JP2012236147A - Bubble generator - Google Patents

Bubble generator Download PDF

Info

Publication number
JP2012236147A
JP2012236147A JP2011106863A JP2011106863A JP2012236147A JP 2012236147 A JP2012236147 A JP 2012236147A JP 2011106863 A JP2011106863 A JP 2011106863A JP 2011106863 A JP2011106863 A JP 2011106863A JP 2012236147 A JP2012236147 A JP 2012236147A
Authority
JP
Japan
Prior art keywords
orifice
water
water flow
air
bathtub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011106863A
Other languages
Japanese (ja)
Other versions
JP5790139B2 (en
Inventor
Naoto Kobari
直人 小針
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2011106863A priority Critical patent/JP5790139B2/en
Publication of JP2012236147A publication Critical patent/JP2012236147A/en
Application granted granted Critical
Publication of JP5790139B2 publication Critical patent/JP5790139B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a structure without requiring a high-speed water current, in a bubble generator including a jet nozzle jetting a jet water current including bubbles into a bathtub.SOLUTION: An orifice 23 for jetting a jet water current provided at a downstream end of a jet nozzle 20 comprises a first orifice 23a at an upstream side and a second orifice 23b at a downstream side having a sectional area larger than that of the first orifice 23a. The second orifice 23b including a level difference part 29 having an expanded cross-section area at least a part in a circumferential direction is continuously provided at downstream end of the first orifice 23a. A negative pressure generated at a back surface of the level difference part 29 is used to suck the bubbles into the water current passing through the orifice 23 at a relatively low speed.

Description

本発明は、浴槽に設けられて浴槽内の浴槽水中に気泡を発生させる気泡発生装置に関する。   The present invention relates to a bubble generating device that is provided in a bathtub and generates bubbles in bathtub water in the bathtub.

従来の気泡発生装置として、例えば、下記の特許文献1及び2に記載のものが知られている。   As conventional bubble generating devices, for example, those described in Patent Documents 1 and 2 below are known.

特開2001−347145号公報JP 2001-347145 A 特許第3084837号公報Japanese Patent No. 3084837

上記特許文献1及び2には、従来のエジェクター型気泡発生装置の構造が開示されている。この従来のエジェクター型気泡発生装置は、ポンプによって循環供給される浴槽水を高速に噴出する噴出ノズル(ノズル部)を備えている。この噴出ノズルは、外気が導入される混合室に開口されており、噴出ノズルから噴出される高速の水流によるキャビテーション作用によって生じる負圧を利用して外気が自然吸気され、混合室内で浴槽水内に空気を吸入するようになっている。また、噴出ノズルの下流側には混合ノズル(ディフューザ部)が同心状に配設され、混合ノズル内で空気と水とを混合溶解しながら水槽内に噴出するように構成されている。   Patent Documents 1 and 2 disclose the structure of a conventional ejector-type bubble generator. This conventional ejector-type bubble generating device includes an ejection nozzle (nozzle portion) that ejects bath water circulated and supplied by a pump at high speed. This jet nozzle is open to the mixing chamber into which the outside air is introduced, and the outside air is naturally aspirated using the negative pressure generated by the cavitation action caused by the high-speed water flow jetted from the jet nozzle. Inhale air. A mixing nozzle (diffuser section) is concentrically disposed on the downstream side of the ejection nozzle, and is configured to eject into the water tank while mixing and dissolving air and water in the mixing nozzle.

上記特許文献1及び2の混合ノズルから噴出された高速の噴出流内の空気は、ノズル出口での噴出流の流速と、その周囲に滞留している水との速度差によりせん断されて微細なマイクロバブルとなるが、比較的気泡密度が高い為に気泡が再結合してしまうことが多い。また、マイクロバブルが発生する条件として、高いせん断力が得られるように通水速度を速めることが要求され、その為に高圧ポンプが一般的に必要となる。さらに、混合室内に負圧を発生させるためには、噴出ノズルのノズル内径を小さくする必要があり、これにより通水量が制限されるとともに、通水量に応じて吸気量も少なくせざるを得ず、マイクロバブルの発生効率が悪いものであった。   The air in the high-speed jet flow jetted from the mixing nozzles of Patent Documents 1 and 2 is sheared by the speed difference between the jet flow velocity at the nozzle outlet and the water staying in the surrounding area, and is fine. Although it becomes a microbubble, since the bubble density is relatively high, the bubble often recombines. Further, as a condition for generating microbubbles, it is required to increase the water flow rate so that a high shearing force can be obtained, and thus a high-pressure pump is generally required. Furthermore, in order to generate a negative pressure in the mixing chamber, it is necessary to reduce the nozzle inner diameter of the ejection nozzle, which restricts the amount of water flow and must reduce the amount of intake air according to the amount of water flow. The generation efficiency of microbubbles was poor.

そこで、本発明は、高圧ポンプを必要とせず、かつ、通水量を多くしつつも十分な量の気泡を発生させることができる気泡発生装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a bubble generating device that does not require a high-pressure pump and can generate a sufficient amount of bubbles while increasing the amount of water flow.

上記目的を達成するために、本発明は、次の技術的手段を講じた。   In order to achieve the above object, the present invention takes the following technical means.

すなわち、本発明は、浴槽内の浴槽水が供給される浴槽水導入口と、該浴槽水導入口の下流に設けられ噴出水流が噴出されるオリフィスとを備えた噴出ノズルから気泡を含む噴出水流を浴槽内に噴出する気泡発生装置において、前記オリフィスは、上流側の第1オリフィス部と、該第1オリフィス部の下流側に設けられ第1オリフィス部よりも断面積が大きい第2オリフィス部とを有し、第2オリフィス部は、第1オリフィス部の下流端に少なくとも周方向一部に断面積を拡大する段差部を有して連設され、前記オリフィス内に空気を導入するための吸気孔が前記段差部の背面側に生じる負圧領域に開口形成されており、該段差部の背面側に生じる負圧により空気を吸引するように構成したことを特徴とするものである(請求項1)。   That is, the present invention relates to a jet water flow including bubbles from a jet nozzle provided with a bath water inlet to which bathtub water in the bathtub is supplied and an orifice provided downstream of the bathtub water inlet and from which the jet water flow is jetted. In the bubble generating apparatus for jetting the gas into the bathtub, the orifice includes an upstream first orifice part, a second orifice part provided downstream of the first orifice part and having a larger cross-sectional area than the first orifice part. And the second orifice part is continuously provided at the downstream end of the first orifice part with a step part that expands the cross-sectional area at least partially in the circumferential direction, and is used to introduce air into the orifice. A hole is formed in the negative pressure region generated on the back side of the stepped portion, and air is sucked by the negative pressure generated on the backside of the stepped portion. 1).

これによれば、従来のエジェクタ型気泡発生装置とは異なり、比較的緩やかな水流であっても段差部の背面側の負圧によって吸気孔を介して空気を吸引することが可能となり、オリフィス径を過度に小さくする必要もなくなるため高圧ポンプも不要となるとともに、通水量も多くすることができるので吸気量を多くしても微細気泡を安定して発生させることが可能になる。   According to this, unlike a conventional ejector-type bubble generating device, it becomes possible to suck air through the intake hole by the negative pressure on the back side of the step portion even with a relatively gentle water flow, and the orifice diameter Since there is no need to make the pressure too small, a high-pressure pump is not necessary, and the amount of water flow can be increased, so that even if the amount of intake air is increased, fine bubbles can be stably generated.

さらに、前記吸気孔は、前記段差部を跨ぐように開口形成させることができる(請求項2)。これによれば、段差部から下流側に向けて離れるにしたがい負圧が小さくなり、段差部直後の負圧が最も大きいため、かかる大きな負圧を吸気孔に作用させて効率よく空気を吸引することが可能になる。   Further, the air intake hole can be formed so as to straddle the stepped portion (claim 2). According to this, the negative pressure decreases as the distance from the stepped portion decreases toward the downstream side, and the negative pressure immediately after the stepped portion is the largest. Therefore, the large negative pressure is applied to the intake holes to efficiently suck air. It becomes possible.

