15と、GOS粒16を用いながら蓄冷器の冷凍能力を向上させることに成功した。
However, in the two-stage regenerator 3 a shown in FIG. 12, three types of granular regenerator materials, Pb particles 14, HoCu 2 particles 15, and GOS particles 16, are arranged in this order at the high temperature end in the axial section of the first cylindrical body 9. A two-stage regenerator 3a that is laminated from the side toward the low temperature end side, and two types of granular regenerator materials, Pb grains 14 and HoCu 2 grains 15, are laminated in this order from the high temperature end side to the low temperature end side. When the refrigerating capacity of the two-stage regenerator 3a is compared, the refrigerating capacity of the latter two-stage regenerator 3a is superior in a wide temperature range.
On the other hand, despite the fact that HoCu 2 (HoCu 2 grains 15) is a very expensive regenerator, the two-stage regenerator 3a (the latter) using two types of granular regenerators of Pb grains 14 and HoCu 2 grains 15 is used. In general).
Therefore, improvement of the refrigerating capacity of the two-stage regenerator 3a using three kinds of Pb grains 14, HoCu 2 grains 15, and GOS grains 16 has been desired due to such circumstances.
On the other hand, as a result of earnest research, the inventors of the granular regenerator material aggregate 101 accommodated in the first cylinder 9 of the regenerator used in the cooling mechanism represented by the refrigerator 1 shown in FIG. By changing the arrangement, we succeeded in improving the refrigerating capacity of the regenerator while using the same Pb grains 14, HoCu 2 grains 15, and GOS grains 16 as before.

図3は本発明の実施例1に係る蓄冷器と比較例に係る蓄冷器における各温度における冷凍能力を比較したグラフである。また、図4(a),(b)はいずれも本発明の実施例1に係る蓄冷器の冷凍能力試験に用いた比較例に係る蓄冷器内の粒状蓄冷材の種類と第1の筒体内における配置を示す概念図である。なお、図1に記載されたものと同一部分については同一符号を付し、その構成についての説明は省略する。
まず、図1(b),(c)及び図4を参照しながらこの度の冷凍能力試験に使用した実施例1に係る蓄冷器内における粒状蓄冷材の配置について説明する。
本発明の実施例1に係る蓄冷器100Aに収容される各粒状蓄冷材の配置は図1(b),(c)に示す通りである。
また、図4(a)は比較例1に係る蓄冷器に収容される粒状蓄冷材集合体101における各粒状蓄冷材の配置を示している。比較例1に係る蓄冷器では、第1の筒体9の高温端側(図4(a)中の符号Pで示す側)から第1の筒体9の中ほどまでPb粒14が充填され,このPb粒14上から第1の筒体9の低温端側(図4(a)中の符号Qで示す側)までHoCu粒15が充填されて,第1の筒体9の軸方向断面の高温端から低温端に向かって2層から成る粒状蓄冷材集合体101が形成されている。
他方、図4(b)は比較例2に係る蓄冷器に収容される粒状蓄冷材集合体101における各粒状蓄冷材の配置を示したものである。比較例2に係る蓄冷器では、第1の筒体9の高温端側(図4(b)中の符号Pで示す側)から第1の筒体9の中ほどまでPb粒14が充填され,このPb粒14上から第1の筒体9の低温端側(図4(a)中の符号Qで示す側)に向かって,第1の筒体9の下端から3/4の高さまでHoCu粒15が充填され,さらに,HoCu粒15上から第1の筒体9の低温端(図4(a)中の符号Qで示す側)までGOS粒16が充填されて,第1の筒体9の軸方向断面における高温端から低温端に向かって3層から成る粒状蓄冷材集合体101が形成されている。
FIG. 3 is a graph comparing the refrigerating capacity at each temperature in the regenerator according to Example 1 of the present invention and the regenerator according to the comparative example. 4 (a) and 4 (b) both show the types of granular regenerator materials in the regenerator according to the comparative example used in the refrigerating capacity test of the regenerator according to Example 1 of the present invention and the first cylinder. It is a conceptual diagram which shows arrangement | positioning in. In addition, the same code | symbol is attached | subjected about the part same as what was described in FIG. 1, and the description about the structure is abbreviate | omitted.
First, the arrangement of the granular regenerator material in the regenerator according to Example 1 used for the refrigeration capacity test of this time will be described with reference to FIGS. 1 (b), 1 (c) and FIG. 4.
The arrangement of the granular regenerator materials accommodated in the regenerator 100A according to the first embodiment of the present invention is as shown in FIGS. 1 (b) and 1 (c).
FIG. 4A shows the arrangement of the granular regenerator materials in the granular regenerator material aggregate 101 housed in the regenerator according to the first comparative example. In the regenerator according to the comparative example 1, the Pb particles 14 are filled from the high temperature end side of the first cylindrical body 9 (the side indicated by the symbol P in FIG. 4A) to the middle of the first cylindrical body 9. The HoCu 2 grains 15 are filled from the Pb grains 14 to the low temperature end side of the first cylinder 9 (the side indicated by the symbol Q in FIG. 4A), and the axial direction of the first cylinder 9 A granular cold storage material aggregate 101 composed of two layers is formed from the high temperature end to the low temperature end of the cross section.
On the other hand, FIG. 4B shows the arrangement of the granular regenerator materials in the granular regenerator material aggregate 101 accommodated in the regenerator according to the second comparative example. In the regenerator according to the comparative example 2, the Pb particles 14 are filled from the high temperature end side (the side indicated by the symbol P in FIG. 4B) of the first cylinder 9 to the middle of the first cylinder 9. From the top of this Pb grain 14 toward the low temperature end side of the first cylindrical body 9 (the side indicated by the symbol Q in FIG. 4A), from the lower end of the first cylindrical body 9 to a height of 3/4 The HoCu 2 grains 15 are filled, and further, the GOS grains 16 are filled from the top of the HoCu 2 grains 15 to the low temperature end of the first cylindrical body 9 (the side indicated by the symbol Q in FIG. 4A). A granular regenerator material aggregate 101 composed of three layers from the high temperature end to the low temperature end in the axial cross section of the cylindrical body 9 is formed.

上述のような本発明の実施例1に係る蓄冷器100Aと、比較例1,2に係る冷凍能力を比較すると、図3に示すように、比較例1に係る蓄冷器の冷凍能力が最も高く、次いで、本発明の実施例1に係る蓄冷器100A、比較例2に係る冷却器の順で冷凍能力が高かった。
このため、従来公知の蓄冷材であるPb粒14、HoCu粒15、GOS粒16を組み合わせてなる蓄冷器において、第1の筒体9内におけるHoCu粒15とGOS粒16の配置を変更することで蓄冷器の冷凍能力を向上できることが確認された。
したがって、実施例1に係る蓄冷器100Aによれば、従来と同じ蓄冷材を用いてより高い冷凍能力を有する蓄冷器を提供することができる。また、比較例1に近い冷却能力を有する蓄冷器をより安価に提供できるという効果も有する。
When comparing the regenerator 100A according to Example 1 of the present invention as described above and the refrigerating capacity according to Comparative Examples 1 and 2, the refrigerating capacity of the regenerator according to Comparative Example 1 is the highest as shown in FIG. Then, the refrigerating capacity was high in the order of the regenerator 100A according to Example 1 of the present invention and the cooler according to Comparative Example 2.
For this reason, the arrangement of the HoCu 2 grains 15 and the GOS grains 16 in the first cylindrical body 9 is changed in a regenerator in which Pb grains 14, HoCu 2 grains 15, and GOS grains 16, which are conventionally known cold storage materials, are combined. By doing so, it was confirmed that the refrigerating capacity of the regenerator can be improved.
Therefore, according to the regenerator 100A according to the first embodiment, it is possible to provide a regenerator having a higher refrigeration capacity using the same regenerator material as in the past. Moreover, it has the effect that the regenerator which has the cooling capability close | similar to the comparative example 1 can be provided more cheaply.

そして、実施例1に係る蓄冷器100Aにおいては、HoCu粒15内にGOS粒16を分離した状態で収容する手段として、例えば、第1の筒体9とは別に第2の筒体10を設け、この第2の筒体10内にGOS粒16を収容したものをHoCu粒15内に内包させるという手段を採用することで、実施例1に係る蓄冷器100Aの構造をシンプルなものにすることができる。
なお、本願明細書では第2の筒体10として中空部の断面形状が円形であるものを用いた場合を例に挙げて説明しているが、第2の筒体10の断面形状は三角形以上の多角形でもよいし、楕円形やその他不定形な環状でもよい。すなわち、内部に粒状蓄冷材を充填可能な筒体であればその中空部の断面外形は特に問題としない。
また、この場合、第1の筒体9内における高圧ガス(熱交換ガス)の流動性を確保するために、第1の筒体9と第2の筒体10の軸方向は一致(略一致の概念も含む)させておくことが望ましい。
実施例1に係る蓄冷器100Aでは、耐久性や強度を考えて第1の筒体9及び第2の筒体10の材質としてステンレスを用いているが、ステンレス以外にもステンレスと同等の,あるいは,ステンレスよりも熱伝導率が低く、十分な強度や耐久性を有し、加工性のよい金属や合金あるいは合成樹脂からなる筒体であれば実施例1に係る蓄冷器100Aに支障なく使用することができる。なお、第1の筒体9及び第2の筒体10の材質としてステンレスと同等あるいはステンレスよりも熱伝導率が低いものが望ましいのは、熱伝導率のよい材質を使用すると、高温端から低温端へ熱伝導による熱が多量に伝わり、低温側の熱損失となるためである。従って、この熱損失を極力抑えるために、熱伝導率は小さい材質で、肉厚の薄いものが望ましいと言える。本実施例におけるステンレス以外であれば、例えばベークライトが該当する。
In the regenerator 100A according to the first embodiment, as a means for accommodating the GOS grain 16 in the HoCu 2 grain 15 in a separated state, for example, the second cylinder 10 is provided separately from the first cylinder 9. The structure of the regenerator 100 </ b > A according to the first embodiment is simplified by using a means of providing and encapsulating the GOS grains 16 contained in the second cylinder 10 in the HoCu 2 grains 15. can do.
In the specification of the present application, the second cylindrical body 10 is described by taking as an example a case where the hollow section has a circular cross-sectional shape. However, the cross-sectional shape of the second cylindrical body 10 is a triangle or more. The polygon may be an oval or other irregular ring. That is, the cross-sectional outer shape of the hollow portion is not particularly problematic as long as it is a cylindrical body that can be filled with a granular cold storage material.
In this case, the axial directions of the first cylinder 9 and the second cylinder 10 are the same (substantially coincident) in order to ensure the fluidity of the high-pressure gas (heat exchange gas) in the first cylinder 9. It is desirable to include this concept.
In the regenerator 100A according to the first embodiment, stainless steel is used as the material of the first cylinder 9 and the second cylinder 10 in consideration of durability and strength. As long as the cylindrical body is made of a metal, alloy, or synthetic resin having a lower thermal conductivity than stainless steel, sufficient strength and durability, and good workability, it can be used without any problem for the regenerator 100A according to the first embodiment. be able to. The first cylinder 9 and the second cylinder 10 are preferably made of a material having the same thermal conductivity as that of stainless steel or having a lower thermal conductivity than stainless steel. This is because a large amount of heat is transferred to the end due to heat conduction, resulting in heat loss on the low temperature side. Therefore, in order to suppress this heat loss as much as possible, it can be said that a material having a small thermal conductivity and a thin wall thickness is desirable. For example, bakelite corresponds to other than stainless steel in the present embodiment.

ここで、本発明の実施例1に係る蓄冷器の冷凍能力に関する詳細な試験結果を参照しながら本発明の実施例1に係る蓄冷器の効果についての説明を加える。
図5は本発明の実施例1に係る蓄冷器と比較例に係る蓄冷器における各温度での冷凍能力を比較したグラフである。図6は本発明の実施例1に係る蓄冷器の冷凍能力試験に供試した蓄冷器内に収容されるそれぞれの粒状蓄冷材の配置とその割合を示した図である。なお、図6中のY軸方向における原点O側が、第1の筒体9における高温端側である。
本試験に用いた3種類の実施例1に係る蓄冷器、及び、比較例3乃至7に係る蓄冷器について説明する。なお、本試験では、3種類の実施例1に係る蓄冷器、及び、比較例3乃至7に係る蓄冷器の第1の筒体9として、軸方向垂直断面において中空部の直径が15mmのステンレス製の円筒を用いた。
また、3種類の実施例1に係る蓄冷器における第2の筒体10として、中空部の直径が9mmで、肉厚が0.5mmのステンレス製の円筒を用いた。
さらに、この度の試験に用いた全ての蓄冷器に収容する粒状蓄冷材のうちの50容積%をPb粒14とし、本試験に供試する全ての蓄冷器においてPb粒14を第1の筒体9の高温端側に配置した。
よって、ここでは本試験に供試する3種類の実施例1に係る蓄冷器、及び、比較例3乃至7に係る蓄冷器の相違点のみを記載する。また、以下の本試験に供試する蓄冷器に関する説明において、平均粒径に関する記載がなされない粒状蓄冷材の平均粒径は全て0.2mmである。
Here, the effect of the regenerator according to the first embodiment of the present invention will be described with reference to detailed test results regarding the refrigerating capacity of the regenerator according to the first embodiment of the present invention.
FIG. 5 is a graph comparing the refrigerating capacity at each temperature in the regenerator according to Example 1 of the present invention and the regenerator according to the comparative example. FIG. 6 is a diagram showing the arrangement and the proportion of each granular regenerator material accommodated in the regenerator used in the refrigerating capacity test of the regenerator according to Example 1 of the present invention. The origin O side in the Y-axis direction in FIG. 6 is the high temperature end side of the first cylinder 9.
The three types of regenerators according to Example 1 used in this test and the regenerators according to Comparative Examples 3 to 7 will be described. In this test, as the first cylinder 9 of the three types of regenerators according to Example 1 and the regenerators according to Comparative Examples 3 to 7, stainless steel having a hollow portion with a diameter of 15 mm in the vertical cross section in the axial direction. The cylinder made from was used.
In addition, as the second cylinder 10 in the three types of regenerators according to Example 1, a stainless steel cylinder having a hollow portion with a diameter of 9 mm and a wall thickness of 0.5 mm was used.
Further, 50% by volume of the granular regenerator material accommodated in all the regenerators used in this test is Pb particles 14, and the Pb particles 14 are used as the first cylinder in all regenerators used in this test. 9 was arranged on the high temperature end side.
Therefore, only the differences between the three types of regenerators according to Example 1 and the regenerators according to Comparative Examples 3 to 7 used in this test are described here. Moreover, in the description regarding the regenerator to be used in the following test, the average particle diameter of the granular regenerator material that is not described regarding the average particle diameter is 0.2 mm.

実施例1Aに係る蓄冷器では、Pb粒14上にHoCu粒15を積層し、このHoCu粒15の内に挿設される第2の筒体10中に平均粒径が0.25mmのGOS粒16を収容した。
実施例1Bに係る蓄冷器では、Pb粒14上にHoCu粒15を積層し、このHoCu粒15の内に挿設される第2の筒体10中に平均粒径が0.1mmのGOS粒16を収容した。
実施例1Cに係る蓄冷器は、実施例1Aに係るHoCu粒15とGOS粒16の配置を置き換えたものである。
比較例3に係る蓄冷器では、Pb粒14上に40容積%のHoCu粒15を積層し、その上に平均粒径が0.25mmのGOS粒16を10容積%積層した。
比較例4に係る蓄冷器では、Pb粒14上に40容積%のHoCu粒15を積層し、その上に平均粒径が0.1mmのGOS粒16を10容積%積層した。
比較例5に係る蓄冷器では、Pb粒14上に50容積%のHoCu粒15を積層した。
比較例6に係る蓄冷器では、Pb粒14上に30容積%のHoCu粒15を積層し、その上に平均粒径が0.25mmのGOS粒16を20容積%積層した。
比較例7に係る蓄冷器では、Pb粒14上に30容積%のHoCu粒15を積層し、その上に平均粒径が0.1mmのGOS粒16を20容積%積層した。
In the regenerator according to Example 1A, HoCu 2 grains 15 are stacked on the Pb grains 14, and the average particle diameter is 0.25 mm in the second cylinder 10 inserted into the HoCu 2 grains 15. GOS grains 16 were accommodated.
In the regenerator according to Example 1B, HoCu 2 grains 15 are stacked on the Pb grains 14, and the average particle diameter is 0.1 mm in the second cylinder 10 inserted into the HoCu 2 grains 15. GOS grains 16 were accommodated.
The regenerator according to Example 1C is obtained by replacing the arrangement of the HoCu 2 grains 15 and the GOS grains 16 according to Example 1A.
In the regenerator according to Comparative Example 3, 40% by volume HoCu 2 grains 15 were laminated on the Pb grains 14, and 10% by volume GOS grains 16 having an average particle diameter of 0.25 mm were laminated thereon.
In the regenerator according to Comparative Example 4, 40 volume% HoCu 2 grains 15 were laminated on the Pb grains 14, and 10 volume% GOS grains 16 having an average particle diameter of 0.1 mm were laminated thereon.
In the regenerator according to Comparative Example 5, 50 vol% HoCu 2 grains 15 were laminated on the Pb grains 14.
In the regenerator according to Comparative Example 6, 30% by volume HoCu 2 grains 15 were laminated on the Pb grains 14, and 20% by volume GOS grains 16 having an average particle diameter of 0.25 mm were laminated thereon.
In the regenerator according to Comparative Example 7, 30 volume% HoCu 2 grains 15 were laminated on the Pb grains 14, and 20 volume% GOS grains 16 having an average particle diameter of 0.1 mm were laminated thereon.

上述のような10種類の供試用の蓄冷器(3種類の実施例1に係る蓄冷器1A〜1C、及び、比較例3乃至7に係る蓄冷器)の冷凍能力を比較したグラフが図5である。
図5に示すように、平均粒径が0.25mmのGOS粒16を10容積%収容した比較例3に係る蓄冷器と、平均粒径が0.1mmのGOS粒16を10容積%収容した比較例4に係る蓄冷器とでは、GOS粒16の平均粒径が小さい比較例4に係る蓄冷器の冷却能力が高かった。
その一方で、平均粒径が0.25mmのGOS粒16を20容積%収容した比較例6に係る蓄冷器と、平均粒径が0.1mmのGOS粒16を20容積%収容した比較例7に係る蓄冷器をとでは、GOS粒16の平均粒径が大きい比較例6に係る蓄冷器の冷却能力が高かった。
従って、上記結果から、複数種類の粒状蓄冷材を第1の筒体9内においてその軸方向に単純に積層させた従来例に係る蓄冷器では、特定の粒状蓄冷材を一定以上収容する際に、その粒状蓄冷材による特定の温度領域の蓄冷効率を向上しようとして粒状蓄冷材の平均粒径を小さくすると、かえって蓄冷効率が低下することが明らかになった。これは、従来例に係る蓄冷器では、特定の粒状蓄冷材の平均粒径を小さくした場合に、第1の筒体9の軸方向垂直断面の全ての領域において平均粒径の小さい粒状蓄冷材が密に充填されることになり、この結果、第1の筒体9内における高圧ガス(熱交換ガス)の流動性が低下すると考えられる。この場合、平均粒径の小さい粒状蓄冷材の相対的な容積が小さければ、第1の筒体9内における高圧ガスの流動性が大幅に妨げられることはないが、平均粒径の小さい粒状蓄冷材の相対的な容積が大きくなるにつれ第1の筒体9内における高圧ガスの流動性の低下が顕著になると考えられる。
FIG. 5 is a graph comparing the refrigeration capacities of 10 types of regenerators for the test as described above (the regenerators 1A to 1C according to the three types of Example 1 and the regenerators according to Comparative Examples 3 to 7). is there.
As shown in FIG. 5, the regenerator according to Comparative Example 3 in which 10% by volume of GOS particles 16 having an average particle size of 0.25 mm and 10% by volume of GOS particles 16 having an average particle size of 0.1 mm were stored. With the regenerator according to Comparative Example 4, the cooling capacity of the regenerator according to Comparative Example 4 in which the average particle size of the GOS grains 16 is small was high.
On the other hand, the regenerator according to Comparative Example 6 in which 20% by volume of GOS particles 16 having an average particle size of 0.25 mm was accommodated, and Comparative Example 7 in which 20% by volume of GOS particles 16 having an average particle size of 0.1 mm were accommodated. In the regenerator according to the present invention, the cooling capacity of the regenerator according to Comparative Example 6 in which the average particle size of the GOS grains 16 is large was high.
Therefore, from the above results, in the regenerator according to the conventional example in which a plurality of types of granular regenerator materials are simply stacked in the axial direction in the first cylindrical body 9, when a specific granular regenerator material is accommodated more than a certain amount. It has been clarified that when the average particle size of the granular regenerator material is reduced in order to improve the regenerator efficiency in a specific temperature range by the granular regenerator material, the cool regenerator efficiency is reduced. This is because, in the regenerator according to the conventional example, when the average particle size of the specific granular regenerator material is reduced, the granular regenerator material having a small average particle size in all the regions of the vertical cross section in the axial direction of the first cylindrical body 9. As a result, the fluidity of the high-pressure gas (heat exchange gas) in the first cylindrical body 9 is considered to decrease. In this case, if the relative volume of the granular regenerator material having a small average particle diameter is small, the fluidity of the high-pressure gas in the first cylindrical body 9 is not significantly hindered, but the granular regenerator having a small average particle diameter is not disturbed. As the relative volume of the material increases, it is considered that the decrease in the fluidity of the high-pressure gas in the first cylinder 9 becomes significant.

他方、第2の筒体10中に平均粒径が0.25mmのGOS粒16を収容した実施例1Aに係る蓄冷器と、第2の筒体10中に平均粒径が0.1mmのGOS粒16を収容した実施例1Bとでは、蓄冷能力に差はほとんど認められなかった。
この結果から、実施例1に係る蓄冷器100Aのように、例えば2種類の粒状蓄冷材を第1の筒体9の軸方向に分離して収容した場合、いずれか一方の粒状蓄冷材の平均粒径を小さくして密に充填した場合でも、第1の筒体9内における高圧ガスの流動性の低下を抑制することができる。
従って、粒状蓄冷材の平均粒径を小さくすることにより生じる蓄冷効率の低下というデメリットが生じるのを抑制することができる。
On the other hand, the regenerator according to Example 1A in which the GOS grains 16 having an average particle diameter of 0.25 mm are accommodated in the second cylinder 10, and the GOS having an average particle diameter of 0.1 mm in the second cylinder 10. In Example 1B which accommodated the grain 16, almost no difference was recognized in the cold storage capacity.
From this result, as in the regenerator 100A according to Example 1, for example, when two types of granular regenerator materials are separated and accommodated in the axial direction of the first cylindrical body 9, the average of either one of the granular regenerator materials Even when the particle size is reduced and densely packed, a decrease in fluidity of the high-pressure gas in the first cylinder 9 can be suppressed.
Therefore, it can suppress that the demerit of the fall of the cool storage efficiency produced by making the average particle diameter of a granular cool storage material small is produced.

さらに、実施例1Aに係る蓄冷器と実施例1Cに係る蓄冷器とでは、第1の筒体9内におけるHoCu粒15とGOS粒16の配置を置き換えた点のみが異なっているが、HoCu粒15を第2の筒体10の外に配置した実施例1Aに係る蓄冷器の方が冷凍能力が高かった。
この結果から、同じ種類の粒状蓄冷材を用いた場合でも、第1の筒体9内における粒状蓄冷材配置が変わることで、蓄冷器の冷凍能力に差が出ることが明らかになった。
このことは、既存の粒状蓄冷材の組み合わせからなる蓄冷器であっても、粒状蓄冷材の配置を変えるだけで蓄冷効率が改善される可能性があり、結果的に、蓄冷器の冷凍能力を向上できる可能性があることを示唆している。
Furthermore, the regenerator according to Example 1A and the regenerator according to Example 1C are different only in that the arrangement of the HoCu 2 grains 15 and the GOS grains 16 in the first cylinder 9 is replaced. The regenerator according to Example 1A in which the two grains 15 were arranged outside the second cylinder 10 had a higher refrigeration capacity.
From this result, even when the same kind of granular regenerator material was used, it became clear that the refrigerating capacity of the regenerator differs depending on the arrangement of the granular regenerator material in the first cylindrical body 9.
This means that even in a regenerator made up of a combination of existing granular regenerators, the regenerator efficiency can be improved simply by changing the arrangement of the granular regenerators. It suggests that there is a possibility of improvement.

最後に、比較例5に係る蓄冷器と、実施例1A,1Bに係る蓄冷器の冷凍能力を比較すると、HoCu粒15中に第2の筒体10を用いてGOS粒16を収容した場合には、GOS粒16の平均粒径が0.25mmの場合でも,0.1mmの場合でも、優劣なく比較例5に係る蓄冷器の冷凍能力に近づけることができた。
従って、実施例1に係る蓄冷器100Aによれば、従来の粒状蓄冷材を用いながら、その配置を変えるだけでより高い冷凍能力を有する蓄冷器を提供することができることが確認された。
よって、実施例1に係る蓄冷器100Aによれば、第1の筒体9内における複数種類の粒状蓄冷材の配置の自由度を高めることができ、これにより、より冷凍能力の高い蓄冷器を提供できる可能性があることが示された。
そして、この場合、特定の粒状蓄冷材の平均粒径を小さくした場合でも、蓄冷器の冷凍能力は低下しないので、蓄冷材の平均粒径の変更を容易にすることができる。これにより、複数種類の粒状蓄冷材を用いて蓄冷器を構成する際の、第1の筒体9内における粒状蓄冷材の配置の自由度のみならず、粒状蓄冷材の平均粒径の設定の自由度も高めることができることが示された。
Finally, when comparing the refrigerating capacity of the regenerator according to Comparative Example 5 and the regenerator according to Examples 1A and 1B, the GOS grain 16 is contained in the HoCu 2 grains 15 using the second cylindrical body 10. In both cases, whether the average particle size of the GOS grains 16 was 0.25 mm or 0.1 mm, the refrigerating capacity of the regenerator according to Comparative Example 5 could be brought close to the refrigeration capacity.
Therefore, according to the regenerator 100A according to Example 1, it was confirmed that a regenerator having a higher refrigerating capacity can be provided only by changing the arrangement while using a conventional granular regenerator material.
Therefore, according to the regenerator 100A according to the first embodiment, it is possible to increase the degree of freedom of arrangement of a plurality of types of granular regenerator materials in the first cylindrical body 9, and thus, a regenerator having a higher refrigerating capacity can be obtained. It was shown that there is a possibility that it can be provided.
In this case, even if the average particle size of the specific granular regenerator material is reduced, the refrigerating capacity of the regenerator does not decrease, so that the average particle size of the regenerator material can be easily changed. Thereby, when configuring a regenerator using a plurality of types of granular regenerators, not only the degree of freedom of the arrangement of the granular regenerators in the first cylinder 9 but also the setting of the average particle size of the granular regenerators It was shown that the degree of freedom can be increased.

ここで、実施例1に係る蓄冷器100AのHoCu粒15内におけるGOS粒16の配置の他の例について図7を参照しながら説明する。
図7(a)〜(e)はいずれも本発明の実施例1に係る蓄冷器の内部におけるHoCu粒とGOS粒の配置の他の例を示す斜視図である。なお、図1乃至図6に記載されたものと同一部分については同一符号を付し、その構成についての説明は省略する。また、図7では、図1(b)におけるGOS粒16が収容されるHoCu粒15の収容部分のみを示している。
先の図1では、実施例1に係る蓄冷器100Aの一例として、第1の筒体9内の低温端側(図1中の符号Qで示す側)に配置されるHoCu粒15収容領域の軸上で,かつ,この軸の全域にGOS粒16が配置される場合を例に挙げて説明したが、図7(a)に示すように、HoCu粒15の収容領域における低温端側(図7中の符号Qで示す側)にのみGOS粒16を収容してもよい。あるいは、特に図示しないが、HoCu粒15の収容領域における高温端側(図7中の符号Pで示す側)にのみGOS粒16を収容してもよい。また、図7(b)に示すように、HoCu粒15の収容領域における軸方向の中央部にGOS粒16を収容してもよい。
また、図1及び図7(a),(b)では、HoCu粒15中にGOS粒16からなる棒状の塊を1つのみ収容する場合を例に挙げて説明したが、HoCu粒15中に収容するGOS粒16からなる棒状の塊は2つ以上でもよい。
より具体的には、図7(c)に示すように、HoCu粒15中に第1の筒体9の軸方向と平行にGOS粒16からなる棒状の塊を3つ収容してもよい。また、この場合、図7(d),(e)に示すように、GOS粒16からなる棒状の塊は、HoCu粒15が収容される領域の軸方向の全域でなく一部にのみ配置されてもよい。より具体的には、HoCu粒15が収容される領域の高温端側又は低温端側にのみGOS粒16からなる棒状の塊を複数収容してもよいし、HoCu粒15が収容される領域の中ほどにGOS粒16からなる棒状の塊を複数収容してもよい。
Here, another example of the arrangement of the GOS grains 16 in the HoCu 2 grains 15 of the regenerator 100A according to the first embodiment will be described with reference to FIG.
7A to 7E are perspective views showing other examples of the arrangement of the HoCu 2 grains and the GOS grains inside the regenerator according to the first embodiment of the present invention. The same parts as those described in FIGS. 1 to 6 are denoted by the same reference numerals, and description of the configuration is omitted. Further, FIG. 7 shows only the housing portion of the HoCu 2 grains 15 in which the GOS grains 16 in FIG. 1B are accommodated.
In the previous FIG. 1, as an example of the regenerator 100A according to the first embodiment, the HoCu 2 grain 15 accommodation region disposed on the low temperature end side (the side indicated by the symbol Q in FIG. 1) in the first cylindrical body 9. on the axis, and has been described by taking the case where GOS grains 16 are arranged on the entire area of the shaft as an example, as shown in FIG. 7 (a), the low temperature end in the accommodating region of HoCu 2 grain 15 The GOS grains 16 may be accommodated only on the side (indicated by the symbol Q in FIG. 7). Alternatively, although not particularly illustrated, the GOS grains 16 may be accommodated only on the high temperature end side (the side indicated by the symbol P in FIG. 7) in the accommodation area of the HoCu 2 grains 15. Further, as shown in FIG. 7B, the GOS grains 16 may be accommodated in the central portion in the axial direction in the accommodation area of the HoCu 2 grains 15.
Further, FIGS. 1 and FIG. 7 (a), the (b), the has been described as an example a case in which only one accommodating a rod-like mass composed of GOS grains 16 in HoCu 2 grain 15, HoCu 2 tablets 15 There may be two or more rod-shaped lumps of GOS grains 16 accommodated therein.
More specifically, as shown in FIG. 7 (c), three rod-like lumps made of GOS grains 16 may be accommodated in the HoCu 2 grains 15 in parallel with the axial direction of the first cylindrical body 9. . Further, in this case, as shown in FIGS. 7D and 7E, the rod-like lump made of the GOS grains 16 is arranged not only in the whole area in the axial direction of the area in which the HoCu 2 grains 15 are accommodated but only in a part. May be. More specifically, it may be a plurality of accommodating a rod-like mass composed of GOS particle 16 only to the hot end or the cold end of the region HoCu 2 grain 15 is accommodated, HoCu 2 grain 15 is accommodated A plurality of rod-shaped chunks made of GOS grains 16 may be accommodated in the middle of the region.

本発明の実施例2に係る蓄冷器について図8乃至11を参照しながら説明する。
先の実施例1に係る蓄冷器100Aでは、第1の筒体9内に複数種類の粒状蓄冷材を収容する際に、粒状蓄冷材同士の配置を変えるだけで蓄冷器100Aの冷凍能力の向上に成功した。
本願発明に係る技術内容は、粒状蓄冷材としてPb粒14と,HoCu粒15と、GOS粒16とからなる蓄冷器に対してだけ適用できるものではなく、粒状に成形可能な蓄冷材を複数種類収容してなる全ての蓄冷器に適用可能な技術である。
この実施例2では、本願発明の技術思想を利用した新たな蓄冷器の構成の一例について説明する。
図8(a)は本発明の実施例2に係る蓄冷器の内部における粒状蓄冷材集合体の外形を示す概念図であり、(b)〜(d)はいずれも本発明の実施例2に係る蓄冷器の内部における粒状蓄冷材の配置例を示す断面図である。図9乃至11の(a)〜(c)はいずれも本発明の実施例2に係る蓄冷器の内部における粒状蓄冷材の配置例を示す断面図である。なお、図1乃至図7に記載されたものと同一部分については同一符号を付し、その構成についての説明は省略する。
また、実施例2では粒状蓄冷材を構成する材質を特定する必要がないので、任意の粒状蓄冷材として仮に第1の粒状蓄冷材20,第2の粒状蓄冷材21,第3の粒状蓄冷材22を使用して蓄冷器を構成する場合を例に挙げて説明するが、実施例2に係る蓄冷器において第1の筒体9内に収容される粒状蓄冷材の種類は3種類以上でもよい。
A regenerator according to a second embodiment of the present invention will be described with reference to FIGS.
In the regenerator 100A according to the first embodiment, when a plurality of types of granular regenerator materials are accommodated in the first cylindrical body 9, the refrigerating capacity of the regenerator 100A is improved only by changing the arrangement of the granular regenerator materials. succeeded in.
The technical content according to the present invention is not only applicable to a regenerator composed of Pb grains 14, HoCu 2 grains 15, and GOS grains 16 as a granular regenerator material. This technology can be applied to all types of regenerators.
In the second embodiment, an example of a configuration of a new regenerator using the technical idea of the present invention will be described.
Fig.8 (a) is a conceptual diagram which shows the external shape of the granular cool storage material aggregate | assembly in the inside of the regenerator which concerns on Example 2 of this invention, (b)-(d) are all in Example 2 of this invention. It is sectional drawing which shows the example of arrangement | positioning of the granular cool storage material in the inside of this cool storage. 9A to 9C are cross-sectional views showing examples of arrangement of the granular regenerator material inside the regenerator according to the second embodiment of the present invention. The same parts as those described in FIGS. 1 to 7 are denoted by the same reference numerals, and description of the configuration is omitted.
Moreover, in Example 2, since it is not necessary to specify the material which comprises a granular cool storage material, the 1st granular cool storage material 20, the 2nd granular cool storage material 21, and the 3rd granular cool storage material are assumed as arbitrary granular cool storage materials. Although the case where a regenerator is configured using 22 will be described as an example, in the regenerator according to the second embodiment, three or more types of granular regenerator materials accommodated in the first cylinder 9 may be used. .

図8(a)に示すように、実施例2に係る蓄冷器の第1の筒体9内に収容される,複数種類の粒状蓄冷材からなる粒状蓄冷材集合体19は円柱状である。なお、第1の筒体9の中空部は必ずしも円柱である必要はないが、第1の筒体9内における高圧ガスの流動が妨げられないよう、粒状蓄冷材集合体19の任意の位置における軸方向垂直断面の面積は一定であることが望ましい。
実施例2に係る蓄冷器では、例えば、図8(b)に示すように、第1の筒体9の軸方向垂直断面において中心から外縁に向かう方向に同心円状の層をなすように3種類の粒状蓄冷材(第1の粒状蓄冷材20,第2の粒状蓄冷材21,第3の粒状蓄冷材22)を配置してもよい。この場合の第2の粒状蓄冷材21,第3の粒状蓄冷材22の具体的な収容方法としては、例えば、第1の筒体9内に直系の異なる2つの第2の筒体10を,軸方向を一致させながら収容させ,それぞれの筒体の中空部又は筒体同士の隙間に粒状蓄冷材を充填すればよい。
また、実施例2に係る蓄冷器では、図8(c),(d)に示すように、図8(b)に示す粒状蓄冷材集合体19の軸方向断面において中央に配置される第3の粒状蓄冷材22を、第1の筒体9の低温端側(又は低温端側)にのみ配置してもよいし、第1の筒体9の軸方向の中央部にのみ配置してもよい。
図8では、第3の粒状蓄冷材22を、第1の筒体9の低温端側に配置する場合を図に示している。
As shown to Fig.8 (a), the granular cool storage material aggregate | assembly 19 which consists of a multiple types of granular cool storage material accommodated in the 1st cylinder 9 of the cool storage apparatus which concerns on Example 2 is cylindrical. Note that the hollow portion of the first cylindrical body 9 is not necessarily a cylinder, but at any position of the granular regenerator material assembly 19 so that the flow of the high-pressure gas in the first cylindrical body 9 is not hindered. The area of the vertical cross section in the axial direction is preferably constant.
In the regenerator according to the second embodiment, for example, as shown in FIG. 8B, three types are formed so as to form concentric layers in the direction from the center toward the outer edge in the vertical cross section in the axial direction of the first cylindrical body 9. The granular regenerator material (the first granular regenerator material 20, the second granular regenerator material 21, and the third granular regenerator material 22) may be disposed. As a concrete accommodation method of the second granular regenerator material 21 and the third granular regenerator material 22 in this case, for example, two second cylinders 10 having different direct lines in the first cylinder 9 are provided. What is necessary is just to make it accommodate, making an axial direction correspond and to fill a hollow part of each cylinder, or the clearance gap between cylinders with a granular cold storage material.
Further, in the regenerator according to the second embodiment, as shown in FIGS. 8C and 8D, the third is arranged in the center in the axial cross section of the granular regenerator material assembly 19 shown in FIG. The granular regenerator material 22 may be disposed only on the low temperature end side (or the low temperature end side) of the first cylindrical body 9, or may be disposed only on the central portion in the axial direction of the first cylindrical body 9. Good.
In FIG. 8, the case where the 3rd granular cold storage material 22 is arrange | positioned at the low temperature end side of the 1st cylinder 9 is shown in the figure.

実施例2に係る蓄冷器では、例えば、図9(a)に示すように、第1の筒体9の軸方向垂直断面において同心円状に3層が形成される領域を、第1の筒体9の軸方向の一部にのみ、例えば、第1の筒体9の低温端側(又は高温端側)にのみ形成してもよい。図9では、第1の筒体9の軸方向垂直断面において同心円状に3層が形成される領域が、第1の筒体9の低温端側に配置される場合を図示している。
この場合、例えば、図9(b),(c)に示すように第3の粒状蓄冷材22からなる棒状の塊を、第2の粒状蓄冷材21が配置される領域の軸方向の一部にのみ(例えば、軸方向の中央にのみ,あるいは,軸方向の低温端側(又は高温端側)にのみ配置してもよい。なお、図9では、第2の粒状蓄冷材21内における第3の粒状蓄冷材22からなる棒状の塊が、第1の筒体9の低温端側にのみ配置される場合(図9(c)を参照)を図示している。
In the regenerator according to the second embodiment, for example, as shown in FIG. 9A, the region where the three layers are formed concentrically in the axial vertical cross section of the first cylinder 9 is defined as the first cylinder. 9 may be formed only on a part in the axial direction of 9, for example, only on the low temperature end side (or high temperature end side) of the first cylindrical body 9. FIG. 9 illustrates a case where the region where the three layers are formed concentrically in the axial vertical cross section of the first cylinder 9 is disposed on the low temperature end side of the first cylinder 9.
In this case, for example, as shown in FIGS. 9B and 9C, a rod-shaped lump made of the third granular regenerator material 22 is part of the axial direction of the region where the second granular regenerator material 21 is arranged. (For example, only in the center in the axial direction, or only on the low temperature end side (or high temperature end side) in the axial direction. In FIG. 9, the second granular regenerator 21 in the second granular regenerator 21. The case where the rod-shaped lump which consists of three granular cold storage materials 22 is arrange | positioned only at the low temperature end side of the 1st cylinder 9 (refer FIG.9 (c)) is illustrated.

実施例2に係る蓄冷器では、例えば、図10(a)に示すように、第1の筒体9の軸方向垂直断面において同心円状に3層が形成される領域を、第1の筒体9の軸方向の中央にのみ形成してもよい。
この場合、例えば、図10(b),(c)に示すように第3の粒状蓄冷材22からなる棒状の塊を、第2の粒状蓄冷材21が配置される領域の軸方向の一部にのみ(例えば、軸方向の高温端側(又は低温端側)にのみ,あるいは,軸方向の中央にのみ配置してもよい。なお、図10では、第2の粒状蓄冷材21内における第3の粒状蓄冷材22からなる棒状の塊が、第1の筒体9の高温端側にのみ配置される場合(図10(b)を参照)を図示している。
In the regenerator according to the second embodiment, for example, as shown in FIG. 10A, the region where the three layers are formed concentrically in the axially vertical cross section of the first cylinder 9 is defined as the first cylinder. You may form only in the center of 9 axial directions.
In this case, for example, as shown in FIGS. 10B and 10C, a rod-shaped lump made of the third granular regenerator material 22 is part of the axial direction of the region where the second granular regenerator material 21 is arranged. (For example, only on the high temperature end side (or low temperature end side) in the axial direction, or only in the center in the axial direction. In FIG. The case where the rod-shaped lump which consists of three granular cool storage materials 22 is arrange | positioned only at the high temperature end side of the 1st cylinder 9 (refer FIG.10 (b)) is illustrated.

また、実施例2に係る蓄冷器では、例えば、図11(a),(b)に示すように、第1の筒体9の軸方向垂直断面において同心円状に3層が形成される領域と,同心円状に2層が形成される領域を、第1の筒体9の軸方向において直列に併設してもよい。
この場合、3層が形成される領域を、第1の筒体9の軸方向の低温端側(又は高温端側のみに配置してもよいし、第1の筒体9の軸方向の中央にのみ配置してもよい。なお、図11では、3層が形成される領域を、第1の筒体9の軸方向の低温端側に配置される場合を示している。
Further, in the regenerator according to the second embodiment, for example, as shown in FIGS. 11A and 11B, a region in which three layers are formed concentrically in the axial vertical cross section of the first cylindrical body 9 , A region where two layers are formed concentrically may be provided in series in the axial direction of the first cylindrical body 9.
In this case, the region in which the three layers are formed may be disposed on the low temperature end side (or only on the high temperature end side) of the first cylindrical body 9 or in the axial center of the first cylindrical body 9. 11 shows a case where the region where the three layers are formed is arranged on the low temperature end side of the first cylindrical body 9 in the axial direction.

なお、実施例2に係る蓄冷器における粒状蓄冷材の配置例として、図8乃至11では、第3の粒状蓄冷材22からなる棒状の塊を,第2の粒状蓄冷材21の内部に1つのみ収容する場合を例に挙げて説明しているが、第3の粒状蓄冷材22からなる棒状の塊を第2の粒状蓄冷材21中に2つ以上収容してもよい。
また、特に図示しないが、実施例2に係る蓄冷器における粒状蓄冷材の配置の他の例として、図8乃至11に示される粒状蓄冷材集合体19における第1の粒状蓄冷材20,第2の粒状蓄冷材21,第3の粒状蓄冷材22のそれぞれを、第1の筒体9の軸方向に複数種類の粒状蓄冷材を積層してなる粒状蓄冷材の集合体により構成してもよい。
さらに、実施例2に係る蓄冷器においては、第1の筒体9の軸方向垂直断面に配置される粒状蓄冷材が少なくとも2種類ある場合、その内の少なくとも1種類の粒状蓄冷材の平均粒径を小さくしてもよい。この場合、第1の筒体9の軸方向垂直断面の全てに平均粒径の小さい粒状蓄冷材が充填されることがないので、第1の筒体9内における高圧ガスの流動性を大幅に低下させる恐れを小さくできる。これにより、第1の筒体9内に収容される特定の粒状蓄冷材の充填密度を上げて、その粒状蓄冷材による蓄冷効率を向上させることができる。
As an example of the arrangement of the granular regenerator material in the regenerator according to the second embodiment, in FIGS. 8 to 11, one rod-shaped lump made of the third granular regenerator material 22 is provided inside the second granular regenerator material 21. However, two or more rod-shaped chunks made of the third granular regenerator material 22 may be accommodated in the second granular regenerator material 21.
Although not particularly shown, as another example of the arrangement of the granular regenerator material in the regenerator according to the second embodiment, the first granular regenerator material 20 and the second regenerator material 20 in the granular regenerator material assembly 19 shown in FIGS. Each of the granular regenerator material 21 and the third granular regenerator material 22 may be constituted by an aggregate of granular regenerator materials formed by laminating a plurality of types of granular regenerator materials in the axial direction of the first cylindrical body 9. .
Furthermore, in the regenerator according to the second embodiment, when there are at least two types of granular regenerators arranged in the axially vertical cross section of the first cylindrical body 9, the average grain of at least one of the granular regenerators The diameter may be reduced. In this case, since all the vertical cross sections in the axial direction of the first cylinder 9 are not filled with the granular regenerator material having a small average particle diameter, the fluidity of the high-pressure gas in the first cylinder 9 is greatly increased. The risk of lowering can be reduced. Thereby, the packing density of the specific granular cool storage material accommodated in the 1st cylinder 9 can be raised, and the cool storage efficiency by the granular cool storage material can be improved.

従って、第1の筒体9の軸方向垂直断面に複数種類の粒状蓄冷材を分離した状態で配置するという本願発明に係る技術内容に、第1の筒体9の軸方向断面に複数種類の粒状蓄冷材を積層させた状態で収容するという従来の技術内容を組み合わせることにより、これまでにない新規な粒状蓄冷材の配置を実現することができる。
この結果、従来公知の粒状蓄冷材をそのまま用いながら、第1の筒体9内における配置を変更することで、蓄冷器の冷凍能力を大幅に向上でき可能性がある。
なお、筒体9の軸方向断面に複数の粒状蓄冷材を積層してなる従来の蓄冷器において、少なくとも1つの層を構成する粒状蓄冷材中に、実施例2に示すような複数種類の粒状蓄冷材からなる配置構造を配設してもよい。
Therefore, in the technical content according to the present invention of disposing a plurality of types of granular regenerator materials in a state where they are separated from each other in the axial vertical cross section of the first cylindrical body 9, By combining the conventional technical contents of storing granular regenerator materials in a stacked state, it is possible to realize an arrangement of a novel granular regenerator material that has never existed before.
As a result, there is a possibility that the refrigerating capacity of the regenerator can be greatly improved by changing the arrangement in the first cylindrical body 9 while using a conventionally known granular regenerator material as it is.
In addition, in the conventional regenerator formed by laminating a plurality of granular regenerator materials on the axial cross section of the cylindrical body 9, a plurality of types of granular materials as shown in Example 2 are included in the granular regenerator material constituting at least one layer. You may arrange | position the arrangement structure which consists of a cool storage material.

以上説明したように本発明は、蓄冷器の軸方向垂直断面に少なくとも2種類の粒状蓄冷材を分離させた状態で収容するとともに、それにより少なくとも2種類の粒状蓄冷材を組み合わせて蓄冷器内に収容する際に、蓄冷器の軸方向断面における粒状蓄冷材の配置の自由度を大幅に高めることができる蓄冷器に関するものであり、GM(ギフォード・マクマホン)冷凍機、パルスチューブ冷凍機、スターリングサイクル冷凍機、ビルミエサイクル冷凍機、ソルベイサイクル冷凍機、エリクソンサイクル冷凍機、又は、これを予冷段に使った冷凍システム等に用いるのに好適な、極低温蓄冷器及び冷凍機、並びに、これを用いた超伝導電磁石装置、MRI装置、クライオポンプ等の分野において利用可能である。   As described above, the present invention accommodates at least two types of granular regenerator materials in a state where the regenerator is separated in the axial vertical cross section, thereby combining at least two types of granular regenerator materials in the regenerator. The GM (Gifford McMahon) refrigerator, pulse tube refrigerator, Stirling cycle relates to a regenerator that can greatly increase the degree of freedom of arrangement of the granular regenerator material in the axial cross section of the regenerator when housed. A cryogenic regenerator and refrigerator suitable for use in a refrigerator, a Burmese cycle refrigerator, a Solvay cycle refrigerator, an Ericsson cycle refrigerator, or a refrigeration system using the same in a precooling stage, and the It can be used in the fields of the superconducting electromagnet device, the MRI device, the cryopump and the like used.

1…冷凍機 2…1段シリンダ 2a…1段蓄冷器 2b…1段蓄冷材 2c…1段冷却ステージ 2d…ガス通路 2e…1段膨張空間 3…2段シリンダ 3a…2段蓄冷器 3b…2段蓄冷材 3c…2段冷却ステージ 3d…ガス通路 3e…2段膨張空間 4…駆動モータ 5…シール 6…圧縮機 7a,7b…高圧ガス配管 8a,8b…蓋 9…第1の筒体 10…第2の筒体 11…第1のメッシュ体 12…第2のメッシュ体 13…フェルト 14…Pb粒(粒状蓄冷材) 15…HoCu粒(粒状蓄冷材) 16…GOS粒(粒状蓄冷材) 17…中心軸 19…粒状蓄冷材集合体 20…第1の粒状蓄冷材 21…第2の粒状蓄冷材 22…第3の粒状蓄冷材 23a,23b…高圧ガスバルブ 100A…蓄冷器 101…粒状蓄冷体集合体 102…通気積層体 103…通気分離層 P…上端(高温端) Q…下端(低温端) R…下端 DESCRIPTION OF SYMBOLS 1 ... Refrigerator 2 ... 1-stage cylinder 2a ... 1-stage regenerator 2b ... 1-stage regenerator material 2c ... 1-stage cooling stage 2d ... Gas passage 2e ... 1-stage expansion space 3 ... 2-stage cylinder 3a ... 2-stage regenerator 3b ... Two-stage regenerator material 3c ... Two-stage cooling stage 3d ... Gas passage 3e ... Two-stage expansion space 4 ... Drive motor 5 ... Seal 6 ... Compressor 7a, 7b ... High-pressure gas piping 8a, 8b ... Lid 9 ... First cylinder DESCRIPTION OF SYMBOLS 10 ... 2nd cylinder 11 ... 1st mesh body 12 ... 2nd mesh body 13 ... Felt 14 ... Pb grain (granular cold storage material) 15 ... HoCu 2 grain (granular cold storage material) 16 ... GOS grain (granular cold storage) 17) Central axis 19 ... Granular regenerator material assembly 20 ... First granular regenerator material 21 ... Second granular regenerator material 22 ... Third granular regenerator material 23a, 23b ... High pressure gas valve 100A ... Regenerator 101 ... Granular material Cold storage body assembly 102 ... Ventilation Sotai 103 ... vent isolation layer P ... upper (hot end) Q ... bottom (cold end) R ... bottom

Claims (6)

筒体内に少なくとも2種類の粒状蓄冷材を互いに分離させた状態で収容してなる蓄冷器であって、
前記蓄冷器の軸方向における領域の少なくとも一部は、前記蓄冷器の軸方向垂直断面に少なくとも2種類の粒状蓄冷材が分離された状態で配置されることを特徴とする蓄冷器。
A regenerator that houses at least two types of granular regenerator materials separated from each other in a cylinder,
At least a part of the region in the axial direction of the regenerator is disposed in a state where at least two kinds of granular regenerator materials are separated from each other in a vertical cross section in the axial direction of the regenerator.
筒体内に少なくとも2種類の粒状蓄冷材を互いに分離させた状態で収容してなる蓄冷器であって、
前記蓄冷器の軸方向断面は、少なくとも2種類の前記粒状蓄冷材が,前記蓄冷器の軸方向に並列して配置される領域を有することを特徴とする蓄冷器。
A regenerator that houses at least two types of granular regenerator materials separated from each other in a cylinder,
The cross section in the axial direction of the regenerator has a region where at least two kinds of the granular regenerator material are arranged in parallel in the axial direction of the regenerator.
筒体内に少なくとも2種類の粒状蓄冷材を互いに分離させた状態で収容してなる蓄冷器であって、
前記筒体は、この筒体内に内挿される少なくとも1つの第2の筒体を備え、
前記第2の筒体の内側に収容される前記粒状蓄冷材と、前記第2の筒体の外に配置される粒状蓄冷材は異なる種類の粒状蓄冷材であることを特徴とする蓄冷器。
A regenerator that houses at least two types of granular regenerator materials separated from each other in a cylinder,
The cylinder includes at least one second cylinder inserted into the cylinder,
The regenerator characterized in that the granular regenerator material housed inside the second cylinder and the granular regenerator material arranged outside the second cylinder are different types of granular regenerator material.
前記筒体の高温端側に第1の粒状蓄冷材であるPbが収容され、前記筒体の低温端側に第2の粒状蓄冷材であるHoCuが収容され、前記第2の粒状蓄冷材中に第3の粒状蓄冷材であるGdSが収容されることを特徴とする請求項1又は請求項2に記載の蓄冷器。 Pb which is the first granular regenerator material is accommodated on the high temperature end side of the cylindrical body, and HoCu 2 which is the second granular regenerator material is accommodated on the low temperature end side of the cylindrical body, and the second granular regenerator material The regenerator according to claim 1 or 2, wherein Gd 2 O 2 S which is a third granular regenerator material is accommodated therein. 前記筒体の高温端側に第1の粒状蓄冷材であるPbが収容され、前記筒体の低温端側に第2の粒状蓄冷材であるHoCuが収容され、前記第2の粒状蓄冷材中に,少なくとも1つの前記第2の筒体が内挿されて,この第2の筒体内に第3の粒状蓄冷材であるGdSが収容されることを特徴とする請求項3記載の蓄冷器。 Pb which is the first granular regenerator material is accommodated on the high temperature end side of the cylindrical body, and HoCu 2 which is the second granular regenerator material is accommodated on the low temperature end side of the cylindrical body, and the second granular regenerator material during, and interpolated at least one of said second cylindrical body, according to claim 3, characterized in that a third particulate cold accumulating material Gd 2 O 2 S is accommodated in the second tubular body The regenerator described. 前記少なくとも2種類の粒状蓄冷材が配置される軸方向垂直断面において、少なくとも2種類の粒状蓄冷材の平均粒径は異なることを特徴とする請求項1乃至請求項5のいずれか1項に記載の蓄冷器。   The average particle diameter of at least two types of granular cold storage materials differs in the axial direction vertical cross section in which the said at least two types of granular cold storage materials are arrange | positioned, The any one of Claim 1 thru | or 5 characterized by the above-mentioned. Regenerator.
JP2011105594A 2011-05-10 2011-05-10 Regenerator Expired - Fee Related JP5790989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011105594A JP5790989B2 (en) 2011-05-10 2011-05-10 Regenerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011105594A JP5790989B2 (en) 2011-05-10 2011-05-10 Regenerator

Publications (2)

Publication Number Publication Date
JP2012237478A true JP2012237478A (en) 2012-12-06
JP5790989B2 JP5790989B2 (en) 2015-10-07

Family

ID=47460530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011105594A Expired - Fee Related JP5790989B2 (en) 2011-05-10 2011-05-10 Regenerator

Country Status (1)

Country Link
JP (1) JP5790989B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103062952A (en) * 2013-01-30 2013-04-24 浙江大学 Pulse tube/Stirling gas coupling composite multi-stage refrigerator
JP2014020716A (en) * 2012-07-20 2014-02-03 Sumitomo Heavy Ind Ltd Cold storage type refrigeration machine
JP2015183970A (en) * 2014-03-26 2015-10-22 住友重機械工業株式会社 Regenerator type refrigerator
JP2015203530A (en) * 2014-04-14 2015-11-16 住友重機械工業株式会社 cryogenic refrigerator
JP2019536972A (en) * 2016-12-08 2019-12-19 プレッシャー・ウェーブ・システムズ・ゲーエムベーハーPressure Wave Systems Gmbh Heat exchanger for cryogenic refrigerator with helium as working gas, method for producing such heat exchanger, and cryogenic refrigerator including such heat exchanger

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4366676A (en) * 1980-12-22 1983-01-04 The Regents Of The University Of California Cryogenic cooler apparatus
JPS5875690A (en) * 1981-10-29 1983-05-07 Toshiba Corp Multiple-shell heat-accumulating capsule
JPH0293663U (en) * 1988-12-30 1990-07-25
JPH0399162A (en) * 1989-09-11 1991-04-24 Toshiba Corp Cryogenic refrigerator
JPH03129257A (en) * 1989-10-13 1991-06-03 Toshiba Corp Extremely low-temperature freezer
JPH06207754A (en) * 1993-01-11 1994-07-26 Daikin Ind Ltd Regenerator in freezer and its manufacturing method
JPH11257771A (en) * 1998-03-16 1999-09-24 Toshiba Corp Cold storage refrigerator
JP2000130973A (en) * 1998-10-27 2000-05-12 Agency Of Ind Science & Technol Heat storage device and heat control method for this device
JP2005090854A (en) * 2003-09-17 2005-04-07 Sumitomo Heavy Ind Ltd Cryogenic cold-accumulator, and refrigerator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4366676A (en) * 1980-12-22 1983-01-04 The Regents Of The University Of California Cryogenic cooler apparatus
JPS5875690A (en) * 1981-10-29 1983-05-07 Toshiba Corp Multiple-shell heat-accumulating capsule
JPH0293663U (en) * 1988-12-30 1990-07-25
JPH0399162A (en) * 1989-09-11 1991-04-24 Toshiba Corp Cryogenic refrigerator
JPH03129257A (en) * 1989-10-13 1991-06-03 Toshiba Corp Extremely low-temperature freezer
JPH06207754A (en) * 1993-01-11 1994-07-26 Daikin Ind Ltd Regenerator in freezer and its manufacturing method
JPH11257771A (en) * 1998-03-16 1999-09-24 Toshiba Corp Cold storage refrigerator
JP2000130973A (en) * 1998-10-27 2000-05-12 Agency Of Ind Science & Technol Heat storage device and heat control method for this device
JP2005090854A (en) * 2003-09-17 2005-04-07 Sumitomo Heavy Ind Ltd Cryogenic cold-accumulator, and refrigerator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020716A (en) * 2012-07-20 2014-02-03 Sumitomo Heavy Ind Ltd Cold storage type refrigeration machine
US10203135B2 (en) 2012-07-20 2019-02-12 Sumitomo Heavy Industries, Ltd. Regenerative refrigerator
CN103062952A (en) * 2013-01-30 2013-04-24 浙江大学 Pulse tube/Stirling gas coupling composite multi-stage refrigerator
CN103062952B (en) * 2013-01-30 2014-12-03 浙江大学 Pulse tube/Stirling gas coupling composite multi-stage refrigerator
JP2015183970A (en) * 2014-03-26 2015-10-22 住友重機械工業株式会社 Regenerator type refrigerator
JP2015203530A (en) * 2014-04-14 2015-11-16 住友重機械工業株式会社 cryogenic refrigerator
JP2019536972A (en) * 2016-12-08 2019-12-19 プレッシャー・ウェーブ・システムズ・ゲーエムベーハーPressure Wave Systems Gmbh Heat exchanger for cryogenic refrigerator with helium as working gas, method for producing such heat exchanger, and cryogenic refrigerator including such heat exchanger
US11333406B2 (en) 2016-12-08 2022-05-17 Pressure Wave Systems Gmbh Regenerator for a cryo-cooler that uses helium as a working gas

Also Published As

Publication number Publication date
JP5790989B2 (en) 2015-10-07

Similar Documents

Publication Publication Date Title
JP5790989B2 (en) Regenerator
JP5889743B2 (en) Regenerative refrigerator
JP4617251B2 (en) Coaxial multistage pulse tube for helium recondensation.
US8099964B2 (en) Magnetic refrigerating device and magnetic refrigerating method
WO2003081145A1 (en) Cryogenic temperature cool storage device and refrigerator
JP5805421B2 (en) Regenerator type refrigerator and partition member
JP2010216711A (en) Cold storage device type refrigerator
JP6585017B2 (en) Cryogenic storage material for cryogenic refrigerator, cool storage type cryogenic refrigerator, and system equipped with cold storage type cryogenic refrigerator
JPWO2011115200A1 (en) Regenerator, GM refrigerator and pulse tube refrigerator
JP6951889B2 (en) Magnetic shield structure of cryogenic refrigerators and cryogenic refrigerators
JP2021120345A (en) Cryogenic refrigerator, superconducting magnet, mri apparatus, nmr apparatus and cryopump
JP2006524307A (en) Heat storage agent
JPWO2011115107A1 (en) Regenerator, GM refrigerator and pulse tube refrigerator
JP2022084912A (en) Heat exchanger for cryogenic freezer having helium as working gas, method for manufacturing such heat exchanger, and cryogenic freezer comprising such heat exchanger
JP5882110B2 (en) Regenerator type refrigerator, regenerator
JP6376793B2 (en) Regenerator type refrigerator
JP5425754B2 (en) Pulse tube refrigerator
JP6305193B2 (en) Regenerative refrigerator, one-stage regenerator, and two-stage regenerator
JP2002286311A (en) Cryogenic refrigerating machine
JP2011190954A (en) Regenerator, cold storage type refrigerating machine, cryopump, and refrigerating device
JP2008215783A (en) Cryogenic refrigerating machine and cryogenic refrigerating method
JP2007333285A (en) Cooling storage type cryogenic device
JP2009264595A (en) Multistage pulse pipe refrigerating machine
JPH0530135U (en) Regenerator material for regenerator
JP6257394B2 (en) Regenerator type refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150723

R150 Certificate of patent or registration of utility model

Ref document number: 5790989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees