JP2012237290A - Exhaust gas recirculation flow control device of internal combustion engine - Google Patents

Exhaust gas recirculation flow control device of internal combustion engine Download PDF

Info

Publication number
JP2012237290A
JP2012237290A JP2011108394A JP2011108394A JP2012237290A JP 2012237290 A JP2012237290 A JP 2012237290A JP 2011108394 A JP2011108394 A JP 2011108394A JP 2011108394 A JP2011108394 A JP 2011108394A JP 2012237290 A JP2012237290 A JP 2012237290A
Authority
JP
Japan
Prior art keywords
egr
pressure egr
passage
pressure
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011108394A
Other languages
Japanese (ja)
Other versions
JP5397408B2 (en
Inventor
Masahiro Asano
正裕 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011108394A priority Critical patent/JP5397408B2/en
Priority to DE102012103998.4A priority patent/DE102012103998B4/en
Publication of JP2012237290A publication Critical patent/JP2012237290A/en
Application granted granted Critical
Publication of JP5397408B2 publication Critical patent/JP5397408B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/38Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with two or more EGR valves disposed in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1418Several control loops, either as alternatives or simultaneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1431Controller structures or design the system including an input-output delay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0411Volumetric efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/24Layout, e.g. schematics with two or more coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/53Systems for actuating EGR valves using electric actuators, e.g. solenoids
    • F02M26/54Rotary actuators, e.g. step motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To avoid degradation of adjusting accuracy of an outer EGR quantity fed to a combustion chamber 22 in a concomitant use region of low pressure EGR and high pressure EGR.SOLUTION: A target value of an EGR ratio (hereinafter referred to as hgh pressure EGR ratio) in an after high pressure merging channel 12a and a target value of an EGR ratio (hereinafter referred to as low pressure EGR ratio) in an after low pressure merging channel 12b are set. A high pressure EGR actuator 48a is energized and operated so as to carry out feedback control of the EGR ratio of every time to the target value of the EGR ratio. A high and low pressure harmonized EGR control is carried out for energizing and operating a low pressure EGR actuator 52a so as to carry out feedback control of low pressure EGR ratio of every time to the target value of the low pressure EGR ratio.

Description

本発明は、内燃機関に供給される吸気を過給する過給機と、内燃機関に接続される排気通路のうち前記過給機の排気タービンよりも上流側と前記内燃機関に接続される吸気通路のうち前記過給機のコンプレッサよりも下流側とを接続する高圧EGR通路と、前記排気通路のうち前記排気タービンよりも下流側と前記吸気通路のうち前記コンプレッサよりも上流側とを接続する低圧EGR通路と、前記高圧EGR通路・低圧EGR通路を介して前記吸気通路に還流される高圧EGR・低圧EGRの流量を調節すべく通電操作される高圧EGR手段・低圧EGR手段とを備える内燃機関の燃焼制御システムに適用される内燃機関の排気還流制御装置に関する。   The present invention relates to a supercharger for supercharging intake air supplied to an internal combustion engine, and an intake air connected to the internal combustion engine upstream of an exhaust turbine of the supercharger in an exhaust passage connected to the internal combustion engine. A high-pressure EGR passage that connects a downstream side of the turbocharger compressor in the passage, and a downstream side of the exhaust turbine in the exhaust passage and an upstream side of the compressor in the intake passage. An internal combustion engine comprising a low-pressure EGR passage, and a high-pressure EGR means and a low-pressure EGR means that are energized to adjust the flow rates of the high-pressure EGR and the low-pressure EGR that are recirculated to the intake passage through the high-pressure EGR passage and the low-pressure EGR passage The present invention relates to an exhaust gas recirculation control apparatus for an internal combustion engine that is applied to the combustion control system.

この種の制御装置としては、下記特許文献1に見られるように、高圧EGR通路及び低圧EGR通路のそれぞれを介して、内燃機関から排出される排気の一部を高圧EGR及び低圧EGRのそれぞれとして吸気通路に還流させる外部EGR制御を行うものが知られている。   As this type of control device, as seen in Patent Document 1 below, a part of the exhaust discharged from the internal combustion engine is respectively set as the high pressure EGR and the low pressure EGR via the high pressure EGR passage and the low pressure EGR passage. A device that performs external EGR control for returning to the intake passage is known.

詳しくは、この制御装置は、高圧EGR及び低圧EGRを併用する領域において、内燃機関の負荷にかかわらず低圧EGRの流量(以下、低圧EGR量)が略一定となるように、低圧EGR量を調節する低圧EGRバルブ開度をフィードフォワード制御する。これとともに、排気中の酸素濃度が一定になるように、高圧EGRの流量(以下、高圧EGR量)を調節する高圧EGRバルブ開度をその目標値にフィードバック制御する。   Specifically, this control device adjusts the low pressure EGR amount so that the flow rate of the low pressure EGR (hereinafter referred to as the low pressure EGR amount) becomes substantially constant regardless of the load of the internal combustion engine in the region where the high pressure EGR and the low pressure EGR are used together. Feed-forward control of the low-pressure EGR valve opening is performed. At the same time, the high pressure EGR valve opening for adjusting the flow rate of the high pressure EGR (hereinafter referred to as the high pressure EGR amount) is feedback-controlled to the target value so that the oxygen concentration in the exhaust gas becomes constant.

しかしながら、上記制御装置では、燃焼室への供給が要求される総EGR量(低圧EGR量及び高圧EGR量の加算値)に対して実際の総EGR量が不足する事態が生じることがある。このような事態は例えば、上記要求される総EGR量が増大する状況下、総EGR量の不足分に応じて高圧EGRバルブ開度がフィードバック制御されて最大開度になるにもかかわらず、フィードフォワード制御される低圧EGRバルブ開度が最大開度とはなっていない状況で生じ得る。   However, in the above control device, there may occur a situation where the actual total EGR amount is insufficient with respect to the total EGR amount (added value of the low pressure EGR amount and the high pressure EGR amount) required to be supplied to the combustion chamber. Such a situation occurs, for example, in a situation where the required total EGR amount increases but the high pressure EGR valve opening is feedback controlled according to the shortage of the total EGR amount and reaches the maximum opening. This may occur in a situation where the forward-controlled low pressure EGR valve opening is not the maximum opening.

特開2007−315371号公報JP 2007-315371 A

こうした問題を解決すべく、本発明者は、高圧EGR及び低圧EGRを併用する領域において、総EGR量をその目標値にフィードバック制御すべく、高圧EGRバルブ及び低圧EGRバルブのそれぞれの開度を調節することを考えた。しかしながら、これには以下に説明する技術的な課題がある。   In order to solve these problems, the present inventor adjusts the opening degree of each of the high pressure EGR valve and the low pressure EGR valve in order to feedback control the total EGR amount to the target value in the region where the high pressure EGR and the low pressure EGR are used together. Thought to do. However, this has the technical problems described below.

低圧EGR通路が通常、高圧EGR通路よりも長いこと等に起因して、高圧EGRバルブ開度が変更されてからその影響が燃焼室に供給される吸気に現れるまでの時間よりも、低圧EGRバルブ開度が変更されてから、その影響が燃焼室に供給される吸気に現れるまでの時間のほうが長くなる現象(低圧EGRの応答遅れ)が発生する。そして、この低圧EGRの応答遅れに起因して、総EGR量がその目標値まわりで周期的に大きく変動するいわゆるハンチングが発生し、外部EGRの調節精度が低下するおそれがある。   Due to the low pressure EGR passage being usually longer than the high pressure EGR passage, the low pressure EGR valve is longer than the time from when the high pressure EGR valve opening is changed until the effect appears in the intake air supplied to the combustion chamber. A phenomenon (the response delay of the low pressure EGR) in which the time from when the opening degree is changed until the influence appears in the intake air supplied to the combustion chamber becomes longer occurs. Then, due to the response delay of the low-pressure EGR, so-called hunting occurs in which the total EGR amount periodically fluctuates around the target value, and the adjustment accuracy of the external EGR may be reduced.

このハンチングの発生要因について説明すると、まず、総EGR量が目標値よりも小さい状況下においては、高圧EGR量及び低圧EGR量を増大させるように高圧EGRバルブ及び低圧EGRバルブのそれぞれの開度が調節される。すると、高圧EGR量の増大の影響が先に現れて総EGR量が目標値まで上昇するものの、その後、上述した低圧EGRの応答遅れによって、低圧EGR量の増大の影響が遅れて現れる。これにより、総EGR量が目標値を上回るいわゆるオーバーシュートが発生する。   The cause of the occurrence of this hunting will be described. First, in a situation where the total EGR amount is smaller than the target value, the respective opening degrees of the high pressure EGR valve and the low pressure EGR valve are set so as to increase the high pressure EGR amount and the low pressure EGR amount. Adjusted. Then, although the influence of the increase in the high pressure EGR amount appears first and the total EGR amount rises to the target value, the influence of the increase in the low pressure EGR amount appears later due to the response delay of the low pressure EGR described above. As a result, a so-called overshoot in which the total EGR amount exceeds the target value occurs.

すると、今度は高圧EGR量及び低圧EGR量を減少させるように高圧EGRバルブ及び低圧EGRバルブのそれぞれの開度が調節される。この調節により、高圧EGR量の減少の影響が先に現れて総EGR量が目標値まで低下するものの、その後、低圧EGRの応答遅れによって低圧EGR量の減少の影響が遅れて現れる。これにより、総EGR量が目標値を下回るいわゆるアンダーシュートが発生する。こうしたオーバーシュートやアンダーシュートが繰り返されることで、ハンチングが発生する。   Then, the respective opening degrees of the high pressure EGR valve and the low pressure EGR valve are adjusted so as to decrease the high pressure EGR amount and the low pressure EGR amount. By this adjustment, the influence of the decrease in the high-pressure EGR amount appears first and the total EGR amount decreases to the target value, but thereafter, the influence of the decrease in the low-pressure EGR amount appears delayed due to the response delay of the low-pressure EGR. As a result, a so-called undershoot occurs in which the total EGR amount falls below the target value. Hunting occurs when such overshoot and undershoot are repeated.

そして、ハンチングの発生によって外部EGRの調節精度が低下すると、内燃機関の燃焼状態を適切なものとすることができず、内燃機関の排気特性や生成トルクを適切なものとすることができなくなるおそれがある。   If the adjustment accuracy of the external EGR is reduced due to the occurrence of hunting, the combustion state of the internal combustion engine cannot be made appropriate, and the exhaust characteristics and generated torque of the internal combustion engine cannot be made appropriate. There is.

本発明は、上記課題を解決するためになされたものであり、その目的は、低圧EGR及び高圧EGRの併用領域において、燃焼室に供給される外部EGR量の調節精度の低下を好適に回避することのできる内燃機関の排気還流制御装置を提供することにある。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to suitably avoid a decrease in the adjustment accuracy of the external EGR amount supplied to the combustion chamber in the combined region of the low pressure EGR and the high pressure EGR. An object of the present invention is to provide an exhaust gas recirculation control device for an internal combustion engine.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

請求項1記載の発明は、内燃機関に接続された吸気通路及び排気通路の間に設けられて且つ、前記内燃機関に供給される吸気を過給する過給機と、前記排気通路のうち前記過給機の排気タービンよりも上流側と前記吸気通路のうち前記過給機のコンプレッサよりも下流側とを接続する高圧EGR通路と、前記排気通路のうち前記排気タービンよりも下流側と前記吸気通路のうち前記コンプレッサよりも上流側とを接続する低圧EGR通路と、前記高圧EGR通路を介して前記吸気通路に還流される高圧EGRの流量を調節すべく通電操作される高圧EGR手段と、前記低圧EGR通路を介して前記吸気通路に還流される低圧EGRの流量を調節すべく通電操作される低圧EGR手段とを備える内燃機関の燃焼制御システムに適用され、前記吸気通路のうち前記高圧EGR通路との接続部よりも下流側を高圧合流後通路と定義し、前記吸気通路のうち前記低圧EGR通路との接続部よりも下流側であって且つ前記高圧EGR通路との接続部よりも上流側を低圧合流後通路と定義し、吸気中の酸素濃度又はEGR率を吸気パラメータと定義したときに、前記内燃機関の運転状態に基づき、前記高圧合流後通路及び前記低圧合流後通路のそれぞれにおける前記吸気パラメータの目標値として、高圧合流後目標値及び低圧合流後目標値のそれぞれを設定する目標値設定手段と、前記高圧合流後通路及び前記低圧合流後通路のそれぞれにおける前記吸気パラメータの都度の値として、高圧合流後制御値及び低圧合流後制御値のそれぞれを算出する都度制御値算出手段と、前記高圧合流後制御値を前記高圧合流後目標値にフィードバック制御すべく前記高圧EGR手段を通電操作するとともに、前記低圧合流後制御値を前記低圧合流後目標値にフィードバック制御すべく前記低圧EGR手段を通電操作することで、前記吸気通路に前記高圧EGR及び前記低圧EGRの双方を還流させる制御手段とを備えることを特徴とする。   According to a first aspect of the present invention, there is provided a supercharger that is provided between an intake passage and an exhaust passage connected to an internal combustion engine and that supercharges intake air supplied to the internal combustion engine; A high-pressure EGR passage connecting the upstream side of the exhaust turbine of the supercharger and the downstream side of the compressor of the supercharger in the intake passage; and the downstream side of the exhaust turbine and the intake air of the exhaust passage. A low-pressure EGR passage that connects an upstream side of the compressor in the passage, a high-pressure EGR means that is energized to adjust a flow rate of the high-pressure EGR that is recirculated to the intake passage through the high-pressure EGR passage, The present invention is applied to a combustion control system for an internal combustion engine comprising low-pressure EGR means that is energized to adjust the flow rate of low-pressure EGR that is recirculated to the intake passage through a low-pressure EGR passage. Of the passages, the downstream side of the connection portion with the high pressure EGR passage is defined as a high pressure merged passage, and the intake passage is downstream of the connection portion with the low pressure EGR passage and the high pressure EGR passage. Is defined as a post-low pressure merge passage, and the oxygen concentration or EGR rate in the intake air is defined as an intake parameter, based on the operating state of the internal combustion engine, the post-high pressure merge passage and the low pressure Target value setting means for setting each of the target value after the high pressure merge and the target value after the low pressure merge as the target value of the intake parameter in each of the merged passages, and each of the post-high pressure merge passage and the low-pressure merge passages Control value calculation means for calculating each of the control value after high-pressure merging and the control value after low-pressure merging as the value of each intake parameter, and the control value after the high-pressure merging By energizing the high-pressure EGR means to perform feedback control to the target value after the high-pressure merging, and energizing the low-pressure EGR means to feedback control the control value after the low-pressure merging to the target value after the low-pressure merging, The intake passage is provided with control means for recirculating both the high pressure EGR and the low pressure EGR.

上記発明では、高圧EGR及び低圧EGRの併用領域において、高圧合流後通路における高圧合流後目標値とともに、吸気通路のうち高圧合流後通路よりも上流側の低圧合流後通路における低圧合流後目標値を設定する。そして、高圧合流後制御値を高圧合流後目標値にフィードバック制御するとともに、低圧合流後制御値を低圧合流後目標値にフィードバック制御する。   In the above invention, in the combined region of the high pressure EGR and the low pressure EGR, the post-high pressure target value in the post-high-pressure merge passage in the intake passage and the low-pressure post-merging target value in the post-low-pressure merge passage upstream of the high-pressure merge passage in the intake passage. Set. The control value after high-pressure merging is feedback-controlled to the target value after high-pressure merging, and the control value after low-pressure merging is feedback-controlled to the target value after low-pressure merging.

このため、例えばフィードバック制御の対象を高圧合流後制御値のみとして低圧EGR手段及び高圧EGR手段の双方を通電操作する場合と比較して、低圧EGR手段及び高圧EGR手段のそれぞれによって低圧EGR及び高圧EGRのそれぞれの流量が変更されてから、流量変更の影響がこれらEGR手段のそれぞれのフィードバック制御の対象に現れるまでの時間を短縮することができる。これにより、高圧EGR手段及び低圧EGR手段のうちいずれか一方によるEGRの流量の変更が他方の流量の調節に及ぼす影響を抑制することができ、ひいては内燃機関に供給される外部EGRの調節精度の低下を好適に回避することができる。   For this reason, for example, compared with the case where both the low pressure EGR means and the high pressure EGR means are energized and operated with only the control value after the high pressure merging as the target of feedback control, the low pressure EGR and the high pressure EGR are respectively performed by the low pressure EGR means and the high pressure EGR means. After the respective flow rates are changed, the time until the influence of the flow rate change appears on the respective feedback control targets of these EGR means can be shortened. Thereby, it is possible to suppress the influence of the change in the flow rate of the EGR by one of the high pressure EGR means and the low pressure EGR means on the adjustment of the flow rate of the other, and consequently the adjustment accuracy of the external EGR supplied to the internal combustion engine. The decrease can be preferably avoided.

請求項2記載の発明は、請求項1記載の発明において、前記高圧合流後制御値を前記高圧合流後目標値とするために要求されるEGRの流量を、前記高圧EGR及び前記低圧EGRのそれぞれに割り振る割振手段を更に備え、前記目標値設定手段は、前記割振手段によって割り振られた高圧EGRの流量及び低圧EGRの流量に基づき、前記高圧合流後目標値及び前記低圧合流後目標値のそれぞれを設定することを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the flow rate of EGR required to set the post-high pressure merge control value as the post-high pressure merge target value is set to each of the high pressure EGR and the low pressure EGR. The target value setting means is configured to assign each of the target value after high-pressure merging and the target value after low-pressure merging based on the flow rate of high pressure EGR and the flow rate of low pressure EGR allocated by the allocating unit. It is characterized by setting.

上記発明では、割振手段を備えることで、高圧合流後制御値を高圧合流後目標値とするための適切な高圧合流後目標値及び低圧合流後目標値を設定することができる。   In the above invention, by providing the allocating means, it is possible to set appropriate post-high-pressure merging target value and low-pressure merging target value for setting the post-high-pressure merging control value as the high-pressure merging target value.

請求項3記載の発明は、請求項2記載の発明において、前記内燃機関の運転状態に基づき、前記高圧EGRの流量の上限値である高圧上限値を可変設定する高圧上限値設定手段を更に備え、前記割振手段は、前記設定された高圧上限値以下の値として前記高圧EGRの流量を割り振るとともに、前記高圧合流後制御値を前記高圧合流後目標値とするために要求されるEGRの流量から前記割り振られる高圧EGRの流量を差し引いた値に基づき、前記低圧EGRの流量を設定することを特徴とする。   According to a third aspect of the present invention, in the second aspect of the present invention, the high pressure upper limit value setting means for variably setting a high pressure upper limit value that is an upper limit value of the flow rate of the high pressure EGR based on the operating state of the internal combustion engine is further provided. The allocating means allocates the flow rate of the high pressure EGR as a value equal to or less than the set high pressure upper limit value, and determines the control value after the high pressure merging from the flow rate of EGR required to set the control value after the high pressure merging as the target value after the high pressure merging The flow rate of the low pressure EGR is set based on a value obtained by subtracting the flow rate of the allocated high pressure EGR.

高圧EGRの流量を増大させると、排気タービンを通過する排気の流量が低下することで、吸気を過給するための排気エネルギが低下する。排気エネルギが低下すると、過給機による吸気の過給度合いが低下することで内燃機関に充填される新気量が低下し、内燃機関の生成トルクが低下するおそれがある。   When the flow rate of the high pressure EGR is increased, the flow rate of the exhaust gas that passes through the exhaust turbine is decreased, so that the exhaust energy for supercharging the intake air is decreased. When the exhaust energy is reduced, the degree of supercharging of the intake air by the supercharger is reduced, so that the amount of fresh air filled in the internal combustion engine is reduced and the generated torque of the internal combustion engine may be reduced.

この点、上記発明では、上記高圧上限値以下の値として高圧EGRの流量を割り振る。このため、外部EGR量を吸気通路に還流させつつ、内燃機関の生成トルクの低下を好適に抑制することができる。   In this regard, in the above invention, the flow rate of the high pressure EGR is assigned as a value equal to or less than the high pressure upper limit value. For this reason, it is possible to suitably suppress a decrease in the generated torque of the internal combustion engine while returning the external EGR amount to the intake passage.

さらに、高圧合流後制御値を高圧合流後目標値とするために要求されるEGRの流量から高圧EGRの流量を差し引いた値に基づき、低圧EGRの流量を設定する。このため、高圧EGRの流量が高圧上限値によって制限される場合であっても、高圧合流後制御値を高圧合流後目標値に制御するために必要な外部EGRを極力確保することができる。   Furthermore, the flow rate of the low pressure EGR is set based on a value obtained by subtracting the flow rate of the high pressure EGR from the flow rate of the EGR required to set the post-high pressure merge control value as the target value after the high pressure merge. For this reason, even when the flow rate of the high pressure EGR is limited by the high pressure upper limit value, it is possible to secure the external EGR necessary for controlling the post-high pressure merge control value to the post-high pressure merge target value as much as possible.

請求項4記載の発明は、請求項3記載の発明において、前記内燃機関の運転状態に基づき、前記低圧EGRの流量の上限値である低圧上限値を可変設定する低圧上限値設定手段を更に備え、前記割振手段によって割り振られる高圧EGRの流量及び低圧EGRの流量の和が前記高圧上限値及び前記低圧上限値の和となって且つ、前記高圧合流後制御値を前記高圧合流後目標値とするために要求されるEGRの流量が前記高圧上限値及び前記低圧上限値の和を上回ると判断された場合、前記高圧合流後目標値を、前記高圧上限値及び前記低圧上限値の和によって実現可能な前記高圧合流後制御値として再設定する再設定手段を更に備えることを特徴とする。   According to a fourth aspect of the present invention, in the third aspect of the present invention, the low pressure upper limit value setting means for variably setting the low pressure upper limit value, which is the upper limit value of the flow rate of the low pressure EGR, is further provided based on the operating state of the internal combustion engine. The sum of the flow rate of the high-pressure EGR and the flow rate of the low-pressure EGR allocated by the allocating means is the sum of the high-pressure upper limit value and the low-pressure upper limit value, and the control value after high-pressure merging is set as the target value after high-pressure merging. When it is determined that the required EGR flow rate exceeds the sum of the high pressure upper limit value and the low pressure upper limit value, the target value after the high pressure merging can be realized by the sum of the high pressure upper limit value and the low pressure upper limit value. And a resetting means for resetting the control value after the high-pressure merge.

吸気通路に還流可能な低圧EGRの流量には通常、上限値が存在する。ここで高圧EGRの流量が高圧上限値によって制限される状況下において、低圧EGRの流量が低圧上限値によって制限される場合、高圧合流後制御値を高圧合流後目標値とするために要求されるEGRの流量を高圧EGR及び低圧EGRによって確保することができない。   There is usually an upper limit for the flow rate of the low pressure EGR that can be recirculated to the intake passage. Here, when the flow rate of the high pressure EGR is limited by the high pressure upper limit value and the flow rate of the low pressure EGR is limited by the low pressure upper limit value, it is required to set the post-high pressure merge control value as the target value after the high pressure merge. The flow rate of EGR cannot be ensured by the high pressure EGR and the low pressure EGR.

このため、上記発明では、高圧合流後制御値を高圧合流後目標値とするために要求されるEGRの流量が高圧上限値及び低圧上限値の和を上回ると判断された場合、高圧合流後目標値を、高圧上限値及び低圧上限値の和によって実現可能な高圧合流後制御値として再設定する。   For this reason, in the above invention, when it is determined that the flow rate of EGR required to set the control value after high-pressure merging as the target value after high-pressure merging exceeds the sum of the high-pressure upper limit value and the low-pressure upper limit value, The value is reset as the post-high pressure merge control value that can be realized by the sum of the high pressure upper limit value and the low pressure upper limit value.

請求項5記載の発明は、請求項3又は4記載の発明において、前記高圧上限値設定手段は、前記内燃機関の要求トルクが急増すると判断された場合、前記高圧上限値を低く設定することを特徴とする。   The invention according to claim 5 is the invention according to claim 3 or 4, wherein the high pressure upper limit value setting means sets the high pressure upper limit value low when it is determined that the required torque of the internal combustion engine increases rapidly. Features.

内燃機関の要求トルクの増大に対しては通常、過給機による吸気の過給度合いを大きくし、燃焼室の充填新気量を多くすることで対応する。ここで上記発明では、吸気の過給度合いを大きくすることが要求される状況下において、高圧上限値を低く設定する。このため、排気タービンに供給すべき排気を適切に確保することができ、内燃機関の生成トルクの低下を好適に抑制することができる。   The increase in the required torque of the internal combustion engine is usually dealt with by increasing the degree of supercharging of the intake air by the supercharger and increasing the amount of fresh air filled in the combustion chamber. Here, in the above-described invention, the high pressure upper limit value is set low in a situation where it is required to increase the degree of supercharging of the intake air. For this reason, the exhaust gas to be supplied to the exhaust turbine can be ensured appropriately, and a decrease in the generated torque of the internal combustion engine can be suitably suppressed.

請求項6記載の発明は、請求項1〜5のいずれか1項に記載の発明において、前記高圧EGR手段は、前記高圧EGR通路に設けられて且つこの通路の面積を調節する電子制御式の弁体であり、前記低圧EGR手段は、前記低圧EGR通路に設けられて且つこの通路の面積を調節する電子制御式の弁体であることを特徴とする。   According to a sixth aspect of the present invention, in the invention according to any one of the first to fifth aspects, the high-pressure EGR means is an electronically controlled type that is provided in the high-pressure EGR passage and adjusts the area of the passage. It is a valve body, and the low-pressure EGR means is an electronically controlled valve body that is provided in the low-pressure EGR passage and adjusts the area of the passage.

第1の実施形態にかかるシステム構成図。1 is a system configuration diagram according to a first embodiment. FIG. 同実施形態にかかる高低圧協調EGR制御の手順を示すフローチャート。The flowchart which shows the procedure of the high-low pressure cooperative EGR control concerning the embodiment. 第2の実施形態にかかる高低圧協調EGR制御の手順を示すフローチャート。The flowchart which shows the procedure of the high / low pressure cooperative EGR control concerning 2nd Embodiment.

(第1の実施形態)
以下、本発明にかかる車載制御装置を具体化した第1の実施形態について、図面を参照しつつ説明する。
(First embodiment)
DESCRIPTION OF EMBODIMENTS Hereinafter, a first embodiment that embodies an in-vehicle control device according to the present invention will be described with reference to the drawings.

図1に、本実施形態にかかるシステム構成図を示す。   FIG. 1 shows a system configuration diagram according to the present embodiment.

図示されるエンジン10は、圧縮点火式内燃機関(ディーゼルエンジン)である。エンジン10の吸気通路12には、上流側から順に、吸入される空気量(新気量)を検出するエアフローメータ14、後述するターボチャージャ16によって過給された吸気を冷却するインタークーラ18、更にはDCモータ等のアクチュエータ(吸気側アクチュエータ20a)によって開度が調節される吸気絞り弁20が設けられている。なお、吸気側アクチュエータ20aは、吸気絞り弁20の開度を検出する機能を有している。   The illustrated engine 10 is a compression ignition internal combustion engine (diesel engine). In the intake passage 12 of the engine 10, an air flow meter 14 that detects the amount of air that is sucked (new air amount) in order from the upstream side, an intercooler 18 that cools the intake air supercharged by a turbocharger 16, which will be described later, Is provided with an intake throttle valve 20 whose opening is adjusted by an actuator (intake side actuator 20a) such as a DC motor. The intake side actuator 20a has a function of detecting the opening degree of the intake throttle valve 20.