また、前記段差部がオリフィスの全周にわたって形成され、作動時に段差部の背面側の負圧領域に生じる空気層がオリフィスの全周にわたって形成されるようすることができる(請求項3)。これによれば、作動時に段差部の背面側に円環状に形成される空気層から気泡が供給されるようになり、オリフィスの全周にわたって均一に気泡が分散されるようになり、比較的多くの気泡を発生させた場合でも気泡同士が結合しにくく、安定した気泡を下流へ送ることが可能になる。   Further, the stepped portion can be formed over the entire circumference of the orifice, and an air layer generated in the negative pressure region on the back side of the stepped portion during operation can be formed over the entire circumference of the orifice. According to this, bubbles are supplied from the air layer formed in an annular shape on the back side of the stepped portion during operation, and the bubbles are uniformly distributed over the entire circumference of the orifice. Even when the bubbles are generated, the bubbles are not easily bonded to each other, and stable bubbles can be sent downstream.

また、前記段差部の背面をオリフィス内周面に対して断面視鋭角状に形成することができる(請求項4)。これによれば、円環状の空気層が形成されるより大きな空間を確保することができ、一層安定してオリフィスの全周から気泡を発生させることが可能になるとともに、段差部背面側の負圧がより安定して発生する。   Further, the back surface of the stepped portion can be formed in an acute angle in a sectional view with respect to the inner peripheral surface of the orifice. According to this, it is possible to secure a larger space in which an annular air layer is formed, and it is possible to more stably generate bubbles from the entire circumference of the orifice, and to prevent negative pressure on the back side of the stepped portion. Pressure is generated more stably.

さらに、本発明の気泡発生装置は、浴槽水導入口とオリフィスとを連通する流通路を備え、該流通路の下流端に段差部を介して第1オリフィス部を連設することができ、この場合、前記流通路の下流端の断面積を、第1オリフィス部の断面積の2倍以上にすることが好ましい(請求項5)。これによれば、第1オリフィス部の内面近傍に、流通路の下流端の段差部によって断面が急減少することに起因する乱流による負圧が生じ、上記の第1及び第2オリフィス部の境界の段差部の背面側に生じる負圧と相まって、一層効率よく空気を吸引することが可能になる。   Furthermore, the bubble generating device of the present invention includes a flow passage that connects the bathtub water introduction port and the orifice, and the first orifice portion can be connected to the downstream end of the flow passage via a step portion. In this case, it is preferable that the cross-sectional area of the downstream end of the flow passage is at least twice the cross-sectional area of the first orifice part. According to this, a negative pressure due to the turbulent flow is generated near the inner surface of the first orifice portion due to a sudden decrease in cross section due to the step portion at the downstream end of the flow passage. In combination with the negative pressure generated on the back side of the stepped portion at the boundary, it becomes possible to suck air more efficiently.

以上説明したように、本発明の請求項1に係る気泡発生装置によれば、従来のエジェクタ型気泡発生装置とは異なり、比較的緩やかな水流であっても段差部の背面側の負圧によって吸気孔を介して空気を吸引することが可能となり、オリフィス径を過度に小さくする必要もなくなるため高圧ポンプも不要となるとともに、通水量も多くすることができるので吸気量を多くしても微細気泡を安定して発生させることができる。   As described above, according to the bubble generating device according to the first aspect of the present invention, unlike the conventional ejector-type bubble generating device, even with a relatively gentle water flow, due to the negative pressure on the back side of the stepped portion. Air can be sucked in through the intake holes, eliminating the need for excessively small orifice diameters, eliminating the need for a high-pressure pump and increasing the amount of water flow. Air bubbles can be generated stably.

また、本発明の請求項2に係る気泡発生装置によれば、段差部から下流側に向けて離れるにしたがい負圧が小さくなり、段差部直後の負圧が最も大きいため、かかる大きな負圧を吸気孔に作用させて効率よく空気を吸引することができる。   Further, according to the bubble generating device according to claim 2 of the present invention, the negative pressure decreases as the distance from the stepped portion decreases toward the downstream side, and the negative pressure immediately after the stepped portion is the largest. The air can be efficiently sucked by acting on the intake hole.

また、本発明の請求項3に係る気泡発生装置によれば、作動時に段差部の背面側に円環状に形成される空気層から気泡が供給されるようになり、オリフィスの全周にわたって均一に気泡が分散されるようになり、比較的多くの気泡を発生させた場合でも気泡同士が結合しにくく、安定した気泡を下流へ送ることができる。   Further, according to the bubble generating device of the third aspect of the present invention, bubbles are supplied from an air layer formed in an annular shape on the back side of the stepped portion during operation, and are uniformly distributed over the entire circumference of the orifice. The bubbles are dispersed, and even when a relatively large number of bubbles are generated, the bubbles are not easily combined with each other, and stable bubbles can be sent downstream.

また、本発明の請求項4に係る気泡発生装置によれば、円環状の空気層が形成されるより大きな空間を確保することができ、一層安定してオリフィスの全周から気泡を発生させることが可能になるとともに、段差部背面側の負圧をより安定して発生させることができる。   Further, according to the bubble generating device of claim 4 of the present invention, a larger space in which an annular air layer is formed can be secured, and bubbles can be more stably generated from the entire circumference of the orifice. And the negative pressure on the back side of the stepped portion can be generated more stably.

また、本発明の請求項5に係る気泡発生装置によれば、第1オリフィス部の内面近傍に、流通路の下流端の段差部によって断面が急減少することに起因する乱流による負圧が生じ、上記の第1及び第2オリフィス部の境界の段差部の背面側に生じる負圧と相まって、一層効率よく空気を吸引することができる。   According to the bubble generating device of the fifth aspect of the present invention, the negative pressure due to the turbulent flow due to the sudden decrease in the cross section due to the stepped portion at the downstream end of the flow passage is provided near the inner surface of the first orifice portion. Owing to the negative pressure generated on the back side of the step portion at the boundary between the first and second orifice portions, air can be sucked more efficiently.

本発明の一実施形態に係る気泡発生装置を内蔵する浴槽用循環アダプタの縦断面図である。It is a longitudinal cross-sectional view of the circulation adapter for bathtubs which incorporates the bubble generator which concerns on one Embodiment of this invention. 同浴槽用循環アダプタの水平断面図である。It is a horizontal sectional view of the circulation adapter for the bathtub. 同浴槽用循環アダプタの斜視図である。It is a perspective view of the circulation adapter for the bathtub. 同浴槽用循環アダプタの分解斜視図である。It is a disassembled perspective view of the circulation adapter for bathtubs. 同浴槽用循環アダプタの気泡発生装置の気泡発生原理説明図である。It is a bubble generation | occurrence | production principle explanatory drawing of the bubble generation apparatus of the circulation adapter for bathtubs. 図5に示す噴出ノズルの側面図である。It is a side view of the ejection nozzle shown in FIG. 気泡発生装置の実験モデルの要部拡大図である。It is a principal part enlarged view of the experimental model of a bubble generator. 気泡発生装置の理論モデルの要部拡大図である。It is a principal part enlarged view of the theoretical model of a bubble generator. 段差部の他の実施例を模式的に示す部分拡大図である。It is the elements on larger scale which typically show the other Example of a level | step-difference part. 断面急縮小構造による負圧発生原理説明図である。It is explanatory drawing of the negative pressure generation principle by a cross-sectional rapid reduction structure. 噴出ノズルの他の実施例を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows the other Example of an ejection nozzle typically. 衝突壁及び飛散防止壁の作用説明図である。It is operation | movement explanatory drawing of a collision wall and a scattering prevention wall. 衝突壁及び飛散防止壁の作用説明図である。It is operation | movement explanatory drawing of a collision wall and a scattering prevention wall. 気泡発生装置のさらに別の実施例を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically another Example of a bubble generator.

以下、本発明の好適な実施形態を図面に基づいて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings.

図1〜図4は、本発明の一実施形態に係る気泡発生装置が内蔵された浴槽用循環アダプタ1を示し、該循環アダプタ1は、浴槽の側壁に貫通した状態で取付固定され、この循環アダプタ1の前面(図において右側面)の外周部には浴槽内の浴槽水を吸い込む吸い込み口2が環状に設けられていると共に、該吸い込み口2の径方向内方には水流が放出される水流放出口3が設けられており、循環アダプタ1の背面側で循環ポンプを備えた循環配管に接続されることによって、吸い込み口2から吸い込んだ浴槽水が循環管路及び循環アダプタ1を介して水流放出口3から浴槽の内方に向けて放出されるように構成されている。   1 to 4 show a circulation adapter 1 for a bathtub in which a bubble generating device according to an embodiment of the present invention is incorporated, and the circulation adapter 1 is attached and fixed in a state of penetrating the side wall of the bathtub. The outer periphery of the front surface (right side surface in the figure) of the adapter 1 is provided with a suction port 2 for sucking in the bathtub water in the bathtub, and a water flow is discharged radially inward of the suction port 2. The water flow discharge port 3 is provided, and the bathtub water sucked from the suction port 2 is connected via the circulation pipe and the circulation adapter 1 by being connected to the circulation pipe provided with the circulation pump on the back side of the circulation adapter 1. It is comprised so that it may discharge | release toward the inside of a bathtub from the water flow discharge port 3. FIG.

好ましくは、上記循環管路は、風呂用の追い焚き循環機能を備えた風呂釜若しくは風呂給湯器用の追い焚き循環管路により構成でき、その場合、風呂釜若しくは給湯器における燃焼を停止した状態で循環ポンプによる浴槽水の環流を生じさせることにより気泡発生運転を行うことができる。   Preferably, the circulation line can be constituted by a reheating circulation line for a bath pot or a bath water heater having a reheating function for a bath, in which case combustion in the bath pot or a water heater is stopped. The bubble generation operation can be performed by causing the circulation of the bath water by the circulation pump.

循環アダプタ1は、主として浴槽の外側に配設される本体ハウジングを兼ねるアダプタ本体4と、浴槽の内側からアダプタ本体4に取り付けられる浴槽アタッチメント5と、吸込口フィルタ6とが組み付けられて構成されており、アダプタ本体4のフランジ7と、浴槽アタッチメント5のフランジ8との間にパッキン9,10を介して浴槽の側壁が挟み込まれるようにして浴槽に取付固定される。また、アダプタ本体4には雌ネジ部11が設けられ、一方、浴槽アタッチメント5には雌ネジ部11に対応する雄ネジ部12が設けられており、これらネジ部11,12によって浴槽アタッチメント5がアダプタ本体4に螺着されている。また、吸込口フィルタ6は、浴槽アタッチメント5に着脱自在に取り付けられている。   The circulation adapter 1 is configured by assembling an adapter main body 4 that also serves as a main body housing disposed mainly outside the bathtub, a bathtub attachment 5 that is attached to the adapter main body 4 from the inside of the bathtub, and a suction port filter 6. In addition, the side wall of the bathtub is sandwiched between the flange 7 of the adapter main body 4 and the flange 8 of the bathtub attachment 5 via the packings 9 and 10, and is fixed to the bathtub. The adapter body 4 is provided with a female screw portion 11, while the bathtub attachment 5 is provided with a male screw portion 12 corresponding to the female screw portion 11, and the bathtub attachment 5 is formed by these screw portions 11 and 12. The adapter body 4 is screwed. The suction port filter 6 is detachably attached to the bathtub attachment 5.

アダプタ本体4には、循環配管の戻り路に接続される戻り用接続口13と、循環配管の往き路に接続される往き用接続口14とが背面から後方に突出するように設けられているとともに、空気採り入れ口15も背面に後方突出状に設けられている。また、アダプタ本体4は、往き用接続口14に連通する第1筒部16と、該第1筒部16との間に隙間を有して同心状に設けられた第2筒部17と、第2筒部17との間に隙間を有して同心状に設けられた第3筒部18とを一体に備えた多重筒状に構成されており、第3筒部18がアダプタ本体4の外周壁を構成しており、該第3筒部18内に第2筒部17が収容され、第2筒部17内に第1筒部16が収容されている。第1筒部16と第2筒部17との間の空間は空気採り入れ口15に連通され、第2筒部17と第3筒部18との間の空間は戻り用接続口13に連通されており、第1筒部16内部空間、第1筒部16と第2筒部17との間の空間、及び、第2筒部17と第3筒部との間の空間は、相互に遮断されている。なお、上記の雌ネジ部11は、第3筒部18の内周面に形成されている。   The adapter body 4 is provided with a return connection port 13 connected to the return path of the circulation pipe and an outgoing connection port 14 connected to the return path of the circulation pipe so as to protrude rearward from the back surface. At the same time, an air intake port 15 is also provided on the back surface so as to protrude rearward. The adapter body 4 includes a first tube portion 16 communicating with the forward connection port 14, a second tube portion 17 provided concentrically with a gap between the first tube portion 16, It is configured in a multiple cylinder shape integrally including a third cylinder portion 18 provided concentrically with a gap between the second cylinder portion 17 and the third cylinder portion 18 of the adapter body 4. An outer peripheral wall is formed, the second cylinder part 17 is accommodated in the third cylinder part 18, and the first cylinder part 16 is accommodated in the second cylinder part 17. The space between the first tube portion 16 and the second tube portion 17 is communicated with the air intake port 15, and the space between the second tube portion 17 and the third tube portion 18 is communicated with the return connection port 13. The internal space of the first tube portion 16, the space between the first tube portion 16 and the second tube portion 17, and the space between the second tube portion 17 and the third tube portion are mutually blocked. Has been. The female thread portion 11 is formed on the inner peripheral surface of the third cylindrical portion 18.

浴槽アタッチメント5は、円筒状の浴槽ボルト19と、該浴槽ボルト19に内嵌された噴出ノズル20と、水流放出口3を有する放出水流制御部材21とから主構成されている。浴槽ボルト19には上記フランジ8が設けられ、該フランジ8にパッキン10が取付られているとともに、浴槽ボルト19の外周面に上記の雄ネジ部12が形成されている。また、浴槽ボルト19の内周面と、アダプタ本体4の第2筒部17との間には隙間が形成されており、該隙間を介してアダプタ本体4の戻り用接続口13と、上記吸い込み口2とが連通されている。   The bathtub attachment 5 is mainly composed of a cylindrical bathtub bolt 19, an ejection nozzle 20 fitted in the bathtub bolt 19, and a discharge water flow control member 21 having a water flow discharge port 3. The bathtub bolt 19 is provided with the flange 8, the packing 10 is attached to the flange 8, and the male screw portion 12 is formed on the outer peripheral surface of the bathtub bolt 19. In addition, a gap is formed between the inner peripheral surface of the bathtub bolt 19 and the second tube portion 17 of the adapter main body 4, and the return connection port 13 of the adapter main body 4 and the above suction through the gap. The mouth 2 is in communication.

噴出ノズル20は、気泡を含む噴出水流を浴槽内に噴出するものであり、アダプタ本体4の往き用接続口14を介して浴槽水が供給される浴槽水導入口22と、該浴槽水導入口22の下流に設けられ噴出水流が外部に向けて噴出されるオリフィス23と、浴槽水導入口22とオリフィス23とを連通させる流通路24と、アダプタ本体4の空気採り入れ口15を介してオリフィス23内に空気を導入するための吸気孔25とを備えている。図示実施形態の噴出ノズル20は、先端部にオリフィス23を有する内筒部26と、該内筒部26との間に隙間を有して同心状に一体成形された外筒部27とから主構成されており、内筒部26の背面側端部が上記浴槽水導入口22とされ、内筒部26の内部空間が上記流通路24となされている。この流通路24の下流端に断面急縮小部を構成する段差部28を介してオリフィス23の上流端が連設されている。   The jet nozzle 20 jets a jet of water containing bubbles into the bathtub, and a bathtub water inlet 22 through which the bathtub water is supplied via the forward connection port 14 of the adapter body 4, and the bathtub water inlet An orifice 23 provided downstream of the nozzle 22 through which the jet water flow is jetted outward, a flow passage 24 for communicating the bathtub water inlet 22 and the orifice 23, and the air inlet 15 of the adapter body 4. An intake hole 25 for introducing air into the inside is provided. The jet nozzle 20 of the illustrated embodiment is mainly composed of an inner cylinder part 26 having an orifice 23 at a tip part and an outer cylinder part 27 integrally formed concentrically with a gap between the inner cylinder part 26. The rear end portion of the inner cylinder portion 26 is the bathtub water introduction port 22, and the inner space of the inner cylinder portion 26 is the flow passage 24. The upstream end of the orifice 23 is connected to the downstream end of the flow passage 24 via a step portion 28 that forms a rapidly reducing section.

噴出ノズル20の内筒部26はアダプタ本体4の第1筒部16に内嵌され、これにより、オリフィス23が往き用接続口14の下流に連通されている。一方、外筒部27は、アダプタ本体4の第2筒部17に内嵌されているとともに、外筒部27の内周面と第1筒部16の外周面との間には隙間が形成されるように構成されており、これにより、内筒部26及び第1筒部16と、外筒部27との間の空間に空気採り入れ口15を介して外気が供給されるようになっており、当該空間の先端部はオリフィス23の径方向外方まで延設され、当該空間の先端部とオリフィス23とを連通させる上記吸気孔25が内筒部26に形成されている。   The inner cylinder part 26 of the ejection nozzle 20 is fitted into the first cylinder part 16 of the adapter body 4, whereby the orifice 23 is communicated downstream of the outgoing connection port 14. On the other hand, the outer cylinder part 27 is fitted into the second cylinder part 17 of the adapter body 4 and a gap is formed between the inner peripheral surface of the outer cylinder part 27 and the outer peripheral surface of the first cylinder part 16. Thus, the outside air is supplied to the space between the inner cylinder part 26 and the first cylinder part 16 and the outer cylinder part 27 via the air intake port 15. The leading end of the space extends to the outside in the radial direction of the orifice 23, and the intake hole 25 that connects the leading end of the space and the orifice 23 is formed in the inner cylinder portion 26.

吸気孔25は小孔により構成されており、図示実施形態においては周方向に隣接配置された3つの小孔により構成されている。なお、射出成形時に内筒部26に吸気孔25を構成する小孔をピンにより形成させているため、外筒部27にも小孔が形成されてしまうが、該外筒部27の小孔は、噴出ノズル20と放出水流制御部材21との間に設けられたOリング40によって密閉されている。   The intake hole 25 is constituted by small holes, and in the illustrated embodiment, is constituted by three small holes arranged adjacent to each other in the circumferential direction. In addition, since the small hole which comprises the intake hole 25 is formed in the inner cylinder part 26 by the pin at the time of injection molding, a small hole will also be formed in the outer cylinder part 27, but the small hole of this outer cylinder part 27 is formed. Is sealed by an O-ring 40 provided between the ejection nozzle 20 and the discharge water flow control member 21.

噴出ノズル20のオリフィス23は、上流側の第1オリフィス部23aと、該第1オリフィス部23aの下流端に、断面積を僅かに且つ急激に拡大する段差部29を有して連設された第2オリフィス部23bとからなる。第2オリフィス部23bは、第1オリフィス部23aの下流側に設けられ、段差部29を介して第1オリフィス部23aよりも断面積が急激に大きくなるように構成されていて、これらオリフィス部23a,23bの境界部に設けられた段差部29の背面側(図において右側)の微小領域に、噴出ノズル22に通水した際に負圧を発生させるように構成されている。そして、上記の吸気孔25は、段差部29に開口形成されていて、特に本実施形態では吸気孔25が段差部29を跨ぐように開口形成されており、段差部29の背面側に生じる負圧によって空気を自然吸気するように構成されている。本実施形態では、段差部29はオリフィス23の内周面の全周にわたって形成されていて、作動時(噴出ノズル20への通水時)に段差部29の背面側の微小負圧領域に生じる空気層がオリフィス23の全周にわたって形成されるようになっている。   The orifice 23 of the ejection nozzle 20 is connected to the upstream side first orifice part 23a and the downstream end of the first orifice part 23a with a step part 29 that slightly and rapidly expands the cross-sectional area. The second orifice portion 23b. The second orifice portion 23b is provided on the downstream side of the first orifice portion 23a, and is configured such that the cross-sectional area is suddenly larger than that of the first orifice portion 23a via the stepped portion 29. , 23b is configured to generate a negative pressure in a minute region on the back side (right side in the figure) of the stepped portion 29 when water is passed through the ejection nozzle 22. The intake hole 25 is formed in the stepped portion 29. In particular, in the present embodiment, the intake hole 25 is formed so as to straddle the stepped portion 29, and the negative hole generated on the back side of the stepped portion 29 is formed. It is configured so that air is naturally aspirated by pressure. In the present embodiment, the stepped portion 29 is formed over the entire circumference of the inner peripheral surface of the orifice 23, and is generated in a minute negative pressure region on the back side of the stepped portion 29 during operation (when water flows into the ejection nozzle 20). An air layer is formed over the entire circumference of the orifice 23.

従来の一般的なエジェクタ型気泡発生装置における気泡発生原理は高速な水流がオリフィスを通過してオリフィスよりも十分広い空間に高速水流を噴射させた際に生じるキャビテーション原理によるものであり、かかる従来装置では高速水流を生じさせるために高圧ポンプが必須となっていたが、本実施形態ではオリフィス23の途中に設けた微小な段差部29を水流が通過することによって段差部29の背面側の微小領域に発生する負圧を利用して空気を吸引するものであり、キャビテーションが生じるほどの高速水流は必要ではなく、コストの安い低圧ポンプを循環ポンプとして利用することができてコスト低減や騒音の大幅な低減を図ることが可能であるとともに、オリフィス径を比較的大きくすることができるので、十分な水流の流量を確保することができ、これに伴い水流に混合される気泡の量を多くしても、気泡同士が結合しにくく、品質の良い気泡含有水流を十分な流量で発生させることが可能である。   The principle of bubble generation in a conventional general ejector-type bubble generator is based on the cavitation principle that occurs when a high-speed water flow passes through the orifice and jets the high-speed water flow in a space sufficiently wider than the orifice. In this embodiment, a high-pressure pump is indispensable in order to generate a high-speed water flow. The high-pressure water flow that causes cavitation is not necessary, and low-pressure pumps that are low in cost can be used as circulation pumps to reduce costs and greatly reduce noise. Can be reduced at the same time and the orifice diameter can be made relatively large. Can be secured, even by increasing the amount of air bubbles mixed in the water stream due to this, hardly binds bubbles together, it is possible to generate a good bubble-containing water quality at a rate sufficient.

図5及び図6は、図1〜図4に示す本実施形態の噴出ノズル20を備える気泡発生装置の気泡発生原理説明図である。図5に示すように噴出ノズル20内に所定流量で浴槽水を通水すると、第1オリフィス部23aにおいて流速が加速され、これに伴い第1オリフィス部23aを通過する水流の圧力が低下する。例えば、第1オリフィス部23aを通過する水流の圧力、特に第1オリフィス部23a内周面近傍の圧力がほぼ外気圧と等しくなるように、第1オリフィス部23aの断面積、第1オリフィス部23aの上流側の流路形状や断面積、並びに、浴槽水の流量などを設定することができる。水流が段差部29を通過すると、段差部29の背面側の微小領域に負圧が生じ、該負圧により吸気孔25を介して空気が吸引されて図6に示すようにオリフィス23の全周にわたって段差部29の背面側に空気層が形成され、この空気層を空気の供給源としてオリフィス23を流れる水流に気泡が全周にわたって均一かつ連続的に発生して混合され、かかる気泡を含有する水流が第2オリフィス部23bから外部に向けて噴出される。   FIG.5 and FIG.6 is a bubble generation principle explanatory drawing of a bubble generation apparatus provided with the ejection nozzle 20 of this embodiment shown in FIGS. 1-4. As shown in FIG. 5, when bath water is passed through the ejection nozzle 20 at a predetermined flow rate, the flow velocity is accelerated in the first orifice portion 23a, and the pressure of the water flow passing through the first orifice portion 23a is reduced accordingly. For example, the cross-sectional area of the first orifice portion 23a, the first orifice portion 23a, so that the pressure of the water flow passing through the first orifice portion 23a, particularly the pressure in the vicinity of the inner peripheral surface of the first orifice portion 23a, is substantially equal to the external pressure. The flow path shape and cross-sectional area on the upstream side, the flow rate of bathtub water, and the like can be set. When the water flow passes through the stepped portion 29, a negative pressure is generated in a minute region on the back side of the stepped portion 29, and air is sucked through the intake hole 25 by the negative pressure, and as shown in FIG. An air layer is formed on the back side of the stepped portion 29, and bubbles are generated and mixed uniformly and continuously over the entire circumference in the water flow flowing through the orifice 23 using the air layer as an air supply source. A water flow is ejected outward from the second orifice portion 23b.

吸気孔25の好ましい位置を実験的に検証するため、本願発明者らは吸気孔25の位置を軸方向に微小にずらした複数のサンプルを用いて気泡の発生状態を確認した。かかる実験モデルは図7に示されており、下限流量Qを毎分4.0L、第1オリフィス部23aの直径φAを4.5mm、第2オリフィス部23bの直径φBを5.1mm、吸気孔25の直径φRを1.0mmとした。この場合、吸気孔25の段差部29から最も離れる部位と段差部29との間の距離をLとすると、当該距離Lが1.0mmを超えるとほとんど気泡が発生しなくなり、また、吸気孔25の中心が段差部29に近くなるほど良好な気泡の発生が確認できた。   In order to experimentally verify the preferred position of the air intake hole 25, the inventors of the present application confirmed the bubble generation state using a plurality of samples in which the position of the air intake hole 25 was slightly shifted in the axial direction. Such an experimental model is shown in FIG. 7. The lower limit flow rate Q is 4.0 L / min, the diameter φA of the first orifice portion 23a is 4.5 mm, the diameter φB of the second orifice portion 23b is 5.1 mm, and the intake hole The diameter φR of 25 was 1.0 mm. In this case, assuming that the distance between the portion of the intake hole 25 farthest from the stepped portion 29 and the stepped portion 29 is L, bubbles are hardly generated when the distance L exceeds 1.0 mm, and the intake hole 25 It was confirmed that the better the bubbles were generated, the closer the center to the stepped portion 29.

この結果より、図8に示すように、段差部29の背面側の負圧領域の軸方向寸法bと、段差部の径方向寸法aとの間には、b=0.3aの関係が導出される。L≦bであれば吸気可能であるため、L≦0.3aとなる条件を満たすように吸気孔25の位置を設定すれば、安定した吸気を行うことが可能であることが判る。   From this result, as shown in FIG. 8, a relationship of b = 0.3a is derived between the axial dimension b of the negative pressure region on the back side of the step part 29 and the radial dimension a of the step part. Is done. Since it is possible to inhale if L ≦ b, it is understood that stable intake can be performed if the position of the intake hole 25 is set so as to satisfy the condition of L ≦ 0.3a.

図1〜図4に示す本実施形態の段差部29の背面は、オリフィス23の内周面に対して軸方向断面視においてほぼ直角に形成されているが、図9に示すように、段差部29の背面を、オリフィス23の内周面に対して軸方向断面視において鋭角状に形成することもできる。これによれば、段差部29の奥行きがより深くなるため、負圧の発生がより安定化するとともに、段差部29の背面の空気層の層厚を大きくすることができて、より確実に円環状の空気層(図9において点ハッチングで示す。)が形成されるようになり、気泡の発生が一層均一化する。   The back surface of the stepped portion 29 of the present embodiment shown in FIGS. 1 to 4 is formed substantially perpendicular to the inner peripheral surface of the orifice 23 in the axial sectional view, but as shown in FIG. The back surface of 29 can also be formed in an acute angle with respect to the inner peripheral surface of the orifice 23 in an axial sectional view. According to this, since the depth of the step portion 29 becomes deeper, the generation of negative pressure is further stabilized, and the layer thickness of the air layer on the back surface of the step portion 29 can be increased. An annular air layer (indicated by dot hatching in FIG. 9) is formed, and the generation of bubbles is made more uniform.

また、本実施形態では、図1及び図2に示すように噴出ノズル20の流通路24とオリフィス23との境界を段差部28による断面急縮小構造としているが、かかる断面急縮小構造の作用について説明する。図5に示すように流通路24の下流端をテーパー状に縮径してオリフィス23に繋げた場合は管路内に乱流が生じにくく圧力損失も小さく、第1オリフィス部23aを流れる水流の流れ方向は比較的軸方向に沿うようになって、該水流自体によってはオリフィス23内面に負圧を生じさせるものではない。一方、図10に示すようにオリフィス23の入口で断面を急激に縮小させると、管の流れの特性から、オリフィス23の入口付近の水流が、下流に至るにしたがって径方向内方に向くような流れとなり、第1オリフィス部23aを流れる水流は第1オリフィス部23aの径よりも細く流れ、これにより管壁と水流の間に乱流による負圧が生じる。この負圧の影響がある領域内に上記のオリフィス内段差部29による断面急拡大部を構成することにより、相乗効果により大きな負圧をオリフィス内面に生じさせることができる。このような作用が生じるための段差部28,29の相対距離は、管径や流速などの諸条件にもよるが、本実施形態では2mm程度としている。   Further, in this embodiment, as shown in FIGS. 1 and 2, the boundary between the flow passage 24 and the orifice 23 of the ejection nozzle 20 has a cross-sectional sudden reduction structure by the step portion 28. explain. As shown in FIG. 5, when the downstream end of the flow passage 24 is tapered and connected to the orifice 23, turbulent flow is less likely to occur in the pipeline, and the pressure loss is small, and the water flow flowing through the first orifice portion 23a is small. The flow direction is relatively along the axial direction, and the water flow itself does not cause a negative pressure on the inner surface of the orifice 23. On the other hand, as shown in FIG. 10, when the cross section is suddenly reduced at the inlet of the orifice 23, the water flow near the inlet of the orifice 23 is directed radially inward as it goes downstream due to the characteristics of the pipe flow. The water flow that flows through the first orifice portion 23a flows smaller than the diameter of the first orifice portion 23a, thereby generating a negative pressure due to the turbulent flow between the pipe wall and the water flow. By constructing the above-mentioned rapidly expanding section by the step portion 29 in the orifice in the region affected by the negative pressure, a large negative pressure can be generated on the inner surface of the orifice by a synergistic effect. The relative distance between the step portions 28 and 29 for causing such an action is about 2 mm in the present embodiment, although it depends on various conditions such as the tube diameter and the flow velocity.

なお、断面急縮小する構造としては、図11に示すように、オリフィス23の上流端を上流側の流通路24内に向けて突出させるような構造とすることもできる。   As shown in FIG. 11, the structure in which the cross section is rapidly reduced may be a structure in which the upstream end of the orifice 23 protrudes into the upstream flow passage 24.

次に、上記放出水流制御部材21について説明すると、放出水流制御部材21は、図1及び図2に示すように、噴出ノズル20に外嵌される円環状の取付ベース部30と、該ベース部30に一体形成された衝突壁支持部31と、該支持部31に取付支持された衝突壁32と、該衝突壁32の外周を覆う筒状の飛散防止壁33とから主構成されている。衝突壁32の周囲の開口部が上記の水流放出口3となされており、十分な開口量を確保するとともに水流を円滑に放出できるように上記衝突壁支持部31は軸芯部から放射方向に延びる3本の幅狭のリブ状に構成されている。ベース部30は、浴槽ボルト19の前面に設けられたビス孔19aを用いて浴槽ボルト19に図示しない取付ビスにより取付固定される。上記吸い込み口2は、ベース部30と浴槽ボルト19との間の隙間によって形成されている。   Next, the discharge water flow control member 21 will be described. As shown in FIGS. 1 and 2, the discharge water flow control member 21 includes an annular mounting base portion 30 that is externally fitted to the ejection nozzle 20, and the base portion. The collision wall support part 31 integrally formed in 30, the collision wall 32 attached to and supported by the support part 31, and the cylindrical scattering prevention wall 33 covering the outer periphery of the collision wall 32 are mainly configured. An opening around the collision wall 32 serves as the water flow discharge port 3, and the collision wall support portion 31 is arranged in a radial direction from the shaft core portion so as to ensure a sufficient opening amount and smoothly discharge the water flow. It is comprised in the shape of three narrow ribs that extend. The base portion 30 is fixedly attached to the bathtub bolt 19 with a mounting screw (not shown) using a screw hole 19a provided on the front surface of the bathtub bolt 19. The suction port 2 is formed by a gap between the base portion 30 and the bathtub bolt 19.

衝突壁32は、噴出ノズル20の正面に配設された円盤状の部材であり、噴出ノズル20のオリフィス23に所定距離で同心状に対向配置される円形状の衝突面32aを有している。この衝突面32aは、オリフィス23の軸心に対して傾斜していてもよいが、好ましくは、オリフィス23の軸心に対して垂直に配置するのが良い。また、衝突面32aの径は、第2オリフィス部23bの径よりも大きく、噴出ノズル20の先端部と衝突面32aとの距離は第2オリフィス部23bの直径よりも小さく設定されている。また、衝突壁32の外径は、第2オリフィス部23bの内径の約2倍程度となされている。   The collision wall 32 is a disk-shaped member disposed in front of the ejection nozzle 20 and has a circular collision surface 32a concentrically opposed to the orifice 23 of the ejection nozzle 20 at a predetermined distance. . The collision surface 32 a may be inclined with respect to the axis of the orifice 23, but is preferably disposed perpendicular to the axis of the orifice 23. The diameter of the collision surface 32a is larger than the diameter of the second orifice part 23b, and the distance between the tip of the ejection nozzle 20 and the collision surface 32a is set smaller than the diameter of the second orifice part 23b. Further, the outer diameter of the collision wall 32 is about twice the inner diameter of the second orifice portion 23b.

なお、図示実施形態においては、衝突面32aとは反対側の側面から突出する支持軸36が衝突壁32に一体成形されており、該支持軸36が衝突壁支持部31に支持されている。支持部31に支持軸36を螺合させる構造とすれば、支持軸36の回転操作によって衝突壁32と噴出ノズル20との間の距離を微調整して気泡の発生状態を調整できるし、また、衝突壁支持部31に支持軸36を軸方向往復動自在に支持させれば、通水時の圧力変動により衝突壁32が微小に軸方向に振動して、水流放出口3から放出される水流や気泡にバリエーションを付加できるようになる。   In the illustrated embodiment, a support shaft 36 protruding from the side surface opposite to the collision surface 32 a is formed integrally with the collision wall 32, and the support shaft 36 is supported by the collision wall support portion 31. With the structure in which the support shaft 36 is screwed into the support portion 31, the distance between the collision wall 32 and the ejection nozzle 20 can be finely adjusted by rotating the support shaft 36, and the bubble generation state can be adjusted. If the support shaft 36 is supported by the collision wall support 31 so as to be capable of reciprocating in the axial direction, the collision wall 32 is vibrated slightly in the axial direction due to pressure fluctuations during water flow, and is discharged from the water flow outlet 3. Variations can be added to water currents and bubbles.

衝突壁32の衝突面32aの周縁部には、噴出ノズル20からの噴出水流が浴槽水中では衝突壁32の周囲の水流放出口3を介して噴出ノズル20からの噴出方向に沿って流れるように案内する案内曲面32bが形成されている。これは、水中では水流は物体の表面に沿って引っ張られるように流れるという性質を利用したものである。   At the periphery of the collision surface 32 a of the collision wall 32, the water jet from the jet nozzle 20 flows in the direction of the jet from the jet nozzle 20 through the water flow outlet 3 around the collision wall 32 in the bath water. A guiding curved surface 32b for guiding is formed. This utilizes the property that water flows in water as if it is pulled along the surface of the object.

かかる案内曲面32bを有する衝突壁32の作用を、図5及び図12を参照しつつ説明する。図12の下半分は水中での噴出水流の流れを模式的に示しており、図12の上半分は気中での噴出水流の流れを模式的に示している。図5及び図12に示すように、噴出ノズル20からの噴出水流は、衝突壁32の衝突面32aのほぼ中央に衝突され、この衝撃力によって水流中の気泡が一次的に微細化される。水流は、衝突壁32に衝突した後、衝突面32aに沿って放射方向に分散する流れとなるが、水中では径方向外方に至るにしたがって水流が分散されることにより図5に示すように水流の水膜が薄くなり、衝突面32aの周縁部に至るにしたがって大きなせん断力が水流中に含まれる気泡に作用して、気泡がより一層微細化し、20μm程度の大きさのマイクロバブルが大量に発生する。水流が衝突壁32の周縁部に到達すると、案内曲面32bに沿うように水流が曲げられて、噴出ノズル20の噴出方向に沿うように流れるようになる。   The operation of the collision wall 32 having the guide curved surface 32b will be described with reference to FIGS. The lower half of FIG. 12 schematically shows the flow of the jet water flow in water, and the upper half of FIG. 12 schematically shows the flow of the jet water flow in the air. As shown in FIGS. 5 and 12, the jet water flow from the jet nozzle 20 collides with substantially the center of the collision surface 32 a of the collision wall 32, and bubbles in the water flow are first refined by this impact force. After the water flow collides with the collision wall 32, it becomes a flow that is dispersed in the radial direction along the collision surface 32a. However, in the water, the water flow is dispersed toward the outer side in the radial direction, as shown in FIG. As the water film of the water flow becomes thin and a large shearing force acts on the bubbles contained in the water flow as it reaches the peripheral portion of the collision surface 32a, the bubbles are further miniaturized, and a large number of microbubbles having a size of about 20 μm. Occurs. When the water flow reaches the peripheral edge of the collision wall 32, the water flow is bent along the guide curved surface 32b and flows along the ejection direction of the ejection nozzle 20.

一方、浴槽内に水が張られていない場合に、湯張り運転により気中で噴出ノズル20から噴出水流が噴射されると、抵抗となる浴槽水が周囲に存在しないため、水流が衝突面32aから放射方向に飛び散ることとなり、何ら飛散防止策を講じていない場合には浴槽から外に水しぶきを撒き散らしてしまうおそれがある。本実施形態では、飛散防止壁33が衝突壁32の外周を覆うように配設されており、この飛散防止壁33により衝突壁32の上方が覆われているため、気中で噴出ノズル20から水流が噴射された場合でも浴槽から外に多量の水しぶきを撒き散らすことが防止される。   On the other hand, when water is not filled in the bathtub, when a jet water flow is jetted from the jet nozzle 20 in the air by hot water filling operation, since there is no bathtub water that becomes resistance, the water flow collides with the collision surface 32a. If there are no measures to prevent scattering, there is a risk of splashing water from the bathtub. In the present embodiment, the scattering prevention wall 33 is disposed so as to cover the outer periphery of the collision wall 32, and the upper part of the collision wall 32 is covered by the scattering prevention wall 33, so Even when a water flow is jetted, it is possible to prevent a large amount of water splashing from the bathtub.

飛散防止壁33は、水中での気泡発生運転時における衝突壁32の外周面に沿う水流の流れを阻害しないように、衝突壁32から所定距離離間した位置に配置されている。また、好ましくは、図5及び図12に示すように、衝突壁32の先端部(図において右端部)が、飛散防止壁33の先端部よりも先端側、すなわち水流放出口3からの水流の噴射方向に突出させることができる。これによれば、衝突壁32の先端部から放出される水流に対し、飛散防止壁33の存在に起因する乱流の影響をなくすことができて、水流がより安定して浴槽内方に向けて一様に流れるようになり、入浴者へのマッサージ感を向上できる。   The scattering prevention wall 33 is disposed at a position spaced apart from the collision wall 32 by a predetermined distance so as not to hinder the flow of water along the outer peripheral surface of the collision wall 32 during the bubble generation operation in water. Further, preferably, as shown in FIGS. 5 and 12, the tip of the collision wall 32 (the right end in the figure) is more distal than the tip of the scattering prevention wall 33, that is, the water flow from the water flow outlet 3. It can project in the injection direction. According to this, the influence of the turbulent flow due to the presence of the scattering prevention wall 33 can be eliminated from the water flow discharged from the tip of the collision wall 32, and the water flow is more stably directed toward the inside of the bathtub. It can flow evenly and improve the feeling of massage for bathers.

また、飛散防止壁33と噴出ノズル20との間には、噴出ノズル20から噴出される噴出水流とともに飛散防止壁33周囲の浴槽内の水を衝突壁32に向けて流入させるための隙間34が形成されている。この隙間34からの浴槽水の流入により、水流放出口3から前方に放出されるマイクロバブル水流の流れを一層円滑なものとすることができる。すなわち、上記隙間34が存在しないと、衝突壁32の周囲後方が飛散防止壁により閉塞されるようになって、該閉塞部に滞留する浴槽水の乱流により、マイクロバブル水流に損失が生じ、泡質が劣化したり水流が流速低下してしまうことが懸念されるが、本実施形態では、衝突壁32表面に沿うマイクロバブル水流の周囲で、浴槽水の円滑な環流を生じさせる隙間34が設けられているため、良質な泡や水流を生じさせることができる。   In addition, a gap 34 is provided between the scattering prevention wall 33 and the ejection nozzle 20 to allow water in the bathtub around the scattering prevention wall 33 to flow toward the collision wall 32 together with the jet water flow ejected from the ejection nozzle 20. Is formed. By the inflow of the bathtub water from the gap 34, the flow of the microbubble water flow discharged forward from the water flow outlet 3 can be made smoother. That is, if the gap 34 does not exist, the surrounding back of the collision wall 32 is blocked by the scattering prevention wall, and the turbulent flow of the bathtub water staying in the closed portion causes a loss in the microbubble water flow, Although there is a concern that the foam quality deteriorates or the water flow rate decreases, in this embodiment, there is a gap 34 that generates a smooth circulatory water around the microbubble water flow along the collision wall 32 surface. Since it is provided, it is possible to generate high-quality bubbles and water flow.

さらに、飛散防止壁33の先端部には、衝突壁32側に向けて径方向内方に突出する突出部33aが全周にわたって設けられており、該突出部33aによって、飛散防止壁33内面ではじかれた水が前方に勢いよく飛散してしまうことを防止している。この突出部33aは、飛散防止壁33に一体成形されていてもよく、別途成形された部材を飛散防止壁33の先端部に取り付けてもよい。また、突出部33aの構造は、飛散防止壁33の先端部から直角に折り返されている必要はなく、飛散防止壁33内面ではじかれた水が前方に飛び出す勢いに合わせて適宜の形状とすることができ、たとえば、飛散防止壁33の先端部から手前に鋭角に折り返すような構造でもよいし、飛散防止壁33の先端部から前方斜めへ向けて傾斜する構造であってもよい。なお、この突出部33aと衝突壁32との間の距離も、水流を妨げないように十分な寸法を確保することが好ましい。   Further, a protrusion 33a that protrudes radially inward toward the collision wall 32 is provided at the tip of the scattering prevention wall 33 over the entire circumference. It prevents the spilled water from splashing forward. The protrusion 33 a may be integrally formed with the scattering prevention wall 33, or a separately molded member may be attached to the tip of the scattering prevention wall 33. Moreover, the structure of the protrusion part 33a does not need to be folded at right angles from the front-end | tip part of the scattering prevention wall 33, and makes it an appropriate shape according to the momentum which the water repelled by the inner surface of the scattering prevention wall 33 jumps ahead. For example, a structure in which the front end portion of the scattering prevention wall 33 is folded back at an acute angle may be used, or a configuration in which the front end portion of the scattering prevention wall 33 is inclined forward and obliquely may be employed. It should be noted that it is preferable that the distance between the protruding portion 33a and the collision wall 32 is sufficiently large so as not to disturb the water flow.

上述したように、飛散防止壁33を先端側にあまり突出させることは円滑な水流の発生に好ましくないため、飛散防止壁33はできるだけ短くすることが好ましいが、衝突壁32に案内曲面32bを形成したことにより、次のような問題が生じる。すなわち、気中で噴出ノズル20から水流を噴出する際、噴出流量が多い時には衝突壁32に衝突した後でも水流の勢いがあるため、図12の矢印aに示すように水流が飛散防止壁33に向けて流れるが、流量が少ないときや、噴出開始前後の流量の立ち上がり時と立ち下がり時などは、水流が案内曲面32bにより引っ張られて図12の矢印cに示すように斜め前方へ飛散してしまい、飛散防止壁33で受けることができない場合が生じる。   As described above, it is not preferable for the scattering prevention wall 33 to protrude too far to the front end side, so that it is not preferable for the generation of a smooth water flow. Therefore, it is preferable to make the scattering prevention wall 33 as short as possible. As a result, the following problems arise. That is, when the water flow is ejected from the ejection nozzle 20 in the air, the water flow has a momentum even after colliding with the collision wall 32 when the ejection flow rate is large. Therefore, as shown by the arrow a in FIG. However, when the flow rate is small or when the flow rate rises and falls before and after the start of ejection, the water flow is pulled by the guide curved surface 32b and splashes obliquely forward as shown by the arrow c in FIG. In some cases, the scattering prevention wall 33 cannot be received.

そこで、図1〜図4に示す本実施形態では、飛散防止壁のサイズを大きくすることなくより確実に水の飛散を防止する手段として、衝突壁32の衝突面32aと案内曲面32bとの境界部に水切りエッジ35を形成し、衝突面32aを案内曲面32bと不連続状とするとともに、衝突面32aを案内曲面32bよりも噴出ノズル20側に1mm程度突出する凸形状としている。かかる構成によれば、図13に示すように、気中における噴出ノズル20からの噴出水流の流量が少なく、衝突壁32に衝突した後の放射方向へ流れる水流の勢いが比較的弱い場合でも、案内曲面32bに引っ張られることなく水流をより確実に飛散防止壁33で受けることが可能になる。   Therefore, in the present embodiment shown in FIGS. 1 to 4, the boundary between the collision surface 32 a and the guide curved surface 32 b of the collision wall 32 is used as a means for more reliably preventing water scattering without increasing the size of the scattering prevention wall. A water draining edge 35 is formed in the portion, the collision surface 32a is discontinuous with the guide curved surface 32b, and the collision surface 32a has a convex shape protruding about 1 mm further toward the ejection nozzle 20 than the guide curved surface 32b. According to such a configuration, as shown in FIG. 13, even when the flow rate of the jet water flow from the jet nozzle 20 in the air is small and the momentum of the water flow flowing in the radial direction after colliding with the collision wall 32 is relatively weak, The water flow can be more reliably received by the scattering prevention wall 33 without being pulled by the guide curved surface 32b.

本発明は上記実施形態に限定されるものではなく、適宜設計変更可能である。例えば、飛散防止壁は筒状でなくともよく、少なくとも衝突壁の上方を覆うものであれば良い。また、上記実施形態ではオリフィスの途中に設けた段差部は全周にわたって形成したが、図14に示すように、周方向一部のみに段差部29を設け、第2オリフィス部23bの断面をカギ溝状の構造とすることもできる。この場合、周方向の一部のみから気泡が供給されるようになるため、気泡が水流の断面内で片側に偏って発生する傾向がある。本実施形態は、特定の位置に集中して気泡を発生したい場合などに有効である。   The present invention is not limited to the above-described embodiment, and the design can be changed as appropriate. For example, the anti-scattering wall does not have to be cylindrical, and it is sufficient if it covers at least the upper part of the collision wall. In the above embodiment, the step portion provided in the middle of the orifice is formed over the entire circumference. However, as shown in FIG. 14, the step portion 29 is provided only in a part in the circumferential direction, and the cross section of the second orifice portion 23b is the key. A groove-like structure can also be used. In this case, since the bubbles are supplied only from a part in the circumferential direction, the bubbles tend to be biased to one side within the cross section of the water flow. This embodiment is effective when, for example, it is desired to generate bubbles concentrating on a specific position.

20 噴出ノズル
22 浴槽水導入口
23 オリフィス
23a 第1オリフィス部
23b 第2オリフィス部
25 吸気孔
29 段差部
32 衝突壁
32a 衝突面
32b 案内曲面
DESCRIPTION OF SYMBOLS 20 Jet nozzle 22 Bath water inlet 23 Orifice 23a 1st orifice part 23b 2nd orifice part 25 Intake hole 29 Step part 32 Colliding wall 32a Colliding surface 32b Guide curved surface

Claims (5)

浴槽内の浴槽水が供給される浴槽水導入口と、該浴槽水導入口の下流に設けられ噴出水流が噴出されるオリフィスとを備えた噴出ノズルから気泡を含む噴出水流を浴槽内に噴出する気泡発生装置において、
前記オリフィスは、上流側の第1オリフィス部と、該第1オリフィス部の下流側に設けられ第1オリフィス部よりも断面積が大きい第2オリフィス部とを有し、第2オリフィス部は、第1オリフィス部の下流端に少なくとも周方向一部に断面積を拡大する段差部を有して連設され、前記オリフィス内に空気を導入するための吸気孔が前記段差部の背面側に生じる負圧領域に開口形成されており、該段差部の背面側に生じる負圧により空気を吸引するように構成したことを特徴とする気泡発生装置。
A squirting water flow containing bubbles is ejected into a tub from a squirting nozzle provided with a tubing water introduction port to which tub water in the tub is supplied and an orifice provided downstream of the tubing water introduction port. In the bubble generator,
The orifice has a first orifice portion on the upstream side and a second orifice portion provided on the downstream side of the first orifice portion and having a cross-sectional area larger than that of the first orifice portion. A negative portion formed on the back side of the stepped portion is provided at the downstream end of the one orifice portion with a stepped portion that expands the cross-sectional area at least partially in the circumferential direction, and an intake hole for introducing air into the orifice. An air bubble generating device characterized in that an opening is formed in a pressure region and air is sucked by a negative pressure generated on the back side of the stepped portion.
請求項1に記載の気泡発生装置において、前記吸気孔が前記段差部を跨ぐように開口形成されていることを特徴とする気泡発生装置。   2. The bubble generator according to claim 1, wherein the intake hole is formed so as to straddle the step portion. 請求項1又は2に記載の気泡発生装置において、前記段差部がオリフィスの全周にわたって形成され、作動時に段差部の背面側の負圧領域に生じる空気層がオリフィスの全周にわたって形成されるようしたことを特徴とする気泡発生装置。   3. The bubble generating device according to claim 1, wherein the step portion is formed over the entire circumference of the orifice, and an air layer generated in the negative pressure region on the back side of the step portion during operation is formed over the entire circumference of the orifice. An air bubble generating device characterized by that. 請求項1,2又は3に記載の気泡発生装置において、前記段差部の背面はオリフィス内周面に対して断面視鋭角状に形成されていることを特徴とする気泡発生装置。   4. The bubble generating device according to claim 1, wherein the back surface of the stepped portion is formed in an acute angle in a sectional view with respect to the inner peripheral surface of the orifice. 請求項1〜4のいずれかに記載の気泡発生装置において、浴槽水導入口とオリフィスとを連通する流通路を備え、該流通路の下流端に段差部を介して第1オリフィス部が連設されており、前記流通路の下流端の断面積が、第1オリフィス部の断面積の2倍以上であることを特徴とする気泡発生装置。   The bubble generating device according to any one of claims 1 to 4, further comprising a flow passage that communicates the bath water inlet and the orifice, and the first orifice portion is continuously provided at a downstream end of the flow passage via a stepped portion. The bubble generating apparatus is characterized in that the cross-sectional area of the downstream end of the flow passage is at least twice the cross-sectional area of the first orifice portion.
JP2011106863A 2011-05-12 2011-05-12 Bubble generator Expired - Fee Related JP5790139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011106863A JP5790139B2 (en) 2011-05-12 2011-05-12 Bubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011106863A JP5790139B2 (en) 2011-05-12 2011-05-12 Bubble generator

Publications (2)

Publication Number Publication Date
JP2012236147A true JP2012236147A (en) 2012-12-06
JP5790139B2 JP5790139B2 (en) 2015-10-07

Family

ID=47459557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011106863A Expired - Fee Related JP5790139B2 (en) 2011-05-12 2011-05-12 Bubble generator

Country Status (1)

Country Link
JP (1) JP5790139B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017047419A (en) * 2015-09-02 2017-03-09 豊明 福井 Nano-bubble generation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176780A (en) * 1997-08-29 1999-03-23 Idec Izumi Corp Fine foam supply device
JP2009226328A (en) * 2008-03-24 2009-10-08 Daikin Ind Ltd Gas dissolving vessel
JP2010155191A (en) * 2008-12-26 2010-07-15 Daikin Ind Ltd Device for generating microbubble

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176780A (en) * 1997-08-29 1999-03-23 Idec Izumi Corp Fine foam supply device
JP2009226328A (en) * 2008-03-24 2009-10-08 Daikin Ind Ltd Gas dissolving vessel
JP2010155191A (en) * 2008-12-26 2010-07-15 Daikin Ind Ltd Device for generating microbubble

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017047419A (en) * 2015-09-02 2017-03-09 豊明 福井 Nano-bubble generation device

Also Published As

Publication number Publication date
JP5790139B2 (en) 2015-10-07

Similar Documents

Publication Publication Date Title
KR101483412B1 (en) Micro bubble nozzle
EP2354337B1 (en) Sanitary washing apparatus
JP4917803B2 (en) Fine bubble jet nozzle and fine bubble generator using the same
JP6210857B2 (en) Micro bubble nozzle for air spray
JP5854186B2 (en) Shower equipment
JP2005118542A (en) Microbubble generator
JP6449531B2 (en) Microbubble generator
JPWO2019026195A1 (en) Fine bubble generator, fine bubble generation method, shower device and oil / water separator having the fine bubble generator
JP5966825B2 (en) shower head
JP2689639B2 (en) Bubble ejection device
JP2017136513A (en) Fine air bubble generating device, fine air bubble generating method, and shower device and oil water separating apparatus having the fine air bubble generating device
JP5790139B2 (en) Bubble generator
JP2007313465A (en) Gas dissolving apparatus
JP2020151390A (en) shower head
JP3213014U (en) Microbubble water generator for washing machines
JP2019166493A (en) Fine bubble generation nozzle
JP4561349B2 (en) Liquid nozzle
JP5024144B2 (en) Gas dissolver
CN211395013U (en) Microbubble shower nozzle and have washing equipment of this microbubble shower nozzle
JP2010022919A (en) Microair bubble generating nozzle
JP2009178661A (en) Apparatus for discharging liquid
JP2017155410A (en) Water discharge device
JP2014226251A (en) Bathtub system
JP2012235951A (en) Bubble generator
JP5938794B2 (en) Microbubble generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150720

R150 Certificate of patent or registration of utility model

Ref document number: 5790139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees