JP2012237274A - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine Download PDF

Info

Publication number
JP2012237274A
JP2012237274A JP2011107951A JP2011107951A JP2012237274A JP 2012237274 A JP2012237274 A JP 2012237274A JP 2011107951 A JP2011107951 A JP 2011107951A JP 2011107951 A JP2011107951 A JP 2011107951A JP 2012237274 A JP2012237274 A JP 2012237274A
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
injection
pressure
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011107951A
Other languages
Japanese (ja)
Inventor
Zenichiro Mashiki
善一郎 益城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011107951A priority Critical patent/JP2012237274A/en
Publication of JP2012237274A publication Critical patent/JP2012237274A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/04Fuel pressure pulsation in common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting

Abstract

PROBLEM TO BE SOLVED: To provide a fuel injection control device for an internal combustion engine which is capable of stably carrying out suction port injection after an autonomous operation without depending on a pulsation damper while employing a dual injection system.SOLUTION: In the internal combustion engine 10, fuel is supplied to a fuel injection valves 11b-14b for the suction port injection through a low pressure fuel passage 30 and a low pressure fuel passage 50. High pressure fuel is supplied to fuel injection valves 11a-14a for a cylinder fuel injection through the low pressure fuel passage 30 and a high pressure fuel passage 40. An electronic controller 20 for controlling the drive of the fuel injection valves 11b-14b for the suction port injection and the fuel injection valves 11a-14a for the cylinder fuel injection corresponding to the operation condition of the internal combustion engine 10 corrects the amount of the fuel injection by the fuel injection valves 11b-14b for the suction port injection corresponding to the pressure fluctuation caused by the drive of a high pressure fuel pump 40P during engine start-up from the autonomous operation to the idling.

Description

本発明は、筒内噴射用燃料噴射弁と吸気ポート噴射用燃料噴射弁とを備えた内燃機関にあって燃料噴射量を制御する内燃機関の燃料噴射制御装置に関する。   The present invention relates to a fuel injection control device for an internal combustion engine that controls a fuel injection amount in an internal combustion engine that includes a fuel injection valve for in-cylinder injection and a fuel injection valve for intake port injection.

従来、吸気ポートへ燃料を噴射する吸気ポート噴射用燃料噴射弁と気筒の燃焼室内に直接燃料を噴射する筒内噴射用燃料噴射弁とを備えるいわゆるデュアルインジェクション方式を採用する内燃機関の燃料噴射制御装置としては、例えば特許文献1に記載のものが知られている。   2. Description of the Related Art Fuel injection control for an internal combustion engine that employs a so-called dual injection system that includes an intake port injection fuel injection valve that injects fuel into an intake port and an in-cylinder injection fuel injection valve that directly injects fuel into a combustion chamber of a cylinder As an apparatus, for example, the apparatus described in Patent Document 1 is known.

この燃料噴射制御装置には、フィードポンプによって吸い上げられた燃料が圧送される燃料通路が設けられており、同通路は低圧燃料通路と該低圧燃料通路から分岐する高圧燃料通路とから構成されている。高圧燃料通路には、その経路上に、内燃機関のクランクシャフトに設けられたカムの回転によって間欠駆動される高圧燃料ポンプが設けられている。ただし、このようなデュアルインジェクション方式を採用する内燃機関とはいえ、その始動時には専ら吸気ポート噴射用燃料弁のみが用いられる。このため、同機関の始動時、燃料は、低圧燃料通路を介して低圧燃料分配管に圧送され、吸気ポート噴射用燃料噴射弁に分配されるものの、上述のように間欠駆動される高圧燃料ポンプによる影響で低圧燃料分配管内の燃料圧力に脈動が発生することがある。そこで特許文献1に記載の装置では、低圧燃料分配管にパルセーションダンパを設けることによってこのような圧力脈動を抑制するようにしている。   The fuel injection control device is provided with a fuel passage through which the fuel sucked up by the feed pump is pumped, and the passage is composed of a low pressure fuel passage and a high pressure fuel passage branched from the low pressure fuel passage. . In the high-pressure fuel passage, a high-pressure fuel pump that is intermittently driven by rotation of a cam provided on a crankshaft of the internal combustion engine is provided on the passage. However, although the internal combustion engine adopts such a dual injection system, only the intake port injection fuel valve is used at the time of starting. For this reason, when the engine is started, fuel is pumped to the low pressure fuel distribution pipe via the low pressure fuel passage and distributed to the fuel injection valve for intake port injection, but is intermittently driven as described above. As a result, pulsation may occur in the fuel pressure in the low-pressure fuel distribution pipe. Therefore, in the apparatus described in Patent Document 1, such a pressure pulsation is suppressed by providing a pulsation damper in the low-pressure fuel distribution pipe.

特開2008−190508号公報JP 2008-190508 A

ところで、パルセーションダンパの固有振動数が上記圧力脈動の周期と一致すると、いわゆる共振現象が発生するために低圧燃料分配管にて燃料圧力の脈動を抑えることができなくなる。そのため、内燃機関の通常運転時における上記共振現象の発生を抑えることを目的として、上記固有振動数はアイドリング時の圧力脈動の振動数よりも低くなるように設計されている。しかしながらこの場合、例えば図5に示すように、内燃機関の自律運転開始直後からアイドリングに到る課程において上記共振現象が発生することとなる。すなわち、吸気ポート噴射用燃料噴射弁による燃料噴射が不安定となり、当該内燃機関としての始動性の悪化を招きかねなくなる。なお、パルセーションダンパを大型化するなどすれば上記燃料圧力の脈動を抑えることはできるものの、これではエンジンやエンジンルームのコンパクト化を阻害することとなり、コスト増にもなりかねない。   By the way, when the natural frequency of the pulsation damper coincides with the period of the pressure pulsation, a so-called resonance phenomenon occurs, so that the pulsation of the fuel pressure cannot be suppressed in the low-pressure fuel distribution pipe. Therefore, in order to suppress the occurrence of the resonance phenomenon during normal operation of the internal combustion engine, the natural frequency is designed to be lower than the frequency of pressure pulsation during idling. However, in this case, for example, as shown in FIG. 5, the resonance phenomenon occurs in the course from the start of the autonomous operation of the internal combustion engine to the idling. In other words, fuel injection by the fuel injection valve for intake port injection becomes unstable, and the startability of the internal combustion engine may be deteriorated. Although the pulsation of the fuel pressure can be suppressed by increasing the size of the pulsation damper, this impedes the downsizing of the engine and the engine room and may increase the cost.

本発明は、こうした実情に鑑みてなされたものであり、その目的は、デュアルインジェクション方式を採用しながらも、パルセーションダンパに頼ることなく、自律運転後の吸気ポート噴射を安定して行うことのできる内燃機関の燃料噴射制御装置を提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to stably perform intake port injection after autonomous operation without using a pulsation damper while adopting a dual injection method. An object of the present invention is to provide a fuel injection control device for an internal combustion engine.

以下、上記課題を解決するための手段およびその作用効果について記載する。
請求項1に記載の発明は、内燃機関の各気筒の吸気ポートへ燃料を噴射する吸気ポート噴射用燃料噴射弁と、各気筒の燃焼室内に直接燃料を噴射する筒内噴射用燃料噴射弁と、フィードポンプによって吸引された燃料を前記吸気ポート噴射用燃料噴射弁へ圧送する低圧燃料通路と、内燃機関の稼動に連動して駆動される高圧燃料ポンプを有して前記低圧燃料通路から分岐された通路の燃料を昇圧し、該昇圧した燃料を前記筒内噴射用燃料噴射弁へ圧送する高圧燃料通路と、当該機関の運転状態に応じて前記吸気ポート噴射用燃料噴射弁及び前記筒内噴射用燃料噴射弁の駆動を制御する制御装置とを備える内燃機関の燃料噴射制御装置であって、前記内燃機関の自律運転からアイドリングに至る機関始動時、前記制御装置は、前記高圧燃料ポンプの駆動により前記低圧燃料通路に生じる圧力脈動に応じて前記吸気ポート噴射用燃料噴射弁による燃料噴射量を補正することを要旨とする。
Hereinafter, means for solving the above-described problems and the effects thereof will be described.
The invention described in claim 1 is an intake port injection fuel injection valve that injects fuel into an intake port of each cylinder of an internal combustion engine, and an in-cylinder injection fuel injection valve that directly injects fuel into the combustion chamber of each cylinder. A low-pressure fuel passage that pumps the fuel sucked by the feed pump to the fuel injection valve for intake port injection, and a high-pressure fuel pump that is driven in conjunction with the operation of the internal combustion engine, and is branched from the low-pressure fuel passage. A high pressure fuel passage for boosting the fuel in the passage, and pumping the boosted fuel to the in-cylinder injection fuel injection valve, and the intake port injection fuel injection valve and the in-cylinder injection according to the operating state of the engine A fuel injection control device for an internal combustion engine comprising a control device for controlling the drive of a fuel injection valve for an engine, and at the time of engine startup from autonomous operation to idling of the internal combustion engine, And summarized in that to correct the fuel injection amount by the intake port injection fuel injection valve according to the pressure pulsation generated in the low-pressure fuel passage by driving.

内燃機関の燃料噴射制御装置としてのこのような構成によれば、内燃機関の自律運転からアイドリングに至る機関始動時、低圧燃料通路内に内燃機関の回転周期に応じた圧力脈動が生じても、この圧力脈動に応じて、吸気ポート噴射用燃料噴射弁による燃料噴射量が補正される。その結果、パルセーションダンパの大型化などによって上記圧力脈動そのものを抑制せずとも、自律運転後の吸気ポート噴射を安定して行うことができるようになる。すなわち、内燃機関の始動性が悪化するようなこともなくなる。   According to such a configuration as a fuel injection control device for an internal combustion engine, even when pressure pulsation occurs in the low-pressure fuel passage according to the rotation cycle of the internal combustion engine at the time of engine start from autonomous operation to idling of the internal combustion engine, The fuel injection amount by the intake port injection fuel injection valve is corrected according to the pressure pulsation. As a result, it is possible to stably perform the intake port injection after the autonomous operation without suppressing the pressure pulsation itself by increasing the size of the pulsation damper. That is, the startability of the internal combustion engine is not deteriorated.

本発明にかかる内燃機関の燃料噴射制御装置の一実施の形態について、その内燃機関及び燃料供給系の概略構成を模式的に示す略図。1 is a schematic diagram schematically showing a schematic configuration of an internal combustion engine and a fuel supply system of an embodiment of a fuel injection control device for an internal combustion engine according to the present invention. 低圧燃料通路内の燃料圧力が変動(脈動)する一例を示すタイムチャート。The time chart which shows an example in which the fuel pressure in a low pressure fuel passage fluctuates (pulsates). 同実施の形態において用意される吸気ポート噴射用燃料噴射弁の燃料噴射量を補正するための補正値マップの一例を示すマップ。The map which shows an example of the correction value map for correct | amending the fuel injection quantity of the fuel injection valve for intake port injection prepared in the embodiment. 同実施の形態において実行される燃料噴射制御の制御手順を示すフローチャート。The flowchart which shows the control procedure of the fuel injection control performed in the same embodiment. いわゆるデュアルインジェクション方式を採用する内燃機関の低圧燃料通路内における燃料圧力の変動と機関回転数との関係についてその一例を示すグラフ。The graph which shows the example about the relationship between the fluctuation | variation of the fuel pressure in the low pressure fuel passage of the internal combustion engine which employs what is called a dual injection system, and an engine speed.

以下、本発明にかかる内燃機関の燃料噴射制御装置の一実施の形態について、図1〜図4を参照して詳細に説明する。
まず、図1を参照して、本実施の形態の燃料噴射制御装置が適用された内燃機関及び燃料供給系の構成について説明する。
Hereinafter, an embodiment of a fuel injection control device for an internal combustion engine according to the present invention will be described in detail with reference to FIGS.
First, the configuration of an internal combustion engine and a fuel supply system to which the fuel injection control device of the present embodiment is applied will be described with reference to FIG.

図1に示されるように、ここで適用対象となる内燃機関(ガソリン機関)10は、1番気筒11,2番気筒12,3番気筒13,及び4番気筒14がこの順で直列に配設されている直列4気筒からなる内燃機関である。各気筒11〜14には、燃焼室内に燃料を直接噴射する筒内噴射用燃料噴射弁11a〜14aがそれぞれ設けられており、これら筒内噴射用燃料噴射弁11a〜14aには高圧燃料分配管10Hから高圧燃料が供給される。また、各気筒11〜14には、吸気ポートへ燃料を噴射する吸気ポート噴射用燃料噴射弁11b〜14bがそれぞれ設けられており、これら吸気ポート噴射用燃料噴射弁11b〜14bには低圧燃料分配管10Lから低圧燃料が供給される。なお、低圧燃料分配管10Lには、該低圧燃料分配管10L内の圧力変動を抑制するパルセーションダンパ(図示略)が付設されている。   As shown in FIG. 1, an internal combustion engine (gasoline engine) 10 to be applied here includes a first cylinder 11, a second cylinder 12, a third cylinder 13, and a fourth cylinder 14 arranged in series in this order. This is an internal combustion engine consisting of four in-line cylinders. The cylinders 11 to 14 are respectively provided with in-cylinder injection fuel injection valves 11a to 14a for directly injecting fuel into the combustion chamber. The in-cylinder injection fuel injection valves 11a to 14a are respectively provided with high-pressure fuel distribution pipes. High pressure fuel is supplied from 10H. The cylinders 11 to 14 are respectively provided with intake port injection fuel injection valves 11b to 14b for injecting fuel into the intake ports. These intake port injection fuel injection valves 11b to 14b are respectively provided with a low-pressure fuel component. Low pressure fuel is supplied from the pipe 10L. Note that a pulsation damper (not shown) for suppressing pressure fluctuation in the low pressure fuel distribution pipe 10L is attached to the low pressure fuel distribution pipe 10L.

また、本実施の形態にあって、電子制御装置20は、各種センサから入力されるデータに応じて、筒内噴射用燃料噴射弁11a〜14a及び吸気ポート噴射用燃料噴射弁11b〜14bの燃料噴射制御や、各気筒の点火時期制御等の制御を実行する部分である。なお、内燃機関10の始動時には専ら吸気ポート噴射用燃料噴射弁11b〜14bのみを通じて燃料噴射が行われることは前述の通りであり、その際、電子制御装置20では、内蔵する補正値マップ20Mに基づき噴射量を補正しつつ、同燃料噴射制御を実行する。   Further, in the present embodiment, the electronic control unit 20 determines the fuel of the in-cylinder injection fuel injection valves 11a to 14a and the intake port injection fuel injection valves 11b to 14b according to data input from various sensors. This is a part that executes control such as injection control and ignition timing control of each cylinder. As described above, when the internal combustion engine 10 is started, the fuel injection is performed exclusively through the intake port injection fuel injection valves 11b to 14b. In this case, the electronic control unit 20 uses the built-in correction value map 20M. The fuel injection control is executed while correcting the injection amount based on this.

一方、内燃機関10に燃料を供給する燃料供給系は、燃料タンクTKから燃料を汲み上げるためのフィードポンプ30Pと、該汲み上げられた燃料を高圧燃料供給系及び低圧燃料供給系へ供給する低圧燃料経路30とを備えている。なお、これら高圧燃料供給系及び低圧燃料供給系へ供給されなかった燃料は、リリーフ弁30Vを介して燃料タンクTK内に還流される。   On the other hand, the fuel supply system for supplying fuel to the internal combustion engine 10 includes a feed pump 30P for pumping fuel from the fuel tank TK, and a low-pressure fuel path for supplying the pumped fuel to the high-pressure fuel supply system and the low-pressure fuel supply system. 30. The fuel that has not been supplied to the high-pressure fuel supply system and the low-pressure fuel supply system is recirculated into the fuel tank TK via the relief valve 30V.

ここで、高圧燃料系は、低圧燃料経路30から供給された燃料を昇圧する高圧燃料ポンプ40Pと、該高圧燃料ポンプ40Pから逆止弁40Vを介して上記高圧燃料分配管10Hへ該昇圧された燃料を供給する高圧燃料通路40とを備えている。そのうち、高圧燃料ポンプ40Pは、シリンダ41と、該シリンダ41の内部を往復運動するプランジャ42とを有し、内燃機関10の吸気カムシャフトSFに取り付けられたポンプカムCMの動きに連動して燃料の加圧を行う。すなわち、高圧燃料ポンプ40Pの吸入行程では、電磁開閉弁43が開弁状態とされて加圧室40Rの燃料導入口40Eが開放されるとともに、プランジャ42が下降することによって、燃料が低圧燃料経路30から加圧室40Rに充填される。そして、加圧行程で、電磁開閉弁43が閉弁状態とされて燃料導入口40Eが閉塞されるとともに、プランジャ42の上昇に伴い加圧室40Rの容積が減少させられることによって、該加圧室40R内の燃料圧力が昇圧される。こうして、燃料圧力が昇圧されることにより、これを受けた逆止弁40Vは開弁状態となり、この昇圧された燃料が高圧燃料通路40を介して上記高圧燃料分配管10Hに供給される。なお、上記筒内噴射用燃料噴射弁11a〜14aから噴射されなかった燃料は、リリーフ弁10Vを介して燃料タンクTKに戻される。   Here, the high-pressure fuel system is pressurized to the high-pressure fuel distribution pipe 10H from the high-pressure fuel pump 40P via the check valve 40V and the high-pressure fuel pump 40P for increasing the pressure of the fuel supplied from the low-pressure fuel path 30. And a high-pressure fuel passage 40 for supplying fuel. Among them, the high-pressure fuel pump 40P has a cylinder 41 and a plunger 42 that reciprocates inside the cylinder 41, and in conjunction with the movement of the pump cam CM attached to the intake camshaft SF of the internal combustion engine 10, Pressurize. That is, in the intake stroke of the high-pressure fuel pump 40P, the electromagnetic on-off valve 43 is opened, the fuel inlet 40E of the pressurizing chamber 40R is opened, and the plunger 42 is lowered, so that the fuel is supplied to the low-pressure fuel path. 30 to the pressurizing chamber 40R. Then, in the pressurization stroke, the electromagnetic on-off valve 43 is closed to close the fuel introduction port 40E, and the volume of the pressurization chamber 40R is decreased as the plunger 42 is lifted, so that the pressurization is performed. The fuel pressure in the chamber 40R is increased. In this way, when the fuel pressure is increased, the check valve 40V receiving the pressure is opened, and the increased fuel is supplied to the high-pressure fuel distribution pipe 10H via the high-pressure fuel passage 40. The fuel that has not been injected from the cylinder injection fuel injection valves 11a to 14a is returned to the fuel tank TK via the relief valve 10V.

また、低圧燃料系は、上記低圧燃料経路30から分岐された低圧燃料通路50を備え、この低圧燃料通路50に供給された燃料がそのまま上記低圧燃料分配管10Lに供給される。   The low-pressure fuel system includes a low-pressure fuel passage 50 branched from the low-pressure fuel passage 30, and the fuel supplied to the low-pressure fuel passage 50 is supplied as it is to the low-pressure fuel distribution pipe 10L.

ところで、上記高圧燃料ポンプ40Pに設けられた電磁開閉弁43は、エンジン回転数センサ、カムポジションセンサ、高圧燃料用圧力センサ(いずれも図示略)等の検出信号に基づき、電子制御装置20によって駆動制御される。ただし上述のように、内燃機関10の始動時は筒内噴射用燃料噴射弁11a〜14aが用いられないことから、この電磁開閉弁43は開弁状態に維持される。そのため、高圧燃料ポンプ40Pのプランジャ42はポンプカムCMの動きに連動して上下動するものの、加圧室40R内の燃料圧力は、逆止弁40Vを開弁させる圧力にまで昇圧されることはない。そしてその結果、プランジャ42の上下動に応じて発生する圧力脈動が、燃料導入口40Eから逆流して低圧燃料経路30に伝播し、この伝播した圧力脈動が、上記低圧燃料通路50を介して低圧燃料分配管10Lにも伝播するようになる。   By the way, the electromagnetic on-off valve 43 provided in the high-pressure fuel pump 40P is driven by the electronic control unit 20 based on detection signals from an engine speed sensor, a cam position sensor, a high-pressure fuel pressure sensor (all not shown), and the like. Be controlled. However, as described above, since the cylinder injection fuel injection valves 11a to 14a are not used when the internal combustion engine 10 is started, the electromagnetic on-off valve 43 is maintained in the open state. Therefore, although the plunger 42 of the high-pressure fuel pump 40P moves up and down in conjunction with the movement of the pump cam CM, the fuel pressure in the pressurizing chamber 40R is not increased to a pressure that opens the check valve 40V. . As a result, the pressure pulsation generated in response to the vertical movement of the plunger 42 flows backward from the fuel introduction port 40E and propagates to the low pressure fuel path 30, and the propagated pressure pulsation is low pressure via the low pressure fuel path 50. It also propagates to the fuel distribution pipe 10L.

図2は、低圧燃料通路50(低圧燃料分配管10L)に対するこのような圧力脈動に関してその一例を示したものである。図2では便宜上、1番気筒11から順に4番気筒14まで所定の周期をもって圧力脈動が生じ(ラインW1)、その間に吸気ポート噴射用燃料噴射弁11b〜14bによる燃料噴射が行われる都度、更にその燃料圧力が小刻みに変動する状態を示している(ラインW2)。すなわち、この図2に例示するような圧力脈動が生じる場合、例えば1番気筒11と2番気筒12とでは、各燃料噴射量にも、当該脈動に起因するばらつきが生じることとなり、ひいては内燃機関10としての始動性の悪化を引き起こすことにもなりかねない。   FIG. 2 shows an example of such pressure pulsation with respect to the low pressure fuel passage 50 (low pressure fuel distribution pipe 10L). In FIG. 2, for the sake of convenience, pressure pulsation occurs in a predetermined cycle from the first cylinder 11 to the fourth cylinder 14 (line W1), and each time fuel injection is performed by the intake port injection fuel injection valves 11b to 14b, A state in which the fuel pressure fluctuates little by little (line W2) is shown. That is, when the pressure pulsation as illustrated in FIG. 2 occurs, for example, in the first cylinder 11 and the second cylinder 12, the fuel injection amount also varies due to the pulsation, and thus the internal combustion engine. This may cause deterioration of startability as 10.

そこで、本実施の形態では、例えば図3に例示するような噴射量の補正値マップ20Mを上記電子制御装置20内に用意し、この補正値マップ20Mを参照しつつ上記吸気ポート噴射用燃料噴射弁11b〜14bによる燃料噴射量を補正することで、圧力脈動に起因する上述した始動時の燃料噴射量ばらつきを回避するようにしている。   Therefore, in this embodiment, for example, an injection amount correction value map 20M illustrated in FIG. 3 is prepared in the electronic control unit 20, and the fuel injection for intake port injection is performed while referring to the correction value map 20M. By correcting the fuel injection amount by the valves 11b to 14b, the above-described variation in the fuel injection amount at the start due to the pressure pulsation is avoided.

すなわち上述のように、図2の例でいえば、吸気ポート噴射用燃料噴射弁11b,13bは、圧力脈動の山の頂点、すなわち低圧燃料分配管10L内の圧力が最大であるときに燃料噴射する。そのため、吸気ポート噴射用燃料噴射弁11b,13bの単位時間当たりの燃料噴射量は、上記圧力脈動がない場合に比べて多めとなる。それゆえに、図3に示す吸気ポート噴射用燃料噴射弁11bの補正値KF1a〜KF1g、並びに吸気ポート噴射用燃料噴射弁13bの補正値KF3a〜KF3gは、共にそれぞれ燃料噴射期間を短めにするように設定されている。なお、圧力脈動の圧力最大値は略一定であるため、補正値KF1a〜KF1gは、補正値KF3a〜KF3gとそれぞれ互いに同等の値となるように設定されている。   That is, as described above, in the example of FIG. 2, the fuel injection valves 11b and 13b for the intake port injection perform fuel injection when the peak of the pressure pulsation, that is, when the pressure in the low pressure fuel distribution pipe 10L is maximum. To do. Therefore, the fuel injection amount per unit time of the fuel injection valves 11b, 13b for intake port injection is larger than that in the case where there is no pressure pulsation. Therefore, the correction values KF1a to KF1g of the intake port injection fuel injection valve 11b and the correction values KF3a to KF3g of the intake port injection fuel injection valve 13b shown in FIG. 3 are both set to shorten the fuel injection period. Is set. Since the maximum pressure value of the pressure pulsation is substantially constant, the correction values KF1a to KF1g are set to be equal to the correction values KF3a to KF3g, respectively.

ここで、上記パルセーションダンパは、アイドリングよりも内燃機関10の機関回転数neが高い通常運転時に上記圧力脈動を抑制可能であることが望まれる。そのため、上記パルセーションダンパの固有振動数は、上記通常運転時にて上記圧力脈動の周波数と一致しないように、すなわち共振状態とならないように設計されている。換言すると、上記パルセーションダンパは、アイドリングよりも上記機関回転数neが低いときに共振状態となるように設計されている。ちなみに、図3に例示するマップは、機関回転数neが700rpmのときに共振状態となるようにパルセーションダンパが設計されているとするときの補正値マップである。なお、図3において、機関回転数neが400rpmのときとは、内燃機関10が自律運転に到る回転数であり、機関回転数neが1000rpmのときとは、内燃機関10がアイドリングに到る直前の回転数である。   Here, the pulsation damper is desired to be able to suppress the pressure pulsation during normal operation in which the engine speed ne of the internal combustion engine 10 is higher than idling. For this reason, the natural frequency of the pulsation damper is designed so as not to coincide with the frequency of the pressure pulsation during the normal operation, that is, not to be in a resonance state. In other words, the pulsation damper is designed to be in a resonance state when the engine speed ne is lower than idling. Incidentally, the map illustrated in FIG. 3 is a correction value map when the pulsation damper is designed to be in a resonance state when the engine speed ne is 700 rpm. In FIG. 3, when the engine speed ne is 400 rpm, the internal combustion engine 10 reaches the autonomous speed, and when the engine speed ne is 1000 rpm, the internal combustion engine 10 reaches the idling. The number of rotations just before.

また、図3のマップにおいては、機関回転数neが700rpmのときの補正値KF1d(KF3d)が、補正値KF1a〜KF1g(KF3a〜KF3g)の中で最小値となるように設定されている。そして、補正値KF1a〜KF1c(KF3a〜KF3c)は、この順とは逆順で補正値KF1d(KF3d)から順に大きな値となるように設定されており、補正値KF1e〜KF1g(KF3e〜KF3g)は、この順で補正値KF1d(KF3d)から順に大きな値となるように設定されている。   In the map of FIG. 3, the correction value KF1d (KF3d) when the engine speed ne is 700 rpm is set to be the minimum value among the correction values KF1a to KF1g (KF3a to KF3g). The correction values KF1a to KF1c (KF3a to KF3c) are set so as to increase from the correction value KF1d (KF3d) in reverse order to this order, and the correction values KF1e to KF1g (KF3e to KF3g) are In this order, the correction values KF1d (KF3d) are set so as to increase in order.

一方、吸気ポート噴射用燃料噴射弁12b,14bは、図2の例でいえば圧力脈動の谷の底、すなわち低圧燃料分配管10L内の圧力が最小であるときに燃料を噴射する。そのため、吸気ポート噴射用燃料噴射弁12b,14bの燃料噴射量は、上記圧力脈動がない場合に比べて少なめとなる。それゆえに、図3に示す吸気ポート噴射用燃料噴射弁12bの補正値KF2a〜KF2g並びに吸気ポート噴射用燃料噴射弁14bの補正値KF4a〜KF4gは、共にそれぞれ燃料噴射期間を長めにするように設定されている。なお、圧力脈動の圧力最小値は略一定であるため、補正値KF2a〜KF2gは、それぞれ補正値KF4a〜KF4gと互いに同等の値となるように設定されている。   On the other hand, the intake port injection fuel injection valves 12b and 14b inject fuel when the pressure in the bottom of the pressure pulsation, that is, the pressure in the low pressure fuel distribution pipe 10L is minimum in the example of FIG. Therefore, the fuel injection amount of the intake port injection fuel injection valves 12b and 14b is smaller than that in the case where there is no pressure pulsation. Therefore, the correction values KF2a to KF2g of the intake port injection fuel injection valve 12b and the correction values KF4a to KF4g of the intake port injection fuel injection valve 14b shown in FIG. 3 are both set to make the fuel injection period longer. Has been. Since the minimum pressure value of the pressure pulsation is substantially constant, the correction values KF2a to KF2g are set to be equal to the correction values KF4a to KF4g, respectively.

そして、上述のように、機関回転数neが700rpmのときが上記共振状態となるように設計されているため、図3のマップにおいては、機関回転数neが700rpmのときの補正値KF2d(KF4d)が、補正値KF2a〜KF2g(KF4a〜KF4g)の中で最大値となるように設定されている。そして、補正値KF2a〜KF2c(KF4a〜KF4c)は、この順とは逆順で補正値KF2d(KF4d)から順に小さな値となるように設定されており、補正値KF2e〜KF2g(KF4e〜KF4g)は、この順で補正値KF2d(KF4d)から順に小さな値となるように設定されている。   As described above, since the resonance state is designed so that the engine speed ne is 700 rpm, the correction value KF2d (KF4d) when the engine speed ne is 700 rpm in the map of FIG. ) Is set to a maximum value among the correction values KF2a to KF2g (KF4a to KF4g). The correction values KF2a to KF2c (KF4a to KF4c) are set so as to be smaller in order from the correction value KF2d (KF4d) in the reverse order to this order. The correction values KF2e to KF2g (KF4e to KF4g) are In this order, the correction values KF2d (KF4d) are set to be smaller in order.

次に、このように構成される本実施の形態の燃料噴射制御装置の動作を、図4に示すフローチャートを参照して説明する。なお、この図4に示す処理は、電子制御装置20を通じて、内燃機関10の始動のたびに繰り返し実行される。また、図4において、筒内噴射用燃料噴射弁11a〜14aを併用した燃焼制御等については、便宜上図示を割愛している。   Next, the operation of the fuel injection control apparatus of the present embodiment configured as described above will be described with reference to the flowchart shown in FIG. The process shown in FIG. 4 is repeatedly executed every time the internal combustion engine 10 is started through the electronic control unit 20. Further, in FIG. 4, illustration of the combustion control using the in-cylinder fuel injection valves 11 a to 14 a is omitted for convenience.

図4に示すように、電子制御装置20はまず、内燃機関10が自律運転に至ったか否かを判断し(ステップS10)、その判定結果が肯定判定(S10=YES)であれば、その処理をステップS11に移行する。   As shown in FIG. 4, the electronic control unit 20 first determines whether or not the internal combustion engine 10 has reached autonomous operation (step S10). If the determination result is affirmative (S10 = YES), the processing is performed. To step S11.

ステップS11の処理では、自律運転開始後、すなわち始動後の各吸気ポート噴射用燃料噴射弁11b〜14bの始動後燃料噴射量TAUを、吸入空気量センサから入力された吸入空気量のデータに基づいて算出する。これにより、各吸気ポート噴射用燃料噴射弁11b〜14bの基準燃料噴射時間が決定される。   In the process of step S11, after starting the autonomous operation, that is, after starting, the post-startup fuel injection amount TAU of each intake port injection fuel injection valve 11b-14b is based on the intake air amount data input from the intake air amount sensor. To calculate. Thereby, the reference fuel injection time of each fuel injection valve 11b-14b for intake port injection is determined.

次に、電子制御装置20は、機関回転数センサから入力されるデータに基づき算出される機関回転数neが、内燃機関10のアイドリング回転数NEH以下の回転数であるか否かを判断する(ステップS12)。その判定結果が肯定判定(S12=YES)である場合、電子制御装置20は、その処理をステップS13に移行する。   Next, the electronic control unit 20 determines whether or not the engine speed ne calculated based on the data input from the engine speed sensor is equal to or lower than the idling speed NEH of the internal combustion engine 10 ( Step S12). If the determination result is affirmative (S12 = YES), the electronic control unit 20 proceeds to step S13.

ステップS13の処理において、電子制御装置20は、吸気ポート噴射用燃料噴射弁11b〜14bそれぞれの補正値KF1〜KF4を、機関回転数neと図3に例示した補正値マップ20Mとに基づいて決定する。具体的には、例えば機関回転数neが700rpmである場合には、吸気ポート噴射用燃料噴射弁11bの補正値KF1をKF1dに、吸気ポート噴射用燃料噴射弁12bの補正値KF2をKF2dに、吸気ポート噴射用燃料噴射弁13bの補正値KF3をKF3dに、吸気ポート噴射用燃料噴射弁14bの補正値KF4をKF4dにそれぞれ決定する。   In the process of step S13, the electronic control unit 20 determines the correction values KF1 to KF4 of the intake port injection fuel injection valves 11b to 14b based on the engine speed ne and the correction value map 20M illustrated in FIG. To do. Specifically, for example, when the engine speed ne is 700 rpm, the correction value KF1 of the intake port injection fuel injection valve 11b is set to KF1d, the correction value KF2 of the intake port injection fuel injection valve 12b is set to KF2d, The correction value KF3 of the intake port injection fuel injection valve 13b is determined as KF3d, and the correction value KF4 of the intake port injection fuel injection valve 14b is determined as KF4d.

次いで、電子制御装置20は、吸気ポート噴射用燃料噴射弁11b〜14bそれぞれの燃料噴射量を、始動後燃料噴射量TAUと上記補正値KF1〜KF4とに基づいて決定する(ステップS14)。具体的には、例えば吸気ポート噴射用燃料噴射弁11b,13bの燃料噴射時間は上記基準燃料噴射時間に補正値KF1,KF3をそれぞれ乗じて該基準燃料噴射時間よりも短くなるように決定される。これにより、上記燃料脈動の山の頂点が燃料噴出のタイミングとなっている吸気ポート噴射用燃料噴射弁11b,13bの燃料噴射量を少なくすることができるようになる。一方、吸気ポート噴射用燃料噴射弁12b,14bの燃料噴射時間は上記基準燃料噴射時間に補正値KF2,KF4をそれぞれ乗じて該基準燃料噴射時間よりも長くなるように決定される。これにより、上記圧力脈動の谷の底が燃料噴出のタイミングとなっている吸気ポート噴射用燃料噴射弁12b,14bの燃料噴射量を多くすることができるようになる。すなわち、上記圧力脈動が生じていたとしても、自律運転後の吸気ポート噴射用燃料噴射弁11b〜14bの燃料噴射量を安定して行うことができるようになる。それゆえに、内燃機関10の始動性を良好に維持することができるようになる。   Next, the electronic control unit 20 determines the fuel injection amount of each of the fuel injection valves 11b to 14b for intake port injection based on the post-startup fuel injection amount TAU and the correction values KF1 to KF4 (step S14). Specifically, for example, the fuel injection time of the fuel injection valves 11b and 13b for intake port injection is determined so as to be shorter than the reference fuel injection time by multiplying the reference fuel injection time by the correction values KF1 and KF3, respectively. . As a result, the fuel injection amount of the intake port injection fuel injection valves 11b, 13b, where the peak of the fuel pulsation peak is the fuel injection timing, can be reduced. On the other hand, the fuel injection time of the intake port injection fuel injection valves 12b and 14b is determined to be longer than the reference fuel injection time by multiplying the reference fuel injection time by the correction values KF2 and KF4, respectively. As a result, the fuel injection amount of the fuel injection valves 12b, 14b for intake port injection whose bottom of the valley of the pressure pulsation is the timing of fuel injection can be increased. That is, even if the pressure pulsation occurs, the fuel injection amount of the intake port injection fuel injection valves 11b to 14b after the autonomous operation can be stably performed. Therefore, the startability of the internal combustion engine 10 can be maintained well.

他方、上記ステップS12の判定結果が否定判定(S12=NO)、すなわち、内燃機関10がアイドリング回転数NEHを超えた圧力脈動の生じない通常運転状態にある場合、電子制御装置20は、吸気ポート噴射用燃料噴射弁11b〜14bの燃料噴射量をそれぞれ上記始動後燃料噴射量TAUに決定する(ステップS15)。   On the other hand, when the determination result of step S12 is negative (S12 = NO), that is, when the internal combustion engine 10 is in a normal operation state in which no pressure pulsation exceeding the idling speed NEH occurs, the electronic control unit 20 The fuel injection amounts of the fuel injection valves 11b to 14b for injection are respectively determined as the post-startup fuel injection amount TAU (step S15).

以上説明したように、本実施の形態にかかる内燃機関の燃料噴射制御装置によれば、以下の効果が得られるようになる。
(1)内燃機関10の自律運転からアイドリングに至る機関始動時、低圧燃料通路50(低圧燃料分配管10L)内に内燃機関10の回転周期に応じた圧力脈動が生じても、この圧力脈動に応じて、吸気ポート噴射用燃料噴射弁11b〜14bによる燃料噴射量が補正される。その結果、パルセーションダンパの大型化などによって上記圧力脈動そのものを抑制せずとも、自律運転後の各吸気ポート噴射用燃料噴射弁11b〜14bの燃料噴射量を安定して行うことができるようになる。すなわち、内燃機関10の始動性が悪化するようなこともなくなる。
(変形例)
なお、上記実施の形態は、以下のような態様をもって実施することもできる。
As described above, according to the fuel injection control device for an internal combustion engine according to the present embodiment, the following effects can be obtained.
(1) Even when a pressure pulsation corresponding to the rotation cycle of the internal combustion engine 10 occurs in the low pressure fuel passage 50 (low pressure fuel distribution pipe 10L) at the time of engine start from the autonomous operation to idling of the internal combustion engine 10, the pressure pulsation Accordingly, the fuel injection amount by the intake port injection fuel injection valves 11b to 14b is corrected. As a result, the fuel injection amount of each intake port injection fuel injection valve 11b to 14b after autonomous operation can be stably performed without suppressing the pressure pulsation itself by increasing the size of the pulsation damper. Become. That is, the startability of the internal combustion engine 10 is not deteriorated.
(Modification)
In addition, the said embodiment can also be implemented with the following aspects.

・上記実施の形態では、説明の便宜上、図2に例示した圧力脈動が生じ、その山の頂点で吸気ポート噴射用燃料噴射弁11b,13bが燃料を噴射し、同圧力変動の谷の底で吸気ポート噴射用燃料噴射弁12b,14bが燃料を噴射するとしたが、これはあくまでも一例である。実際は、ポンプカムCMの形状、内燃機関10の始動時の気筒内におけるピストンの位置等によって、吸気ポート噴射用燃料噴射弁11b〜14bの燃料噴射のタイミングは、ラインW1上のあらゆる場所に設定され得る。すなわち、上記実施の形態では、補正値KF1,KF3が同等の値であり、補正値KF2,KF4が同等の値であるとしたが、実際はそのように補正値が決定されるとは限らない。要は、実験等によって圧力脈動を求め、この圧力脈動に応じて各吸気ポート噴射用燃料噴射弁11b〜14bの燃料噴射量を同等とし得る補正値を上記補正値マップ20Mに設定することができればよい。   In the above embodiment, for convenience of explanation, the pressure pulsation illustrated in FIG. 2 occurs, and the fuel injection valves 11b and 13b for intake port injection inject fuel at the peak of the peak, and at the bottom of the valley of the pressure fluctuation. Although the fuel injection valves 12b and 14b for intake port injection inject fuel, this is merely an example. Actually, the fuel injection timing of the fuel injection valves 11b to 14b for intake port injection can be set at any location on the line W1, depending on the shape of the pump cam CM, the position of the piston in the cylinder when the internal combustion engine 10 is started, and the like. . That is, in the above embodiment, the correction values KF1 and KF3 are equivalent values, and the correction values KF2 and KF4 are equivalent values. However, the correction values are not always determined as such in practice. In short, if a pressure pulsation is obtained by experiment or the like, and a correction value that can equalize the fuel injection amount of each of the intake port injection fuel injection valves 11b to 14b can be set in the correction value map 20M according to the pressure pulsation. Good.

・上記実施の形態では、1番気筒から順に2番気筒、3番気筒、そして4番気筒と燃料が燃焼するとしたが、これに限らない。気筒の燃焼順は、どのように決定してもよい。
・気筒数は4気筒に限られない。また、気筒の配置も直列に限られない。デュアルインジェクション方式を採用する内燃機関であれば本発明を適用することができる。
In the above embodiment, the fuel is burned sequentially from the first cylinder to the second cylinder, the third cylinder, and the fourth cylinder. However, the present invention is not limited to this. The order of combustion of the cylinders may be determined in any way.
・ The number of cylinders is not limited to four. Further, the arrangement of the cylinders is not limited to series. The present invention can be applied to any internal combustion engine that employs a dual injection system.

10…内燃機関、10H…高圧燃料分配管、10L…低圧燃料分配管、10V,30V…リリーフ弁、11…1番気筒、12…2番気筒、13…3番気筒、14…4番気筒、11a〜14a…筒内噴射用燃料噴射弁、11b〜14b…吸気ポート噴射用燃料噴射弁、20…電子制御装置、20M…補正値マップ、30…低圧燃料経路、30P…フィードポンプ、40…高圧燃料通路、40E…燃料導入口、40P…高圧燃料ポンプ、40R…加圧室、40V…逆止弁、41…シリンダ、42…プランジャ、43…電磁開閉弁、50…低圧燃料通路、CM…ポンプカム、SF…吸気カムシャフト、TK…燃料タンク。   DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine, 10H ... High pressure fuel distribution pipe, 10L ... Low pressure fuel distribution pipe, 10V, 30V ... Relief valve, 11 ... 1st cylinder, 12 ... 2nd cylinder, 13 ... 3rd cylinder, 14 ... 4th cylinder, DESCRIPTION OF SYMBOLS 11a-14a ... Fuel injection valve for cylinder injection, 11b-14b ... Fuel injection valve for intake port injection, 20 ... Electronic control unit, 20M ... Correction value map, 30 ... Low pressure fuel path, 30P ... Feed pump, 40 ... High pressure Fuel passage, 40E ... Fuel inlet, 40P ... High pressure fuel pump, 40R ... Pressurization chamber, 40V ... Check valve, 41 ... Cylinder, 42 ... Plunger, 43 ... Electromagnetic on-off valve, 50 ... Low pressure fuel passage, CM ... Pump cam , SF: intake camshaft, TK: fuel tank.

Claims (1)

内燃機関の各気筒の吸気ポートへ燃料を噴射する吸気ポート噴射用燃料噴射弁と、各気筒の燃焼室内に直接燃料を噴射する筒内噴射用燃料噴射弁と、フィードポンプによって吸引された燃料を前記吸気ポート噴射用燃料噴射弁へ圧送する低圧燃料通路と、内燃機関の稼動に連動して駆動される高圧燃料ポンプを有して前記低圧燃料通路から分岐された通路の燃料を昇圧し、該昇圧した燃料を前記筒内噴射用燃料噴射弁へ圧送する高圧燃料通路と、当該機関の運転状態に応じて前記吸気ポート噴射用燃料噴射弁及び前記筒内噴射用燃料噴射弁の駆動を制御する制御装置とを備える内燃機関の燃料噴射制御装置において、
前記内燃機関の自律運転からアイドリングに至る機関始動時、前記制御装置は、前記高圧燃料ポンプの駆動により前記低圧燃料通路に生じる圧力脈動に応じて前記吸気ポート噴射用燃料噴射弁による燃料噴射量を補正する
ことを特徴とする内燃機関の燃料噴射制御装置。
An intake port injection fuel injection valve that injects fuel into the intake port of each cylinder of the internal combustion engine, an in-cylinder injection fuel injection valve that directly injects fuel into the combustion chamber of each cylinder, and fuel sucked by a feed pump A low-pressure fuel passage that is pumped to the intake port injection fuel injection valve, and a high-pressure fuel pump that is driven in conjunction with the operation of the internal combustion engine to boost the pressure of the fuel in the passage branched from the low-pressure fuel passage; A high-pressure fuel passage for pumping the boosted fuel to the in-cylinder injection fuel injection valve, and driving of the intake port injection fuel injection valve and the in-cylinder injection fuel injection valve according to the operating state of the engine In a fuel injection control device for an internal combustion engine comprising a control device,
When starting the engine from the autonomous operation of the internal combustion engine to idling, the control device determines the fuel injection amount by the fuel injection valve for intake port injection according to the pressure pulsation generated in the low pressure fuel passage by driving the high pressure fuel pump. A fuel injection control device for an internal combustion engine characterized by correcting.
JP2011107951A 2011-05-13 2011-05-13 Fuel injection control device for internal combustion engine Withdrawn JP2012237274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011107951A JP2012237274A (en) 2011-05-13 2011-05-13 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011107951A JP2012237274A (en) 2011-05-13 2011-05-13 Fuel injection control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2012237274A true JP2012237274A (en) 2012-12-06

Family

ID=47460376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011107951A Withdrawn JP2012237274A (en) 2011-05-13 2011-05-13 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2012237274A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015193723A1 (en) 2014-06-19 2015-12-23 Toyota Jidosha Kabushiki Kaisha Fuel, supply device for internal combustion engine
JP2017078340A (en) * 2015-10-19 2017-04-27 株式会社デンソー Electronic control device
WO2017077849A1 (en) * 2015-11-05 2017-05-11 トヨタ自動車株式会社 Control apparatus for internal combustion engine
EP3199788A1 (en) 2016-01-27 2017-08-02 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
EP3199789A1 (en) 2016-01-27 2017-08-02 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
JP2017133419A (en) * 2016-01-27 2017-08-03 トヨタ自動車株式会社 Control device for internal combustion engine
JP2020002875A (en) * 2018-06-28 2020-01-09 トヨタ自動車株式会社 Control device of internal combustion engine

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015193723A1 (en) 2014-06-19 2015-12-23 Toyota Jidosha Kabushiki Kaisha Fuel, supply device for internal combustion engine
US10316787B2 (en) 2014-06-19 2019-06-11 Toyota Jidosha Kabushiki Kaisha Fuel supply device for internal combustion engine
JP2017078340A (en) * 2015-10-19 2017-04-27 株式会社デンソー Electronic control device
WO2017077849A1 (en) * 2015-11-05 2017-05-11 トヨタ自動車株式会社 Control apparatus for internal combustion engine
US10895216B2 (en) 2015-11-05 2021-01-19 Toyota Jidosha Kabushiki Kaisha Control device of internal combustion engine
JPWO2017077849A1 (en) * 2015-11-05 2018-08-09 トヨタ自動車株式会社 Control device for internal combustion engine
CN108350819A (en) * 2015-11-05 2018-07-31 丰田自动车株式会社 The control device of internal combustion engine
US20180171927A1 (en) * 2015-11-05 2018-06-21 Toyota Jidosha Kabushiki Kaisha Control device of internal combustion engine
EP3203057A1 (en) * 2016-01-27 2017-08-09 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
US10125714B2 (en) 2016-01-27 2018-11-13 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
CN107013353A (en) * 2016-01-27 2017-08-04 丰田自动车株式会社 The control system of internal combustion engine
US9938923B2 (en) 2016-01-27 2018-04-10 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
JP2017133421A (en) * 2016-01-27 2017-08-03 トヨタ自動車株式会社 Control device of internal combustion engine
JP2017133419A (en) * 2016-01-27 2017-08-03 トヨタ自動車株式会社 Control device for internal combustion engine
JP2017133420A (en) * 2016-01-27 2017-08-03 トヨタ自動車株式会社 Control device for internal combustion engine
CN107013351A (en) * 2016-01-27 2017-08-04 丰田自动车株式会社 Control device for internal combustion engine
US10151266B2 (en) 2016-01-27 2018-12-11 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
EP3199789A1 (en) 2016-01-27 2017-08-02 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
EP3199788A1 (en) 2016-01-27 2017-08-02 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
CN107013351B (en) * 2016-01-27 2020-01-21 丰田自动车株式会社 Control device for internal combustion engine
JP2020002875A (en) * 2018-06-28 2020-01-09 トヨタ自動車株式会社 Control device of internal combustion engine
JP7020318B2 (en) 2018-06-28 2022-02-16 トヨタ自動車株式会社 Internal combustion engine control device

Similar Documents

Publication Publication Date Title
JP2012237274A (en) Fuel injection control device for internal combustion engine
JP4609524B2 (en) Fuel pressure control device and fuel pressure control system
JP2011132813A (en) Fuel supply device for internal combustion engine
JP6281581B2 (en) Control device for internal combustion engine
JP5939227B2 (en) Pump control device
JP2014190186A (en) Fuel supply control device
JP6146274B2 (en) Control device for internal combustion engine
JP2005139975A (en) Common rail type fuel injection device
JP2007224785A (en) Fuel supply device
JP6406124B2 (en) High pressure pump control device for internal combustion engine
JP5991268B2 (en) Fuel supply device for internal combustion engine
JP5040692B2 (en) In-cylinder direct injection internal combustion engine fuel supply device
JP2011256839A (en) Pressure-accumulation fuel injection device and control device of the same
JP2004084560A (en) Fuel supply system of internal combustion engine
JP2010101296A (en) Fuel injection control device for cylinder injection type internal combustion engine
JP5110109B2 (en) Fuel pressure control device
JP2010025088A (en) Automatic stop control method and automatic stop device for diesel engine
JP6662896B2 (en) Control device for internal combustion engine
JP2019178662A (en) Fuel injection control device
JP2007032454A (en) Fuel system control device for internal combustion engine
CN109555609B (en) Fuel injection control device for internal combustion engine and operating method thereof
JP2003041985A (en) Fuel injector
JP2010059856A (en) High pressure fuel pump
KR20120018496A (en) Control method of fuel-pump
JP6504041B2 (en) Pump controller

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805