吸気通路12のうち吸気絞り弁20の下流側は、エンジン10の各気筒の燃焼室22と接続されている。なお、吸気通路12のうち吸気絞り弁20の下流側には、吸気通路12を流れる吸気の圧力(過給圧)を検出する吸気圧センサ24と、吸気通路12(吸気マニホールド)を流れる吸気の温度を検出する吸気温センサ26とが設けられている。   A downstream side of the intake throttle valve 20 in the intake passage 12 is connected to a combustion chamber 22 of each cylinder of the engine 10. An intake pressure sensor 24 that detects the pressure (supercharging pressure) of intake air flowing through the intake passage 12 and an intake air flow that flows through the intake passage 12 (intake manifold) are disposed downstream of the intake throttle valve 20 in the intake passage 12. An intake air temperature sensor 26 for detecting the temperature is provided.

エンジン10の各気筒の燃焼室22には、燃焼室22に突出して電磁駆動式の燃料噴射弁28が設けられている。燃料噴射弁28には、図示しない蓄圧容器(コモンレール)から高圧の燃料(軽油)が供給され、燃料噴射弁28から燃焼室22に高圧の燃料が噴射供給される。   The combustion chamber 22 of each cylinder of the engine 10 is provided with an electromagnetically driven fuel injection valve 28 that projects into the combustion chamber 22. High pressure fuel (light oil) is supplied to the fuel injection valve 28 from a pressure accumulation container (common rail) (not shown), and high pressure fuel is injected and supplied from the fuel injection valve 28 to the combustion chamber 22.

エンジン10の各気筒の吸気ポート及び排気ポートのそれぞれは、吸気バルブ30及び排気バルブ32のそれぞれにより開閉される。ここでは、吸気バルブ30の開弁によってインタークーラ18で冷却された吸気等が燃焼室22に導入され、導入された吸気と、燃料噴射弁28から噴射供給された燃料とが燃焼に供される。なお、燃焼に供された吸気及び燃料は、排気バルブ32の開弁によって排気として排気通路34に排出される。また、エンジン10の出力軸(クランク軸36)付近には、クランク軸36の回転角度を検出するクランク角度センサ38が設けられている。   The intake port and the exhaust port of each cylinder of the engine 10 are opened and closed by an intake valve 30 and an exhaust valve 32, respectively. Here, intake air or the like cooled by the intercooler 18 by opening the intake valve 30 is introduced into the combustion chamber 22, and the introduced intake air and the fuel injected and supplied from the fuel injection valve 28 are used for combustion. . The intake air and fuel that have been used for combustion are discharged into the exhaust passage 34 as exhaust gas by opening the exhaust valve 32. A crank angle sensor 38 that detects the rotation angle of the crankshaft 36 is provided near the output shaft (crankshaft 36) of the engine 10.

吸気通路12と排気通路34との間には、ターボチャージャ16が設けられている。ターボチャージャ16は、吸気通路12に設けられた吸気コンプレッサ16aと、排気通路34に設けられた排気タービン16bと、これらを連結する回転軸16cとを備えて構成されている。詳しくは、排気通路34を流れる排気のエネルギによって排気タービン16bが回転し、その回転エネルギが回転軸16cを介して吸気コンプレッサ16aに伝達され、吸気コンプレッサ16aによって吸気が圧縮される。すなわち、ターボチャージャ16によって吸気が過給される。なお本実施形態では、ターボチャージャ16として、吸気の過給圧を調節可能なものを想定しており、具体的には例えば、ターボチャージャ16の有する図示しない可変ベーンの開度の調節によって過給圧が調節可能なものを想定している。   A turbocharger 16 is provided between the intake passage 12 and the exhaust passage 34. The turbocharger 16 includes an intake air compressor 16a provided in the intake passage 12, an exhaust turbine 16b provided in the exhaust passage 34, and a rotating shaft 16c that connects these. Specifically, the exhaust turbine 16b is rotated by the energy of the exhaust gas flowing through the exhaust passage 34, and the rotational energy is transmitted to the intake compressor 16a via the rotary shaft 16c, and the intake air is compressed by the intake compressor 16a. That is, the intake air is supercharged by the turbocharger 16. In the present embodiment, the turbocharger 16 is assumed to be capable of adjusting the supercharging pressure of intake air. Specifically, for example, supercharging is performed by adjusting the opening of a variable vane (not shown) of the turbocharger 16. It is assumed that the pressure can be adjusted.

上記排気通路34のうち、ターボチャージャ16(排気タービン16b)の下流側には、上流側から順に、排気を浄化する浄化装置40、及び排気中の酸素濃度を検出するA/Fセンサ42が設けられている。本実施形態では、浄化装置40として、排気中のPM(スモーク)を捕集するDPF(ディーゼルパティキュレートフィルタ)、排気中のNOxを浄化するNOx触媒、及び排気中のHCやCOを浄化する酸化触媒等を想定している。   In the exhaust passage 34, on the downstream side of the turbocharger 16 (exhaust turbine 16b), a purification device 40 for purifying exhaust and an A / F sensor 42 for detecting oxygen concentration in the exhaust are provided in order from the upstream side. It has been. In the present embodiment, as the purification device 40, a DPF (diesel particulate filter) that collects PM (smoke) in the exhaust, a NOx catalyst that purifies NOx in the exhaust, and an oxidation that purifies HC and CO in the exhaust. A catalyst is assumed.

排気通路34に排出される排気の一部は、排気還流通路としての高圧EGR通路44や、低圧EGR通路46を介して吸気通路12に還流される。詳しくは、排気通路34のうち、排気タービン16bの上流側は、高圧EGR通路44を介して吸気通路12の吸気絞り弁20の下流側(吸気圧センサ24の上流側)に接続されている。高圧EGR通路44には、同通路の流路面積を調節する高圧EGRバルブ48が設けられている。具体的には、高圧EGRバルブ48は、高圧EGR通路44のうち吸気通路12との接続部付近に設けられており、DCモータ等のアクチュエータ(高圧EGRアクチュエータ48a)によってその開度(高圧EGR開度)が調節される電子制御式の弁体である。高圧EGR開度に応じて、排気通路34に排出された排気の一部が、高圧EGRクーラ50によって冷却された後に、外部EGR(高圧EGR)として吸気通路12に供給される。なお、高圧EGRアクチュエータ48aは、高圧EGR開度を検出する機能を有している。また、排気通路34のうち高圧EGR通路44との接続部よりも上流側には、排気の圧力を検出する排気圧センサ51が設けられている。   A part of the exhaust gas discharged to the exhaust passage 34 is returned to the intake passage 12 via the high pressure EGR passage 44 or the low pressure EGR passage 46 as an exhaust gas recirculation passage. Specifically, in the exhaust passage 34, the upstream side of the exhaust turbine 16 b is connected to the downstream side of the intake throttle valve 20 in the intake passage 12 (upstream side of the intake pressure sensor 24) via the high pressure EGR passage 44. The high pressure EGR passage 44 is provided with a high pressure EGR valve 48 that adjusts the flow passage area of the passage. Specifically, the high-pressure EGR valve 48 is provided in the vicinity of the connection portion with the intake passage 12 in the high-pressure EGR passage 44, and its opening degree (high-pressure EGR opening 48) by an actuator such as a DC motor (high-pressure EGR actuator 48 a). This is an electronically controlled valve body whose degree is adjusted. A part of the exhaust discharged into the exhaust passage 34 is cooled by the high pressure EGR cooler 50 in accordance with the high pressure EGR opening, and then supplied to the intake passage 12 as an external EGR (high pressure EGR). The high pressure EGR actuator 48a has a function of detecting the high pressure EGR opening. Further, an exhaust pressure sensor 51 that detects the pressure of the exhaust gas is provided on the upstream side of the connection portion with the high pressure EGR passage 44 in the exhaust passage 34.

一方、排気通路34のうち、排気タービン16bの下流側は、低圧EGR通路46を介して、吸気通路12のうち吸気コンプレッサ16aの上流側に接続されている。低圧EGR通路46には、同通路の流路面積を調節する低圧EGRバルブ52が設けられている。具体的には、低圧EGRバルブ52は、低圧EGR通路46のうち吸気通路12との接続部付近に設けられており、DCモータ等のアクチュエータ(低圧EGRアクチュエータ52a)によってその開度(低圧EGR開度)が調節される電子制御式の弁体である。低圧EGR開度に応じて、排気通路34に排出された排気の一部が、低圧EGRクーラ54によって冷却された後に、外部EGR(低圧EGR)として吸気通路12に供給される。なお、低圧EGRアクチュエータ52aは、低圧EGR開度を検出する機能を有している。また、低圧EGR通路46には、低圧EGRバルブ52の前後差圧を検出する差圧センサ53が設けられている。   On the other hand, the downstream side of the exhaust turbine 16 b in the exhaust passage 34 is connected to the upstream side of the intake compressor 16 a in the intake passage 12 via the low pressure EGR passage 46. The low pressure EGR passage 46 is provided with a low pressure EGR valve 52 that adjusts the flow passage area of the passage. Specifically, the low pressure EGR valve 52 is provided in the vicinity of the connection portion with the intake passage 12 in the low pressure EGR passage 46, and its opening (low pressure EGR opening) is achieved by an actuator (low pressure EGR actuator 52a) such as a DC motor. This is an electronically controlled valve body whose degree is adjusted. Depending on the low pressure EGR opening, a part of the exhaust discharged to the exhaust passage 34 is cooled by the low pressure EGR cooler 54 and then supplied to the intake passage 12 as external EGR (low pressure EGR). The low pressure EGR actuator 52a has a function of detecting the low pressure EGR opening. The low pressure EGR passage 46 is provided with a differential pressure sensor 53 that detects a differential pressure across the low pressure EGR valve 52.

排気通路34のうち、この通路と低圧EGR通路46との接続部の下流側には、排気通路34の流路面積を調節する排気絞り弁56が設けられている。排気絞り弁56は、DCモータ等のアクチュエータ(排気側アクチュエータ56a)によってその開度が調節される電子制御式の弁体である。なお、排気側アクチュエータ56aは、排気絞り弁56の開度を検出する機能を有している。   An exhaust throttle valve 56 that adjusts the flow area of the exhaust passage 34 is provided on the downstream side of the connection portion between the passage and the low-pressure EGR passage 46 in the exhaust passage 34. The exhaust throttle valve 56 is an electronically controlled valve body whose opening degree is adjusted by an actuator (exhaust side actuator 56a) such as a DC motor. The exhaust side actuator 56a has a function of detecting the opening degree of the exhaust throttle valve 56.

なお本実施形態において、吸気通路12(吸気マニホールドを含む)のうち高圧EGR通路44との接続部よりも下流側を高圧合流後通路12aと称し、吸気通路12のうち低圧EGR通路46との接続部よりも下流側であって且つ高圧EGR通路44との接続部よりも上流側を低圧合流後通路12bと称すこととする。また、吸気とは、新気及び外部EGRを含むガスのことをいう。   In the present embodiment, the downstream side of the connection portion with the high pressure EGR passage 44 in the intake passage 12 (including the intake manifold) is referred to as a high pressure merged passage 12a, and the intake passage 12 is connected to the low pressure EGR passage 46. The downstream side of the part and the upstream side of the connecting part with the high pressure EGR passage 44 will be referred to as a low pressure merged passage 12b. The intake air refers to a gas including fresh air and external EGR.

エンジンシステムを操作対象とする電子制御装置(ECU58)は、周知のCPU、ROM、RAM等よりなるマイクロコンピュータを主体として構成されている。ECU58には、ドライバのアクセル操作量(踏み込み量)を検出するアクセルセンサ60や、エアフローメータ14、吸気圧センサ24、吸気温センサ26、クランク角度センサ38、A/Fセンサ42、排気圧センサ51、吸気側アクチュエータ20a、高圧EGRアクチュエータ48a、低圧EGRアクチュエータ52a、差圧センサ53、更には排気側アクチュエータ56aの出力信号等が逐次入力される。ECU58は、上記各センサからの入力信号に基づき、ROMに記憶された各種の制御プログラムを実行することで、燃料噴射弁28による燃料噴射制御や、ターボチャージャ16による過給圧制御等、エンジン10の燃焼制御を行う。   An electronic control unit (ECU 58) whose operation target is an engine system is configured mainly by a microcomputer including a known CPU, ROM, RAM, and the like. The ECU 58 includes an accelerator sensor 60 that detects an accelerator operation amount (depression amount) of the driver, an air flow meter 14, an intake pressure sensor 24, an intake air temperature sensor 26, a crank angle sensor 38, an A / F sensor 42, and an exhaust pressure sensor 51. The intake side actuator 20a, the high pressure EGR actuator 48a, the low pressure EGR actuator 52a, the differential pressure sensor 53, and the output signal of the exhaust side actuator 56a are sequentially input. The ECU 58 executes various control programs stored in the ROM on the basis of the input signals from the respective sensors, so that the fuel injection control by the fuel injection valve 28, the supercharging pressure control by the turbocharger 16, and the like are performed. The combustion control is performed.

上記燃料噴射制御について説明すると、まず、クランク角度センサ38の出力値に基づくエンジン回転速度と、アクセルセンサ60の出力値に基づくアクセル操作量とから、エンジン10の要求トルク(以下、エンジン要求トルク)を算出する。ここでは通常、アクセル操作量が大きいほど、エンジン要求トルクを大きく設定する。そして、設定されたエンジン要求トルクに基づき燃料噴射弁28の指令値を算出し、この指令値に基づき燃料噴射弁28を通電操作する。これにより、上記指令値に相当する量の燃料が燃料噴射弁28から噴射される。   The fuel injection control will be described. First, the required torque of the engine 10 (hereinafter referred to as engine required torque) is calculated from the engine rotation speed based on the output value of the crank angle sensor 38 and the accelerator operation amount based on the output value of the accelerator sensor 60. Is calculated. Here, normally, the larger the accelerator operation amount, the larger the engine required torque is set. Then, a command value for the fuel injection valve 28 is calculated based on the set engine required torque, and the fuel injection valve 28 is energized based on the command value. As a result, an amount of fuel corresponding to the command value is injected from the fuel injection valve 28.

また、上記過給圧制御は、吸気圧センサ24の出力値に基づく過給圧をその目標値に制御すべく、ターボチャージャ16を通電操作するものとなる。ここで過給圧の目標値は、燃焼室22に供給すべき吸気量に基づき予め設定される値である。具体的には例えば、エンジン要求トルクが大きいほど、過給圧が高く設定される。   Further, in the supercharging pressure control, the turbocharger 16 is energized so as to control the supercharging pressure based on the output value of the intake pressure sensor 24 to the target value. Here, the target value of the supercharging pressure is a value set in advance based on the intake air amount to be supplied to the combustion chamber 22. Specifically, for example, the boost pressure is set higher as the engine required torque is larger.

特にECU58は、上記燃焼制御として、低圧EGRの流量(以下、低圧EGR量)や高圧EGRの流量(以下、高圧EGR量)を調節すべく、高圧EGRアクチュエータ48a等を通電操作する排気還流制御(外部EGR制御)を行う。外部EGR制御は、エンジン10から排出される排気中の窒素酸化物(NOx)等を低減させることを目的として行われるものである。   In particular, the ECU 58 performs the exhaust gas recirculation control for energizing the high pressure EGR actuator 48a and the like so as to adjust the flow rate of the low pressure EGR (hereinafter referred to as the low pressure EGR amount) and the flow rate of the high pressure EGR (hereinafter referred to as the high pressure EGR amount). External EGR control) is performed. The external EGR control is performed for the purpose of reducing nitrogen oxide (NOx) or the like in the exhaust discharged from the engine 10.

本実施形態では、外部EGR制御として、エンジン10の運転状態(エンジン回転速度NE及びエンジン要求トルクTrq)に基づき、高圧EGRのみを吸気通路12に還流させる高圧EGR制御(図中HPLと表記)、高圧EGR及び低圧EGRの双方を還流させる高低圧協調EGR制御(図中HPL&LPLと表記)、及び低圧EGRのみを還流させる低圧EGR制御(図中LPLと表記)のいずれかを選択して実行する。   In the present embodiment, as external EGR control, high-pressure EGR control (represented as HPL in the figure) for returning only the high-pressure EGR to the intake passage 12 based on the operating state of the engine 10 (engine rotational speed NE and engine required torque Trq). High-low pressure cooperative EGR control (represented as HPL & LPL in the figure) that recirculates both the high-pressure EGR and low-pressure EGR and low-pressure EGR control (represented as LPL in the figure) that recirculates only the low-pressure EGR are selected and executed.

より具体的には、エンジン要求トルクTrqが第1の規定トルクTr1以下の低負荷領域であると判断された場合に高圧EGR制御を行い、エンジン要求トルクTrqが第1の規定トルクTr1を上回って且つ、第1の規定トルクTr1よりも大きい第2の規定トルクTr2以下の中負荷領域であると判断された場合に高低圧協調EGR制御を行う。更に、エンジン要求トルクTrqが第2の規定トルクTr2を上回る高負荷領域であると判断された場合には、低圧EGR制御を行う。   More specifically, the high pressure EGR control is performed when it is determined that the engine required torque Trq is in a low load region equal to or less than the first specified torque Tr1, and the engine required torque Trq exceeds the first specified torque Tr1. In addition, when it is determined that the intermediate load region is equal to or less than the second specified torque Tr2 larger than the first specified torque Tr1, the high-low pressure cooperative EGR control is performed. Further, when it is determined that the engine required torque Trq is in a high load region where the engine required torque Trq exceeds the second specified torque Tr2, low pressure EGR control is performed.

ここで高圧EGR制御、高低圧協調EGR制御及び低圧EGR制御のうちいずれかを選択する手法を採用するのは、NOx等の低減のために吸気通路12に還流させる外部EGRを適切に確保しつつ、エンジン10の生成トルクの低下を回避するためである。   Here, the method of selecting one of the high pressure EGR control, the high and low pressure cooperative EGR control, and the low pressure EGR control is adopted while appropriately securing the external EGR to be recirculated to the intake passage 12 in order to reduce NOx and the like. This is to avoid a decrease in the generated torque of the engine 10.

つまり、高負荷領域においては、エンジン要求トルクが大きくなることから、燃焼室22に充填される新気量を多くすべく過給圧を高くすることが要求される。ここで高圧EGR量を多くすると、排気タービン16bに供給される排気量が少なくなることで、過給圧を高くすることができなくなり、エンジン10の生成トルクが低下する。このような問題を回避するために、高負荷領域においては、排気タービン16bの下流側の排気の一部を低圧EGRとして還流させる低圧EGR制御を行う。   In other words, in the high load region, the required engine torque becomes large, so that it is required to increase the supercharging pressure in order to increase the amount of fresh air charged in the combustion chamber 22. If the amount of high-pressure EGR is increased here, the amount of exhaust gas supplied to the exhaust turbine 16b decreases, so that the supercharging pressure cannot be increased, and the generated torque of the engine 10 decreases. In order to avoid such a problem, in the high load region, low pressure EGR control is performed to recirculate a part of the exhaust on the downstream side of the exhaust turbine 16b as low pressure EGR.

また、中負荷領域においては、排気タービン16bに供給すべき排気量が通常、高負荷領域よりも少ない。このため、低圧EGRとともに高圧EGRを還流させることで外部EGRを確保すべく、高低圧協調EGR制御を行う。   In the middle load region, the amount of exhaust to be supplied to the exhaust turbine 16b is usually smaller than that in the high load region. For this reason, high-low pressure cooperative EGR control is performed in order to secure external EGR by refluxing high-pressure EGR together with low-pressure EGR.

更に、低負荷領域においては、低圧EGRクーラ54及びインタークーラ18の双方で低圧EGRが冷却されることで低圧EGRの温度が低く、低圧EGRの供給によって燃焼状態が悪化する。また、低圧EGR通路46の出入口の前後差圧が小さいことから、低圧EGR量を確保できない。これらに鑑み、高圧EGR制御を行う。   Further, in the low load region, the low pressure EGR is cooled by both the low pressure EGR cooler 54 and the intercooler 18, so that the temperature of the low pressure EGR is low, and the combustion state is deteriorated by the supply of the low pressure EGR. Further, since the differential pressure across the entrance and exit of the low pressure EGR passage 46 is small, the low pressure EGR amount cannot be secured. In view of these, high pressure EGR control is performed.

次に、本実施形態にかかる高低圧協調EGR制御について詳述する。   Next, the high / low pressure cooperative EGR control according to the present embodiment will be described in detail.

本実施形態では、まず、高圧合流後目標値として高圧合流後通路12aにおけるEGR率(以下、EGR率)の目標値(以下、目標EGR率)を設定し(図1のβ部参照)、低圧合流後目標値として低圧合流後通路12bにおけるEGR率(以下、低圧EGR率)の目標値(以下、目標低圧EGR率)を設定する(同図のα部参照)。ここでEGR率とは、燃焼室22に供給される吸気量(充填吸気量)に対する高圧EGR量及び低圧EGR量の加算値(総EGR量)の割合(百分率)である。詳しくは、低圧EGR量をMegrlpとし、高圧EGR量をMegrhpとし、新気量をMairとすると、EGR率は下式(c1)で定義される。
EGR率=(Megrlp+Megrhp)
/(Mair+Megrlp+Megrhp)×100 …(c1)
また、低圧EGR率とは、新気量及び低圧EGR量の加算値に対する低圧EGR量の割合(百分率)であり、詳しくは、下式(c2)で定義される。
低圧EGR率=Megrlp/(Mair+Megrlp)×100 …(c2)
そして、高圧合流後制御値としてのEGR率の都度の値(実EGR率)を目標EGR率にフィードバック制御すべく高圧EGRアクチュエータ48aを通電操作するとともに、低圧合流後制御値としての低圧EGR率の都度の値(実低圧EGR率)を目標低圧EGR率にフィードバック制御すべく低圧EGRアクチュエータ52aを通電操作する。高低圧協調EGR制御として、こうした制御手法を採用するのは、低圧EGRの応答遅れに起因した外部EGR量の調節精度の低下を回避するためである。
In the present embodiment, first, a target value (hereinafter referred to as a target EGR rate) of an EGR rate (hereinafter referred to as an EGR rate) in the post-high pressure merging passage 12a is set as a target value after high pressure merging (refer to a β portion in FIG. 1). A target value (hereinafter referred to as a target low pressure EGR rate) of an EGR rate (hereinafter referred to as a low pressure EGR rate) in the low-pressure merged passage 12b is set as a post-merging target value (see α part in the figure). Here, the EGR rate is a ratio (percentage) of an added value (total EGR amount) of the high pressure EGR amount and the low pressure EGR amount with respect to the intake air amount (filled intake air amount) supplied to the combustion chamber 22. Specifically, when the low pressure EGR amount is Megrlp, the high pressure EGR amount is Meghrp, and the fresh air amount is Mair, the EGR rate is defined by the following equation (c1).
EGR rate = (Megrlp + Megrhp)
/ (Mair + Megrlp + Megrhp) × 100 (c1)
The low pressure EGR rate is the ratio (percentage) of the low pressure EGR amount to the sum of the fresh air amount and the low pressure EGR amount, and is specifically defined by the following equation (c2).
Low pressure EGR rate = Megrlp / (Mair + Megrlp) × 100 (c2)
Then, the high pressure EGR actuator 48a is energized to feedback control the value (actual EGR rate) of the EGR rate as the post-high pressure merge control value to the target EGR rate, and the low pressure EGR rate as the post-low pressure merge control value The low pressure EGR actuator 52a is energized so as to feedback control the value (actual low pressure EGR rate) to the target low pressure EGR rate. The reason why such a control method is adopted as the high-low pressure cooperative EGR control is to avoid a decrease in the adjustment accuracy of the external EGR amount due to the response delay of the low-pressure EGR.

ここで上記低圧EGRの応答遅れとは、低圧EGR通路46が高圧EGR通路44よりも長いこと、及び吸気通路12と低圧EGR通路46との接続点から燃焼室22までの距離が、吸気通路12と高圧EGR通路44との接続点から燃焼室22までの距離よりも長いこと等に起因して、高圧EGR開度が変更されてからその影響が燃焼室22に供給される吸気に現れるまでの時間よりも、低圧EGR開度が変更されてから、その影響が燃焼室22に供給される吸気に現れるまでの時間のほうが長くなる現象のことをいう。   Here, the response delay of the low pressure EGR means that the low pressure EGR passage 46 is longer than the high pressure EGR passage 44 and the distance from the connection point between the intake passage 12 and the low pressure EGR passage 46 to the combustion chamber 22 is the intake passage 12. From the change of the high-pressure EGR opening degree to the influence of the change in the intake air supplied to the combustion chamber 22 due to the fact that it is longer than the distance from the connection point between the high-pressure EGR passage 44 and the combustion chamber 22. This is a phenomenon in which the time from when the low pressure EGR opening is changed to when the influence appears in the intake air supplied to the combustion chamber 22 becomes longer than the time.

なお、続いて高低圧協調EGR制御処理の手順を説明する前に、この処理の演算で必要となる各種パラメータの値の算出処理(流量濃度算出処理)を説明する。本実施形態では、上記パラメータの値として、図1に表記されるように、高圧EGR量Megrhp、低圧EGR量Megrlp、低圧合流後通路12bを流れる吸気量(低圧合流後吸気量Mdth)、充填吸気量Mcld、高圧EGR中の酸素濃度(高圧出口O2濃度Cegrhp)、低圧EGR中の酸素濃度(低圧出口O2濃度Cegrlp)、低圧合流後通路12bを流れる吸気中の酸素濃度(低圧合流後O2濃度)、燃焼室22に供給される吸気中の酸素濃度(吸気O2濃度)及び燃焼室22から排出される排気中の酸素濃度(排気O2濃度)を想定している。   Before describing the procedure of the high / low pressure cooperative EGR control process, the calculation process (flow rate concentration calculation process) of various parameter values necessary for the calculation of this process will be described. In the present embodiment, as shown in FIG. 1, as the values of the above parameters, the high-pressure EGR amount Megrhp, the low-pressure EGR amount Megrlp, the intake air amount flowing through the low-pressure merging passage 12b (the low-pressure merging intake air amount Mdth), the charged intake air The amount Mcld, the oxygen concentration in the high pressure EGR (high pressure outlet O2 concentration Cegrhp), the oxygen concentration in the low pressure EGR (low pressure outlet O2 concentration Cegrlp), and the oxygen concentration in the intake air flowing through the post-low pressure merge passage 12b (O2 concentration after low pressure merge) The oxygen concentration in the intake air supplied to the combustion chamber 22 (intake O2 concentration) and the oxygen concentration in the exhaust gas exhausted from the combustion chamber 22 (exhaust O2 concentration) are assumed.

これらの値のうち流量の算出手法について説明すると、具体的には例えば、高圧EGR量Megrhpを、高圧EGR通路44の出入口差圧及び高圧EGR開度(高圧EGR通路44の流路面積)に基づき算出すればよい。ここで上記出入口差圧は、排気圧センサ51の出力値から算出される排気圧と、過給圧との差分として算出すればよい。また、低圧EGR量Megrlpを、差圧センサ53の出力値から算出される低圧EGRバルブ52の前後差圧と、低圧EGR開度(低圧EGR通路46の流路面積)とに基づき算出すればよい。そして、充填吸気量Mcldを、過給圧及び吸気温センサ26の出力値から算出される吸気温に基づき算出すればよい。   The flow rate calculation method among these values will be described. Specifically, for example, the high pressure EGR amount Megrhp is determined based on the inlet / outlet differential pressure of the high pressure EGR passage 44 and the high pressure EGR opening (the flow passage area of the high pressure EGR passage 44). What is necessary is just to calculate. Here, the inlet / outlet differential pressure may be calculated as a difference between the exhaust pressure calculated from the output value of the exhaust pressure sensor 51 and the supercharging pressure. The low pressure EGR amount Megrlp may be calculated based on the differential pressure across the low pressure EGR valve 52 calculated from the output value of the differential pressure sensor 53 and the low pressure EGR opening (the flow area of the low pressure EGR passage 46). . Then, the charging intake air amount Mcld may be calculated based on the intake air temperature calculated from the boost pressure and the output value of the intake air temperature sensor 26.

なおここでは、低圧合流後吸気量Mdthが、新気量Mair及び低圧EGR量Megrlpの加算値と等しくなり、低圧合流後吸気量Mdth及び高圧EGR量Megrhpの加算値が充填吸気量Mcldと等しくなるとしている。ここで新気量Mairは、エアフローメータ14の出力値に基づき算出すればよい。   Here, the low-pressure merged intake air amount Mdth is equal to the added value of the fresh air amount Mail and the low-pressure EGR amount Megarlp, and the low-pressure merged intake air amount Mdth and the high-pressure EGR amount Megarhp are equal to the charged intake air amount Mcld. It is said. Here, the fresh air amount Mail may be calculated based on the output value of the air flow meter 14.

続いてO2濃度の算出手法について説明すると、高圧出口O2濃度Cegrhp、低圧出口O2濃度Cegrlp、低圧合流後O2濃度、吸気O2濃度及び排気O2濃度を、これら各パラメータの値を推定するための所定のモデルによって都度推定する。   Next, the calculation method of the O2 concentration will be described. The high-pressure outlet O2 concentration Cegrhp, the low-pressure outlet O2 concentration Cegrlp, the low-pressure merged O2 concentration, the intake O2 concentration, and the exhaust O2 concentration are predetermined values for estimating the values of these parameters. Estimate each time by model.

具体的には例えば、充填吸気量Mcld、燃料噴射弁28からの燃料噴射量(又はエンジン要求トルク)及び吸気O2濃度等に基づき排気O2濃度を推定する処理と、排気O2濃度及び高圧EGR量Megrhp等に基づき高圧出口O2濃度Cegrhpを推定する処理と、排気O2濃度及び低圧EGR量Megrlp等に基づき低圧出口O2濃度Cegrlpを推定する処理と、高圧EGR量Megrhp、高圧出口O2濃度Cegrhp、低圧合流後吸気量Mdth及び低圧合流後O2濃度等に基づき吸気O2濃度を推定する処理と、低圧EGR量Megrlp、低圧出口O2濃度Cegrlp、新気量Mair及び新気中の酸素濃度Cair等に基づき低圧合流後O2濃度を推定する処理とによって、上記各O2濃度を算出する。ここで、新気中の酸素濃度Cairは、例えば予め設定された固定値としてもよいし、酸素濃度を検出するセンサの検出値としてもよい。こうした算出手法によれば、燃焼室22から排出された排気が高圧EGR通路44や低圧EGR通路46を介して吸気通路12に戻される影響を取り入れつつ、上記各O2濃度を都度算出することが可能となる。   Specifically, for example, a process for estimating the exhaust O2 concentration based on the charged intake air amount Mcld, the fuel injection amount (or engine required torque) from the fuel injection valve 28, the intake O2 concentration, and the like, and the exhaust O2 concentration and the high pressure EGR amount Megrhp Processing for estimating the high pressure outlet O2 concentration Cegrp based on the exhaust gas O2 concentration, the low pressure EGR amount Megagrp, etc., the processing for estimating the low pressure outlet O2 concentration Cegrlp, the high pressure EGR amount Megagrp, the high pressure outlet O2 concentration Ceghrp, The process of estimating the intake air O2 concentration based on the intake air amount Mdth and the O2 concentration after low pressure merging, etc., and after the low pressure merging based on the low pressure EGR amount Megrlp, the low pressure outlet O2 concentration Cegrlp, the fresh air amount Mail, the oxygen concentration Cair in the fresh air, etc. The respective O2 concentrations are calculated by processing for estimating the O2 concentration. Here, the oxygen concentration Cair in the fresh air may be a fixed value set in advance, for example, or may be a detection value of a sensor that detects the oxygen concentration. According to such a calculation method, it is possible to calculate each O2 concentration each time while taking into account the effect that the exhaust discharged from the combustion chamber 22 is returned to the intake passage 12 via the high pressure EGR passage 44 and the low pressure EGR passage 46. It becomes.

そして、上記流量やO2濃度を用いて、実EGR率及び実低圧EGR率を算出する。   Then, the actual EGR rate and the actual low pressure EGR rate are calculated using the flow rate and the O2 concentration.

図2に、本実施形態にかかる高低圧協調EGR制御処理の手順を示す。この処理は、ECU58によって、例えば所定周期で実行される。   FIG. 2 shows a procedure of high / low pressure cooperative EGR control processing according to the present embodiment. This process is executed by the ECU 58 at a predetermined cycle, for example.

この一連の処理では、ステップS10において、エンジン回転速度NE及び燃料噴射量Q(又はエンジン要求トルクTrq)に基づき、目標EGR率(0%≦目標EGR率≦100%)を可変設定する。なお、目標EGR率は、エンジン回転速度NE及び燃料噴射量Qと関係付けられた目標EGR率が規定されるマップを用いて設定すればよい。ここで上記マップの目標EGR率は、燃焼制御のための各種アクチュエータの制御量が固定されて十分な時間が経過した状態(定常状態)において、スモークやNOxの排出量を規定量以下にする等、エンジン10の燃焼状態を良好なものとするEGR率として予め実験等により適合されるものである。   In this series of processing, in step S10, the target EGR rate (0% ≦ target EGR rate ≦ 100%) is variably set based on the engine speed NE and the fuel injection amount Q (or the engine required torque Trq). The target EGR rate may be set using a map that defines the target EGR rate associated with the engine speed NE and the fuel injection amount Q. Here, the target EGR rate of the above map is such that the smoke and NOx emission amount is less than or equal to a prescribed amount in a state where a sufficient amount of time has passed since the control amounts of various actuators for combustion control are fixed (steady state). The EGR rate for improving the combustion state of the engine 10 is adapted in advance through experiments or the like.

続くステップS12では、充填吸気量Mcldを算出する。そしてステップS14では、目標EGR率及び充填吸気量Mcldに基づき、燃焼室22に供給される総EGR量の目標値(目標総EGR量)を算出する。ここで目標総EGR量は、実EGR率(高圧合流後制御値)を目標EGR率(高圧合流後目標値)とするために要求される総EGR量であり、具体的には、下式(c3)によって算出される。
目標総EGR量=(目標EGR率/100)×Mcld …(c3)
続くステップS16では、エンジン回転速度NE及び燃料噴射弁28からの燃料噴射量Qに基づき、高圧EGR量Megrhpの目標値(目標高圧EGR量)を可変設定する。ここで目標高圧EGR量は、目標総EGR量の一部が割り振られたものであり、エンジン回転速度NE及び燃料噴射量Qと関係づけられた目標高圧EGR量が規定されるマップを用いて設定する。なお、目標高圧EGR量は、例えばエンジン要求トルクTrqが大きくなるほど少なく設定すればよい。
In the following step S12, the charged intake air amount Mcld is calculated. In step S14, a target value (target total EGR amount) of the total EGR amount supplied to the combustion chamber 22 is calculated based on the target EGR rate and the charged intake air amount Mcld. Here, the target total EGR amount is a total EGR amount required to set the actual EGR rate (control value after high-pressure merging) as the target EGR rate (target value after high-pressure merging). calculated by c3).
Target total EGR amount = (Target EGR rate / 100) × Mcld (c3)
In the subsequent step S16, the target value (target high pressure EGR amount) of the high pressure EGR amount Megrhp is variably set based on the engine speed NE and the fuel injection amount Q from the fuel injection valve 28. Here, the target high pressure EGR amount is a part of the target total EGR amount, and is set using a map in which the target high pressure EGR amount is related to the engine speed NE and the fuel injection amount Q. To do. Note that the target high pressure EGR amount may be set to decrease as the engine required torque Trq increases, for example.

続くステップS18では、高圧EGR量の上限値(高圧上限値≧0)を可変設定する。この処理は、後述するステップS20、S22の処理と合わせて、エンジン10の生成トルクの低下を回避するための処理である。つまり、高圧EGR量を増大させると、排気タービン16bに供給される排気量が減少するため、過給圧が低下するおそれがある。この場合、エンジン10の生成トルクが低下することで、ドライバビリティが低下するおそれがある。このため、上記高圧上限値を設定することで、過給圧の低下を回避し、エンジン10の生成トルクの低下を回避する。ここで高圧上限値は、具体的には例えば、エンジン回転速度NE及び燃料噴射量Qと関連付けられた高圧上限値が規定されるマップを用いて設定すればよい。   In the subsequent step S18, the upper limit value of the high pressure EGR amount (high pressure upper limit value ≧ 0) is variably set. This process is a process for avoiding a decrease in the generated torque of the engine 10 together with the processes of steps S20 and S22 described later. That is, if the amount of high-pressure EGR is increased, the amount of exhaust gas supplied to the exhaust turbine 16b is decreased, so that the supercharging pressure may be lowered. In this case, drivability may be reduced due to a decrease in the generated torque of the engine 10. For this reason, by setting the high pressure upper limit value, a decrease in the supercharging pressure is avoided, and a decrease in the generated torque of the engine 10 is avoided. Here, the high pressure upper limit value may be specifically set using, for example, a map in which the high pressure upper limit value associated with the engine rotational speed NE and the fuel injection amount Q is defined.

ここで本実施形態では、エンジン要求トルクTrqが急増した(車両の加速時である)と判断された場合、高圧上限値を低く設定する要求トルク急増時設定を行う。これは、急変時におけるエンジン10の生成トルクの低下を抑制するための設定である。つまり、高圧上限値が定常状態で定められるため、エンジン要求トルク急増時のような過渡状態においては、上記ステップS18で設定された高圧上限値が適切な値でない場合が生じる。このため、要求トルク急変時設定によれば、エンジン要求トルクの急増時において、排気タービン16bに供給すべき排気を適切に確保する。ここでエンジン要求トルクが急増したか否かは、例えばアクセル操作量(又は燃料噴射量Qの指令値)の上昇速度が規定速度(>0)以上になるか否かで判断すればよい。   Here, in the present embodiment, when it is determined that the engine required torque Trq has increased rapidly (when the vehicle is accelerating), the setting is made at the time of required torque rapid increase in which the high pressure upper limit value is set low. This is a setting for suppressing a decrease in the generated torque of the engine 10 during a sudden change. That is, since the high pressure upper limit value is determined in a steady state, the high pressure upper limit value set in step S18 may not be an appropriate value in a transient state such as when the engine required torque is suddenly increased. For this reason, according to the required torque sudden change setting, the exhaust to be supplied to the exhaust turbine 16b is appropriately ensured when the engine required torque is rapidly increased. Here, whether or not the engine required torque has rapidly increased may be determined, for example, by whether or not the increasing speed of the accelerator operation amount (or the command value of the fuel injection amount Q) is equal to or higher than a specified speed (> 0).

ステップS20では、目標高圧EGR量が高圧上限値以下であるか否かを判断する。そしてステップS20において目標高圧EGR量が高圧上限値を上回ると判断された場合には、ステップS22に進み、目標高圧EGR量を高圧上限値によって制限する。すなわち、目標高圧EGR量を高圧上限値とする。   In step S20, it is determined whether or not the target high pressure EGR amount is equal to or less than the high pressure upper limit value. If it is determined in step S20 that the target high pressure EGR amount exceeds the high pressure upper limit value, the process proceeds to step S22, where the target high pressure EGR amount is limited by the high pressure upper limit value. That is, the target high pressure EGR amount is set as the high pressure upper limit value.

上記ステップS20において肯定判断された場合や、ステップS22の処理が完了した場合には、ステップS24に進み、目標総EGR量及び目標高圧EGR量に基づき、低圧EGR量の目標値(目標低圧EGR量)を設定する。この処理は、目標総EGR量のうち目標高圧EGR量に割り振る分以外の量を、目標低圧EGR量に割り振るための処理である。本実施形態では、目標総EGR量から目標高圧EGR量を差し引いた値として目標低圧EGR量を設定する。   When an affirmative determination is made in step S20 or when the process of step S22 is completed, the process proceeds to step S24, where the target value of the low pressure EGR amount (the target low pressure EGR amount) is based on the target total EGR amount and the target high pressure EGR amount. ) Is set. This process is a process for allocating an amount of the target total EGR amount other than the amount allocated to the target high pressure EGR amount to the target low pressure EGR amount. In the present embodiment, the target low pressure EGR amount is set as a value obtained by subtracting the target high pressure EGR amount from the target total EGR amount.

続くステップS26では、吸気通路12に供給可能な低圧EGRの上限値(低圧上限値>0)を設定する。ここで低圧上限値は、エンジン回転速度NE及び燃料噴射量Qと関連付けられた低圧上限値が規定されるマップを用いて設定すればよい。   In the subsequent step S26, an upper limit value of the low pressure EGR that can be supplied to the intake passage 12 (low pressure upper limit value> 0) is set. Here, the low pressure upper limit value may be set using a map in which the low pressure upper limit value associated with the engine speed NE and the fuel injection amount Q is defined.

続くステップS28では、目標低圧EGR量が低圧上限値以下であるか否かを判断する。そしてステップS28において目標低圧EGR量が低圧上限値を上回ると判断された場合には、ステップS30に進み、目標低圧EGR量を低圧上限値によって制限する。すなわち、目標低圧EGR量を低圧上限値とする。   In a succeeding step S28, it is determined whether or not the target low pressure EGR amount is equal to or lower than the low pressure upper limit value. If it is determined in step S28 that the target low pressure EGR amount exceeds the low pressure upper limit value, the process proceeds to step S30, where the target low pressure EGR amount is limited by the low pressure upper limit value. That is, the target low pressure EGR amount is set to the low pressure upper limit value.

上記ステップS28において肯定判断された場合や、ステップS30の処理が完了した場合には、ステップS32において、上式(c2)を用いて目標低圧EGR率を設定する。これにより、目標高圧EGR量が高圧上限値を上回る分の少なくとも一部又は全部が低圧EGRによって補償されることとなる。   When an affirmative determination is made in step S28 or when the process of step S30 is completed, the target low pressure EGR rate is set using the above equation (c2) in step S32. As a result, at least part or all of the target high pressure EGR amount exceeding the high pressure upper limit value is compensated by the low pressure EGR.

なお、上記ステップS30において目標低圧EGR量が低圧上限値によって制限された場合、目標低圧EGR量が当初の値から変更される。このため、目標EGR率を、高圧EGR量及び低圧EGR量の和を高圧上限値及び低圧上限値の和としたときに実現可能な目標EGR率に再設定する。具体的には、上式(c1)を用いて目標EGR率を再設定する。   When the target low pressure EGR amount is limited by the low pressure upper limit value in step S30, the target low pressure EGR amount is changed from the initial value. Therefore, the target EGR rate is reset to a target EGR rate that can be realized when the sum of the high pressure EGR amount and the low pressure EGR amount is the sum of the high pressure upper limit value and the low pressure upper limit value. Specifically, the target EGR rate is reset using the above equation (c1).

続くステップS34では、実低圧EGR率を目標低圧EGR率にフィードバック制御すべく低圧EGRアクチュエータ52aを通電操作し、実EGR率を目標EGR率にフィードバック制御すべく高圧EGRアクチュエータ48aを通電操作する。具体的には例えば、これら制御量に基づく比例積分制御によってこれらアクチュエータのフィードバック操作量を算出し、算出されたフィードバック操作量に基づきアクチュエータを通電操作する。これにより、実EGR率が目標EGR率よりも高い場合、高圧EGR開度が小さくされて高圧EGR量が減少し、実低圧EGR率が目標低圧EGR率よりも高い場合、低圧EGR開度が小さくされて低圧EGR量が減少する。   In the subsequent step S34, the low pressure EGR actuator 52a is energized to feedback control the actual low pressure EGR rate to the target low pressure EGR rate, and the high pressure EGR actuator 48a is energized to feedback control the actual EGR rate to the target EGR rate. Specifically, for example, the feedback operation amount of these actuators is calculated by proportional-integral control based on these control amounts, and the actuator is energized based on the calculated feedback operation amounts. Thereby, when the actual EGR rate is higher than the target EGR rate, the high-pressure EGR opening is reduced and the amount of high-pressure EGR is reduced. When the actual low-pressure EGR rate is higher than the target low-pressure EGR rate, the low-pressure EGR opening is small. As a result, the amount of low-pressure EGR decreases.

なお、ステップS34の処理が完了する場合には、この一連の処理を一旦終了する。   In addition, when the process of step S34 is completed, this series of processes is once complete | finished.

以上詳述した本実施形態によれば、以下の効果が得られるようになる。   According to the embodiment described in detail above, the following effects can be obtained.

(1)総目標EGR量から目標高圧EGR量を差し引いた値を目標低圧EGR量として設定した。このため、実EGR率を目標EGR率とするために要求される上記目標総EGR量を、目標高圧EGR量及び目標低圧EGR量のそれぞれに適切に割り振ることができる。   (1) A value obtained by subtracting the target high pressure EGR amount from the total target EGR amount is set as the target low pressure EGR amount. Therefore, the target total EGR amount required for making the actual EGR rate the target EGR rate can be appropriately allocated to each of the target high pressure EGR amount and the target low pressure EGR amount.

(2)高圧EGR及び低圧EGRの併用領域において、実EGR率を目標EGR率にフィードバック制御すべく、高圧EGRアクチュエータ48aを通電操作するとともに、実低圧EGR率を目標低圧EGR率にフィードバック制御すべく、低圧EGRアクチュエータ52aを通電操作する高低圧協調EGR制御を行った。これにより、エンジン10に供給される外部EGRの調節精度の低下を好適に回避することができる。   (2) In the combined region of high pressure EGR and low pressure EGR, in order to feedback control the actual EGR rate to the target EGR rate, to energize the high pressure EGR actuator 48a, and to feedback control the actual low pressure EGR rate to the target low pressure EGR rate. Then, high-low pressure cooperative EGR control for energizing the low-pressure EGR actuator 52a was performed. Thereby, the fall of the adjustment precision of external EGR supplied to engine 10 can be avoided suitably.

(3)目標高圧EGR量が高圧上限値を上回ると判断された場合、目標高圧EGR量を高圧上限値とした。これにより、外部EGR量を吸気通路12に還流させつつ、エンジン10の生成トルクの低下を好適に抑制することができる。   (3) When it is determined that the target high pressure EGR amount exceeds the high pressure upper limit value, the target high pressure EGR amount is set as the high pressure upper limit value. Thereby, it is possible to suitably suppress a decrease in the generated torque of the engine 10 while returning the external EGR amount to the intake passage 12.

しかも、高圧上限値を、高圧EGR開度の上限値よりも小さい開度に対応する値とするならば、低圧EGR及び高圧EGRの併用領域において高圧EGR開度がその上限値に飽和することを回避することもできる。   Moreover, if the high pressure upper limit value is a value corresponding to an opening smaller than the upper limit value of the high pressure EGR opening, the high pressure EGR opening is saturated at the upper limit value in the combined region of the low pressure EGR and the high pressure EGR. It can also be avoided.

(4)エンジン要求トルクが急増したと判断された場合、高圧上限値を低く設定する要求トルク急増時設定を行った。これにより、過給圧を高くすることが要求される状況下において、排気タービン16bに供給すべき排気を適切に確保することができ、エンジン10の生成トルクの低下をより好適に回避することができる。   (4) When it is determined that the engine required torque has suddenly increased, a setting is made at the time of required torque rapid increase to set the high pressure upper limit value low. As a result, the exhaust to be supplied to the exhaust turbine 16b can be appropriately ensured under a situation where it is required to increase the supercharging pressure, and a decrease in the generated torque of the engine 10 can be more suitably avoided. it can.

(5)目標高圧EGR量が高圧上限値を上回ると判断されて且つ、目標低圧EGR量が低圧上限値を上回ると判断された場合、目標EGR率を、目標高圧EGR量及び目標低圧EGR量の和を高圧上限値及び低圧上限値の和としたときに実現可能な目標EGR率に再設定した。このため、燃焼室22に実際に供給可能な総EGR量の変化に応じて目標EGR率を適宜設定することができる。   (5) When it is determined that the target high pressure EGR amount exceeds the high pressure upper limit value, and the target low pressure EGR amount is determined to exceed the low pressure upper limit value, the target EGR rate is set to the target high pressure EGR amount and the target low pressure EGR amount. The target EGR rate that was realizable when the sum was the sum of the high pressure upper limit value and the low pressure upper limit value was reset. For this reason, the target EGR rate can be appropriately set according to the change in the total EGR amount that can be actually supplied to the combustion chamber 22.

(第2の実施形態)
以下、第2の実施形態について、先の第1の実施形態との相違点を中心に図面を参照しつつ説明する。
(Second Embodiment)
Hereinafter, the second embodiment will be described with reference to the drawings with a focus on differences from the first embodiment.

本実施形態では、高圧合流後目標値として吸気O2濃度を採用し、低圧合流後目標値として低圧合流後O2濃度を採用する(先の図1のα,β部参照)。そして、高圧合流後制御値として吸気O2濃度の都度の値(実吸気O2濃度)を採用し、低圧合流後制御値として低圧合流後O2濃度の都度の値(実低圧合流後O2濃度)を採用する。ここで、吸気O2濃度を採用するのは、この濃度がエンジン10のNOx排出量と強い相関を示すことに鑑み、NOx排出量を高精度に制御するためである。   In the present embodiment, the intake O2 concentration is employed as the target value after high pressure merging, and the O2 concentration after low pressure merging is employed as the target value after low pressure merging (see the α and β parts in FIG. 1 above). Then, the value of each intake O2 concentration (actual intake O2 concentration) is adopted as the control value after the high pressure merge, and the value of each O2 concentration after low pressure merge (the O2 concentration after the actual low pressure merge) is adopted as the control value after the low pressure merge. To do. Here, the intake O2 concentration is adopted in order to control the NOx emission amount with high accuracy in view of the fact that this concentration shows a strong correlation with the NOx emission amount of the engine 10.

図3に、本実施形態にかかる高低圧協調EGR制御処理を含む外部EGR制御処理の手順を示す。この処理は、ECU58によって、例えば所定周期で実行される。なお、図3において、先の図2に示した処理と同一の処理については、便宜上同一のステップ番号を付している。   FIG. 3 shows a procedure of external EGR control processing including high / low pressure cooperative EGR control processing according to the present embodiment. This process is executed by the ECU 58 at a predetermined cycle, for example. In FIG. 3, the same steps as those shown in FIG. 2 are given the same step numbers for the sake of convenience.

この一連の処理では、ステップS10aにおいて、エンジン回転速度NE及び燃料噴射量Q(又はエンジン要求トルクTrq)に基づき、吸気O2濃度の目標値(目標吸気O2濃度)を可変設定する処理を行う。ここで目標吸気O2濃度は、エンジン回転速度NE及び燃料噴射量Qと関係付けられた目標吸気O2濃度が規定されたマップを用いて設定すればよい。ここで上記マップの目標吸気O2濃度は、先の図2のステップS10における手法と同様の手法によって適合すればよい。   In this series of processes, in step S10a, a process of variably setting a target value of intake air O2 concentration (target intake air O2 concentration) based on the engine speed NE and the fuel injection amount Q (or engine required torque Trq) is performed. Here, the target intake O2 concentration may be set using a map in which the target intake O2 concentration associated with the engine rotational speed NE and the fuel injection amount Q is defined. Here, the target intake air O2 concentration in the map may be adapted by a method similar to the method in step S10 of FIG.

ステップS10aの処理の完了後、ステップS12の処理を経由して、ステップS16において目標高圧EGR量を可変設定する。本実施形態では、低圧合流後O2濃度、高圧出口O2濃度Cegrhp、高圧EGR量Megrhp及び低圧合流後吸気量Mdthを入力とした上記流量濃度算出処理によって算出される実吸気O2濃度を目標吸気O2濃度とするために要求される目標総EGR量の一部として目標高圧EGR量を設定する。すなわち、この目標高圧EGR量は、実吸気O2濃度を目標吸気O2濃度とするために要求される総EGR量の一部が割り振られたものである。   After the process of step S10a is completed, the target high pressure EGR amount is variably set in step S16 via the process of step S12. In this embodiment, the actual intake O2 concentration calculated by the flow rate concentration calculation process using the low-pressure merged O2 concentration, the high-pressure outlet O2 concentration Cegrhp, the high-pressure EGR amount Megrhp, and the low-pressure merged intake air amount Mdth as inputs is used as the target intake O2 concentration. The target high pressure EGR amount is set as a part of the target total EGR amount required for That is, this target high pressure EGR amount is a part of the total EGR amount required to make the actual intake O2 concentration the target intake O2 concentration.

その後、ステップS18を経由して、ステップS20において肯定判断された場合や、ステップS22の処理が完了した場合には、ステップS36に進み、充填吸気量Mcld及び目標高圧EGR量に基づき、低圧合流後吸気量Mdthの目標値(目標低圧合流後吸気量)を算出する。具体的には、充填吸気量Mcldから目標高圧EGR量を差し引いた値として目標低圧合流後吸気量を算出する。   Thereafter, when an affirmative determination is made in step S20 via step S18, or when the processing in step S22 is completed, the process proceeds to step S36, and after the low-pressure merging based on the charged intake air amount Mcld and the target high pressure EGR amount A target value of the intake air amount Mdth (a target low-pressure merged intake air amount) is calculated. More specifically, the target low-pressure merged intake air amount is calculated as a value obtained by subtracting the target high-pressure EGR amount from the charged intake air amount Mcld.

続くステップS38では、充填吸気量Mcld、目標吸気O2濃度、目標高圧EGR量、高圧出口O2濃度Cegrhp及び目標低圧合流後吸気量に基づき、目標低圧合流後O2濃度を設定する。なお、目標低圧合流後O2濃度は、上記流量濃度算出処理と同様の手法によって設定される。   In the following step S38, the target post-low pressure merged O2 concentration is set based on the charged intake air amount Mcld, the target intake air O2 concentration, the target high pressure EGR amount, the high pressure outlet O2 concentration Ceghrp, and the target low pressure merged intake air amount. Note that the target O2 concentration after low-pressure merging is set by the same method as in the flow rate concentration calculation process.

続くステップS24aでは、目標低圧EGR量を設定する。詳しくは、低圧EGR量Megrlp、低圧出口O2濃度Cegrlp、新気量Mair及び新気中の酸素濃度Cairに基づき、低圧合流後O2濃度を目標低圧合流後O2濃度とするために要求される低圧EGR量を、目標低圧EGR量として設定する。目標低圧合流後O2濃度が目標吸気O2濃度を用いて設定されることに鑑みれば、目標低圧EGR量は、実吸気O2濃度を目標吸気O2濃度とするために要求される総EGR量のうち目標高圧EGR量に割り振る分以外の量となる。   In the subsequent step S24a, a target low pressure EGR amount is set. Specifically, based on the low pressure EGR amount Megrlp, the low pressure outlet O2 concentration Cegrlp, the fresh air amount Air, and the oxygen concentration Cair in the fresh air, the low pressure EGR required to set the O2 concentration after the low pressure merging to the target O2 concentration after the low pressure merging. The amount is set as the target low pressure EGR amount. Considering that the target low-pressure merged O2 concentration is set using the target intake O2 concentration, the target low-pressure EGR amount is the target among the total EGR amount required to make the actual intake O2 concentration the target intake O2 concentration. This is an amount other than the amount allocated to the high pressure EGR amount.

ステップS24aの処理が完了した場合、ステップS26〜S30の処理を経由して、ステップS32aにおいて、上記ステップS22やステップS30において目標高圧EGR量や目標低圧EGR量が変更された場合、目標低圧合流後O2濃度や目標吸気O2濃度を再設定する。具体的には、目標低圧EGR量、低圧出口O2濃度Cegrlp、新気量Mair及び新気中の酸素濃度に基づき目標低圧合流後O2濃度を再設定する。また、目標低圧合流後O2濃度、高圧出口O2濃度Cegrhp、目標高圧EGR量及び目標低圧合流後吸気量に基づき、目標吸気O2濃度を再設定する。   When the processing of step S24a is completed, after the processing of steps S26 to S30, in step S32a, when the target high pressure EGR amount or the target low pressure EGR amount is changed in step S22 or step S30, after the target low pressure merging Reset the O2 concentration and the target intake O2 concentration. Specifically, the target low-pressure EGR amount, the low-pressure outlet O2 concentration Cegrlp, the fresh air amount Mail, and the oxygen concentration in the fresh air are reset to set the target low-pressure O2 concentration. Further, the target intake O2 concentration is reset based on the target low pressure merged O2 concentration, the high pressure outlet O2 concentration Ceghp, the target high pressure EGR amount, and the target low pressure merged intake air amount.

続くステップS34aでは、実吸気O2濃度を目標吸気O2濃度にフィードバック制御すべく高圧EGRアクチュエータ48aを通電操作し、実低圧合流後O2濃度を目標低圧合流後O2濃度にフィードバック制御すべく低圧EGRアクチュエータ52aを通電操作する。具体的には、実吸気O2濃度が目標吸気O2濃度よりも高くて且つ、高圧出口O2濃度Cegrhpが低圧合流後O2濃度よりも低い場合、高圧EGR開度が大きくされて高圧EGR量が増大し、実低圧合流後O2濃度が目標低圧合流後O2濃度よりも高い場合、低圧EGR開度が大きくされて低圧EGR量が増大する。   In the subsequent step S34a, the high pressure EGR actuator 48a is energized to feedback control the actual intake O2 concentration to the target intake O2 concentration, and the low pressure EGR actuator 52a is feedback controlled to change the O2 concentration after actual low pressure merge to the target low pressure O2 concentration. Turn on the power. Specifically, when the actual intake O2 concentration is higher than the target intake O2 concentration and the high pressure outlet O2 concentration Cegrhp is lower than the O2 concentration after the low pressure merge, the high pressure EGR opening is increased and the high pressure EGR amount increases. When the O2 concentration after actual low-pressure merging is higher than the target O2 concentration after low-pressure merging, the low-pressure EGR opening is increased and the low-pressure EGR amount increases.

なお、ステップS34aの処理が完了する場合には、この一連の処理を一旦終了する。   In addition, when the process of step S34a is completed, this series of processes is once complete | finished.

このように、本実施形態では、吸気O2濃度及び低圧合流後O2濃度を制御量として、外部EGR量を調節することができる。   Thus, in the present embodiment, the external EGR amount can be adjusted using the intake air O2 concentration and the low-pressure merged O2 concentration as control amounts.

(その他の実施形態)
なお、上記各実施形態は、以下のように変更して実施してもよい。
(Other embodiments)
Each of the above embodiments may be modified as follows.

・上記第1の実施形態において、目標高圧EGR量が高圧上限値を上回ると判断された場合、この上回る分が大きいほど低圧上限値を大きく設定する処理を行ってもよい。これにより、低圧EGR量を増大させる余裕があるなら、高圧EGR量の不足分を低圧EGRによって適切に補償することができる。   In the first embodiment, when it is determined that the target high-pressure EGR amount exceeds the high-pressure upper limit value, a process of setting the low-pressure upper limit value to be larger may be performed as the amount of increase exceeds the target value. Thereby, if there is a margin for increasing the low pressure EGR amount, the shortage of the high pressure EGR amount can be appropriately compensated by the low pressure EGR.

・高圧EGRバルブ48及び低圧EGRバルブ52の設置位置としては、上記各実施形態に例示したものに限らない。例えば、高圧EGRバルブ48を、高圧EGR通路44のうち、排気通路34付近に設けたり、高圧EGR通路44の中間に設けたりしてもよい。また例えば、高圧EGR通路44のうち、吸気通路12付近及び排気通路34付近の双方に設けてもよい。なお、低圧EGRバルブ52についても、高圧EGRバルブ48の上述した種々の設置態様と同様である。   The installation positions of the high pressure EGR valve 48 and the low pressure EGR valve 52 are not limited to those illustrated in the above embodiments. For example, the high pressure EGR valve 48 may be provided in the vicinity of the exhaust passage 34 in the high pressure EGR passage 44 or in the middle of the high pressure EGR passage 44. Further, for example, the high pressure EGR passage 44 may be provided near both the intake passage 12 and the exhaust passage 34. The low-pressure EGR valve 52 is the same as the above-described various installation modes of the high-pressure EGR valve 48.

・低圧EGR量Megrlp及び高圧EGR量Megrhpの算出手法としては、上記各実施形態に例示したものに限らない。例えば、高圧EGR通路44において高圧EGRバルブ48の前後差圧を検出するセンサを備え、低圧EGR量Megrlpの算出手法と同様の手法によって算出してもよい。また例えば、低圧EGR量Megrlpについて、上記各実施形態で例示した高圧EGR量Megrhpの算出手法と同様に、2つの圧力センサの検出値を用いて算出してもよい。   The calculation method of the low pressure EGR amount Megrlp and the high pressure EGR amount Megrhp is not limited to those exemplified in the above embodiments. For example, a sensor that detects the differential pressure across the high pressure EGR valve 48 in the high pressure EGR passage 44 may be provided, and the sensor may be calculated by a method similar to the method for calculating the low pressure EGR amount Megagrp. Further, for example, the low-pressure EGR amount Megagrp may be calculated using the detection values of the two pressure sensors, similarly to the calculation method of the high-pressure EGR amount Megagrp exemplified in the above embodiments.

・上記各実施形態では、高圧出口O2濃度Cegrhp、低圧出口O2濃度Cegrlp、低圧合流後O2濃度、吸気O2濃度及び排気O2濃度の酸素濃度パラメータの値を流量濃度算出処理によって算出したがこれに限らない。例えば、これら各パラメータの値を検出するセンサを備え、これらセンサによって検出する処理によって算出してもよい。   In each of the above embodiments, the oxygen concentration parameter values of the high pressure outlet O2 concentration Cegrhp, the low pressure outlet O2 concentration Cegrlp, the low pressure merged O2 concentration, the intake O2 concentration, and the exhaust O2 concentration are calculated by the flow rate concentration calculation process. Absent. For example, a sensor that detects the values of these parameters may be provided, and calculation may be performed by processing detected by these sensors.

・高圧EGR量Megrhp、低圧EGR量Megrlp及び低圧合流後吸気量Mdthを把握する手法としては、上記各実施形態に例示したものに限らない。例えば、これら流量を直接検出する流量センサを備え、流量センサの検出値に基づき把握してもよい。   The method for grasping the high-pressure EGR amount Megrhp, the low-pressure EGR amount Megrlp, and the low-pressure merged intake air amount Mdth is not limited to those exemplified in the above embodiments. For example, a flow sensor that directly detects these flow rates may be provided, and may be grasped based on the detection value of the flow sensor.

・上記各実施形態において、高圧上限値を、低負荷領域において目標総EGR量以上の値に設定するとともに高負荷領域において0に設定して且つ、低負荷領域から中負荷領域、及び中負荷領域から高負荷領域に移行するに伴い連続的に低減させるならば、高圧EGR制御から高低圧協調EGR制御への切替時や、高低圧協調EGR制御から低圧EGR制御への切替時における総EGR量の変化を滑らかにすることが期待できる。   In each of the above embodiments, the high pressure upper limit value is set to a value equal to or greater than the target total EGR amount in the low load region and set to 0 in the high load region, and from the low load region to the medium load region If it is continuously reduced as it shifts from the high pressure range to the high load range, the total EGR amount at the time of switching from the high pressure EGR control to the high / low pressure cooperative EGR control or at the time of switching from the high / low pressure cooperative EGR control to the low pressure EGR control The change can be expected to be smooth.

・上記各実施形態では、高圧EGR量及び低圧EGR量のそれぞれを、高圧EGRバルブ48及び低圧EGRバルブ52のそれぞれのみによって調節したがこれに限らない。例えば、これらEGRバルブに加えて、排気絞り弁56及び吸気絞り弁20のうち少なくとも1つによって調節してもよい。   In each of the above embodiments, the high pressure EGR amount and the low pressure EGR amount are adjusted only by the high pressure EGR valve 48 and the low pressure EGR valve 52, respectively, but the present invention is not limited to this. For example, in addition to these EGR valves, adjustment may be made by at least one of the exhaust throttle valve 56 and the intake throttle valve 20.

具体的には、排気側アクチュエータ56aの通電操作によって排気絞り弁56の開度が小さくなるほど、排気通路34のうち、排気絞り弁56の上流側の圧力が上昇し、低圧EGR通路46や高圧EGR通路44を介して吸気通路12に供給される低圧EGR量や高圧EGR量が多くなる。また、吸気側アクチュエータ20aの通電操作によって吸気絞り弁20の開度が小さくなるほど、吸気通路12のうち吸気絞り弁20下流側の圧力が低下し、高圧EGR通路44を介して吸気通路12に供給される高圧EGR量が多くなる。   Specifically, as the opening degree of the exhaust throttle valve 56 is decreased by energization operation of the exhaust side actuator 56a, the pressure on the upstream side of the exhaust throttle valve 56 in the exhaust passage 34 increases, and the low pressure EGR passage 46 and the high pressure EGR are increased. The amount of low pressure EGR and the amount of high pressure EGR supplied to the intake passage 12 via the passage 44 are increased. Further, as the opening degree of the intake throttle valve 20 becomes smaller due to the energization operation of the intake side actuator 20a, the pressure on the downstream side of the intake throttle valve 20 in the intake passage 12 decreases and is supplied to the intake passage 12 via the high pressure EGR passage 44. The amount of high pressure EGR to be increased.

・上記各実施形態において、フィードバック制御のみによって低圧及び高圧EGRアクチュエータを通電操作したがこれに限らない。例えば、フィードフォワード制御を加味して操作してもよい。具体的には、エンジン回転速度及び燃料噴射量に基づきフィードフォワード操作量を算出し、算出されたフィードフォワード操作量に基づき通電操作すればよい。この場合であっても、フィードフォード操作量に対するフィードバック操作量の寄与の度合いが大きいなら、実EGR率(実吸気O2濃度)が目標EGR率(目標吸気O2濃度)まわりで周期的に大きく変動する現象(ハンチング)の発生を回避することができるため、本願発明の適用が有効である。   In each of the above embodiments, the low pressure and high pressure EGR actuators are energized only by feedback control, but this is not limitative. For example, the operation may be performed in consideration of feedforward control. Specifically, the feedforward operation amount may be calculated based on the engine speed and the fuel injection amount, and the energization operation may be performed based on the calculated feedforward operation amount. Even in this case, if the degree of contribution of the feedback manipulated variable to the feedford manipulated variable is large, the actual EGR rate (actual intake O2 concentration) periodically fluctuates greatly around the target EGR rate (target intake O2 concentration). Since the occurrence of the phenomenon (hunting) can be avoided, the application of the present invention is effective.

・上記各実施形態では、高圧合流後制御値を高圧合流後目標値にするために要求される総EGR量を、高圧EGR量及び低圧EGR量のそれぞれに割り振り、その後高圧EGR量が高圧上限値を上回ると判断された場合、高圧EGR量のうち高圧上限値を上回る分を低圧EGRにて補償する制御ロジックを採用したがこれに限らない。例えば、上記総EGR量を、原則、高圧EGRによって賄うこととし、その後高圧EGR量が高圧上限値を上回ると判断された場合にのみ、高圧EGR量のうち高圧上限値を上回る分を低圧EGRにて補償する制御ロジックを採用してもよい。   In each of the above embodiments, the total EGR amount required for setting the post-high pressure merge control value to the target value after high pressure merge is allocated to each of the high pressure EGR amount and the low pressure EGR amount, and then the high pressure EGR amount is the high pressure upper limit value. When it is determined that the amount exceeds the upper limit value of the high pressure EGR amount, the control logic that compensates the amount exceeding the high pressure upper limit value by the low pressure EGR is employed, but the present invention is not limited to this. For example, in principle, the total EGR amount is covered by the high pressure EGR, and only when the high pressure EGR amount is determined to exceed the high pressure upper limit value, the portion of the high pressure EGR amount that exceeds the high pressure upper limit value is converted to the low pressure EGR. Control logic that compensates for this may be employed.

・内燃機関としては、圧縮点火式内燃機関に限らず、例えば筒内直噴式ガソリンエンジン等の火花点火式内燃機関であってもよい。   The internal combustion engine is not limited to a compression ignition internal combustion engine, and may be a spark ignition internal combustion engine such as a direct injection gasoline engine.

10…エンジン、12…吸気通路、12a…高圧合流後通路、12b…低圧合流後通路、16…ターボチャージャ、16a…吸気コンプレッサ、16b…排気タービン、22…燃焼室、34…排気通路、44…高圧EGR通路、46…低圧EGR通路、48a…高圧EGRアクチュエータ、52a…低圧EGRアクチュエータ、58…ECU(内燃機関の排気還流制御装置の一実施形態)。   DESCRIPTION OF SYMBOLS 10 ... Engine, 12 ... Intake passage, 12a ... After high pressure merge passage, 12b ... After low pressure merge passage, 16 ... Turbocharger, 16a ... Intake compressor, 16b ... Exhaust turbine, 22 ... Combustion chamber, 34 ... Exhaust passage, 44 ... High pressure EGR passage, 46 ... low pressure EGR passage, 48a ... high pressure EGR actuator, 52a ... low pressure EGR actuator, 58 ... ECU (an embodiment of an exhaust gas recirculation control device for an internal combustion engine).

Claims (6)

内燃機関に接続された吸気通路及び排気通路の間に設けられて且つ、前記内燃機関に供給される吸気を過給する過給機と、前記排気通路のうち前記過給機の排気タービンよりも上流側と前記吸気通路のうち前記過給機のコンプレッサよりも下流側とを接続する高圧EGR通路と、前記排気通路のうち前記排気タービンよりも下流側と前記吸気通路のうち前記コンプレッサよりも上流側とを接続する低圧EGR通路と、前記高圧EGR通路を介して前記吸気通路に還流される高圧EGRの流量を調節すべく通電操作される高圧EGR手段と、前記低圧EGR通路を介して前記吸気通路に還流される低圧EGRの流量を調節すべく通電操作される低圧EGR手段とを備える内燃機関の燃焼制御システムに適用され、
前記吸気通路のうち前記高圧EGR通路との接続部よりも下流側を高圧合流後通路と定義し、前記吸気通路のうち前記低圧EGR通路との接続部よりも下流側であって且つ前記高圧EGR通路との接続部よりも上流側を低圧合流後通路と定義し、吸気中の酸素濃度又はEGR率を吸気パラメータと定義したときに、前記内燃機関の運転状態に基づき、前記高圧合流後通路及び前記低圧合流後通路のそれぞれにおける前記吸気パラメータの目標値として、高圧合流後目標値及び低圧合流後目標値のそれぞれを設定する目標値設定手段と、
前記高圧合流後通路及び前記低圧合流後通路のそれぞれにおける前記吸気パラメータの都度の値として、高圧合流後制御値及び低圧合流後制御値のそれぞれを算出する都度制御値算出手段と、
前記高圧合流後制御値を前記高圧合流後目標値にフィードバック制御すべく前記高圧EGR手段を通電操作するとともに、前記低圧合流後制御値を前記低圧合流後目標値にフィードバック制御すべく前記低圧EGR手段を通電操作することで、前記吸気通路に前記高圧EGR及び前記低圧EGRの双方を還流させる制御手段とを備えることを特徴とする内燃機関の排気還流制御装置。
A supercharger that is provided between an intake passage and an exhaust passage connected to the internal combustion engine and supercharges intake air supplied to the internal combustion engine; and an exhaust turbine of the supercharger in the exhaust passage. A high-pressure EGR passage that connects an upstream side and a downstream side of the compressor of the supercharger in the intake passage; a downstream side of the exhaust turbine in the exhaust passage; and an upstream side of the compressor in the intake passage. A low pressure EGR passage connected to the side, high pressure EGR means that is energized to adjust the flow rate of the high pressure EGR that is recirculated to the intake passage through the high pressure EGR passage, and the intake air through the low pressure EGR passage. Applied to a combustion control system for an internal combustion engine comprising low-pressure EGR means that is energized to adjust the flow rate of the low-pressure EGR returned to the passage,
A downstream side of the intake passage with respect to the connection portion with the high-pressure EGR passage is defined as a post-high-pressure merge passage, and a downstream portion of the intake passage with respect to the connection portion with the low-pressure EGR passage and the high-pressure EGR passage. The upstream side of the connection with the passage is defined as a low pressure merged passage, and when the oxygen concentration or EGR rate in the intake air is defined as an intake parameter, based on the operating state of the internal combustion engine, the high pressure merged passage and Target value setting means for setting each of a target value after high-pressure merging and a target value after low-pressure merging as a target value of the intake air parameter in each of the low-pressure merging passages;
Control value calculation means for calculating each of the control value after high-pressure merge and the control value after low-pressure merge as the value of the intake parameter in each of the high-pressure merge passage and the low-pressure merge passage;
The high pressure EGR means is energized to feedback control the high pressure merged control value to the high pressure merged target value, and the low pressure EGR means is feedback controlled of the low pressure merged control value to the low pressure merged target value. An exhaust gas recirculation control device for an internal combustion engine, comprising: control means for recirculating both the high pressure EGR and the low pressure EGR to the intake passage by energizing the engine.
前記高圧合流後制御値を前記高圧合流後目標値とするために要求されるEGRの流量を、前記高圧EGR及び前記低圧EGRのそれぞれに割り振る割振手段を更に備え、
前記目標値設定手段は、前記割振手段によって割り振られた高圧EGRの流量及び低圧EGRの流量に基づき、前記高圧合流後目標値及び前記低圧合流後目標値のそれぞれを設定することを特徴とする請求項1記載の内燃機関の排気還流制御装置。
Further comprising allocating means for allocating a flow rate of EGR required to set the control value after high-pressure merging as the target value after high-pressure merging to each of the high-pressure EGR and the low-pressure EGR;
The target value setting means sets the post-high pressure target value and the post-low pressure target value, respectively, based on the flow rate of the high pressure EGR and the flow rate of the low pressure EGR allocated by the allocating means. Item 2. An exhaust gas recirculation control device for an internal combustion engine according to Item 1.
前記内燃機関の運転状態に基づき、前記高圧EGRの流量の上限値である高圧上限値を可変設定する高圧上限値設定手段を更に備え、
前記割振手段は、前記設定された高圧上限値以下の値として前記高圧EGRの流量を割り振るとともに、前記高圧合流後制御値を前記高圧合流後目標値とするために要求されるEGRの流量から前記割り振られる高圧EGRの流量を差し引いた値に基づき、前記低圧EGRの流量を設定することを特徴とする請求項2記載の内燃機関の排気還流制御装置。
A high pressure upper limit value setting means for variably setting a high pressure upper limit value, which is an upper limit value of the flow rate of the high pressure EGR, based on an operating state of the internal combustion engine;
The allocating means allocates the flow rate of the high pressure EGR as a value equal to or less than the set high pressure upper limit value, and determines the post-high pressure merging control value from the flow rate of EGR required for the target value after the high pressure merging. 3. The exhaust gas recirculation control apparatus for an internal combustion engine according to claim 2, wherein the flow rate of the low pressure EGR is set based on a value obtained by subtracting the flow rate of the allocated high pressure EGR.
前記内燃機関の運転状態に基づき、前記低圧EGRの流量の上限値である低圧上限値を可変設定する低圧上限値設定手段を更に備え、
前記割振手段によって割り振られる高圧EGRの流量及び低圧EGRの流量の和が前記高圧上限値及び前記低圧上限値の和となって且つ、前記高圧合流後制御値を前記高圧合流後目標値とするために要求されるEGRの流量が前記高圧上限値及び前記低圧上限値の和を上回ると判断された場合、前記高圧合流後目標値を、前記高圧上限値及び前記低圧上限値の和によって実現可能な前記高圧合流後制御値として再設定する再設定手段を更に備えることを特徴とする請求項3記載の内燃機関の排気還流制御装置。
Low pressure upper limit value setting means for variably setting a low pressure upper limit value that is an upper limit value of the flow rate of the low pressure EGR based on the operating state of the internal combustion engine;
The sum of the flow rate of the high pressure EGR and the flow rate of the low pressure EGR allocated by the allocating means is the sum of the high pressure upper limit value and the low pressure upper limit value, and the post-high pressure merge control value is the post-high pressure merge target value. When it is determined that the EGR flow rate required for the pressure exceeds the sum of the high pressure upper limit value and the low pressure upper limit value, the target value after high pressure merging can be realized by the sum of the high pressure upper limit value and the low pressure upper limit value. The exhaust gas recirculation control apparatus for an internal combustion engine according to claim 3, further comprising resetting means for resetting the control value after the high-pressure merging.
前記高圧上限値設定手段は、前記内燃機関の要求トルクが急増すると判断された場合、前記高圧上限値を低く設定することを特徴とする請求項3又は4記載の内燃機関の排気還流制御装置。   5. The exhaust gas recirculation control device for an internal combustion engine according to claim 3, wherein the high pressure upper limit value setting means sets the high pressure upper limit value low when it is determined that the required torque of the internal combustion engine increases rapidly. 前記高圧EGR手段は、前記高圧EGR通路に設けられて且つこの通路の面積を調節する電子制御式の弁体であり、
前記低圧EGR手段は、前記低圧EGR通路に設けられて且つこの通路の面積を調節する電子制御式の弁体であることを特徴とする請求項1〜5のいずれか1項に記載の内燃機関の排気還流制御装置。
The high-pressure EGR means is an electronically controlled valve body that is provided in the high-pressure EGR passage and adjusts the area of the passage.
6. The internal combustion engine according to claim 1, wherein the low pressure EGR means is an electronically controlled valve body that is provided in the low pressure EGR passage and adjusts an area of the passage. Exhaust gas recirculation control device.
JP2011108394A 2011-05-13 2011-05-13 Exhaust gas recirculation control device for internal combustion engine Expired - Fee Related JP5397408B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011108394A JP5397408B2 (en) 2011-05-13 2011-05-13 Exhaust gas recirculation control device for internal combustion engine
DE102012103998.4A DE102012103998B4 (en) 2011-05-13 2012-05-07 Exhaust gas recirculation control device for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011108394A JP5397408B2 (en) 2011-05-13 2011-05-13 Exhaust gas recirculation control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2012237290A true JP2012237290A (en) 2012-12-06
JP5397408B2 JP5397408B2 (en) 2014-01-22

Family

ID=47070673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011108394A Expired - Fee Related JP5397408B2 (en) 2011-05-13 2011-05-13 Exhaust gas recirculation control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP5397408B2 (en)
DE (1) DE102012103998B4 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056768A (en) * 2014-09-11 2016-04-21 マツダ株式会社 Exhaust gas recirculation control device for engine
JP2016173065A (en) * 2015-03-17 2016-09-29 富士重工業株式会社 Egr control device, egr control method and egr rate estimation method for internal combustion engine
JP2017008814A (en) * 2015-06-23 2017-01-12 いすゞ自動車株式会社 EGR system of internal combustion engine and EGR method of internal combustion engine
WO2017163397A1 (en) * 2016-03-25 2017-09-28 本田技研工業株式会社 Egr control device and egr control method for internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261300A (en) * 2007-04-13 2008-10-30 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
JP2009074459A (en) * 2007-09-21 2009-04-09 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
JP2010168958A (en) * 2009-01-21 2010-08-05 Honda Motor Co Ltd Egr controller for internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797880B2 (en) 2006-04-25 2011-10-19 株式会社デンソー Exhaust gas purification device for internal combustion engine
DE102010056514A1 (en) 2010-12-31 2012-07-05 Fev Gmbh Method for reduction of nitrogen oxide emission in diesel engine of motor car, involves providing parts of exhaust gas to form residue exhaust gas in chamber, and adjusting residue gas and/or ratio between parts of gas in chamber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261300A (en) * 2007-04-13 2008-10-30 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
JP2009074459A (en) * 2007-09-21 2009-04-09 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
JP2010168958A (en) * 2009-01-21 2010-08-05 Honda Motor Co Ltd Egr controller for internal combustion engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056768A (en) * 2014-09-11 2016-04-21 マツダ株式会社 Exhaust gas recirculation control device for engine
JP2016173065A (en) * 2015-03-17 2016-09-29 富士重工業株式会社 Egr control device, egr control method and egr rate estimation method for internal combustion engine
JP2017008814A (en) * 2015-06-23 2017-01-12 いすゞ自動車株式会社 EGR system of internal combustion engine and EGR method of internal combustion engine
WO2017163397A1 (en) * 2016-03-25 2017-09-28 本田技研工業株式会社 Egr control device and egr control method for internal combustion engine
CN109072823A (en) * 2016-03-25 2018-12-21 本田技研工业株式会社 The EGR control device and EGR control method of internal combustion engine
JPWO2017163397A1 (en) * 2016-03-25 2019-01-31 本田技研工業株式会社 EGR control device and EGR control method for internal combustion engine
US10883430B2 (en) 2016-03-25 2021-01-05 Honda Motor Co., Ltd. EGR control apparatus and EGR control method for internal combustion engine
CN109072823B (en) * 2016-03-25 2021-03-30 本田技研工业株式会社 EGR control device and EGR control method for internal combustion engine

Also Published As

Publication number Publication date
JP5397408B2 (en) 2014-01-22
DE102012103998A1 (en) 2012-11-15
DE102012103998B4 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
JP4534514B2 (en) Diesel engine control device
US7000393B1 (en) System and method for relieving engine back-pressure by selectively bypassing a stage of a two-stage turbocharger during non-use of EGR
US8820297B2 (en) Control device for internal combustion engine
US9885303B2 (en) Control device for diesel engine
US6305167B1 (en) Method of controlling an engine with an EGR system
JP4631598B2 (en) Supercharging pressure control device
US6422219B1 (en) Electronic controlled engine exhaust treatment system to reduce NOx emissions
JP5169439B2 (en) Internal combustion engine control device and internal combustion engine control system
JP5590234B2 (en) Control device for internal combustion engine
JP2010096049A (en) Control device of internal combustion engine
JP5434142B2 (en) Control device for variable nozzle turbocharger
JP5310709B2 (en) Control device for internal combustion engine
JP5397408B2 (en) Exhaust gas recirculation control device for internal combustion engine
EP1550800A2 (en) Method of controlling an internal combustion engine
JP6123657B2 (en) Exhaust gas recirculation controller
JP6146286B2 (en) Exhaust gas recirculation controller
JP2010013992A (en) Engine control device
JP4911432B2 (en) Control device for internal combustion engine
JP2006299892A (en) Internal combustion engine with supercharger
JP2019203435A (en) Control device of engine
JP2007303355A (en) Egr control device for internal combustion engine
JP4877272B2 (en) EGR flow control device and EGR flow control system
JP2019138154A (en) Device for controlling internal combustion engine
JP2014058875A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130131

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R151 Written notification of patent or utility model registration

Ref document number: 5397408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees