JP2012236878A - Complex, method of producing the complex, rubber composition, and pneumatic tire - Google Patents

Complex, method of producing the complex, rubber composition, and pneumatic tire Download PDF

Info

Publication number
JP2012236878A
JP2012236878A JP2011105394A JP2011105394A JP2012236878A JP 2012236878 A JP2012236878 A JP 2012236878A JP 2011105394 A JP2011105394 A JP 2011105394A JP 2011105394 A JP2011105394 A JP 2011105394A JP 2012236878 A JP2012236878 A JP 2012236878A
Authority
JP
Japan
Prior art keywords
silica
rod
rubber
acid
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011105394A
Other languages
Japanese (ja)
Other versions
JP5735344B2 (en
Inventor
Yoshihiko Komori
佳彦 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2011105394A priority Critical patent/JP5735344B2/en
Publication of JP2012236878A publication Critical patent/JP2012236878A/en
Application granted granted Critical
Publication of JP5735344B2 publication Critical patent/JP5735344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a complex improved in kinetic properties in a predetermined direction, wherein a rod-like silica is dispersed finely.SOLUTION: This invention relates to the complex, wherein the rod-like silica having an average width of 3 to 35 nm and an average length of 50 nm to 5 μm is dispersed in a rubber composition.

Description

本発明は、複合体及びその製造方法、並びに該複合体を含むゴム組成物及びそれを用いた空気入りタイヤに関する。 The present invention relates to a composite, a method for producing the same, a rubber composition containing the composite, and a pneumatic tire using the rubber composition.

無機フィラーをゴム材料に配合することでゴム組成物の物性が大幅に改善されることが知られているが、なかでも、低発熱性などが良好であるという観点から、シリカが汎用されている。しかし、シリカは、表面にシラノール基を有し、親水性を示すため、一般に疎水性を示すゴムとの親和性が低く、更に自己凝集性も強いため、ゴム中に均一に分散させることは容易ではない。 It is known that the physical properties of the rubber composition are greatly improved by blending the inorganic filler with the rubber material. Among them, silica is widely used from the viewpoint of good low heat build-up and the like. . However, since silica has silanol groups on the surface and is hydrophilic, it generally has low affinity with rubber that exhibits hydrophobic properties and strong self-aggregation properties, so it can be easily dispersed uniformly in rubber. is not.

例えば、特許文献1には、ゴムラテックスに水ガラスから製造される微粒子シリカを液体状態で混合し、複合体を製造する方法が開示されているが、シリカの分散性という点で更なる改善が求められている。 For example, Patent Document 1 discloses a method of producing a composite by mixing fine particle silica produced from water glass with rubber latex in a liquid state, but further improvement in terms of dispersibility of silica. It has been demanded.

また、タイヤ工業などで汎用されているシリカは球状であり、それを分散したゴム組成物ではあらゆる方向に平均的に力学的特性が改善されるが、その一方で特定方向に優れた力学的特性を有するゴム組成物も求められている。従って、このような作用を持つフィラーを均一に分散させ、特定方向のゴム物性を改善したゴム材料の提供が望まれている。 Silica, which is widely used in the tire industry and the like, is spherical, and the rubber composition in which it is dispersed improves the mechanical properties on average in all directions, while it has excellent mechanical properties in specific directions. There is also a need for rubber compositions having: Therefore, it is desired to provide a rubber material in which fillers having such an action are uniformly dispersed and rubber properties in a specific direction are improved.

特開2009−51955号公報JP 2009-51955 A

本発明は、前記課題を解決し、棒状シリカが微細に分散し、特定方向の力学的特性が改善された複合体及びその製造方法を提供することを目的とする。また、該複合体を用いたゴム組成物及び空気入りタイヤを提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems and to provide a composite in which rod-like silica is finely dispersed and mechanical properties in a specific direction are improved, and a method for producing the same. Another object of the present invention is to provide a rubber composition and a pneumatic tire using the composite.

本発明は、平均幅3〜35nm及び平均長さ50nm〜5μmの棒状シリカをゴム成分中に分散させた複合体に関する。
上記棒状シリカは、セピオライトに酸処理を施して得られるものが好ましい。
The present invention relates to a composite in which rod-like silica having an average width of 3 to 35 nm and an average length of 50 nm to 5 μm is dispersed in a rubber component.
The rod-like silica is preferably obtained by subjecting sepiolite to an acid treatment.

上記複合体は、界面活性剤の存在下で、ゴムラテックスと上記棒状シリカの分散液とを混合して調製された配合ラテックスから得られるものが好ましい。また、上記界面活性剤は、ポリオキシエチレン基及び炭化水素基を有する非イオン性界面活性剤であることが好ましい。更に、上記棒状シリカの分散液は、超音波処理が施されて調製されたものであることが好ましい。 The composite is preferably obtained from a compounded latex prepared by mixing a rubber latex and a dispersion of the rod-shaped silica in the presence of a surfactant. Moreover, it is preferable that the said surfactant is a nonionic surfactant which has a polyoxyethylene group and a hydrocarbon group. Further, the rod-like silica dispersion is preferably prepared by being subjected to ultrasonic treatment.

本発明は、界面活性剤の存在下でゴムラテックスと棒状シリカの分散液とを混合して配合ラテックスを調製する工程1、及び上記工程1で得られた配合ラテックスを凝固させる工程2を含む上記複合体の製造方法に関する。 The present invention includes the step 1 for preparing a compounded latex by mixing a rubber latex and a dispersion of rod-like silica in the presence of a surfactant, and the step 2 for coagulating the compounded latex obtained in the above step 1. The present invention relates to a method for producing a composite.

本発明は、上記複合体を含むゴム組成物に関する。
本発明はまた、上記ゴム組成物を用いて作製した空気入りタイヤに関する。
The present invention relates to a rubber composition containing the composite.
The present invention also relates to a pneumatic tire produced using the rubber composition.

本発明によれば、平均幅3〜35nm及び平均長さ50nm〜5μmの棒状シリカをゴム成分中に分散させた複合体であるので、特定方向に優れたゴム物性を付与できる。また、該複合体の使用により、同様のゴム物性を持つゴム組成物及び空気入りタイヤを提供できる。 According to the present invention, since it is a composite in which rod-shaped silica having an average width of 3 to 35 nm and an average length of 50 nm to 5 μm is dispersed in a rubber component, excellent rubber physical properties can be imparted in a specific direction. Further, the use of the composite can provide a rubber composition and a pneumatic tire having similar rubber properties.

棒状シリカ(セピオライト)の概略構造を示す模式図である。It is a schematic diagram which shows schematic structure of rod-shaped silica (sepiolite). 酸処理セピオライトのSEM写真である。It is a SEM photograph of acid-treated sepiolite. 比較例1のTEM写真である。4 is a TEM photograph of Comparative Example 1. 実施例1のTEM写真である。2 is a TEM photograph of Example 1. 実施例1のTEM写真(A部の拡大)である。2 is a TEM photograph of Example 1 (enlarged portion A). 実施例2のTEM写真である。4 is a TEM photograph of Example 2.

<複合体>
本発明の複合体は、平均幅3〜35nm及び平均長さ50nm〜5μmの棒状シリカをゴム成分中に分散させたものである。該棒状シリカを使用することで、特定方向に優れた力学的特性を有する複合体が得られる。
<Composite>
The composite of the present invention is obtained by dispersing rod-like silica having an average width of 3 to 35 nm and an average length of 50 nm to 5 μm in a rubber component. By using the rod-like silica, a composite having excellent mechanical properties in a specific direction can be obtained.

上記複合体は、例えば、界面活性剤の存在下でゴムラテックスと上記棒状シリカの分散液とを混合して配合ラテックスを調製する工程1、及び上記工程1で得られた配合ラテックスを凝固させる工程2を含む製造方法により得られる。 The composite is prepared, for example, by mixing a rubber latex and a dispersion of rod-shaped silica in the presence of a surfactant to prepare a compounded latex, and a step of coagulating the compounded latex obtained in the above step 1 2 is obtained.

(工程1)
工程1で使用されるゴムラテックスとしては、天然ゴムラテックス、合成ジエン系ゴムラテックス(ブタジエンゴム、スチレンブタジエンゴム、アクリロニトリルブタジエンゴム、エチレン酢酸ビニルゴム、クロロプレンゴム、ビニルピリジンゴム、ブチルゴムなどのラテックス)などが挙げられる。なかでも、低燃費性、ゴム強度に優れるという理由から、天然ゴムラテックスが好ましい。
(Process 1)
Examples of the rubber latex used in Step 1 include natural rubber latex and synthetic diene rubber latex (latex such as butadiene rubber, styrene butadiene rubber, acrylonitrile butadiene rubber, ethylene vinyl acetate rubber, chloroprene rubber, vinyl pyridine rubber, and butyl rubber). Can be mentioned. Of these, natural rubber latex is preferred because of its low fuel consumption and excellent rubber strength.

天然ゴムラテックスとしては、従来公知のものを用いることができ、例えば、天然のゴムの木から得られるフィールドラテックスのほかアンモニア処理ラテックス(たとえばハイアンモニアタイプの天然ゴムラテックス)などを用いることができる。なお、天然ゴムラテックスは、ゴム固形分が10〜70質量%のものを使用することが好ましい。 As the natural rubber latex, conventionally known ones can be used. For example, ammonia-treated latex (for example, high ammonia type natural rubber latex) can be used in addition to a field latex obtained from a natural rubber tree. The natural rubber latex preferably has a rubber solid content of 10 to 70% by mass.

工程1では、特定形状の棒状シリカが液中に分散された分散液(棒状シリカの分散液)が使用される。上記分散液は、公知の方法で製造でき、例えば、棒状シリカと水性媒体(水など)の混合液を、公知の方法で分散することで調製できる。なかでも、分散性の点から、超音波ホモジナイザーなどを用いて超音波処理を施して分散することが好ましい。 In step 1, a dispersion liquid (a dispersion liquid of rod-shaped silica) in which rod-shaped silica having a specific shape is dispersed in a liquid is used. The dispersion can be produced by a known method. For example, it can be prepared by dispersing a mixed solution of rod-like silica and an aqueous medium (such as water) by a known method. Among these, from the viewpoint of dispersibility, it is preferable to disperse by applying ultrasonic treatment using an ultrasonic homogenizer or the like.

超音波処理の時間は、棒状シリカが充分に分散されるという点から、好ましくは30分〜5時間である。なお、該処理時には、分散性の点から、分散液のpHを7〜9に調整することが好ましい。pHの調整は公知の方法で実施できる(酸やアルカリの添加など)。ここで、上記分散液中の棒状シリカの含有量は特に限定されないが、分散液(100質量%)中での均一分散性の点から、好ましくは1〜20質量%、より好ましくは2〜10質量%である。 The ultrasonic treatment time is preferably 30 minutes to 5 hours from the viewpoint that the rod-like silica is sufficiently dispersed. During the treatment, it is preferable to adjust the pH of the dispersion to 7 to 9 from the viewpoint of dispersibility. The pH can be adjusted by a known method (addition of acid or alkali, etc.). Here, the content of the rod-like silica in the dispersion is not particularly limited, but is preferably 1 to 20% by mass, more preferably 2 to 10 from the viewpoint of uniform dispersibility in the dispersion (100% by mass). % By mass.

上記棒状シリカは、球状の形状を有する通常のシリカとは異なり、棒状又は針状の形状を有し、その表面にシラノール基を有する無機材料(シリカ)である。棒状シリカとしては、例えば、セピオライト、パリゴルスカイト、アタパルジャイト、シロタイル、ラフリナイト、ファルコンドアイト、イモゴライトなどが挙げられる。なかでも、不純物が少なく、シラノール基が多いという理由から、セピオライト、アタパルジャイトが好ましい。棒状シリカ表面のシラノール基により、シランカップリング剤を介してゴム分子と棒状シリカが結合し、棒状シリカの配合による効果が充分に得られる。なお、本明細書では、単にシリカと記載する場合には、特に言及しない限り、球状のシリカをいう。 Unlike normal silica having a spherical shape, the rod-shaped silica is an inorganic material (silica) having a rod-like or needle-like shape and having a silanol group on the surface thereof. Examples of the rod-like silica include sepiolite, palygorskite, attapulgite, sirotile, rafrinite, falconite, imogolite and the like. Of these, sepiolite and attapulgite are preferred because they have few impurities and many silanol groups. The silanol group on the surface of the rod-like silica bonds the rubber molecule and the rod-like silica through the silane coupling agent, and the effect of blending the rod-like silica is sufficiently obtained. In this specification, when it is simply described as silica, it means spherical silica unless otherwise specified.

棒状シリカとしては、繊維状材料であるセピオライト鉱物[MgSi1230(OH)(HO)・8(HO)]を解繊して得られたものを好適に使用できる。セピオライト鉱物の構造は、Si−O四面体が3本連結して繊維方向に平行なSi−O四面体リボンを形成し、このリボンは八面体配位のマグネシウムイオンによって結び付けられ、タルク構造に似た2:1型を形成する。これらが互いに粘着して繊維束を形成しており、凝集物を形成し得る。 The rod-like silica, preferably using those obtained sepiolite mineral is fibrous material [Mg 8 Si 12 O 30 ( OH) 4 (H 2 O) 4 · 8 (H 2 O)] and by defibrating it can. The structure of sepiolite mineral is formed by connecting three Si-O tetrahedrons to form a Si-O tetrahedral ribbon parallel to the fiber direction. The ribbons are connected by octahedrally coordinated magnesium ions and resemble a talc structure. Form a 2: 1 mold. These adhere to each other to form a fiber bundle, which can form an aggregate.

上記凝集物は工業的工程、例えば微粉化(粉砕)または化学的修飾(例えば、欧州特許第170299号公報を参照)などで分裂(解繊)可能であり、それによって直径がナノメートルの繊維、即ち剥離(解繊)した棒状シリカ(セピオライト)が生じ得る。本発明では、セピオライト鉱物の解繊方法は特に限定されないが、棒状シリカ(セピオライト)の繊維としての形状を実質的に壊すことなく解繊することが好ましい。このような解繊方法としては、例えば、湿式粉砕法(例えば、欧州特許第170299号公報、特開平5−97488号公報、欧州特許第85200094−4号公報などに記載の方法)などが挙げられる。 The agglomerates can be broken (defibrated) by industrial processes such as pulverization (grinding) or chemical modification (see for example EP 170299), whereby fibers of nanometer diameter, That is, exfoliated (defibrated) rod-like silica (sepiolite) can be produced. In the present invention, the method for defibrating sepiolite minerals is not particularly limited, but it is preferable to defibrate without substantially breaking the shape of rod-like silica (sepiolite) as a fiber. Examples of such a defibrating method include a wet pulverization method (for example, a method described in European Patent No. 170299, Japanese Patent Laid-Open No. 5-97488, European Patent No. 85200094-4, etc.). .

湿式粉砕法の一例を具体的に説明する。まず、水分を含んだ状態の棒状シリカ(セピオライト)を2mm以下の粒度になるまで粉砕後、懸濁液の固形分濃度が5〜25%となるように水を加えた後、分散剤(例えば、ヘキサメタリン酸アルカリ塩)を添加する。次に、高せん断力を有する撹拌機を使用して懸濁液を5〜15分間撹拌する。撹拌の際には、まず、低速回転で2〜7分間撹拌し、次に、高速回転で2〜8分間撹拌する。続いて、上澄みをデカンテーション又は遠心分離により分離することにより、繊維としての形状を実質的に壊すことなく解繊された棒状シリカ(セピオライト)を得ることができる。 An example of the wet pulverization method will be specifically described. First, after pulverizing the rod-like silica (sepiolite) containing water until the particle size is 2 mm or less, water is added so that the solid content concentration of the suspension is 5 to 25%, and then a dispersant (for example, , Hexametaphosphate alkali salt). The suspension is then stirred for 5-15 minutes using a stirrer with high shear. At the time of stirring, the mixture is first stirred at a low speed for 2 to 7 minutes, and then at a high speed for 2 to 8 minutes. Subsequently, by separating the supernatant by decantation or centrifugation, rod-shaped silica (sepiolite) that has been defibrated without substantially breaking the shape as a fiber can be obtained.

なお、本発明におけるセピオライトは、アタパルジャイト(パリゴルスカイトとしても知られる)も含む。アタパルジャイトは、アタパルジャイトが有する単位格子の方が若干小さい(繊維長が小さい)以外はセピオライトと構造的及び化学的にほとんど同一である。 The sepiolite in the present invention includes attapulgite (also known as palygorskite). Attapulgite is structurally and chemically almost identical to sepiolite, except that the unit cell of attapulgite is slightly smaller (fiber length is shorter).

上記棒状シリカとして、セピオライトに酸処理を施して得られるもの(酸処理セピオライト)を使用することが好ましい。酸処理により、Mgイオンが溶出し、組成がSiOになった棒状シリカが得られるため、該棒状シリカ表面にシランカップリング剤との反応サイトであるシラノール基が多量に生成される。このため、表面活性が高まり、ゴムとの相互作用が向上する。 As the rod-like silica, it is preferable to use one obtained by subjecting sepiolite to an acid treatment (acid-treated sepiolite). By the acid treatment, Mg ions are eluted and rod-like silica having a composition of SiO 2 is obtained, so that a large amount of silanol groups, which are reaction sites with the silane coupling agent, are generated on the rod-like silica surface. For this reason, surface activity increases and interaction with rubber improves.

酸処理は、酸と棒状シリカを接触させる方法であれば特に限定されないが、例えば、酸水溶液に棒状シリカを添加し、所定温度で一定時間、撹拌する方法などが挙げられる。酸処理セピオライトは、表面活性が高く、凝集力が強いが、ゴムとの複合前に上記超音波処理を施すことで充分にほぐれ、ゴムと混合し易くなる。 The acid treatment is not particularly limited as long as it is a method in which an acid is brought into contact with rod-like silica, and examples thereof include a method in which rod-like silica is added to an acid aqueous solution and stirred at a predetermined temperature for a predetermined time. Acid-treated sepiolite has a high surface activity and a strong cohesive force, but is sufficiently loosened and easily mixed with rubber by subjecting it to the ultrasonic treatment before combining with rubber.

酸処理において、酸としては、ギ酸、硫酸、塩酸、酢酸などの無機酸及び有機酸が挙げられ、硫酸、塩酸が好ましい。塩酸を使用する場合、棒状シリカ表面の親水性をより高められる。 In the acid treatment, examples of the acid include inorganic acids and organic acids such as formic acid, sulfuric acid, hydrochloric acid, and acetic acid, and sulfuric acid and hydrochloric acid are preferable. When hydrochloric acid is used, the hydrophilicity of the rod-like silica surface can be further increased.

酸の濃度、酸処理の温度、時間は適宜設定すればよく、設定により部分的な酸処理も可能である。酸の濃度は、Mgイオンの溶出が良好に進行するという点から、好ましくは1〜6mol/Lである。酸処理の温度は、Mgイオンの溶出が充分に進行しうる範囲で適宜設定でき、通常30〜90℃、好ましくは55〜85℃である。酸処理の時間は、好ましくは5分〜24時間、より好ましくは0.5〜3時間である。 What is necessary is just to set suitably the density | concentration of an acid, the temperature of acid treatment, and time, and a partial acid treatment is also possible by setting. The concentration of the acid is preferably 1 to 6 mol / L from the viewpoint that elution of Mg ions proceeds well. The temperature of the acid treatment can be appropriately set as long as the elution of Mg ions can sufficiently proceed, and is usually 30 to 90 ° C, preferably 55 to 85 ° C. The acid treatment time is preferably 5 minutes to 24 hours, more preferably 0.5 to 3 hours.

なお、上記方法などで得られた酸処理セピオライトは、通常、水洗などの方法で洗浄され、乾燥させることなく、前述の方法で棒状シリカ分散液(酸処理セピオライトの分散液)を調製し、工程1に供することが好ましい。これにより、酸処理セピオライトの凝集を防止でき、ゴム中に良好に分散できる。 In addition, the acid-treated sepiolite obtained by the above method is usually washed by a method such as water washing, and a rod-like silica dispersion (acid-treated sepiolite dispersion) is prepared by the above-described method without drying, 1 is preferably used. Thereby, aggregation of acid-treated sepiolite can be prevented and it can disperse | distribute favorably in rubber | gum.

本発明における棒状シリカの平均幅は、3nm以上、好ましくは5nm以上である。3nm未満であると、表面積が大きくなり、ゴムへの分散が悪くなる傾向がある。棒状シリカの平均幅は、35nm以下、好ましくは30nm以下である。35nmを超えると、補強剤としての機能が低下する傾向がある。 The average width of the rod-like silica in the present invention is 3 nm or more, preferably 5 nm or more. If it is less than 3 nm, the surface area tends to be large, and the dispersion into rubber tends to be poor. The average width of the rod-like silica is 35 nm or less, preferably 30 nm or less. When it exceeds 35 nm, the function as a reinforcing agent tends to decrease.

棒状シリカの平均長さは、50nm以上、好ましくは100nm以上、より好ましくは300nm以上である。50nm未満であると、特定方向に優れた力学的特性を示さなくなる傾向がある。棒状シリカの平均長さは、5μm以下、好ましくは3μm以下、より好ましくは2μm以下である。5μmを超えると、破壊の起点になるため、ゴム強度が悪化する傾向がある。 The average length of the rod-like silica is 50 nm or more, preferably 100 nm or more, more preferably 300 nm or more. If it is less than 50 nm, there is a tendency that excellent mechanical properties are not exhibited in a specific direction. The average length of the rod-like silica is 5 μm or less, preferably 3 μm or less, more preferably 2 μm or less. When it exceeds 5 μm, it becomes a starting point of destruction, so that the rubber strength tends to deteriorate.

棒状シリカのアスペクト比(平均長さ/平均幅)は、好ましくは2以上、より好ましくは5以上である。2未満であると、特定方向についての力学的特性が充分に得られないおそれがある。棒状シリカのアスペクト比の上限は特に限定されず、上記形状の範囲内で、大きいほど好ましい。 The aspect ratio (average length / average width) of the rod-like silica is preferably 2 or more, more preferably 5 or more. If it is less than 2, mechanical properties in a specific direction may not be sufficiently obtained. The upper limit of the aspect ratio of the rod-shaped silica is not particularly limited, and it is preferably as large as possible within the range of the above shape.

図1は、棒状シリカ(セピオライト)の概略構造を示す模式図である。図1に示すように、棒状シリカ(セピオライト)は、針状又は長い繊維状(棒状)の形状を有している。セピオライトの幅、厚み、長さは、それぞれ図1のX、Y、Zに相当する。言い換えると、セピオライトの幅(X)とは、主面(平面視したときに面積が最大となる面)の短辺の長さであり、セピオライトの厚み(Y)とは、主面に対する法線方向の長さであり、セピオライトの長さ(Z)とは、主面の長辺の長さである。 FIG. 1 is a schematic diagram showing a schematic structure of rod-like silica (sepiolite). As shown in FIG. 1, rod-like silica (sepiolite) has a needle shape or a long fiber shape (rod shape). The width, thickness, and length of sepiolite correspond to X, Y, and Z in FIG. In other words, the sepiolite width (X) is the length of the short side of the main surface (the surface having the largest area when viewed in plan), and the sepiolite thickness (Y) is the normal to the main surface. It is the length in the direction, and the sepiolite length (Z) is the length of the long side of the main surface.

なお、本明細書において、棒状シリカの平均幅は、透過型電子顕微鏡により測定した棒状シリカのXの平均値(例えば、100個の棒状シリカのXを測定し、算出した平均値)である。また、本明細書において、棒状シリカの平均長さは、透過型電子顕微鏡により測定した棒状シリカのZの平均値(例えば、100個の棒状シリカのZを測定し、算出した平均値)である。 In the present specification, the average width of the rod-shaped silica is an average value of X of the rod-shaped silica measured by a transmission electron microscope (for example, an average value calculated by measuring X of 100 rod-shaped silica). In the present specification, the average length of the rod-shaped silica is an average value of Z of the rod-shaped silica measured by a transmission electron microscope (for example, an average value calculated by measuring Z of 100 rod-shaped silica). .

棒状シリカのチッ素吸着比表面積(NSA)は、好ましくは200m/g以上、より好ましくは300m/g以上である。200m/g未満では、ゴム強度が悪化する傾向がある。該NSAは、好ましくは500m/g以下、より好ましくは350m/g以下である。500m/gを超えると、分散性が低下する傾向がある。
なお、棒状シリカのNSAは、ASTM D3037−81に準じてBET法で測定される値である。
The nitrogen adsorption specific surface area (N 2 SA) of the rod-like silica is preferably 200 m 2 / g or more, more preferably 300 m 2 / g or more. If it is less than 200 m 2 / g, the rubber strength tends to deteriorate. The N 2 SA is preferably 500 m 2 / g or less, more preferably 350 m 2 / g or less. When it exceeds 500 m 2 / g, the dispersibility tends to decrease.
Incidentally, N 2 SA of the silica rods is a value measured by the BET method in accordance with ASTM D3037-81.

工程1の混合工程は、界面活性剤の存在下で行われる。界面活性剤の使用で棒状シリカとゴムの相互作用が高められ、棒状シリカの凝集を抑制できる。このため、棒状シリカの良好な分散性が得られる。界面活性剤としては、分散性を良好に改善できるという理由から、非イオン性、陽イオン性界面活性剤が好ましく、非イオン性界面活性剤がより好ましい。 The mixing step of step 1 is performed in the presence of a surfactant. By using a surfactant, the interaction between the rod-like silica and the rubber is enhanced, and aggregation of the rod-like silica can be suppressed. For this reason, good dispersibility of the rod-like silica can be obtained. As the surfactant, a nonionic or cationic surfactant is preferable, and a nonionic surfactant is more preferable because the dispersibility can be improved satisfactorily.

非イオン性界面活性剤としては特に限定されず、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリプロピレンアルキルエーテル、ポリオキシエチレンポリブチレンアルキルエーテルなどのポリオキシアルキレンアルキルエーテル;ポリオキシエチレンアルケニルエーテルなどのポリオキシアルキレンアルケニルエーテル;ポリオキシエチレンアルキルフェニルエーテル;高級脂肪酸アルカノールアミドなど、従来公知のものを使用できる。なかでも、ポリオキシエチレン基により棒状シリカ表面との水素結合力が高められるという点から、親水性基としてポリオキシエチレン基、疎水性基として炭化水素基を有する非イオン性界面活性剤を好適に使用できる。 The nonionic surfactant is not particularly limited, and polyoxyalkylene alkyl ethers such as polyoxyethylene alkyl ethers, polyoxyethylene polypropylene alkyl ethers, polyoxyethylene polybutylene alkyl ethers; polyoxyethylenes such as polyoxyethylene alkenyl ethers A conventionally well-known thing can be used, such as alkylene alkenyl ether; polyoxyethylene alkyl phenyl ether; higher fatty acid alkanolamide. Among them, a nonionic surfactant having a polyoxyethylene group as a hydrophilic group and a hydrocarbon group as a hydrophobic group is preferable because the hydrogen bond strength with the surface of the rod-like silica is enhanced by the polyoxyethylene group. Can be used.

このような非イオン性界面活性剤として、棒状シリカを良好に分散できるという点から、下記式(I)で表される化合物を好適に使用できる。 As such a nonionic surfactant, a compound represented by the following formula (I) can be suitably used from the viewpoint that rod-like silica can be favorably dispersed.

−O−(EO)−H (I)
(式(I)において、Rは炭素数3〜50のアルキル基又は炭素数3〜50のアルケニル基を表す。EOはオキシエチレン基を表す。平均付加モル数xは3〜100である。)
R 1 —O— (EO) x —H (I)
(In the formula (I), R 1 represents an alkyl group having 3 to 50 carbon atoms or an alkenyl group having 3 to 50 carbon atoms. EO represents an oxyethylene group. The average added mole number x is 3 to 100. )

上記Rの炭素数は、好ましくは10〜40、より好ましくは20〜35である。
上記xは、好ましくは5〜50、より好ましくは8〜30である。
The carbon number of R 1 is preferably 10 to 40, more preferably 20 to 35.
Said x becomes like this. Preferably it is 5-50, More preferably, it is 8-30.

工程1の混合工程では、界面活性剤の存在下でゴムラテックスと棒状シリカとを、公知の方法により混合し、その後、配合ラテックスが均一な溶液になるまで十分に攪拌することで、配合ラテックス(混合液)を調製できる。 In the mixing step of Step 1, the rubber latex and the rod-like silica are mixed by a known method in the presence of a surfactant, and then sufficiently stirred until the compounded latex becomes a uniform solution. Liquid mixture) can be prepared.

上記混合工程では、ゴム100質量部(固形分)に対して棒状シリカが5〜150質量部となるように棒状シリカ分散液を混合することが好ましい。5質量部未満であると、棒状シリカの配合量が少なく、本発明の効果が充分に得られない傾向がある。150質量部を超えると、棒状シリカの均一分散性が低下する傾向がある。該混合量の下限はより好ましくは30質量部以上であり、上限はより好ましくは100質量部以下、更に好ましくは70質量部以下である。 In the said mixing process, it is preferable to mix a rod-shaped silica dispersion so that rod-shaped silica will be 5-150 mass parts with respect to 100 mass parts (solid content) of rubber | gum. When the amount is less than 5 parts by mass, the amount of the rod-like silica is small, and the effects of the present invention tend not to be sufficiently obtained. When it exceeds 150 parts by mass, the uniform dispersibility of the rod-shaped silica tends to be lowered. The lower limit of the mixing amount is more preferably 30 parts by mass or more, and the upper limit is more preferably 100 parts by mass or less, still more preferably 70 parts by mass or less.

上記混合工程において、界面活性剤の添加量は、棒状シリカ100質量部に対して、1〜30質量部であることが好ましい。1質量部未満であると、界面活性剤の配合量が少なく、分散性の改善効果が充分に得られないおそれがある。30質量部を超えると、棒状シリカの均一分散性が低下する傾向がある。該添加量の下限はより好ましくは3質量部以上であり、上限はより好ましくは20質量部以下である。 In the mixing step, the amount of the surfactant added is preferably 1 to 30 parts by mass with respect to 100 parts by mass of the rod-like silica. If the amount is less than 1 part by mass, the blending amount of the surfactant is small, and the effect of improving dispersibility may not be sufficiently obtained. When it exceeds 30 mass parts, there exists a tendency for the uniform dispersibility of rod-shaped silica to fall. The lower limit of the addition amount is more preferably 3 parts by mass or more, and the upper limit is more preferably 20 parts by mass or less.

(工程2)
工程2では、工程1で得られた配合ラテックスを凝固させる。凝固は公知の方法により実施できるが、配合ラテックスのpHを5〜7(好ましくは6〜7)に調整することが好ましい。pHが5未満であると、ラテックスが急速に凝固するため、棒状シリカとゴムが分離してしまい、棒状シリカの分散が悪化する傾向がある。またpHが7を超えると、ラテックスの凝固反応が遅く実用的でない傾向がある。
(Process 2)
In step 2, the compounded latex obtained in step 1 is coagulated. Coagulation can be carried out by a known method, but it is preferable to adjust the pH of the compounded latex to 5 to 7 (preferably 6 to 7). When the pH is less than 5, the latex is rapidly solidified, so that the rod-like silica and the rubber are separated, and the dispersion of the rod-like silica tends to deteriorate. On the other hand, if the pH exceeds 7, the latex coagulation reaction tends to be slow and impractical.

pH5〜7に調整し、配合ラテックスを凝固させる方法としては、通常、酸が使用され、これを配合ラテックスに添加することで凝固する。凝固させるための酸としては、硫酸、塩酸、蟻酸、酢酸などが挙げられる。 As a method for adjusting the pH to 5 to 7 and coagulating the compounded latex, an acid is usually used, and the acid is coagulated by adding it to the compounded latex. Examples of the acid for coagulation include sulfuric acid, hydrochloric acid, formic acid, acetic acid and the like.

得られた凝固物(凝集ゴム及び棒状シリカを含む凝集物)を公知の方法でろ過、乾燥させ、更に乾燥後、2軸ロール、バンバリーなどでゴム練りを行うと、棒状シリカがゴムマトリックスに均一に分散した複合体を得ることができる。
なお、本発明の複合体は、本発明の効果を阻害しない範囲で他の成分を含んでもよい。
The obtained coagulated material (aggregated material containing agglomerated rubber and rod-like silica) is filtered and dried by a known method, and further dried and then kneaded with a biaxial roll, a banbury, etc., and the rod-like silica is uniformly formed in the rubber matrix. A complex dispersed in can be obtained.
In addition, the composite_body | complex of this invention may contain another component in the range which does not inhibit the effect of this invention.

<ゴム組成物>
本発明のゴム組成物は、上記複合体を含有する。上記複合体はマスターバッチとして使用できる。上記複合体はゴム中に棒状シリカが均一に分散しているので、他の成分と混合したゴム組成物においても棒状シリカを均一に分散できる。そのため、効果的な性能の向上が期待できる。
<Rubber composition>
The rubber composition of the present invention contains the above composite. The composite can be used as a masterbatch. In the above composite, the rod-like silica is uniformly dispersed in the rubber, so that the rod-like silica can be evenly dispersed in the rubber composition mixed with other components. Therefore, effective performance improvement can be expected.

本発明のゴム組成物には、上記複合体以外に、タイヤ工業において一般的に用いられているカーボンブラックなどの充填剤、シランカップリング剤、酸化亜鉛、ステアリン酸、老化防止剤、硫黄、加硫促進剤、別途配合する他のゴム成分等の各種材料を適宜配合できる。 In addition to the above composite, the rubber composition of the present invention includes fillers such as carbon black generally used in the tire industry, silane coupling agents, zinc oxide, stearic acid, anti-aging agents, sulfur, additives. Various materials such as a sulfur accelerator and other rubber components added separately can be appropriately added.

<空気入りタイヤ>
本発明のゴム組成物は空気入りタイヤに好適に使用できる。上記空気入りタイヤは、上記ゴム組成物を用いて通常の方法によって製造される。すなわち、必要に応じて各種添加剤を配合したゴム組成物を、未加硫の段階でタイヤの各部材の形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形することにより未加硫タイヤを形成した後、加硫機中で加熱加圧してタイヤを製造することができる。
<Pneumatic tire>
The rubber composition of the present invention can be suitably used for a pneumatic tire. The pneumatic tire is manufactured by a normal method using the rubber composition. That is, a rubber composition containing various additives as necessary is extruded in accordance with the shape of each member of the tire at an unvulcanized stage and molded by a normal method on a tire molding machine. After forming an unvulcanized tire by heating, the tire can be manufactured by heating and pressing in a vulcanizer.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

以下、実施例及び比較例で使用した各種薬品について、まとめて説明する。
天然ゴムラテックス:ハイアンモニアタイプ(ゴム固形分濃度60質量%)
天然ゴム:TSR20
セピオライト(棒状シリカ):TOLSA社製のPANGEL(長さ:200〜2000nm、幅:5〜30nm、NSA:320m/g、純度99%以上、スペイン産、セピオライト鉱物の湿式粉砕品)
界面活性剤(1):ハンツマン(株)製のteric 16A29(CH(C16(OC29−OH)
界面活性剤(2):花王(株)製のPD−430(R−(OC(OC−OH:R=長鎖アルキル基)
界面活性剤(3):花王(株)製のEmulgen420(C17CH=CHC16(OC−OH)
界面活性剤(4):エボニックデグッサ社製のSi363(下記式で表される界面活性剤)
界面活性剤(5):へキサデシルトリメチルアンモニウムブロミド(和光純薬工業(株)製、下記式で表される界面活性剤)
95%硫酸:和光純薬工業(株)製
10%硫酸:和光純薬工業(株)製
NaOH:関東化学(株)製
Hereinafter, various chemicals used in Examples and Comparative Examples will be described together.
Natural rubber latex: high ammonia type (rubber solid content concentration 60 mass%)
Natural rubber: TSR20
Sepiolite (rod-like silica): PANGEL manufactured by TOLSA (length: 200 to 2000 nm, width: 5 to 30 nm, N 2 SA: 320 m 2 / g, purity 99% or more, wet pulverized product of sepiolite mineral from Spain)
Surfactant (1): Huntsman Corp. of teric 16A29 (CH 3 (C 2 H 4) 16 (OC 2 H 4) 29 -OH)
Surfactant (2): PD-430 (R- (OC 4 H 8 ) p (OC 2 H 4 ) q —OH: R = long chain alkyl group) manufactured by Kao Corporation
Surfactant (3): manufactured by Kao Corp. of Emulgen420 (C 8 H 17 CH = CHC 8 H 16 (OC 2 H 4) r -OH)
Surfactant (4): Si363 (surfactant represented by the following formula) manufactured by Evonik Degussa
Surfactant (5): Hexadecyltrimethylammonium bromide (surfactant represented by the following formula, manufactured by Wako Pure Chemical Industries, Ltd.)
95% sulfuric acid: Wako Pure Chemical Industries, Ltd. 10% sulfuric acid: Wako Pure Chemical Industries, Ltd. NaOH: Kanto Chemical Co., Ltd.

(酸処理セピオライトの調製)
95%硫酸150gを3mol/Lになるまで純水で希釈し、これにセピオライト150gを添加し、80℃で1時間攪拌した。その後、遠心分離により固形分を取り出し、該固形分を純水2Lに再分散し、攪拌することで余分な塩を除去した(洗浄)。この洗浄操作を3回行い、酸処理セピオライト(未乾燥)を得た。
(Preparation of acid-treated sepiolite)
150 g of 95% sulfuric acid was diluted with pure water to 3 mol / L, and 150 g of sepiolite was added thereto, followed by stirring at 80 ° C. for 1 hour. Thereafter, the solid content was taken out by centrifugation, and the solid content was redispersed in 2 L of pure water and stirred to remove excess salt (washing). This washing operation was performed three times to obtain acid-treated sepiolite (undried).

(実施例1)
酸処理セピオライト(90g)を乾燥させずに、純水1700gに分散させた。分散液のpHが2となったので、NaOHを添加し、pHを8に調整した。これに、超音波ホモジナイザーを用いて、200W、1時間の条件で超音波を照射した(超音波処理)。
超音波処理後の分散液に、界面活性剤(1)9g、天然ゴムラテックス333g(ゴム固形分200g)を加えて1時間攪拌した。攪拌後、10%硫酸を加え、pH7に調整し、凝固物を得た。これをろ過(ろ紙#2)し、60℃で乾燥して酸処理セピオライト・天然ゴム複合体を得た。
Example 1
The acid-treated sepiolite (90 g) was dispersed in 1700 g of pure water without drying. Since the pH of the dispersion reached 2, NaOH was added to adjust the pH to 8. This was irradiated with ultrasonic waves using an ultrasonic homogenizer at 200 W for 1 hour (ultrasonic treatment).
9 g of surfactant (1) and 333 g of natural rubber latex (200 g of rubber solid content) were added to the dispersion after the ultrasonic treatment, followed by stirring for 1 hour. After stirring, 10% sulfuric acid was added to adjust the pH to 7 to obtain a coagulated product. This was filtered (filter paper # 2) and dried at 60 ° C. to obtain an acid-treated sepiolite / natural rubber composite.

(実施例2)
超音波処理をしなかった点以外は実施例1と同様の方法により、酸処理セピオライト・天然ゴム複合体を得た。
(Example 2)
An acid-treated sepiolite / natural rubber composite was obtained in the same manner as in Example 1 except that the ultrasonic treatment was not performed.

(比較例1)
天然ゴム100質量部に対して、乾燥した酸処理セピオライトを45質量部混合し、バンバリーを用いてゴム練りを行ない、酸処理セピオライト・天然ゴム複合体を得た。
(Comparative Example 1)
45 parts by mass of dried acid-treated sepiolite was mixed with 100 parts by mass of natural rubber, and rubber kneading was performed using Banbury to obtain an acid-treated sepiolite / natural rubber composite.

得られた複合体を、ミクロトームを用いて、薄片を切り出し、TEM分析によりセピオライトの分散状態を観察した。 From the obtained composite, a thin piece was cut out using a microtome, and the dispersion state of sepiolite was observed by TEM analysis.

調製した酸処理セピオライトについては、SEM−EDXよりMgイオン成分の消失(溶出)を確認し、FT−IRのSiO骨格振動より棒状形態のSiOが残っていることを確認した(図2)。
なお、酸処理の反応は、下記反応式のようにすすむと考えられる。
(セピオライトの組成:Mg(Si11・8HO)
反応式
Mg(Si11・8HO+16H→8Mg2++12SiO+17H
With respect to the prepared acid-treated sepiolite, disappearance (elution) of the Mg ion component was confirmed from SEM-EDX, and it was confirmed that rod-like SiO 2 remained from the SiO skeleton vibration of FT-IR (FIG. 2).
In addition, it is thought that reaction of an acid treatment advances like the following reaction formula.
(Composition of sepiolite: Mg 8 H 2 (Si 4 O 11 ) 3 · 8H 2 O)
Reaction formula Mg 8 H 2 (Si 4 O 11 ) 3 · 8H 2 O + 16H + → 8Mg 2+ + 12SiO 2 + 17H 2 O

図6(実施例2のTEM写真)から、界面活性剤(1)の存在下で、天然ゴムラテックスと酸処理セピオライトの分散液とを混合することで、酸処理セピオライトを良好に分散できることが明らかとなった。また、図4(実施例1のTEM写真)から、超音波処理を施すことで、酸処理セピオライトの分散性を一層向上できること、図5(実施例1のA部の拡大TEM写真)から、酸処理セピオライトが棒状形態のまま分散されることが明らかとなった。 From FIG. 6 (TEM photograph of Example 2), it is clear that the acid-treated sepiolite can be dispersed well by mixing the natural rubber latex and the acid-treated sepiolite dispersion in the presence of the surfactant (1). It became. Further, from FIG. 4 (TEM photograph of Example 1), it is possible to further improve the dispersibility of the acid-treated sepiolite by applying ultrasonic treatment. From FIG. 5 (enlarged TEM photograph of Part A of Example 1), acid It was revealed that the treated sepiolite was dispersed in a rod-like form.

なお、実施例1、2の界面活性剤(1)に代えて、界面活性剤(2)〜(5)を用いて得られた複合体も、酸処理セピオライトを良好に分散できること、酸処理セピオライトが棒状形態のまま分散されることを確認した。 In addition, it replaces with surfactant (1) of Example 1, 2, and the composite_body | complex obtained using surfactant (2)-(5) can also disperse | distribute acid-treated sepiolite favorably, acid-treated sepiolite. It was confirmed that was dispersed in a rod-like form.

一方、図3(比較例1のTEM写真)では、酸処理セピオライトの凝集塊が形成されていた。この結果から、酸処理セピオライトが乾燥することにより凝集塊が形成され、ゴム練りでは該凝集塊を分散できないことが明らかとなった。 On the other hand, in FIG. 3 (TEM photograph of Comparative Example 1), aggregates of acid-treated sepiolite were formed. From this result, it was clarified that the agglomerates were formed by drying the acid-treated sepiolite, and the agglomerates could not be dispersed by rubber kneading.

以上より、実施例の複合体は、特定方向に優れたゴム物性を付与できると期待できる。また、分散性に優れるため、補強性などの性能改善も期待できる。 From the above, it can be expected that the composites of the examples can impart excellent rubber properties in a specific direction. Moreover, since it is excellent in dispersibility, improvement in performance such as reinforcement can be expected.

Claims (8)

平均幅3〜35nm及び平均長さ50nm〜5μmの棒状シリカをゴム成分中に分散させた複合体。 A composite in which rod-like silica having an average width of 3 to 35 nm and an average length of 50 nm to 5 μm is dispersed in a rubber component. 前記棒状シリカは、セピオライトに酸処理を施して得られるものである請求項1に記載の複合体。 The composite according to claim 1, wherein the rod-like silica is obtained by subjecting sepiolite to an acid treatment. 界面活性剤の存在下で、ゴムラテックスと前記棒状シリカの分散液とを混合して調製された配合ラテックスから得られるものである請求項1又は2に記載の複合体。 The composite according to claim 1 or 2, wherein the composite is obtained from a compounded latex prepared by mixing a rubber latex and the rod-like silica dispersion in the presence of a surfactant. 前記界面活性剤は、ポリオキシエチレン基及び炭化水素基を有する非イオン性界面活性剤である請求項3に記載の複合体。 The composite according to claim 3, wherein the surfactant is a nonionic surfactant having a polyoxyethylene group and a hydrocarbon group. 前記棒状シリカの分散液は、超音波処理が施されて調製されたものである請求項3又は4に記載の複合体。 The composite according to claim 3 or 4, wherein the dispersion of the rod-like silica is prepared by ultrasonic treatment. 界面活性剤の存在下でゴムラテックスと棒状シリカの分散液とを混合して配合ラテックスを調製する工程1、及び前記工程1で得られた配合ラテックスを凝固させる工程2を含む請求項1〜5のいずれかに記載の複合体の製造方法。 6. A step 1 for preparing a compounded latex by mixing a rubber latex and a dispersion of rod-like silica in the presence of a surfactant, and a step 2 for coagulating the compounded latex obtained in the step 1. The manufacturing method of the composite_body | complex in any one of. 請求項1〜5のいずれかに記載の複合体を含むゴム組成物。 The rubber composition containing the composite_body | complex in any one of Claims 1-5. 請求項7に記載のゴム組成物を用いて作製した空気入りタイヤ。 A pneumatic tire produced using the rubber composition according to claim 7.
JP2011105394A 2011-05-10 2011-05-10 COMPOSITE AND ITS MANUFACTURING METHOD, RUBBER COMPOSITION AND PNEUMATIC TIRE Active JP5735344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011105394A JP5735344B2 (en) 2011-05-10 2011-05-10 COMPOSITE AND ITS MANUFACTURING METHOD, RUBBER COMPOSITION AND PNEUMATIC TIRE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011105394A JP5735344B2 (en) 2011-05-10 2011-05-10 COMPOSITE AND ITS MANUFACTURING METHOD, RUBBER COMPOSITION AND PNEUMATIC TIRE

Publications (2)

Publication Number Publication Date
JP2012236878A true JP2012236878A (en) 2012-12-06
JP5735344B2 JP5735344B2 (en) 2015-06-17

Family

ID=47460078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011105394A Active JP5735344B2 (en) 2011-05-10 2011-05-10 COMPOSITE AND ITS MANUFACTURING METHOD, RUBBER COMPOSITION AND PNEUMATIC TIRE

Country Status (1)

Country Link
JP (1) JP5735344B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014162907A (en) * 2013-02-27 2014-09-08 Bridgestone Corp Rubber composition for tire
IT201600130904A1 (en) * 2016-12-23 2018-06-23 Pirelli Elastomeric compositions comprising nano-sized needle-shaped silicate fibers and pneumatic tires for vehicles which include them.

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126442A (en) * 1983-01-10 1984-07-21 Sumitomo Rubber Ind Ltd Rubber composition
JPH04261433A (en) * 1991-02-15 1992-09-17 Toagosei Chem Ind Co Ltd Polymer powder particle and its production
JPH0525324A (en) * 1991-07-23 1993-02-02 Toagosei Chem Ind Co Ltd Polymer powder
JPH11246707A (en) * 1998-03-04 1999-09-14 Yokohama Rubber Co Ltd:The Tread rubber composition for studless tire
JP2001072802A (en) * 1999-09-08 2001-03-21 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2005343963A (en) * 2004-06-01 2005-12-15 Yokohama Rubber Co Ltd:The Rubber composition for tire, and pneumatic tire
JP2006131718A (en) * 2004-11-04 2006-05-25 Yokohama Rubber Co Ltd:The Rubber composition
JP2006257438A (en) * 2003-07-17 2006-09-28 Mizusawa Ind Chem Ltd Thixotropy-imparting agent
JP2007182520A (en) * 2006-01-10 2007-07-19 Sumitomo Rubber Ind Ltd Rubber composition for tire and method for producing the same
JP2010261002A (en) * 2009-05-11 2010-11-18 Bridgestone Corp Modified diene rubber wet masterbatch, method for producing the same, and rubber composition and tire
JP2011084650A (en) * 2009-10-15 2011-04-28 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
JP2012087188A (en) * 2010-10-18 2012-05-10 Sumitomo Rubber Ind Ltd Rubber composition for tire, and pneumatic tire
JP2012144619A (en) * 2011-01-11 2012-08-02 Sumitomo Rubber Ind Ltd Method for producing rubber composition for tire, and pneumatic tire
JP2012229281A (en) * 2011-04-22 2012-11-22 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
JP2012229282A (en) * 2011-04-22 2012-11-22 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59126442A (en) * 1983-01-10 1984-07-21 Sumitomo Rubber Ind Ltd Rubber composition
JPH04261433A (en) * 1991-02-15 1992-09-17 Toagosei Chem Ind Co Ltd Polymer powder particle and its production
JPH0525324A (en) * 1991-07-23 1993-02-02 Toagosei Chem Ind Co Ltd Polymer powder
JPH11246707A (en) * 1998-03-04 1999-09-14 Yokohama Rubber Co Ltd:The Tread rubber composition for studless tire
JP2001072802A (en) * 1999-09-08 2001-03-21 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2006257438A (en) * 2003-07-17 2006-09-28 Mizusawa Ind Chem Ltd Thixotropy-imparting agent
JP2005343963A (en) * 2004-06-01 2005-12-15 Yokohama Rubber Co Ltd:The Rubber composition for tire, and pneumatic tire
JP2006131718A (en) * 2004-11-04 2006-05-25 Yokohama Rubber Co Ltd:The Rubber composition
JP2007182520A (en) * 2006-01-10 2007-07-19 Sumitomo Rubber Ind Ltd Rubber composition for tire and method for producing the same
JP2010261002A (en) * 2009-05-11 2010-11-18 Bridgestone Corp Modified diene rubber wet masterbatch, method for producing the same, and rubber composition and tire
JP2011084650A (en) * 2009-10-15 2011-04-28 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
JP2012087188A (en) * 2010-10-18 2012-05-10 Sumitomo Rubber Ind Ltd Rubber composition for tire, and pneumatic tire
JP2012144619A (en) * 2011-01-11 2012-08-02 Sumitomo Rubber Ind Ltd Method for producing rubber composition for tire, and pneumatic tire
JP2012229281A (en) * 2011-04-22 2012-11-22 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire
JP2012229282A (en) * 2011-04-22 2012-11-22 Sumitomo Rubber Ind Ltd Rubber composition for tire and pneumatic tire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014162907A (en) * 2013-02-27 2014-09-08 Bridgestone Corp Rubber composition for tire
IT201600130904A1 (en) * 2016-12-23 2018-06-23 Pirelli Elastomeric compositions comprising nano-sized needle-shaped silicate fibers and pneumatic tires for vehicles which include them.
WO2018116125A1 (en) * 2016-12-23 2018-06-28 Pirelli Tyre S.P.A. Elastomeric compositions comprising silicate fibres with needle-shaped morphology of nanometric size and tyres for vehicles that comprise them
US11161944B2 (en) 2016-12-23 2021-11-02 Pirelli Tyre S.P.A. Elastomeric compositions comprising silicate fibres with needle-shaped morphology of nanometric size and tyres for vehicles that comprise them

Also Published As

Publication number Publication date
JP5735344B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP6502695B2 (en) Microfibrillated plant fiber-rubber composite, method for producing the same, rubber composition and pneumatic tire
AU2012386614B2 (en) Natural rubber containing nanocarbon
JP5997283B2 (en) Silica / styrene butadiene rubber composite, method for producing the same, rubber composition, and pneumatic tire
JP2013035903A (en) Methods for producing reinforcing filler and rubber composition
Anjana et al. Reinforcing effect of nano kaolin clay on PP/HDPE blends
JP4873480B2 (en) White powdery vulcanized active ingredient composition and rubber composition
Paul et al. Nanostructured fly ash–styrene butadiene rubber hybrid nanocomposites
JP2013022812A (en) Method for producing reinforcing filler and rubber composition
JP5735344B2 (en) COMPOSITE AND ITS MANUFACTURING METHOD, RUBBER COMPOSITION AND PNEUMATIC TIRE
JP5529909B2 (en) Composite, rubber composition and pneumatic tire
JP5860660B2 (en) Silica / natural rubber composite and production method thereof, rubber composition and pneumatic tire
JP2006225600A (en) Pneumatic tire using rubber composition
JP2020066699A (en) Tire rubber composition
JP2011006551A (en) Manufacturing method for rubber composition
Kim et al. Effects of zinc-free processing AIDS on silica-reinforced tread compounds for green tires
JP2011006552A (en) Rubber composition, reinforcing agent for rubber, and manufacturing method therefor
JP6068910B2 (en) Silica / styrene butadiene rubber composite, method for producing the same, rubber composition and pneumatic tire
Sun et al. Enhanced reinforcement efficiency in a hybrid microcrystalline cellulose–SiO 2 filler for the tire tread composites
Chandra et al. Effect of Olivine Nanosilica on the Reinforcement of Natural Rubber Nanosilica Composites
JP6869592B2 (en) Inorganic composite for rubber reinforcement, manufacturing method thereof, and rubber composition for tires containing the same.
Alex Nanofillers In Rubber–Rubber Blends
CN114524978B (en) Chitosan/silicon dioxide nano hybrid material and biomimetic mineralization preparation method and application thereof
Jia et al. Interface tailoring of layered silicate/styrene butadiene rubber nanocomposites
Cobani Novel approach to rubber reinforcement by silica based nanofiller
Alwis et al. Reinforcement and curing characteristics of organoclay filled natural rubber nanocomposites.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150416

R150 Certificate of patent or registration of utility model

Ref document number: 5735344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250