JP2012237145A - Support structure and guard fence - Google Patents

Support structure and guard fence Download PDF

Info

Publication number
JP2012237145A
JP2012237145A JP2011107074A JP2011107074A JP2012237145A JP 2012237145 A JP2012237145 A JP 2012237145A JP 2011107074 A JP2011107074 A JP 2011107074A JP 2011107074 A JP2011107074 A JP 2011107074A JP 2012237145 A JP2012237145 A JP 2012237145A
Authority
JP
Japan
Prior art keywords
axial force
absorber
deformation
force absorber
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011107074A
Other languages
Japanese (ja)
Other versions
JP5309184B2 (en
Inventor
Kazuki Fukunaga
一基 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Zenith Pipe Co Ltd
Original Assignee
Nippon Zenith Pipe Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zenith Pipe Co Ltd filed Critical Nippon Zenith Pipe Co Ltd
Priority to JP2011107074A priority Critical patent/JP5309184B2/en
Publication of JP2012237145A publication Critical patent/JP2012237145A/en
Application granted granted Critical
Publication of JP5309184B2 publication Critical patent/JP5309184B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable an erection angle and a fence height of a receiving surface of a guard net to be kept constant even if there are undulations on a slope, and allow a support structure to exhibit steady damping performance.SOLUTION: An axial force absorber 20 is composed of plural resilient rods 21, a deformation guide 30 is composed of a rigid material, and the axial force acting on the deformation guide 30 is guided to the axial force absorber 20 via connection members 12, 13 and 14.

Description

本発明は落石、崩落土砂、雪崩等の動的荷重または積雪圧等の静的荷重(以下「エネルギー」という)の吸収に好適なエネルギー吸収技術に関し、より詳細にはエネルギーを効果的に吸収できる支柱構造体及び防護柵に関する。   The present invention relates to an energy absorption technique suitable for absorbing a dynamic load such as falling rocks, landslide and avalanche, or a static load such as snow pressure (hereinafter referred to as “energy”). More specifically, the present invention can effectively absorb energy. The present invention relates to a strut structure and a protective fence.

一般にこの種の防護柵における支柱は、曲げと軸力に対抗するため鋼材やコンクリート充填鋼管等の剛性体で形成しているが、従来の支柱は重たく山岳地の設置現場への搬入が困難なだけでなく、現場での据付け作業も重機に頼っており、施工性に問題がある。   Generally, the struts in this type of guard fence are made of rigid materials such as steel and concrete-filled steel pipes to resist bending and axial force. Not only that, but installation work on site also relies on heavy machinery, which has problems with workability.

また特許文献1には、高剛性の主支柱、高剛性の斜め支柱及び複数の連結ロープを組合せた支柱構造体と、これを用いた雪崩防護柵が開示されている。
この支柱構造体は、両支柱をX形に交差させ、斜め支柱の基端を斜面にグラウンドアンカーで固定し、両支柱の自由端間と基端間を夫々連結ロープで接続して構成する。防護ネットはその上下辺を主支柱の上部と斜め支柱の下部に固定する。
防護ネットに作用する雪荷重を、両支柱の圧縮耐力と連結ロープの張力で対抗する構造になっている。
Patent Document 1 discloses a strut structure in which a high-rigidity main strut, a high-rigidity oblique strut, and a plurality of connecting ropes are combined, and an avalanche protective fence using the strut structure.
This strut structure is configured by crossing both struts in an X shape, fixing the base ends of the slant struts to the slope with ground anchors, and connecting the free ends and the base ends of both struts with connecting ropes. The upper and lower sides of the protective net are fixed to the upper part of the main support and the lower part of the oblique support.
It has a structure that counteracts the snow load acting on the protective net with the compression strength of both struts and the tension of the connecting rope.

出願人は特許文献1に開示された防護柵が内包する問題点を解決するため、主支柱と斜め支柱を可撓性を有する複数の棒材で構成した支柱構造体と、これを用いた防護柵を先に提案した(特許文献2)。   In order to solve the problems included in the protective fence disclosed in Patent Document 1, the applicant has a strut structure in which the main strut and the oblique strut are composed of a plurality of flexible bars, and protection using the strut structure. A fence was proposed first (Patent Document 2).

特開2007−63831号公報JP 2007-63831 A 特開2010−255648号公報JP 2010-255648 A

先の特許文献1に記載された防護柵は、以下のような問題がある。
(1)主支柱及び斜め支柱は、高い圧縮強度を有するものの、荷重の吸収機能を有しない。
そのため、主支柱及び斜め支柱に想定を超えた軸力が作用すると、支柱が突発的に座屈破壊して柵機能を喪失する。
(2)防護柵に対し雪崩や落石等のように高速で、或いは局所的に荷重が作用すると、各支柱に対して圧縮だけでなく、曲げや捩じりも一緒に加わる。
支柱構造体は曲げや捩じりに対して対応できないため支柱構造体の安定バランスが崩れ易い。バランスが崩れると支柱構造体が突発的に破壊する。
(3)支柱構造体を構成する主支柱及び斜め支柱の基端は、斜面傾斜方向に沿った回動を許容するものの、斜面傾斜方向と直交する方向への回動が拘束されている。
そのため、支柱構造体が斜面の傾斜と直交方向に大きな力が作用すると、両支柱の基端の軸支箇所が破壊する。
(4)複数の支柱構造体のうち一部の支柱が上記した(1)〜(3)の要因で破壊されると、支柱構造体の破壊が連鎖的に広がり、防護柵全体としての機能を失ってしまう。
(5)破壊された支柱構造体を復旧するには、支柱構造体一式を新たに交換する必要があり、その交換に多くの時間、労力及びコストを要する。
The guard fence described in the above-mentioned patent document 1 has the following problems.
(1) The main strut and the oblique strut have high compressive strength but do not have a load absorbing function.
Therefore, when an axial force exceeding the assumption is applied to the main support column and the oblique support column, the support column suddenly buckles and loses the fence function.
(2) When a load acts on the protective fence at high speed like avalanches or falling rocks or locally, not only compression but also bending and twisting are applied to each column.
Since the support structure cannot cope with bending and twisting, the stable balance of the support structure is likely to be lost. If the balance is lost, the support structure will be destroyed suddenly.
(3) The main struts and the base ends of the slant struts constituting the strut structure are allowed to rotate along the slope inclination direction, but are restricted from rotating in a direction perpendicular to the slope inclination direction.
For this reason, when a large force acts on the column structure in a direction orthogonal to the slope of the slope, the pivotal support portion at the base end of both columns is destroyed.
(4) When some of the support columns are destroyed due to the factors (1) to (3) described above, the destruction of the support structure spreads in a chain and functions as a whole protective fence. I will lose.
(5) In order to recover the destroyed support structure, it is necessary to replace the set of support structures newly, which requires a lot of time, labor and cost.

特許文献2に記載された防護柵は、以下のような改善すべき点がある。
(1)主支柱と斜め支柱に適正に荷重分散をさせるためには、各支柱の弾性と硬度のバランス、各支柱の交差角度、連結ロープの長さ、および両支柱下部の据付距離を設計モデル通りに設置することが重要となる。
山の斜面は平らな一定勾配ではなく多数の起伏があるため、支柱構造体を上記した設計モデル通りに設置することが難しい。
そのため、設計モデルを犠牲にして個々の設置現場の起伏に対応させて支柱構造体を設置すると、両支柱の基端間の据付距離や防護ネットの起立角度が不均一となり、特に防護ネットが大きく傾斜した箇所では柵高が低くなるといった不都合がある。
(2)支柱構造体は主支柱と斜め支柱による減衰作用の分担割合を決めた構造になっている。
上記したように、斜面の起伏の影響を受けて両支柱の交差角度や据付間隔が変動すると、各支柱構造体の単位で減衰作用の分担割合が変化し、各支柱構造体の減衰性能を定常的に算定することが難い。
殊に弾性変形する各支柱の減衰バランスが崩れると、本来の減衰性能を発揮することができないだけでなく、一回目の受撃時に柵高が極端に低く変形して、以降の受撃に対応できない場合もある。
(3)支柱構造体の寸法バランスはある程度余裕を持たせて設計しているが、)支柱構造体の寸法バランスが許容値を超えると、エネルギー吸収性能に影響を及ぼして、安定した性能を発揮できない。
(4)斜面の起伏の影響を回避して支柱構造体の寸法バランスを取るには、支柱構造体を構成する各資材の寸法を個別に設計する必要があり、資材の加工や組立て等が複雑となる。
(5)支柱構造体を組み立てる際、両支柱が撓むために組み立てがし難い。
The guard fence described in Patent Document 2 has the following points to be improved.
(1) In order to distribute the load properly between the main struts and the diagonal struts, the balance of elasticity and hardness of each strut, the crossing angle of each strut, the length of the connecting rope, and the installation distance at the bottom of both struts are designed models It is important to install on the street.
Since the mountain slope is not flat and has many undulations, it is difficult to install the strut structure according to the design model described above.
For this reason, if the column structure is installed in response to the undulations at each installation site at the expense of the design model, the installation distance between the base ends of both columns and the standing angle of the protection net will be uneven, and the protection net will be particularly large. There is an inconvenience that the height of the fence is lowered at the inclined part.
(2) The strut structure has a structure in which the share ratio of the damping action by the main strut and the oblique strut is determined.
As described above, when the crossing angle and installation interval of both columns fluctuate due to the influence of undulations on the slope, the share of damping action changes in units of each column structure, and the damping performance of each column structure is steady. Difficult to calculate.
In particular, if the damping balance of each strut that is elastically deformed is lost, not only the original damping performance cannot be demonstrated, but the fence height is deformed extremely low at the time of the first reception, and it corresponds to the subsequent reception Sometimes it is not possible.
(3) The dimensional balance of the strut structure is designed with some margin, but if the dimensional balance of the strut structure exceeds the allowable value, the energy absorption performance will be affected and stable performance will be demonstrated. Can not.
(4) In order to avoid the influence of undulations on the slope and balance the dimensions of the strut structure, it is necessary to individually design the dimensions of each material that constitutes the strut structure, which complicates the processing and assembly of the materials. It becomes.
(5) When assembling the strut structure, it is difficult to assemble because both struts bend.

本発明は以上の点に鑑みて成されたもので、その目的とするところは少なくとも何れか一つの支柱構造体及び衝撃吸収柵を提供することにある。
<1>支柱構造体が定常的に減衰性能を発揮できること。
<2>斜面の起伏が変化している現場であっても、防護ネットの受面の起立角度と柵高を一定に保つこと。
<3>支柱構造体の破壊を回避しつつ、防護ネットの受面に作用するエネルギーを効率的に吸収すること。
<4>支柱構造体に曲げやねじりが加わっても破壊しないこと。
<5>積雪圧等の静的荷重に対してだけでなく、落石、雪崩等の動的荷重に対しても対応性に優れていること。
<6>支柱構造体が自己復元性を有し、衝撃吸収柵の修復性に優れること。
<7>衝撃吸収柵の資材の軽量化に伴う施工性の改善とコストの低減を図ること。
The present invention has been made in view of the above points, and an object thereof is to provide at least one strut structure and an impact absorbing fence.
<1> The strut structure must be capable of steadily exhibiting damping performance.
<2> Keeping the standing angle of the receiving surface of the protective net and the height of the fence constant even at sites where the undulations of the slope are changing.
<3> Efficiently absorb energy acting on the receiving surface of the protective net while avoiding destruction of the strut structure.
<4> Do not break the column structure even if it is bent or twisted.
<5> Excellent compatibility with not only static loads such as snow pressure, but also dynamic loads such as falling rocks and avalanches.
<6> The strut structure has a self-restoring property and is excellent in the repairability of the shock absorbing fence.
<7> To improve the workability and reduce the cost associated with the weight reduction of the shock absorbing material.

本願の第1発明は、基端を固定して傾倒自在に立設した軸力吸収体と、前記軸力吸収体と交差して配置するとともに、基端を固定して傾倒自在に立設した変形誘導体と、前記軸力吸収体と変形誘導体の各自由端との間、および前記軸力吸収体と変形誘導体の各自由端と斜面との間をそれぞれ連結した連結材とを具備した衝撃吸収柵の支柱構造体であって、前記軸力吸収体を、両端を拘束した複数の弾発杆で構成し、前記変形誘導体を剛性材で構成し、前記変形誘導体に作用する軸力を、前記連結材を介して前記軸力吸収体へ誘導するように構成したことを特徴とする。
本願の第2発明は、前記第1発明において、前記連結材の一部に長さ調整具を介装して連結材の長さを調整可能に構成したことを特徴とする。
本願の第3発明は、前記第1または第2発明において、複数の弾発杆の自由端の間を結束板で連結し、該結束板の設置位置を弾発杆に沿って変位可能に構成したことを特徴とする。
本願の第4発明は、前記第2発明において、弾発杆に螺合したナットにより前記結束板の設置位置を弾発杆に沿って変位可能に構成したことを特徴とする。
本願の第5発明は、前記第1乃至第4発明の何れかにおいて、前記軸力吸収体と変形誘導体の基端をそれぞれ固定するアンカーを具備することを特徴とする。
In the first invention of the present application, an axial force absorber that is fixedly tilted with a proximal end fixed, and an axial force absorber that intersects with the axial force absorber and that is tilted with a proximal end fixed. A shock absorber comprising: a deformation derivative; and a connecting member that connects the axial force absorber and each free end of the deformation derivative, and a connecting material that connects the free end of each of the axial force absorber and the deformation derivative and a slope. A strut structure of a fence, wherein the axial force absorber is composed of a plurality of bullets constrained at both ends, the deformation derivative is composed of a rigid material, and the axial force acting on the deformation derivative is It is configured to be guided to the axial force absorber through a connecting material.
A second invention of the present application is characterized in that, in the first invention, a length adjusting tool is interposed in a part of the connecting material so that the length of the connecting material can be adjusted.
According to a third invention of the present application, in the first or second invention, the free ends of the plurality of elastic rods are connected by a binding plate, and the installation position of the binding plate can be displaced along the elastic rod. It is characterized by that.
A fourth invention of the present application is characterized in that, in the second invention, the installation position of the binding plate can be displaced along the elastic rod by a nut screwed into the elastic rod.
A fifth invention of the present application is characterized in that, in any one of the first to fourth inventions, an anchor for respectively fixing the axial force absorber and the base end of the deformation derivative is provided.

本願の第6発明は、間隔を隔てて立設した複数の支柱構造体と、支柱構造体の間に張設した防護ネットとを具備した衝撃吸収柵であって、前記第1乃至第5発明の何れかの支柱構造体を使用し、軸力吸収体の基端を谷側斜面に固定するとともに、該軸力吸収体と交差して配置した変形誘導体の基端を山側斜面に固定して前記支柱構造体を立設し、隣り合う前記各支柱構造体を構成する軸力吸収体の自由端に防護ネットの上辺を取り付けて山側斜面に配置したことを特徴とする。
本願の第7発明は、前記第6発明において、防護ネットに作用するエネルギーを、交差する軸力吸収体と変形誘導体とに分散させて、該変形誘導体に生ずる軸力を軸力吸収体へ伝達可能なように、前記軸力吸収体と変形誘導体の各自由端との間、および前記軸力吸収体と変形誘導体の各自由端と斜面との間をそれぞれ連結材で連結したことを特徴とする。
本願の第8発明は、前記第6または第7発明において、防護ネットの下辺を前記各支柱構造体を構成する変形誘導体の基端に取り付けたことを特徴とする。
本願の第9発明は、前記第6または第7発明において、防護ネットの下辺を山側斜面に固定したことを特徴とする。
A sixth invention of the present application is an impact-absorbing fence comprising a plurality of support structures standing upright apart from each other and a protective net stretched between the support structures. The base end of the axial force absorber is fixed to the valley side slope, and the base end of the deformed derivative arranged so as to cross the axial force absorber is fixed to the mountain side slope. The support structure is erected, and the upper side of the protective net is attached to the free end of the axial force absorber that constitutes each of the adjacent support structures, and is disposed on the mountain-side slope.
According to a seventh aspect of the present invention, in the sixth aspect of the present invention, the energy acting on the protective net is dispersed in the intersecting axial force absorber and the deformation derivative, and the axial force generated in the deformation derivative is transmitted to the axial force absorber. As possible, the axial force absorber and each free end of the deformation derivative, and the free end of each of the axial force absorber and the deformation derivative and the slope are connected by a connecting material, respectively. To do.
The eighth invention of the present application is characterized in that, in the sixth or seventh invention, the lower side of the protective net is attached to the base end of the modified derivative constituting each of the support structure.
A ninth invention of the present application is characterized in that, in the sixth or seventh invention, the lower side of the protective net is fixed to the mountain side slope.

本発明における「エネルギー」とは、落石や雪崩等の動的荷重だけでなく、積雪圧等の静的荷重による運動エネルギー及び位置エネルギーを含む。   The “energy” in the present invention includes not only dynamic loads such as falling rocks and avalanches but also kinetic energy and potential energy due to static loads such as snow pressure.

本発明における「弾性変形」とは、軸力吸収体の長手方向への圧縮変形や、該長手方向を軸心とするねじれ変形、その他あらゆる方向への撓み変形を含む。   The “elastic deformation” in the present invention includes compressive deformation in the longitudinal direction of the axial force absorber, torsional deformation with the longitudinal direction as an axis, and bending deformation in all other directions.

本発明によれば、下記の効果のうち少なくとも何れか一つを得ることができる。
(1)柔構造の軸力吸収体と剛構造の変形誘導体とを組合せてなる支柱構造体は、エネルギーを伝達する部材(変形誘導体等)とエネルギーを吸収する部材(軸力吸収体)の役割が明確である。
したがって、各支柱構造体は斜面の起伏の影響があっても定常的に減衰性能を発揮することができる。
(2)軸力吸収体と変形誘導体の役割が明確であるため、支柱構造体全体としてのエネルギー吸収量の算定が正確に行えるとともに、役割に応じた部材の選定もし易くなる。
(3)斜面に起伏があっても、連結材に介装した長さ調整具で連結材の全長を調整することで、防護ネットの受面の起立角度と柵高を一定に保つことができる。
(4)軸力吸収体の自由端において、防護ネットの上辺の垂下高さを任意に調整することで、軸力吸収体と変形誘導体の据付距離を一定に保ちながら、防護ネットの受面の起立角度と柵高をさらに正確に保つことができる。
(5)軸力吸収体の直立性を維持したまま弾性変形させて吸収を許容して、防護ネットの受面に作用するエネルギーを効率的に吸収することができる。
(6)軸力吸収体がクッション機能を発揮するため、変形誘導体および複数の連結材の破壊を回避できるから、衝撃吸収柵の突発的な機能喪失を回避できる。
(7)支柱構造体の構成部材を簡素化できて、製作コストを大幅に削減できる。
(8)軸力吸収体を複数の弾発杆で構成することで、あらゆる方向に対して弾性変形が可能である。そのため、予期せぬ方向からの荷重に起因する変形や、ねじれに対しても弾発杆の基端に過度の応力が集中せずに柔軟に変形に追従することができる。
(9)支柱構造体を構成する軸力吸収体と変形誘導体等の軽量化が図れるので、支柱構造体の現場への運搬性及び組立性がよくなり、施工性の改善とコストの低減を図ることができる。
(10)支柱構造体が自己復元性を有するから、衝撃吸収柵の修復性に優れる。
(11)積雪等の静的荷重だけでなく、落石・雪崩等の動的荷重に対しても、十分なエネルギー吸収性能を発揮できる。
According to the present invention, at least one of the following effects can be obtained.
(1) A strut structure formed by combining a flexible axial force absorber and a rigid deformed derivative serves as a member that transmits energy (deformed derivative, etc.) and a member that absorbs energy (axial force absorber). Is clear.
Therefore, each strut structure can constantly exhibit damping performance even if it is affected by the undulation of the slope.
(2) Since the roles of the axial force absorber and the deformation derivative are clear, it is possible to accurately calculate the amount of energy absorbed as the entire support structure, and to easily select a member according to the role.
(3) Even if there are undulations on the slope, the standing angle of the receiving surface of the protective net and the height of the fence can be kept constant by adjusting the total length of the connecting material with the length adjuster interposed in the connecting material. .
(4) At the free end of the axial force absorber, the hanging height of the upper side of the protective net is arbitrarily adjusted, so that the installation distance between the axial force absorber and the deformation derivative is kept constant, while the receiving surface of the protective net is The standing angle and the fence height can be kept more accurate.
(5) It is possible to efficiently absorb energy acting on the receiving surface of the protective net by allowing the axial force absorber to be elastically deformed while maintaining the uprightness and allowing the absorption.
(6) Since the axial force absorber exhibits a cushion function, it is possible to avoid the destruction of the deformation derivative and the plurality of connecting members, and thus it is possible to avoid the sudden loss of function of the shock absorbing fence.
(7) The structural members of the support structure can be simplified, and the manufacturing cost can be greatly reduced.
(8) By constituting the axial force absorber with a plurality of bullets, elastic deformation is possible in all directions. Therefore, it is possible to flexibly follow the deformation without concentrating excessive stress on the base end of the elastic shell against deformation or twist caused by an unexpected load.
(9) Axial force absorbers and deformation derivatives constituting the strut structure can be reduced in weight, so that the strut structure can be transported and assembled on site, improving workability and reducing costs. be able to.
(10) Since the support structure has a self-restoring property, it is excellent in the repairability of the shock absorbing fence.
(11) Sufficient energy absorption performance can be exhibited not only for static loads such as snow cover but also for dynamic loads such as falling rocks and avalanches.

本発明に係る一部を省略した衝撃吸収柵の斜視図The perspective view of the shock absorption fence which abbreviate | omitted the part which concerns on this invention 実施例1に係る支柱構造体の側面図Side view of support structure according to embodiment 1 斜面谷側から見た支柱構造体のモデル図Model diagram of the strut structure viewed from the sloped valley side 軸力吸収体の基端の拡大図Enlarged view of the proximal end of the axial force absorber 変形誘導体の基端の拡大図Enlarged view of the proximal end of the modified derivative 理想的な支柱構造体のモデル図Model diagram of ideal strut structure 起伏がある斜面に支柱構造体を設置する方法の説明図で、(A)は後下がりの斜面に設置する場合の支柱構造体のモデル図、(B)は後上がり斜面に設置する場合の支柱構造体のモデル図It is explanatory drawing of the method of installing a column structure on a slope with ups and downs, (A) is a model figure of a column structure when installing on a slope that falls backward, (B) is a column when installing on a slope that rises backward Model diagram of structure 余長部を備えた理想的な支柱構造体のモデル図Model diagram of ideal strut structure with extra length 起伏がある斜面に支柱構造体を設置する方法の説明図で、(A)は後下がりの斜面に設置する場合の支柱構造体のモデル図、(B)は後上がりの斜面に設置する場合の支柱構造体のモデル図It is explanatory drawing of the method of installing a support structure on a slope with ups and downs, (A) is a model diagram of the support structure when installed on a slope that falls back, (B) is a case of installing on a slope that rises backward Model diagram of support structure エネルギー作用時における衝撃吸収柵のモデル図Model diagram of shock absorbing fence during energy action 実施例3に係る支柱構造体の側面図Side view of support structure according to embodiment 3

以下、図面を参照しながら本発明の実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

<1>衝撃吸収柵
図1に本発明の衝撃吸収柵の斜視図を示し、図2に支柱構造体10の側面図を示し、図3に斜面谷側から見た支柱構造体10のモデル図を示す。
<1> Shock Absorbing Fence FIG. 1 is a perspective view of the shock absorbing fence of the present invention, FIG. 2 is a side view of the strut structure 10, and FIG. 3 is a model diagram of the strut structure 10 viewed from the inclined valley side. Indicates.

本発明に係る衝撃吸収柵は、斜面11等に間隔を隔てて設けた複数の支柱構造体10と、支柱構造体10の間に張設した防護ネット40とにより構成する。
尚、図1において符号18は端部の支柱構造体10と斜面11との間に張設した単数または複数の控えロープである。
The shock absorbing fence according to the present invention includes a plurality of support structures 10 provided at an interval on the slope 11 and the like, and a protection net 40 stretched between the support structures 10.
In FIG. 1, reference numeral 18 denotes one or a plurality of holding ropes stretched between the support structure 10 at the end and the inclined surface 11.

<2>支柱構造体
支柱構造体10は受面41で受けたエネルギーを吸収する機能と支柱機能を併有する構造体で、基端を谷側斜面に固定して斜面11に回動自在に立設した軸力吸収体20と、軸力吸収体20と交差して配置し、基端を山側斜面に固定して斜面11に回動自在に立設した変形誘導体30と、軸力吸収体20と変形誘導体30の各自由端との間、および軸力吸収体20と変形誘導体30の各自由端と基端(斜面11)との間をそれぞれ連結した非伸縮性の第一〜第三の連結材12〜14とを具備する。
<2> Column structure The column structure 10 is a structure having both the function of absorbing energy received by the receiving surface 41 and the column function, and the base end is fixed to the valley-side inclined surface so as to be rotatable on the inclined surface 11. An axial force absorber 20 provided, a deformation derivative 30 which is arranged so as to intersect with the axial force absorber 20, is fixed to the slope on the mountain side, and is rotatably erected on the slope 11, and the axial force absorber 20. And the non-stretchable first to third members respectively connecting the free end and the base end (slope 11) of the axial force absorber 20 and the deformable derivative 30. Connecting members 12-14.

軸力吸収体20と変形誘導体30の交差角度と、各連結材12〜14の全長は、受面41に作用するエネルギーを軸力吸収体30と各連結材12〜14に分散して伝達しつつ、軸力吸収体20に軸力として作用するように関係付けている。
以降に支柱構造体10の詳細について詳述する。
The crossing angle of the axial force absorber 20 and the deformation derivative 30 and the total length of each of the connecting members 12 to 14 transmit energy acting on the receiving surface 41 in a distributed manner to the axial force absorber 30 and each of the connecting members 12 to 14. However, the axial force absorber 20 is related to act as an axial force.
Hereinafter, details of the support structure 10 will be described in detail.

<2.1>軸力吸収体
軸力吸収体20は、受面41に作用するエネルギーを圧縮変形により吸収するダンパー機能を有した弾性構造体であり、両端部を収束した複数の弾発杆21からなる。
本例では軸力吸収体20を二本の弾発杆21,21で構成する場合について説明するが、弾発杆21の本数は適宜でよく、一本、又は三本以上であってもよい。
弾発杆21の素材は、例えば、棒鋼、バネ鋼等の金属材料や樹脂等の弾性材料を適用できる。
<2.1> Axial force absorber The axial force absorber 20 is an elastic structure having a damper function that absorbs energy acting on the receiving surface 41 by compressive deformation, and a plurality of elastic shells that converge at both ends. 21.
In this example, the case where the axial force absorber 20 is constituted by two bullets 21 and 21 will be described. However, the number of bullets 21 may be appropriate, and may be one or three or more. .
For example, a metal material such as a bar steel or spring steel, or an elastic material such as a resin can be used as the material of the bomb 21.

弾発杆21の周面におねじが形成されていて、防護ネット40の上辺の吊り高さを調整できるようになっている。   Screws are formed on the peripheral surface of the bullet urn 21 so that the suspension height of the upper side of the protective net 40 can be adjusted.

<2.1.1>軸力吸収体の基端側の構造
図2〜4に示すように、弾発杆21の基端は支軸22により接地板23の支持ブラケット24に回動自在に枢支され、接地板23にアンカー25を打設して斜面11に固定されている。
<2.1.1> Structure on the Base End Side of the Axial Force Absorber As shown in FIGS. 2 to 4, the base end of the elastic rod 21 is rotatable to the support bracket 24 of the ground plate 23 by the support shaft 22. It is pivotally supported, and an anchor 25 is driven on the ground plate 23 and fixed to the slope 11.

<2.1.2>軸力吸収体の自由端の構造
図2,3に示すように、各弾発杆21の自由端には、上下一対のナット26,26が螺着してある。
複数の弾発杆21の自由端の間は、上下一対の結束板27,27を貫挿して配置して、両弾発杆21,21の自由端を分離不能に結束している。
<2.1.2> Structure of Free End of Axial Force Absorber As shown in FIGS. 2 and 3, a pair of upper and lower nuts 26, 26 are screwed to the free end of each elastic rod 21.
Between the free ends of the plurality of bullets 21, a pair of upper and lower bundling plates 27, 27 are disposed so as to bind the free ends of the two bullets 21, 21 so that they cannot be separated.

各弾発杆21の上部に外装したスペーサ管28と結束板27,27は弾発杆21に対し拘束を維持したままスライド移動が可能であり、上下一対のナット26,26の螺着位置を上下することで結束板27,27の設置位置を弾発杆21に沿って任意の高さに調整することができる。
尚、各結束板27,27と管28はそれぞれ別体であるが、下位の結束板27と管28は一体構造であってもよい。
The spacer tube 28 and the bundling plates 27, 27, which are externally mounted on the upper part of each of the bullets 21, can be slid while maintaining the restraint with respect to the bullets 21, and the screwing positions of the pair of upper and lower nuts 26, 26 are set. By moving up and down, the installation position of the binding plates 27 and 27 can be adjusted to an arbitrary height along the elastic rod 21.
Each of the binding plates 27 and 27 and the tube 28 are separate bodies, but the lower binding plate 27 and the tube 28 may have an integrated structure.

各弾発杆21の上部の管28には、防護ネット40を垂下するための上ロープ15の端部が分離不能に係留し、結束板27には第一および第三の連結材12,14の各上端が分離不能に係留している。   An end of the upper rope 15 for hanging the protective net 40 is moored in an inseparable manner on the pipe 28 at the upper part of each of the bullets 21, and the first and third connecting members 12, 14 are attached to the binding plate 27. The upper ends of each are moored inseparably.

防護ネット40の上辺の吊り高さを調整する手段は、ナット26,26に限定されるものではなく、ピン止めや溶接等のように弾発杆21の任意の位置で結束板27を位置決めできる公知の位置決め手段を適用できる。   The means for adjusting the suspension height of the upper side of the protective net 40 is not limited to the nuts 26, 26, and the binding plate 27 can be positioned at any position of the elastic rod 21 such as pinning or welding. Known positioning means can be applied.

<2.2>変形誘導体
変形誘導体30は軸力吸収体20を構成する弾発杆21,21の間に位置する形態で変形誘導体30と交差している。
変形誘導体30は受面41に作用するエネルギーを軸力吸収体20の軸力として誘導するために機能する剛性材で、例えは鋼管等で構成する。
前記機能を発揮するため、変形誘導体30の圧縮強度は軸力吸収体20より大きい関係にある。
<2.2> Deformation Derivative The deformation derivative 30 intersects with the deformation derivative 30 in a form located between the bullets 21 and 21 constituting the axial force absorber 20.
The deformation derivative 30 is a rigid material that functions to induce the energy acting on the receiving surface 41 as the axial force of the axial force absorber 20, and is formed of, for example, a steel pipe.
In order to exhibit the function, the compressive strength of the deformation derivative 30 is larger than that of the axial force absorber 20.

<2.2.1>変形誘導体の基端の枢支構造
図2に示すように、変形誘導体30の基端は、支軸31により接地板32の支持ブラケット33に回動在に枢支され、接地板32にアンカー34を打設して斜面11へ固定されている。
<2.2.1> Pivot Support Structure of Deformation Derivative Base As shown in FIG. 2, the base end of the deformation derivative 30 is pivotally supported by the support bracket 33 of the ground plate 32 by the support shaft 31. An anchor 34 is placed on the ground plate 32 and fixed to the slope 11.

図5に拡大して示すように、接地板32に起立して形成した前方接続片32aには第三の連結材14の下端を連結し、左右斜め方向に起立して形成した各側方接続片32b,32bには防護ネット40の下辺に接続した下ロープ16,16を連結する。   As shown in FIG. 5 in an enlarged manner, the lower end of the third connecting member 14 is connected to the front connection piece 32a formed upright on the ground plate 32, and each side connection formed upright in the diagonal direction. The lower ropes 16 and 16 connected to the lower side of the protective net 40 are connected to the pieces 32b and 32b.

<2.2.2>変形誘導体の自由端
図2に示すように、変形誘導体30の自由端には掛止用の突起35が突設してあって、変形誘導体30の自由端に係留した第1および第二の連結材12,13の一端のループ部を位置決めして接続できるようになっている。
第1および第二の連結材12,13の係留手段は突起35に限定されず、公知の係留手段を適用できる。
<2.2.2> Free end of deformation derivative As shown in FIG. 2, a protrusion 35 for latching is provided at the free end of the deformation derivative 30 and is anchored to the free end of the deformation derivative 30. The loop portions at one end of the first and second connecting members 12 and 13 can be positioned and connected.
The anchoring means of the first and second connecting members 12 and 13 is not limited to the protrusion 35, and a known anchoring means can be applied.

<2.3>連結材
各連結材12〜14は、引張耐力に優れた例えば鋼製又は繊維製のロープ、鋼棒、鋼板等で構成することができる。
第一の連結材12は軸力吸収体20の自由端と変形誘導体30の自由端との間に連結し、第二の連結材13は変形誘導体30の自由端と軸力吸収体20の基端側との間を連結し、第三の連結材14は変形誘導体30の自由端と変形誘導体30の基端との間を連結する。
尚、第一〜第三の連結材12〜14は1本の連続した部材で構成してもよい。
<2.3> Connecting Material Each of the connecting materials 12 to 14 can be made of, for example, a steel or fiber rope, a steel rod, a steel plate or the like excellent in tensile strength.
The first connecting member 12 is connected between the free end of the axial force absorber 20 and the free end of the deformation derivative 30, and the second connecting member 13 is a base of the free end of the deformable derivative 30 and the axial force absorber 20. The third connecting member 14 connects the free end of the deformation derivative 30 and the base end of the deformation derivative 30.
In addition, you may comprise the 1st-3rd connection materials 12-14 by one continuous member.

本発明では軸力吸収体20が緩衝機能を有するため、従来と比較して各連結材12〜14の張力負担と各アンカー25,34の負担が小さくなる。   In the present invention, since the axial force absorber 20 has a buffer function, the tension load on each of the connecting members 12 to 14 and the load on each of the anchors 25 and 34 are reduced as compared with the related art.

本発明では、第二の連結材13の途中に、現場で長さ調整が可能な長さ調整具17を介装する場合について説明する。
長さ調整具17はターンバックル等の他に、張力に耐え得る公知の調整具を適用できる。
In the present invention, a case will be described in which a length adjusting tool 17 capable of adjusting the length in the field is interposed in the middle of the second connecting member 13.
The length adjuster 17 may be a known adjuster that can withstand tension, in addition to a turnbuckle or the like.

<3>防護ネット
防護ネット40は受面41を有する構造体で、例えば金網、又はロープ製ネット、或いはこれらを組合せた公知のネットを含む。
又、防護ネット40は複数のスパンに亘る全長を有するものの他に、支柱構造体10の1スパン単位に分割したものであってもよい。
<3> Protective Net The protective net 40 is a structure having a receiving surface 41 and includes, for example, a metal net, a rope net, or a known net in which these are combined.
Moreover, the protection net | network 40 may be divided | segmented into 1 span unit of the support | pillar structure 10 other than what has the full length over several spans.

防護ネット40は山側斜面に配設され、その上辺を軸力吸収体20の自由端に取り付けて垂下させる。
本例では、防護ネット40の上辺を軸力吸収体20の自由端の間に横架した上ロープ15に取り付け、また防護ネット40の下辺を変形誘導体30の基端の間に横架した下ロープ16に取り付けている。
The protective net 40 is disposed on the mountain side slope, and the upper side thereof is attached to the free end of the axial force absorber 20 and is suspended.
In this example, the upper side of the protective net 40 is attached to the upper rope 15 that is laid between the free ends of the axial force absorber 20, and the lower side of the protective net 40 is laid down between the base ends of the deformable derivative 30. It is attached to the rope 16.

[衝撃吸収柵の組立]
次に衝撃吸収柵の組立方法について説明する。
[Assembly of shock absorbing fence]
Next, a method for assembling the shock absorbing fence will be described.

<1>資材の搬入
衝撃吸収柵を構成する支柱構造体10と防護ネット40を現場へ搬入する。
資材の搬入に際し、支柱構造体10を構成する棒鋼製の弾発杆21や連結材12〜14が作業員による持ち運びが可能な重量に小分けして軽量化されているので、現場が山岳地帯であっても資材の搬入が容易である。
<1> Carrying in materials The column structure 10 and the protection net 40 constituting the shock absorbing fence are carried into the site.
When the material is carried in, the steel bar munitions 21 and the connecting members 12 to 14 constituting the support structure 10 are subdivided into weights that can be carried by workers, so the site is in a mountainous area. Even if there is, it is easy to carry in materials.

<2>支柱構造体の組立て
図1,2を参照して支柱構造体10の組立て例について説明する。
斜面11に間隔を隔てて打設した各アンカー25,34に接地板23,32をセットした後、各アンカー25,34の頭部をナットで固定する。
つぎに、下位側の設置板23に支軸22を介して、軸力吸収体20の基端を枢支するとともに、上位の設置板32に支軸31を介して、変形誘導体30の基端を枢支する。
変形誘導体30に交差させた軸力吸収体20の自由端に結束板27,27と管28をセットし、その両側にナット26,26を螺着する。
最後に、軸力吸収体20および変形誘導体30の各自由端と基端との間をそれぞれ非伸縮性の第一〜第三の連結材12〜14を連結して支柱構造体10の組立てを完了する。
<2> Assembly of support structure The assembly example of the support structure 10 will be described with reference to FIGS.
After setting the grounding plates 23 and 32 to the anchors 25 and 34 driven at intervals on the slope 11, the heads of the anchors 25 and 34 are fixed with nuts.
Next, the base end of the axial force absorber 20 is pivotally supported on the lower installation plate 23 via the support shaft 22, and the base end of the deformation derivative 30 is supported on the upper installation plate 32 via the support shaft 31. Pivot.
Bundling plates 27 and 27 and a tube 28 are set on the free ends of the axial force absorber 20 crossing the deformation derivative 30, and nuts 26 and 26 are screwed on both sides thereof.
Finally, the support structure 10 is assembled by connecting the non-stretchable first to third connecting members 12 to 14 between the free ends and the base ends of the axial force absorber 20 and the deformation derivative 30. Complete.

軸力吸収体20が多少撓んでも変形誘導体30が変形しないので、両部材20,30を交差させて支柱構造体10を立体的に組み上げる組立作業がし易い。
さらに、軸力吸収体20と変形誘導体30の起立設置作業を人力で行えるので、支柱構造体10の組立てにクレーン等が不要である。
Even if the axial force absorber 20 is slightly bent, the deformation derivative 30 is not deformed. Therefore, it is easy to assemble the support structure 10 in a three-dimensional manner by intersecting the members 20 and 30.
Furthermore, since the upright installation work of the axial force absorber 20 and the deformation derivative 30 can be performed manually, a crane or the like is not required for assembling the support structure 10.

<3>防護ネットの組付け
隣り合う各支柱構造体10の頂部間、すなわち軸力吸収体20の上部間に上ロープ15を横架する。隣り合う各支柱構造体10の下部間、すなわち変形誘導体30の基端の接地板32の間に下ロープ16を横架する。
上下ロープ15,16の間に防護ネット40の上下辺をそれぞれ分離しないように取り付けて衝撃吸収柵の組み立てを完了する。
<3> Assembling the protective net The upper rope 15 is placed between the tops of the adjacent strut structures 10, that is, between the upper portions of the axial force absorbers 20. The lower rope 16 is placed horizontally between the lower portions of the adjacent strut structures 10, that is, between the ground plates 32 at the base end of the deformation derivative 30.
The upper and lower sides of the protective net 40 are attached so as not to be separated between the upper and lower ropes 15 and 16, and the assembly of the shock absorbing fence is completed.

完成した衝撃吸収柵を示した図2において、斜面山側に傾倒する軸力吸収体20の重量は、連結材12,13を介して斜面11と剛性の変形誘導体30に分散して支持される。
斜面谷側に傾倒する変形誘導体30の重量は、連結材12,14を介して斜面11と軸力吸収体20に分散して支持されている。
防護ネット40の重量は、軸力吸収体20と、連結材12,13を介して斜面11と剛性の変形誘導体30に分散して支持されている。
このように支柱構造体10を構成する軸力吸収体20と変形誘導体30は、互いに重量がバランスして安定姿勢を維持することができる。
In FIG. 2 showing the completed shock absorbing fence, the weight of the axial force absorber 20 tilting toward the slope mountain side is dispersed and supported by the slope 11 and the rigid deformation derivative 30 via the connecting members 12 and 13.
The weight of the deformation derivative 30 that tilts toward the slope valley is dispersed and supported by the slope 11 and the axial force absorber 20 via the connecting members 12 and 14.
The weight of the protective net 40 is dispersed and supported on the slope 11 and the rigid deformation derivative 30 via the axial force absorber 20 and the connecting members 12 and 13.
As described above, the axial force absorber 20 and the deformation derivative 30 constituting the support structure 10 are able to maintain a stable posture with their weights balanced.

[斜面に起伏がある場合の対処法]
衝撃吸収柵が本来の落石等の捕捉機能を果たすためには、防護ネット40の受面41の起立角度を一定に保つことと、防護ネット40の受面41の高さ(柵高)を十分に確保することが求められる。
支柱構造体10を構成する各部材の寸法長さが一定規格(定寸)であると、斜面11の起伏の影響を受けて、受面41の起立角度(水平または鉛直に対する角度)と柵高を一定に揃えることができない。
そこで本発明では、起伏がある斜面11に支柱構造体10を設置するときにはつぎの方法で対処する。
[How to deal with undulations on slopes]
In order for the shock absorbing fence to perform the original trapping function such as falling rocks, the rising angle of the receiving surface 41 of the protective net 40 is kept constant, and the height (fence height) of the receiving surface 41 of the protective net 40 is sufficient. It is required to secure it.
When the dimensional length of each member constituting the column structure 10 is a constant standard (fixed dimension), the rising angle of the receiving surface 41 (angle with respect to horizontal or vertical) and the fence height are affected by the undulation of the slope 11. Cannot be made uniform.
Therefore, in the present invention, when the support structure 10 is installed on the slope 11 with the undulations, the following method is used.

<1>対処法1
図6に理想的な寸法バランスをした支柱構造体10のモデル図を示す。
同図において、軸力吸収体20と変形誘導体30の基端の据付距離(斜距離)
をL、防護ネット40の柵高をH、第一の連結材12の全長をx、第二の連結材13の全長をyとした場合、本対処法では、軸力吸収体20と変形誘導体30の全長、防護ネット40の柵高H、および第一の連結材12の全長xが変化しないことを前提とした対処法について説明する。
<1> Countermeasure 1
FIG. 6 shows a model diagram of the column structure 10 having an ideal dimension balance.
In the figure, the installation distance (slope distance) of the proximal ends of the axial force absorber 20 and the deformation derivative 30
Is L, the fence height of the protective net 40 is H, the total length of the first connecting member 12 is x, and the total length of the second connecting member 13 is y. A countermeasure that assumes that the total length of 30, the fence height H of the protective net 40, and the total length x of the first connecting member 12 do not change will be described.

図7の(A)は斜面11が図6の基準勾配と比べて勾配θ1の角度で余分に傾斜した後下がり(または前上がり)状態を示し、また図7の(B)は斜面11が図6の基準勾配と比べて勾配θ2の角度で逆向きに傾斜した後上がり(または前下がり)状態を示している。 FIG. 7A shows a state in which the slope 11 is excessively inclined at an angle of the gradient θ 1 compared to the reference gradient in FIG. 6 and then is lowered (or forwardly raised), and FIG. Compared with the reference gradient of FIG. 6, the state is shown in a state of rising (or falling forward) after inclining in the opposite direction at an angle of gradient θ 2 .

図7の(A)に示すように、斜面11が後下がりのときは、防護ネット40が斜面谷側へ向けた過剰な傾倒を回避するため、支柱構造体10の基端の据付距離L1を短くする。
据付距離L1のみを短くすると全体の寸法バランスが崩れてしまう。
そこで、調整具17を延長操作して第二の連結材13の全長y1を長くすることで、全体の良好な寸法バランスを保つことができる。
As shown in FIG. 7A, when the slope 11 is lowered rearward, the installation distance L 1 of the base end of the column structure 10 is avoided so that the protective net 40 avoids excessive tilting toward the slope valley side. To shorten.
If only the installation distance L 1 is shortened, the overall dimensional balance is lost.
Therefore, by extending the adjustment tool 17 to increase the total length y 1 of the second connecting member 13, it is possible to maintain a good overall dimensional balance.

図7の(B)に示すように、斜面11が後上がりのときは、防護ネット40が斜面山側へ向けた過剰な傾倒を回避するため、支柱構造体10の基端の据付距離L2を長くする。
据付距離L2のみを長くすると全体の寸法バランスが崩れてしまう。
そこで、調整具17を用いて第二の連結材13の全長y2を短くすることで、全体の良好な寸法バランスを保つことができる。
As shown in FIG. 7B, when the slope 11 rises rearward, in order to avoid excessive tilting of the protective net 40 toward the slope mountain side, the installation distance L 2 of the base end of the column structure 10 is set to Lengthen.
Dimensions balance of the whole Longer only installation distance L 2 is lost.
Therefore, by using the adjuster 17 to shorten the overall length y 2 of the second connecting member 13, it is possible to maintain a good overall dimensional balance.

本対処法では、防護ネット40、第一の連結材12および変形誘導体30の三辺で形成される三角形の形状と各辺の長さが変わらない。
以上のように、設置現場の斜面11の勾配に応じて第二の連結材13の全長yを調整するだけの操作で、理想的な寸法バランスを維持して、受面41の起立角度と柵高を一定に保つことができる。
In this countermeasure, the shape of the triangle formed by the three sides of the protective net 40, the first connecting member 12, and the modified derivative 30 does not change the length of each side.
As described above, the ideal dimensional balance is maintained by simply adjusting the total length y of the second connecting member 13 according to the slope of the slope 11 at the installation site, and the standing angle of the receiving surface 41 and the fence The height can be kept constant.

<2>対処法2
図8に理想的な寸法バランスをした支柱構造体10のモデル図を示す。
本対処法では、軸力吸収体20と変形誘導体30の全長、防護ネット40の柵高H、第一の連結材12の全長xが変化しないことは先の対処法1と同様であるが、本体処法は軸力吸収体20と変形誘導体30の据付距離Lを変化させないことを前提とする。
<2> Countermeasure 2
FIG. 8 shows a model diagram of the column structure 10 having an ideal dimension balance.
In this countermeasure, the total length of the axial force absorber 20 and the deformation derivative 30, the fence height H of the protective net 40, and the total length x of the first connecting member 12 are the same as in the previous countermeasure 1, The main body processing method presupposes that the installation distance L of the axial force absorber 20 and the deformation derivative 30 is not changed.

本対処法において使用する軸力吸収体20は、対処法1と比べて全長の長い弾発杆で構成して、軸力吸収体20の自由端部に余長部20aが形成してあり、ナット26を回転操作することで防護ネット40の上辺の垂下高さを任意に調整できる構造となっている。
余長部20aとは、軸力吸収体20のうちのナット26の螺着位置から先端までの区間を指し、ナット26の螺着位置を変位することで余長部20aの長さが変化する。
The axial force absorber 20 used in the present coping method is constituted by a bullet with a long overall length compared to the coping method 1, and an extra length portion 20a is formed at the free end of the axial force absorber 20, By rotating the nut 26, the hanging height of the upper side of the protective net 40 can be arbitrarily adjusted.
The extra length portion 20a refers to a section from the screwing position of the nut 26 to the tip of the axial force absorber 20, and the length of the extra length portion 20a changes by displacing the screwing position of the nut 26. .

図9の(A)に示すように、斜面11が後下がりのときは、防護ネット40が斜面谷側へ傾倒するのを回避するため、調整具17を延長操作して第二の連結材13の全長y1を長くするとともに、軸力吸収体20上のナット26を先端側へ変位させることで、受面41の起立角度と柵高を一定に保つことが可能となる。 As shown in FIG. 9A, when the slope 11 is lowered rearward, the second connecting member 13 is extended by operating the adjustment tool 17 in order to prevent the protective net 40 from tilting toward the slope valley. It is possible to keep the standing angle of the receiving surface 41 and the height of the fence constant by increasing the total length y 1 and displacing the nut 26 on the axial force absorber 20 toward the tip side.

図9の(B)に示すように、斜面11が後上がりのときは、防護ネット40が斜面山側へ傾倒するのを回避するため、調整具17を短縮操作して第二の連結材13の全長y2を短くするとともに、軸力吸収体20上のナット26を基端側へ変位させることで、受面41の起立角度と柵高を一定に保つことが可能となる。 As shown in FIG. 9B, when the slope 11 is rearwardly raised, the adjustment tool 17 is shortened to avoid the tilt of the protective net 40 toward the slope mountain side. By shortening the total length y 2 and displacing the nut 26 on the axial force absorber 20 toward the base end side, it is possible to keep the standing angle and the fence height of the receiving surface 41 constant.

本対処法においても、防護ネット40、第一の連結材12および変形誘導体30の三辺で形成される三角形の形状と各辺の長さが変わらない。
本対処法においては、設置現場の斜面11の勾配に応じて第二の連結材13の全長yを調整する操作と、軸力吸収体20上のナット26の位置を調整する操作により、軸力吸収体20と変形誘導体30の据付距離Lを一定に保ちながら、理想的な寸法バランスを維持して、受面41の起立角度と柵高を一定に保つことができる。
Even in this countermeasure, the shape of the triangle formed by the three sides of the protective net 40, the first connecting member 12, and the deformation derivative 30 does not change.
In this countermeasure, the axial force is adjusted by an operation of adjusting the total length y of the second connecting member 13 according to the gradient of the slope 11 at the installation site and an operation of adjusting the position of the nut 26 on the axial force absorber 20. While maintaining the installation distance L between the absorber 20 and the deformable derivative 30 to be constant, an ideal dimensional balance can be maintained and the standing angle of the receiving surface 41 and the fence height can be kept constant.

前記した対処法1,2は現場の状況に応じて使い分けするか、或いは併用する。
The above-mentioned countermeasures 1 and 2 are used properly according to the situation at the site or used in combination.

[衝撃吸収柵のエネルギー吸収]
次に図10に基づき衝撃吸収柵によるエネルギーの吸収メカニズムについて説明する。
[Energy absorption of shock absorbing fence]
Next, the energy absorption mechanism by the shock absorbing fence will be described with reference to FIG.

<1>防護ネットの撓み変形
受面41にエネルギーが作用すると防護ネット40は斜面谷側へ向けて撓み変形し、防護ネット40の撓み変形によりエネルギーの一部が減衰される。
<1> Deformation deformation of protection net When energy acts on the receiving surface 41, the protection net 40 bends and deforms toward the inclined valley, and a part of the energy is attenuated by the deformation of the protection net 40.

<2>変形誘導体の非圧縮変形
軸力吸収体20が基端を中心として時計回りの方向へと回動しようとして第一及び第二の連結材12,13に張力が生じる。
第一及び第二の連結材12,13に張力は、斜面谷側へ傾倒する変形誘導体30に対して軸力として作用するが、その剛性により圧縮変形をせずに変形誘導体30に支持される。
<2> Non-compression deformation of deformation derivative A tension is generated in the first and second connecting members 12 and 13 as the axial force absorber 20 tries to rotate in the clockwise direction around the base end.
The tension acts on the first and second connecting members 12 and 13 as an axial force with respect to the deformation derivative 30 that tilts toward the inclined valley, but is supported by the deformation derivative 30 without compressive deformation due to its rigidity. .

<3>変形誘導体の傾倒拘束
しかも変形誘導体30の自由端が斜面11に接続した第二の連結材13と、軸力吸収体20の自由端に接続した第一の連結材12により支持されていて、変形誘導体30の傾倒角度はほとんど変わらず、変形誘導体30の傾倒が拘束される。
そのため、変形誘導体30に作用するエネルギーを軸力吸収体20へ誘導することができる。
<3> Tilt restraint of deformation derivative In addition, the free end of deformation derivative 30 is supported by second connection member 13 connected to slope 11 and first connection member 12 connected to the free end of axial force absorber 20. Thus, the tilt angle of the deformation derivative 30 hardly changes, and the tilt of the deformation derivative 30 is restricted.
Therefore, energy acting on the deformation derivative 30 can be guided to the axial force absorber 20.

<4>軸力吸収体の回動拘束
同時に、軸力吸収体20が基端を中心として時計回りの方向へと回動しようとして第一及び第二の連結材12,13に張力を生じる。
第一及び第二の連結材12,13に作用する張力は最終的にアンカー25に支持されて、軸力吸収体20の時計回りの方向の回動が拘束される。
<4> Rotation restraint of axial force absorber At the same time, the axial force absorber 20 tries to rotate in the clockwise direction around the base end, and tension is generated in the first and second connecting members 12 and 13.
The tension acting on the first and second connecting members 12 and 13 is finally supported by the anchor 25, and the clockwise rotation of the axial force absorber 20 is restricted.

<5>軸力吸収体の圧縮変形 <5> Compression deformation of axial force absorber

防護ネット40により生じる張力と、第一及び第二の連結材12,13により生じる張力の合力が、軸力吸収体20に対して軸力として作用する。
軸力吸収体20に生じる軸力がその変形強度を越えると、軸力吸収体20が圧縮変形する。
軸力吸収体20の圧縮変形によりエネルギーが効率的に吸収される。
殊に、エネルギーの吸収部材が軸力吸収体20だけであるため、エネルギーの吸収性能の計算がし易く、しかも安定したエネルギーの吸収性能を発揮できる。
A resultant force of the tension generated by the protection net 40 and the tension generated by the first and second connecting members 12 and 13 acts on the axial force absorber 20 as an axial force.
When the axial force generated in the axial force absorber 20 exceeds the deformation strength, the axial force absorber 20 is compressed and deformed.
Energy is efficiently absorbed by the compressive deformation of the axial force absorber 20.
In particular, since the energy absorbing member is only the axial force absorber 20, the energy absorbing performance can be easily calculated, and stable energy absorbing performance can be exhibited.

さらに、大きなエネルギーが作用しても軸力吸収体20がクッションとなって第一及び第二の連結材12,13の破断と、変形誘導体30の座屈破壊を回避するので、衝撃吸収柵の機能が突発的に失われることがない。   Furthermore, even if a large amount of energy acts, the axial force absorber 20 acts as a cushion to avoid breakage of the first and second connecting members 12 and 13 and buckling failure of the deformation derivative 30. Function is not lost suddenly.

また軸力吸収体20に斜面11の横断方向の曲げや、ねじりが作用しても、軸力吸収体20を構成する弾発杆21,21の自由端が曲げ変形したり、ねじれるだけで、弾発杆21,21のの基端に曲げ力やねじり力が作用しない。
そのため、軸力吸収体20に曲げやねじりが作用しても破壊しない。
Further, even if bending or twisting of the inclined surface 11 acts on the axial force absorber 20, the free ends of the elastic rods 21 and 21 constituting the axial force absorber 20 are bent and deformed or twisted. Bending force and torsional force do not act on the base ends of the bullets 21 and 21.
Therefore, even if bending or twisting acts on the axial force absorber 20, it does not break.

このように本発明に係る衝撃吸収柵は、防護ネット40で受けたエネルギーを、軸力吸収体20のみに軸力として伝達し、控え材である連結材12,13に引張として伝達するように構成するとともに、軸力吸収体20に作用する軸力を、直立性を維持したまま軸力吸収体20を圧縮変形させてエネルギーを効率的に吸収することが可能となる。
さらに支柱構造体10が緩衝機能を有するため、各連結材12,13の張力負担と各アンカー23,34の荷重負担を小さくできる。
As described above, the shock absorbing fence according to the present invention transmits the energy received by the protective net 40 as an axial force only to the axial force absorber 20 and transmits it as a tension to the connecting members 12 and 13 as the holding members. In addition, the axial force acting on the axial force absorber 20 can be efficiently deformed by compressing and deforming the axial force absorber 20 while maintaining uprightness.
Furthermore, since the column structure 10 has a buffer function, the tension load of the connecting members 12 and 13 and the load load of the anchors 23 and 34 can be reduced.

<6>エネルギーの消滅後
防護ネット40(受面41)からエネルギーの発生要因が取り除かれた後は、支柱構造体10を構成する軸力吸収体20が自己の弾性復元力によって元の待機位置へと戻る。
支柱構造体10の復元に伴い、防護ネット40も元の位置に引き上げられる。
そのため、エネルギーの作用前の状態を保ち衝撃吸収柵の機能を引き続き維持することができる。
例えば、エネルギーの発生要因が積雪圧の場合には、雪が溶けると自然に軸力吸収体20が元の位置へと戻るため、特段の処置を施すことなく、衝撃吸収柵の機能を常に発揮させておくことができる。
<6> After the disappearance of energy After the energy generation factor is removed from the protective net 40 (receiving surface 41), the axial force absorber 20 constituting the column structure 10 is restored to its original standby position by its own elastic restoring force. Return to.
As the support structure 10 is restored, the protective net 40 is also lifted to the original position.
Therefore, the state before the action of energy can be maintained and the function of the shock absorbing fence can be continuously maintained.
For example, if the energy generation factor is snow pressure, the axial force absorber 20 will naturally return to its original position when the snow melts, so that the function of the shock absorbing fence is always exerted without taking any special measures. I can keep it.

支柱構造体10を構成する軸力吸収体20や変形誘導体30が変形したり破壊したりしても、損傷した資材のみの交換を簡単かつ短時間に行える。
Even if the axial force absorber 20 and the deformation derivative 30 constituting the support structure 10 are deformed or broken, only the damaged material can be replaced easily and in a short time.

実施例1では、防護ネット40の下辺を変形誘導体30の基端に固定した形態について説明した。
軸力吸収体20の自由端に防護ネット40を垂下することで、重量バランスがとれて支柱構造体10の安定姿勢を維持できるので、防護ネット40の下辺を山側斜面に固定することも可能である。
防護ネット40の下辺を山側斜面に固定することで、実施例1と比べて防護ネット40の斜面傾斜方向の長さを長くして、防護ネット40の撓み変形量を大きくできるので、エネルギーの吸収性能が高くなるといった利点がある。
In the first embodiment, the configuration in which the lower side of the protective net 40 is fixed to the base end of the modified derivative 30 has been described.
By hanging the protective net 40 on the free end of the axial force absorber 20, the weight balance is maintained and the stable posture of the support structure 10 can be maintained, so the lower side of the protective net 40 can be fixed to the mountain slope. is there.
By fixing the lower side of the protective net 40 to the slope on the mountain side, the length of the protective net 40 in the inclined direction of the slope can be increased compared to the first embodiment, and the amount of bending deformation of the protective net 40 can be increased. There is an advantage of high performance.

実施例1,2では長さ調整具17を第二の連結材13に介装した形態について説明したが、長さ調整具17は第一の連結材12に介装してもよい。
或いは図11に示すように、第一の連結材12および第二の連結材13長さ調整具17を介装したり、またはすべての連結材12〜14に長さ調整具17を介装したりしてもよい。
長さ調整具17の介装数を増やすことで、斜面11の起伏に応じて軸力吸収体20と変形誘導体30の設置角度を個別に調整できる。
さらに実施例2と組み合わせることで、斜面11に大小様々な起伏が存在する現場でも、受面41の起立角度と柵高を一定に保った設置作業がしやすくなるといった利点がある。
In the first and second embodiments, the mode in which the length adjuster 17 is interposed in the second connecting member 13 has been described. However, the length adjuster 17 may be interposed in the first connecting member 12.
Alternatively, as shown in FIG. 11, the length adjuster 17 is interposed between the first connecting member 12 and the second connecting member 13, or the length adjuster 17 is interposed between all the connecting members 12 to 14. Or you may.
By increasing the number of intervening length adjusters 17, the installation angle of the axial force absorber 20 and the deformation derivative 30 can be individually adjusted according to the undulation of the slope 11.
Further, by combining with the second embodiment, there is an advantage that it is easy to perform the installation work in which the standing angle of the receiving surface 41 and the height of the fence are kept constant even on the site where the slope 11 has various undulations.

10 支柱構造体
12 第一の連結材
13 第二の連結材
14 第三の連結材
15 上ロープ
16 下ロープ
17 長さ調整具
20 軸力吸収体
21 弾発杆
22 支軸
30 変形誘導体
31 支軸
40 防護ネット
41 受面
DESCRIPTION OF SYMBOLS 10 Support | pillar structure 12 1st connection material 13 2nd connection material 14 3rd connection material 15 Upper rope 16 Lower rope 17 Length adjustment tool 20 Axial force absorber 21 Elastic rod 22 Support shaft 30 Deformation derivative 31 Support Shaft 40 Protective net 41 Reception surface

Claims (9)

基端を固定して傾倒自在に立設した軸力吸収体と、前記軸力吸収体と交差して配置するとともに、基端を固定して傾倒自在に立設した変形誘導体と、前記軸力吸収体と変形誘導体の各自由端との間、および前記軸力吸収体と変形誘導体の各自由端と斜面との間をそれぞれ連結した連結材とを具備した衝撃吸収柵の支柱構造体であって、
前記軸力吸収体を、両端を拘束した複数の弾発杆で構成し、
前記変形誘導体を剛性材で構成し、
前記変形誘導体に作用する軸力を、前記連結材を介して前記軸力吸収体へ誘導するように構成したことを特徴とする、
衝撃吸収柵の支柱構造体。
An axial force absorber that is erected in a tiltable manner with a proximal end fixed, a deformation derivative that is disposed so as to be tilted with a proximal end fixed and the axial force absorber, and the axial force A strut structure for an impact absorbing fence, comprising a connecting member that connects between the absorber and each free end of the deformation derivative, and a connecting member that connects the free end of each of the axial force absorber and the deformation derivative and the slope. And
The axial force absorber is composed of a plurality of bullets restrained at both ends,
The deformation derivative is made of a rigid material,
An axial force acting on the deformation derivative is configured to be guided to the axial force absorber through the connecting material,
Shock absorber fence support structure.
請求項1において、前記連結材の一部に長さ調整具を介装して連結材の長さを調整可能に構成したことを特徴とする、衝撃吸収柵の支柱構造体。   The strut structure for an impact absorbing fence according to claim 1, wherein a length adjuster is interposed in a part of the connecting material so that the length of the connecting material can be adjusted. 請求項1または請求項2において、複数の弾発杆の自由端の間を結束板で連結し、該結束板の設置位置を弾発杆に沿って変位可能に構成したことを特徴とする、衝撃吸収柵の支柱構造体。   In Claim 1 or Claim 2, it connected between the free ends of a plurality of bullets with a binding board, and it was constituted so that the installation position of the binding board could be displaced along the bullets. Shock absorber fence support structure. 請求項3において、弾発杆に螺合したナットにより前記結束板の設置位置を弾発杆に沿って変位可能に構成したことを特徴とする、衝撃吸収柵の支柱構造体。   4. The strut structure for an impact-absorbing fence according to claim 3, wherein the installation position of the bundling plate is configured to be displaceable along the elastic rod by a nut screwed into the elastic rod. 請求項1乃至請求項4の何れか1項において、前記軸力吸収体と変形誘導体の基端をそれぞれ固定するアンカーを具備することを特徴とする、支柱構造体。   The strut structure according to any one of claims 1 to 4, further comprising an anchor for fixing the base ends of the axial force absorber and the deformation derivative. 間隔を隔てて立設した複数の支柱構造体と、支柱構造体の間に張設した防護ネットとを具備した衝撃吸収柵であって、
請求項1乃至5の何れか1項に記載の支柱構造体を使用し、
軸力吸収体の基端を谷側斜面に固定するとともに、該軸力吸収体と交差して配置した変形誘導体の基端を山側斜面に固定して前記支柱構造体を立設し、
隣り合う前記各支柱構造体を構成する軸力吸収体の自由端に防護ネットの上辺を取り付けて山側斜面に配置したことを特徴とする、
衝撃吸収柵。
An impact absorbing fence comprising a plurality of support structures standing at intervals and a protective net stretched between the support structures,
Using the support structure according to any one of claims 1 to 5,
While fixing the base end of the axial force absorber to the valley side slope, and fixing the base end of the deformation derivative arranged to intersect the axial force absorber to the mountain side slope, the column structure is erected,
It is characterized in that the upper side of the protective net is attached to the free end of the axial force absorber that constitutes each of the adjacent strut structures and is arranged on the mountain side slope,
Shock absorbing fence.
請求項6において、防護ネットに作用するエネルギーを、交差する軸力吸収体と変形誘導体とに分散させて、該変形誘導体に生ずる軸力を軸力吸収体へ伝達可能なように、前記軸力吸収体と変形誘導体の各自由端との間、および前記軸力吸収体と変形誘導体の各自由端と斜面との間をそれぞれ連結材で連結したことを特徴とする、衝撃吸収柵。   7. The axial force according to claim 6, wherein energy acting on the protective net is dispersed in the crossed axial force absorber and the deformation derivative so that the axial force generated in the deformation derivative can be transmitted to the axial force absorber. An impact-absorbing fence, characterized in that the absorber is connected to each free end of the deformation derivative, and the free end of each of the axial force absorber and the deformation derivative is connected to the inclined surface by a connecting material. 請求項6または請求項7において、防護ネットの下辺を前記各支柱構造体を構成する変形誘導体の基端に取り付けたことを特徴とする、衝撃吸収柵。   The shock absorbing fence according to claim 6 or 7, wherein a lower side of the protective net is attached to a base end of a modified derivative constituting each support structure. 請求項6または請求項7において、防護ネットの下辺を山側斜面に固定したことを特徴とする、衝撃吸収柵。   The shock absorbing fence according to claim 6 or 7, wherein a lower side of the protective net is fixed to a mountain slope.
JP2011107074A 2011-05-12 2011-05-12 Prop structure and guard fence Active JP5309184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011107074A JP5309184B2 (en) 2011-05-12 2011-05-12 Prop structure and guard fence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011107074A JP5309184B2 (en) 2011-05-12 2011-05-12 Prop structure and guard fence

Publications (2)

Publication Number Publication Date
JP2012237145A true JP2012237145A (en) 2012-12-06
JP5309184B2 JP5309184B2 (en) 2013-10-09

Family

ID=47460274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011107074A Active JP5309184B2 (en) 2011-05-12 2011-05-12 Prop structure and guard fence

Country Status (1)

Country Link
JP (1) JP5309184B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6876348B1 (en) * 2020-07-20 2021-05-26 アビエンジニアリング株式会社 Avalanche prevention fence
JP6996801B1 (en) 2021-07-01 2022-01-17 株式会社プロテックエンジニアリング Guard rail

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216830A (en) * 1994-02-08 1995-08-15 Tokyo Seiko Co Ltd Pile foundation structure for falling stone protective net support, and falling stone protective net
JP2001288716A (en) * 2000-04-06 2001-10-19 Tokyo Seiko Co Ltd Large-span rock fall protecting method and support apparatus
JP2002322616A (en) * 2001-04-25 2002-11-08 Yoshida Kouzou Design:Kk Protection net and protection fence
JP2008002125A (en) * 2006-06-21 2008-01-10 Purotekku Engineering:Kk Snow avalanche prevention fence

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216830A (en) * 1994-02-08 1995-08-15 Tokyo Seiko Co Ltd Pile foundation structure for falling stone protective net support, and falling stone protective net
JP2001288716A (en) * 2000-04-06 2001-10-19 Tokyo Seiko Co Ltd Large-span rock fall protecting method and support apparatus
JP2002322616A (en) * 2001-04-25 2002-11-08 Yoshida Kouzou Design:Kk Protection net and protection fence
JP2008002125A (en) * 2006-06-21 2008-01-10 Purotekku Engineering:Kk Snow avalanche prevention fence

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6876348B1 (en) * 2020-07-20 2021-05-26 アビエンジニアリング株式会社 Avalanche prevention fence
JP2022020432A (en) * 2020-07-20 2022-02-01 アビエンジニアリング株式会社 Snowslide preventing fence
JP6996801B1 (en) 2021-07-01 2022-01-17 株式会社プロテックエンジニアリング Guard rail
JP2023007081A (en) * 2021-07-01 2023-01-18 株式会社プロテックエンジニアリング Guard fence

Also Published As

Publication number Publication date
JP5309184B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
CN103088933B (en) A kind of collaborative power consumption curvature-prevention support component with large shake defencive function
CN108951908B (en) Frame shear wall structure with swing energy dissipation column
CN203096993U (en) Synergetic energy-consumption buckling-restrained bracing member with major earthquake protective function
WO2014013631A1 (en) Post structure
JP6173553B1 (en) Seismic control device for bridge
US7254921B2 (en) Rocking hinge bearing system for isolating structures from dynamic/seismic loads
JP4624048B2 (en) Slit leaf springs, earthquake-proof struts using the same, and earthquake-proof reinforcement structures for buildings
CN101672004B (en) Shape memory alloy lazy halyard vibration damper for suspension bridge
CN205046755U (en) Harm controllable shake and decrease steel column that to repair
JP5309184B2 (en) Prop structure and guard fence
CN105178509A (en) Damage controllable and seismic damage repairable steel column
JP5282122B2 (en) Damper device and energy absorber
JP6188242B2 (en) Prop unit
CN105297616A (en) Box type steel pier capable of being repaired quickly in situ during earthquake damage
JP2019031827A (en) Function separation type shock absorber and bridge provided with function separation type shock absorber
WO2021090483A1 (en) Impact-absorbing fence
JP2019074079A (en) Wind power generating system
JP2009102855A (en) Protective fence
CN107974926B (en) Self-balancing bridge damping device that resets
CN102635175A (en) Multipurpose structural seismic resistance energy consumption connecting piece
CN114059574B (en) Assembled flexible damping spiral anchor foundation and power transmission tower
KR20140037610A (en) Support structure and guard fence
JP5281949B2 (en) Damper device and energy absorber
TWI604106B (en) Pillar structure and protective grid
CN202248249U (en) Buckling restrained brace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130109

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130110

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5309184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250