JP2012235821A - Endoscope lateral side illumination optical system - Google Patents

Endoscope lateral side illumination optical system Download PDF

Info

Publication number
JP2012235821A
JP2012235821A JP2011105033A JP2011105033A JP2012235821A JP 2012235821 A JP2012235821 A JP 2012235821A JP 2011105033 A JP2011105033 A JP 2011105033A JP 2011105033 A JP2011105033 A JP 2011105033A JP 2012235821 A JP2012235821 A JP 2012235821A
Authority
JP
Japan
Prior art keywords
endoscope
optical system
light
optical
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011105033A
Other languages
Japanese (ja)
Inventor
Susumu Takahashi
進 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2011105033A priority Critical patent/JP2012235821A/en
Publication of JP2012235821A publication Critical patent/JP2012235821A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an endoscope lateral side illumination optical system not requiring a light guide which is bent, capable of enhancing operatability by shortening the length of a hard part of the front end part of an endoscope, uniforming light distribution, suppressing the parallax of an illumination field and a visual field even in near observation as much as possible, capable of illuminating in good transmission efficiency, and capable of downsizing as a whole.SOLUTION: The endoscope lateral side illumination optical system has a light source part 11 having an emission opening 11a1 directed to a front end side of an endoscope, a reflecting surface 12a reflecting illumination light emitted from the emission opening of the light source part to a lateral side, and a light transmission optical part 13 which is arranged in an outer periphery of a side view observation optical system 20, in which crosssection is formed in a general U-shape and an outer side surface 13a is formed in a cylindrical shape around a predetermined axis O along a longitudinal direction of the endoscope, and which guides the illumination light reflected by the reflecting surface to an object to be observed in the lateral side, the emission end 13c of the light transmission optical part is formed in an elongate shape along the longitudinal direction of the endoscope and is arranged in the lateral side of the observation window 21 of the lateral view observation optical system.

Description

本発明は、工業用の側視型内視鏡の本体部と一体的に又は着脱式に構成されている、先端部から側視観察光学系の視野に位置する観察対象を照明する内視鏡側方照明光学系に関するものである。   The present invention is an endoscope that illuminates an observation object located in the field of view of a side-view observation optical system from a tip portion, which is configured integrally or detachably with a main body of an industrial-use side-view type endoscope. The present invention relates to a side illumination optical system.

従来、この種の側方照明光学系としては、例えば次の特許文献1〜3に記載のものがある。   Conventionally, examples of this type of side illumination optical system include those described in Patent Documents 1 to 3 below.

特開2005−287851号公報JP 2005-287851 A 特開2010−194191号公報JP 2010-194191 A 特開平06−138400号公報Japanese Patent Laid-Open No. 06-138400

特許文献1に記載の側方照明光学系51は、図5に示すように、観察対象を照明するための発光体51aと、発光体51aの先端に設けられた照明レンズ51bを備えている。図5中、52は側視観察光学系、52a,52bは夫々、側視観察光学系52に備わる対物レンズと撮像素子である。発光体51aは、図示しない光源とライトガイド51a1を備えている。照明レンズ51bは、対物レンズ52aよりも内視鏡の先端側に配置されている。ライトガイド51a1は、照明レンズ51b1に射出端が向くように曲げられている。   As shown in FIG. 5, the side illumination optical system 51 described in Patent Document 1 includes a light emitter 51a for illuminating an observation target, and an illumination lens 51b provided at the tip of the light emitter 51a. In FIG. 5, 52 is a side-view observation optical system, and 52a and 52b are an objective lens and an image sensor provided in the side-view observation optical system 52, respectively. The light emitter 51a includes a light source (not shown) and a light guide 51a1. The illumination lens 51b is disposed closer to the distal end side of the endoscope than the objective lens 52a. The light guide 51a1 is bent so that the emission end faces the illumination lens 51b1.

また、特許文献2に記載の側方照明光学系61は、図6(a)に示すように、ライトガイドファイバ束61aと、照明範囲変換部61bを有している。図6中、62は側視観察光学系、62a,62bは夫々、側視観察光学系62に備わる観察窓と側視方向に光路を折り曲げるプリズムである。ライトガイドファイバ束61aは、照明範囲変換部61bに射出端が向くように曲げられている。また、ライトガイドファイバ束61aは、観察窓62aよりも内視鏡の先端側に配置されている。
照明範囲変換部61bは、図6(b)に示すように、第1反射面61b11と第2反射面61b12を有する反射板61b1と、変換部本体61b2を有している。変換部本体61b2は、側視観察光学系62の観察窓62aやライトガイドファイバ束61aを内部に配置可能な透明円筒形状に形成され、さらに、観察窓62aを外部に露出させるための開口61b21を備えている。
そして、特許文献2に記載の側方照明光学系61は、ライトガイドファイバ束61aの射出端から射出した光を第1反射面61b11で変換部本体61b2の外周方向に反射し、変換部本体61b2内を進んだ光をさらに第2反射面61b12で変換部本体61b2の外部に向けて反射するようになっている。
Further, as shown in FIG. 6A, the side illumination optical system 61 described in Patent Document 2 includes a light guide fiber bundle 61a and an illumination range conversion unit 61b. In FIG. 6, 62 is a side-view observation optical system, and 62a and 62b are an observation window provided in the side-view observation optical system 62 and a prism that bends the optical path in the side view direction. The light guide fiber bundle 61a is bent so that the emission end faces the illumination range conversion unit 61b. Further, the light guide fiber bundle 61a is disposed on the distal end side of the endoscope with respect to the observation window 62a.
As illustrated in FIG. 6B, the illumination range conversion unit 61b includes a reflection plate 61b1 having a first reflection surface 61b11 and a second reflection surface 61b12, and a conversion unit main body 61b2. The conversion unit main body 61b2 is formed in a transparent cylindrical shape in which the observation window 62a and the light guide fiber bundle 61a of the side-view observation optical system 62 can be arranged, and further has an opening 61b21 for exposing the observation window 62a to the outside. I have.
The side illumination optical system 61 described in Patent Document 2 reflects light emitted from the exit end of the light guide fiber bundle 61a on the first reflecting surface 61b11 in the outer peripheral direction of the conversion unit main body 61b2, and converts the conversion unit main body 61b2. The light traveling inward is further reflected by the second reflecting surface 61b12 toward the outside of the conversion unit main body 61b2.

また、特許文献3に記載の一例としての側方照明光学系71は、図7に示すように、ライトガイド71aと、光学素子71bを有している。図7中、72a,72bは側視観察光学系72に備わる側視方向に光路を折り曲げるプリズムと対物レンズ、73はイメージガイドである。
ライトガイド71aは、側視観察光学系72及びイメージガイド73を取り巻くようなU字型(図7(c))或いはカマボコ型(図7(d))に形成されている。光学素子71bは、ライトガイド71aの射出端に当接する入射面71b1と入射面71b1から入射した光を反射する球面状の反射面71b2と、反射面71b2で反射された光を射出する射出面71b3を有し、側視観察光学系72よりも内視鏡の先端側に配置されている。
そして、特許文献3に記載の一例に記載の側方照明光学系71は、ライトガイド71aの射出端から射出した光を、光学素子71bの入射面71b1から取り込み、球面状の反射面71b2で反射することによって一旦集光させた後に拡散させて、射出面71b3から射出するようになっている。
Moreover, the side illumination optical system 71 as an example described in Patent Document 3 includes a light guide 71a and an optical element 71b as shown in FIG. In FIG. 7, 72a and 72b are prisms and objective lenses that bend the optical path in the side view direction provided in the side view observation optical system 72, and 73 is an image guide.
The light guide 71a is formed in a U-shape (FIG. 7 (c)) or a kamaboko-type (FIG. 7 (d)) that surrounds the side-view observation optical system 72 and the image guide 73. The optical element 71b includes an incident surface 71b1 that is in contact with the emission end of the light guide 71a, a spherical reflection surface 71b2 that reflects light incident from the incident surface 71b1, and an emission surface 71b3 that emits light reflected by the reflection surface 71b2. And is disposed closer to the distal end side of the endoscope than the side-view observation optical system 72.
And the side illumination optical system 71 described in the example described in Patent Document 3 takes in the light emitted from the exit end of the light guide 71a from the incident surface 71b1 of the optical element 71b and reflects it by the spherical reflecting surface 71b2. Thus, the light is once condensed and then diffused and emitted from the emission surface 71b3.

また、特許文献3に記載の他の例としての側方照明光学系71’は、図8に示すように、ライトガイド71a’と、光学素子71b’を有している。図8中、72a’,72b’は側視観察光学系72’に備わる側視方向に光路を折り曲げるプリズムと対物レンズ、73’はイメージガイドである。
光学素子71b’は、側視観察光学系72’の外周を覆う中空円筒を円筒の軸方向に平行に上部を切断してなり、断面がU字型に形成されている。そして、光学素子71b’は、ライトガイド71a’の射出端に当接する入射面71b1’と、入射面71b1’に対向する他方の面を側視観察光学系72’のプリズム72a’の反射面に沿って傾斜する反射面71b2’と、入射面71b1’に垂直な射出面71b3’を有している。ライトガイド71a’は、光学素子71b’の入射面71b1’に合せてU字型に形成され、或いはライトガイド束の集合体としてU字型に配置されている。
そして、特許文献3に記載の他の例に記載の側方照明光学系71’は、ライトガイド71a’の射出端から射出した光を、光学素子71b’の入射面71b1’から取り込み、反射面71b2’で反射し、射出面71b3’から射出するようになっている。
Further, as shown in FIG. 8, a side illumination optical system 71 ′ as another example described in Patent Document 3 includes a light guide 71a ′ and an optical element 71b ′. In FIG. 8, 72a 'and 72b' are prisms and objective lenses that bend the optical path in the side viewing direction provided in the side viewing observation optical system 72 ', and 73' is an image guide.
The optical element 71b ′ is formed by cutting a hollow cylinder covering the outer periphery of the side-view observation optical system 72 ′ by cutting the upper part in parallel with the axial direction of the cylinder, and has a U-shaped cross section. Then, the optical element 71b ′ has an incident surface 71b1 ′ in contact with the exit end of the light guide 71a ′ and the other surface opposite to the incident surface 71b1 ′ as a reflection surface of the prism 72a ′ of the side-view observation optical system 72 ′. It has a reflecting surface 71b2 'inclined along and an exit surface 71b3' perpendicular to the incident surface 71b1 '. The light guide 71a ′ is formed in a U shape in accordance with the incident surface 71b1 ′ of the optical element 71b ′, or is arranged in a U shape as an assembly of light guide bundles.
And the side illumination optical system 71 ′ described in another example described in Patent Document 3 takes in the light emitted from the exit end of the light guide 71a ′ from the entrance surface 71b1 ′ of the optical element 71b ′, and reflects the light. The light is reflected by 71b2 ′ and emitted from the exit surface 71b3 ′.

しかし、特許文献1、2に記載の側方照明光学系のように、ライトガイドを曲げて、その射出端を側視観察光学系の観察窓よりも内視鏡先端側に配置すると、その分、内視鏡先端の硬質部が長くなってしまい、操作性が悪くなる。
また、内視鏡先端部の長手方向に沿って側方照明光学系の射出端と側視観察光学系の観察窓を配置すると、照野と視野が離れ易い。このため、側視観察系の視野と照明光学系の照野とのパララックスによる配光ムラを生じ易く、特に近接観察の場合、観察画像における先端側の視野範囲だけが明るくなってハレーションを生じ易い。
内視鏡先端部の長さを短くするためにはライトガイドを曲げる部位の曲率半径を小さくすることが望ましいが、小さい曲率半径でライトガイドを曲げるとファイバーが折れ易くなり、光が漏れて光量損失を生じ、伝送効率が悪くなる。
However, if the light guide is bent and its exit end is arranged closer to the endoscope tip than the observation window of the side-view observation optical system, as in the side illumination optical systems described in Patent Documents 1 and 2, the corresponding amount is reduced. The hard part at the tip of the endoscope becomes long and the operability deteriorates.
Further, if the exit end of the side illumination optical system and the observation window of the side observation optical system are arranged along the longitudinal direction of the endoscope front end portion, the illumination field and the visual field are easily separated. For this reason, uneven light distribution due to parallax between the field of view of the side observation system and the illumination field of the illumination optical system is likely to occur, and in close-up observation, only the field of view on the tip side in the observation image becomes bright and halation occurs. easy.
In order to shorten the length of the endoscope tip, it is desirable to reduce the radius of curvature of the part where the light guide is bent. However, if the light guide is bent with a small radius of curvature, the fiber will be easily broken, causing light leakage and light quantity. Loss occurs and transmission efficiency deteriorates.

これに対し、特許文献3に記載の側方照明光学系は、ライトガイドを曲げていない。
しかし、図7の例の側方照明光学系71のように、光学素子71bを側視観察光学系72の側視方向に光路を折り曲げるプリズム72aよりも内視鏡の先端側に配置すると、その分、特許文献1、2に記載の側方照明光学系と同様に、内視鏡先端の硬質部が長くなってしまい、操作性が悪くなる。
また、図7、図8のいずれの例の側方照明光学系のように、ライトガイド71a,71a’をU字型や半円型に形成、或いはライトガイド束を集合体としてU字型や半円型に配置する構成では、ライトガイドの加工や配置が煩雑化する。
On the other hand, the side illumination optical system described in Patent Document 3 does not bend the light guide.
However, like the side illumination optical system 71 in the example of FIG. 7, when the optical element 71 b is disposed closer to the distal end side of the endoscope than the prism 72 a that bends the optical path in the side view direction of the side view observation optical system 72, As in the case of the side illumination optical systems described in Patent Documents 1 and 2, the hard part at the distal end of the endoscope becomes longer and the operability is deteriorated.
7 and 8, the light guides 71a and 71a 'are formed in a U-shape or a semicircular shape, or the light guide bundles are assembled into a U-shape. In the semicircular arrangement, the processing and arrangement of the light guide becomes complicated.

本発明は、このような従来の問題点に鑑みてなされたものであり、曲げ成形したライトガイドが不要で、内視鏡先端の硬質部の長さを短縮化して操作性を向上でき、配光を均一化し、近接観察においても照野と視野とのパララックスを極力抑え、伝送効率の良い照明ができ、しかも、全体にコンパクト化が可能な内視鏡側方照明光学系を提供することを目的としている。   The present invention has been made in view of such conventional problems, and does not require a bent light guide, and can shorten the length of the hard portion at the endoscope tip to improve operability. To provide an endoscope side illumination optical system that makes light uniform, suppresses parallax between the illumination field and field of view as much as possible even in close-up observations, enables illumination with good transmission efficiency, and enables compactness as a whole. It is an object.

上記目的を達成するため、本発明による内視鏡側方照明光学系は、内視鏡先端部の側方に位置する観察対象からの光を取り込む観察窓を有する側視観察光学系を備えた内視鏡において該内視鏡先端部の側方に位置する観察対象を照明する側方照明光学系であって、前記内視鏡の先端側を向いた射出開口を有する光源部と、前記光源部の前記射出開口から射出した照明光を側方に反射する反射面と、前記側視観察光学系の外周に配置され、断面が略U字状又は略J字状に形成されるとともに、外側面が内視鏡の長手方向に沿う所定軸を中心としたシリンドリカル形状に形成されていて、前記反射面で反射された照明光を前記内視鏡先端部の側方に位置する観察対象側に向けて導光する光伝送光学部を有し、前記光伝送光学部の射出端が、内視鏡の長手方向に沿って細長形状に形成され、且つ、前記観察窓の側方に配置されていることを特徴としている。   In order to achieve the above object, an endoscope side illumination optical system according to the present invention includes a side view observation optical system having an observation window for taking in light from an observation object located on the side of an endoscope tip. A side illumination optical system for illuminating an observation object located on the side of the endoscope distal end in an endoscope, the light source having an exit opening facing the distal end of the endoscope, and the light source A reflecting surface that reflects the illumination light emitted from the exit opening of the side to the side, and an outer periphery of the side-view observation optical system, and a cross-section is formed in a substantially U shape or a substantially J shape, The side surface is formed in a cylindrical shape centering on a predetermined axis along the longitudinal direction of the endoscope, and the illumination light reflected by the reflecting surface is placed on the observation object side located on the side of the endoscope distal end portion. An optical transmission optical unit that guides light toward the end, and an exit end of the optical transmission optical unit is an endoscope. In the longitudinal direction is formed in an elongated shape, and is characterized in that it is arranged on the side of the observation window.

また、本発明の内視鏡側方照明光学系においては、前記光伝送光学部の前記射出端の近傍に、散乱面を備えるのが好ましい。   In the endoscope side illumination optical system of the present invention, it is preferable that a scattering surface is provided in the vicinity of the exit end of the light transmission optical unit.

また、本発明の内視鏡側方照明光学系においては、次の条件式を満足するのが好ましい。
1.45<nIN
但し、nINは前記光伝送光学部の屈折率である。
In the endoscope side illumination optical system of the present invention, it is preferable that the following conditional expression is satisfied.
1.45 <n IN
Here, n IN is the refractive index of the optical transmission optical unit.

また、本発明の内視鏡側方照明光学系においては、次の条件式を満足するのが好ましい。
0.4<r/R
但し、Rは前記光伝送光学部の前記外側面におけるシリンドリカル形状をなす円弧の半径、rは前記円弧の中心から前記光源部の前記射出開口の中心までの距離である。
In the endoscope side illumination optical system of the present invention, it is preferable that the following conditional expression is satisfied.
0.4 <r / R
Here, R is a radius of a circular arc having a cylindrical shape on the outer surface of the optical transmission optical unit, and r is a distance from the center of the circular arc to the center of the emission opening of the light source unit.

また、本発明の内視鏡側方照明光学系においては、次の条件式を満足するのが好ましい。
1.4<nIN/nOUT
但し、nINは前記光伝送光学部の屈折率、nOUTは前記光伝送光学部の前記外側面に接する物質の屈折率である。
In the endoscope side illumination optical system of the present invention, it is preferable that the following conditional expression is satisfied.
1.4 <n IN / n OUT
Here, n IN is a refractive index of the optical transmission optical unit, and n OUT is a refractive index of a substance in contact with the outer surface of the optical transmission optical unit.

また、本発明の内視鏡側方照明光学系においては、前記光伝送光学部の前記外側面に、反射膜を備えるのが好ましい。   In the endoscope side illumination optical system of the present invention, it is preferable that a reflection film is provided on the outer surface of the light transmission optical unit.

また、本発明の内視鏡側方照明光学系においては、前記反射面は、前記光源部の射出光軸と前記光伝送光学部の前記外側面におけるシリンドリカル形状をなす円弧の中心とを含む仮想平面内において前記射出光軸に対して垂直な仮想直線と、前記反射面の反射光軸とのなす角度が90°±20°となり、且つ、前記反射面の法線と、前記光源部の射出光軸とのなす角度が45°±20°となる向きに配置するのが好ましい。   In the endoscope side illumination optical system according to the present invention, the reflecting surface includes an emission optical axis of the light source unit and a center of a circular arc that forms a cylindrical shape on the outer surface of the light transmission optical unit. An angle formed by a virtual straight line perpendicular to the emission optical axis in the plane and the reflection optical axis of the reflection surface is 90 ° ± 20 °, and the normal of the reflection surface and the emission of the light source unit It is preferable to arrange in an orientation where the angle formed with the optical axis is 45 ° ± 20 °.

本発明によれば、曲げ成形したライトガイドが不要で、内視鏡先端の硬質部の長さを短縮化して操作性を向上でき、配光を均一化し、近接観察においても照野と視野とのパララックスを極力抑え、伝送効率の良い照明ができ、しかも、全体にコンパクト化が可能な内視鏡側方照明光学系が得られる。   According to the present invention, there is no need for a bent light guide, the length of the hard portion of the endoscope can be shortened to improve operability, the light distribution is uniform, and the illumination field and field of view can be obtained even in close-up observation. Thus, it is possible to obtain an endoscope side illumination optical system that can reduce the parallax as much as possible, perform illumination with good transmission efficiency, and can be made compact as a whole.

本発明の第1実施形態にかかる内視鏡側方照明光学系の要部構成を示す説明図で、(a)は内視鏡側方照明光学系を光源部側からみた正面図,(b)は(a)の側面図、(c)は(a)を上方から見た図、(d)は内視鏡側方照明光学系を内視鏡先端側からみた斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows the principal part structure of the endoscope side illumination optical system concerning 1st Embodiment of this invention, (a) is the front view which looked at the endoscope side illumination optical system from the light source part side, (b ) Is a side view of (a), (c) is a view of (a) as viewed from above, and (d) is a perspective view of the endoscope side illumination optical system as viewed from the distal end side of the endoscope. 本発明の第2実施形態にかかる内視鏡側方照明光学系の要部構成を示す説明図で、(a)は内視鏡側方照明光学系を光源部側からみた正面図,(b)は(a)の側面図、(c)は(a)を上方から見た図、(d)は内視鏡側方照明光学系を内視鏡先端側からみた斜視図である。It is explanatory drawing which shows the principal part structure of the endoscope side illumination optical system concerning 2nd Embodiment of this invention, (a) is the front view which looked at the endoscope side illumination optical system from the light source part side, (b ) Is a side view of (a), (c) is a view of (a) as viewed from above, and (d) is a perspective view of the endoscope side illumination optical system as viewed from the distal end side of the endoscope. 本発明の第3実施形態にかかる内視鏡側方照明光学系の要部構成を示す説明図で、(a)は内視鏡側方照明光学系を光源部側からみた正面図,(b)は(a)の側面図、(c)は(a)を上方から見た図、(d)は内視鏡側方照明光学系を内視鏡先端側からみた斜視図である。It is explanatory drawing which shows the principal part structure of the endoscope side illumination optical system concerning 3rd Embodiment of this invention, (a) is the front view which looked at the endoscope side illumination optical system from the light source part side, (b ) Is a side view of (a), (c) is a view of (a) as viewed from above, and (d) is a perspective view of the endoscope side illumination optical system as viewed from the distal end side of the endoscope. 本発明の上記各実施形態の内視鏡側方照明光学系を用いた内視鏡先端部の外観を示す説明図で、(a)は先端部が本体部と一体的に構成されたタイプの側視型内視鏡に用いた例を示す図、(b)は先端部が内視鏡本体部と着脱可能に構成されたタイプの側視用内視鏡先端部に用いた例を示す図である。It is explanatory drawing which shows the external appearance of the endoscope front-end | tip part using the endoscope side illumination optical system of each said embodiment of this invention, (a) is a type with which the front-end | tip part was comprised integrally with the main-body part. The figure which shows the example used for the side type | mold endoscope, (b) is the figure which shows the example used for the endoscope front part for side views of the type by which the front-end | tip part was comprised so that attachment or detachment was possible. It is. 特許文献1に記載の側方照明光学系の要部構成を示す側視内視鏡先端部の断面図である。It is sectional drawing of the side endoscope front-end | tip part which shows the principal part structure of the side illumination optical system of patent document 1. FIG. 特許文献2に記載の側方照明光学系の要部構成を示す説明図で、(a)は側視内視鏡先端部の断面図、(b)は側方照明光学系の斜視図である。It is explanatory drawing which shows the principal part structure of the side illumination optical system of patent document 2, (a) is sectional drawing of a side-view endoscope front-end | tip part, (b) is a perspective view of a side illumination optical system. . 特許文献3に記載の側方照明光学系の一例の要部構成を示す説明図で、(a)は側視内視鏡先端部の光軸に沿う断面図、(b)は側視内視鏡先端部の平面図、(c)は側方照明光学系を内視鏡先端側から見た側面図、(d)は(c)の変形例を示す側面図である。It is explanatory drawing which shows the principal part structure of an example of the side illumination optical system described in patent document 3, (a) is sectional drawing in alignment with the optical axis of a side endoscope front-end | tip part, (b) is side view endoscope. FIG. 6 is a plan view of the mirror tip, (c) is a side view of the side illumination optical system viewed from the endoscope tip, and (d) is a side view showing a modification of (c). 特許文献3に記載の側方照明光学系の他の例の要部構成を示す説明図で、(a)は側視内視鏡先端部の光軸に沿う断面図、(b)は側視内視鏡先端部の平面図、(c)は側方照明光学系を内視鏡先端側から見た側面図、(d)は側方照明光学系を構成する光学素子の斜視図である。FIG. 7 is an explanatory diagram showing a configuration of a main part of another example of the side illumination optical system described in Patent Document 3, in which (a) is a cross-sectional view taken along the optical axis of the side endoscope tip, and (b) is a side view. FIG. 4 is a plan view of the endoscope front end portion, (c) is a side view of the side illumination optical system viewed from the endoscope front end side, and (d) is a perspective view of an optical element constituting the side illumination optical system. 特許文献1,2に記載の側方照明光学系のように、先端部を曲げ成形したライトガイドを備えたタイプの側方照明光学系の基本的な構成例を示す説明図である。It is explanatory drawing which shows the basic structural example of the type of side illumination optical system of the type provided with the light guide which bent the front-end | tip part like the side illumination optical systems of patent documents 1, 2. FIG. 図9に示すタイプの側方照明光学系による側視観察光学系の視野での照明光の配光状態を示す説明図で、(a)は通常観察時での配光状態を示す図、(b)は近接観察時での配光状態を示す図である。FIG. 10 is an explanatory view showing a light distribution state of illumination light in the field of view of the side-view observation optical system by the side illumination optical system of the type shown in FIG. 9, wherein (a) shows a light distribution state during normal observation; b) is a diagram showing a light distribution state in the close-up observation. 図8の例の側方照明光学系において、光学素子71b’の入射面71b1’の形状に合せることなく一つのライトガイドを備えた場合の構成を示す説明図で、(a)は側方照明光学系を内視鏡先端側から見た側面図、(b)は側視内視鏡先端部の光軸に沿う断面図である。In the side illumination optical system of the example of FIG. 8, it is explanatory drawing which shows a structure at the time of providing one light guide, without adjusting to the shape of entrance plane 71b1 'of optical element 71b', (a) is side illumination. The side view which looked at the optical system from the endoscope front end side, (b) is a cross-sectional view along the optical axis of the distal end portion of the side endoscope. 本発明の内視鏡側方照明光学系を構成する光伝送光学部の外側面におけるシリンドリカル形状をなす円弧の半径と、円弧の中心から光源部の射出開口の中心までの距離との関係を示す説明図で、(a)は光源部の射出開口が外側面から離れた位置に配置された構成例を示す図、(b)は光源部の射出開口が外側面に近い位置に配置された構成例を示す図である。The relationship between the radius of the circular arc which makes the cylindrical shape in the outer surface of the optical transmission optical part which comprises the endoscope side illumination optical system of this invention, and the distance from the center of an arc to the center of the exit opening of a light source part is shown. In the explanatory diagram, (a) is a diagram showing a configuration example in which the emission opening of the light source unit is arranged at a position away from the outer surface, (b) is a configuration in which the emission opening of the light source unit is arranged at a position close to the outer surface It is a figure which shows an example.

実施形態の説明に先立ち、従来技術の問題点を図面で詳しく示しながら、本発明の作用効果について説明する。
図9は特許文献1,2に記載の側方照明光学系のように、先端部を曲げ成形したライトガイドを備えたタイプの側方照明光学系の基本的な構成例を示す説明図である。この基本構成と同様の構成例は、特許文献1における図15に従来技術として示されている。
内視鏡先端部81は、内視鏡本体部82と一体的に構成またはアダプタ式に着脱可能に構成されている。図9では、内視鏡先端部81をアダプタ式に構成した例で示してある。
側視観察光学系83は、対物レンズ83aと、反射面83b1を備えたプリズム83bを有している。図9中、83c,83dはレンズ、83eは撮像素子である。図9の例では、対物レンズ83aが観察窓を兼ねている。
側方照明光学系84は、図示しない光源と、ライトガイド84aと、照明レンズ84bを有している。ライトガイド84aは、射出端84a1が照明レンズ84bに向くように曲げられており、これによって、側視観察光学系83の視野方向に光を伝送することができるようになっている。
このような構成において、側視観察光学系83の対物レンズ83aと側方照明光学系84の照明レンズ84bは、それぞれ所定の大きさの径を有している。このため、その分、側視観察光学系83の入射光軸と側方照明光学系84の射出光軸との間隔dが、大きく離れ、これに伴い内視鏡先端部81の長さLも長くなる。
Prior to the description of the embodiments, the effects of the present invention will be described while showing the problems of the prior art in detail in the drawings.
FIG. 9 is an explanatory view showing a basic configuration example of a side illumination optical system of a type provided with a light guide having a bent tip portion like the side illumination optical systems described in Patent Documents 1 and 2. . A configuration example similar to this basic configuration is shown as a prior art in FIG.
The endoscope distal end portion 81 is configured integrally with the endoscope main body portion 82 or configured to be detachable in an adapter manner. FIG. 9 shows an example in which the endoscope distal end portion 81 is configured as an adapter type.
The side-view observation optical system 83 includes an objective lens 83a and a prism 83b having a reflecting surface 83b1. In FIG. 9, 83c and 83d are lenses, and 83e is an image sensor. In the example of FIG. 9, the objective lens 83a also serves as an observation window.
The side illumination optical system 84 includes a light source (not shown), a light guide 84a, and an illumination lens 84b. The light guide 84a is bent so that the exit end 84a1 faces the illumination lens 84b, so that light can be transmitted in the viewing direction of the side-view observation optical system 83.
In such a configuration, the objective lens 83a of the side-view observation optical system 83 and the illumination lens 84b of the side illumination optical system 84 each have a predetermined diameter. For this reason, the distance d between the incident optical axis of the side-viewing optical system 83 and the exit optical axis of the side illumination optical system 84 is greatly increased, and accordingly, the length L of the endoscope distal end portion 81 is also increased. become longer.

ところで、内視鏡観察において、曲がった細い管の内部などの狭い空間を観察するためには、内視鏡先端の硬質部は極力短くすることが、操作性の向上のために必要である。
しかるに、内視鏡先端部81の長さLが長くなると、その分、内視鏡先端の硬質部が長くなって、その分、操作性が悪くなり、観察できる部位が限定されてしまう。
By the way, in endoscopic observation, in order to observe a narrow space such as the inside of a bent thin tube, it is necessary to shorten the hard portion at the distal end of the endoscope as much as possible to improve operability.
However, when the length L of the endoscope distal end portion 81 is increased, the hard portion at the endoscope distal end is increased correspondingly, and accordingly, the operability is deteriorated, and the portion that can be observed is limited.

また、側視観察光学系83の入射光軸と側方照明光学系84の射出光軸との間隔dが離れれば離れるほど、側視観察光学系83の視野と側方照明光学系84の照野とのパララックスが大きくなる。その結果、例えば図10(a)に示すように、近点(内視鏡の先端側)から遠点に行くに従って暗くなるような配光ムラを生じ易く、特に近接観察においては、図10(b)に示すように、側視観察光学系83の視野における内視鏡の先端側領域が明る過ぎてハレーションを生じる一方、反対側領域が暗くなり、得られる観察画像に悪影響を及ぼし易い。   Further, as the distance d between the incident optical axis of the side-view observation optical system 83 and the exit optical axis of the side illumination optical system 84 increases, the field of view of the side-view observation optical system 83 and the illumination of the side illumination optical system 84 increase. The parallax with the field becomes larger. As a result, for example, as shown in FIG. 10A, light distribution unevenness that becomes darker from the near point (the distal end side of the endoscope) to the far point is likely to occur. As shown in b), the distal-end region of the endoscope in the field of view of the side-view observation optical system 83 is too bright, causing halation, while the opposite-side region is darkened and tends to adversely affect the obtained observation image.

また、内視鏡において、狭い空間を観察できるようにするためには、内視鏡先端部の長さを短くすることに加えて、内視鏡先端部の径を極力小型化する必要がある。このため、図9の例のように、ライトガイド84aを曲げ成形するとしても、極力小さい曲率半径で曲げることが望まれる。   In addition, in order to be able to observe a narrow space in an endoscope, in addition to shortening the length of the distal end portion of the endoscope, it is necessary to reduce the diameter of the distal end portion of the endoscope as much as possible. . For this reason, even if the light guide 84a is bent as shown in the example of FIG. 9, it is desired to bend it with a radius of curvature as small as possible.

しかし、ライトガイドを曲げる曲率半径を小さくして成形するのは、非常に困難であり歩留まりが悪くなる。また、曲率半径を小さくして曲げ成形しようとすると、成形したライトガイドが折れて光が漏れ、伝送効率が低下し易い。この点に関し、図5に示した特許文献1の例では、観察光学系の対物系の先端面から撮像面までを真っ直ぐに配置して、ライトガイド51a1を曲げる曲率半径を大きくしているが、それでは、内視鏡先端部の径が大型化し、狭い空間を観察することができない。   However, it is very difficult to mold the light guide with a small radius of curvature, which results in poor yield. In addition, when attempting to bend and mold with a small radius of curvature, the molded light guide breaks and light leaks, and transmission efficiency tends to decrease. In this regard, in the example of Patent Document 1 shown in FIG. 5, the radius of curvature for bending the light guide 51a1 is increased by arranging straight from the tip surface of the objective system of the observation optical system to the imaging surface. Then, the diameter of the distal end portion of the endoscope becomes large, and a narrow space cannot be observed.

さらに、図9に示すように、内視鏡先端部81を内視鏡本体部82に対し着脱可能なユニットで構成する場合には、内視鏡本体部81に備わるライトガイド84a1にさらに内視鏡先端部81のライトガイド84a2が加わることになり、その分、光の伝送効率が低下してしまう。   Further, as shown in FIG. 9, when the endoscope distal end portion 81 is configured as a unit that can be attached to and detached from the endoscope main body portion 82, the endoscope is further provided in the light guide 84 a 1 provided in the endoscope main body portion 81. The light guide 84a2 of the mirror tip 81 is added, and the light transmission efficiency is reduced accordingly.

また、特許文献3に記載の側方照明光学系は、上述したように、図7、図8の例のいずれも、光学素子71b,71b’の入射面71b1,71b1’の形状に合せて、ライトガイド71a,71a’をU字型や半円型に成形、あるいはライトガイド束を集合体としてU字型や半円型に配置しており、ライトガイドの加工や配置が煩雑化する。ここで、例えば、図8の例の側方照明光学系において、図11に示すように、光学素子71b’の入射面71b1’の形状に合せることなく一つのライトガイドを備えるのでは、反射面71b2’で反射した光が偏り易く、配光状態が偏るとともに伝送効率が悪くなる。   Further, as described above, in the side illumination optical system described in Patent Document 3, both of the examples of FIGS. 7 and 8 are adapted to the shapes of the incident surfaces 71b1 and 71b1 ′ of the optical elements 71b and 71b ′. The light guides 71a and 71a 'are formed in a U-shape or a semicircular shape, or the light guide bundles are arranged in a U-shape or a semicircular shape as an aggregate, so that the processing and arrangement of the light guide becomes complicated. Here, for example, in the side illumination optical system of the example of FIG. 8, as shown in FIG. 11, if a single light guide is provided without matching the shape of the incident surface 71 b 1 ′ of the optical element 71 b ′, The light reflected by 71b2 'tends to be biased, the light distribution state is biased, and the transmission efficiency is deteriorated.

さらに、図7の例の側方照明光学系では、上述したように、光学素子71bにおける反射面71b2及び射出面71b3の一部を、観察光学系72の側視方向に光路を折り曲げるプリズム72aよりも内視鏡の先端側に配置した構成であるため、その分、内視鏡先端の硬質部が長くなってしまい、操作性が悪くなる。   Furthermore, in the side illumination optical system of the example of FIG. 7, as described above, a part of the reflection surface 71b2 and the exit surface 71b3 of the optical element 71b is bent by the prism 72a that bends the optical path in the side view direction of the observation optical system 72. Since the configuration is also arranged at the distal end side of the endoscope, the hard portion at the distal end of the endoscope is lengthened accordingly, and the operability is deteriorated.

しかるに、本発明の内視鏡側方照明光学系は、内視鏡先端部の側方に位置する観察対象からの光を取り込む観察窓を有する側視観察光学系を備えた内視鏡において、内視鏡先端部の側方に位置する観察対象を照明する側方照明光学系であって、内視鏡の先端側を向いた射出開口を有する光源部と、光源部の射出開口から射出した照明光を側方に反射する反射面と、側視観察光学系の外周に配置され、断面が略U字状又は略J字状に形成されるとともに、外側面が内視鏡の長手方向に沿う所定軸を中心としたシリンドリカル形状に形成されていて、反射面で反射された照明光を内視鏡先端部の側方に位置する観察対象側に向けて導光する光伝送光学部を有し、光伝送光学部の射出端が、内視鏡の長手方向に沿って細長形状に形成され、且つ、観察窓の側方に配置されている。
このため、本発明の内視鏡側方照明光学系によれば、曲げ成形するライトガイドが不要となり、伝送効率良く明るい側方照明をすることができる。また、側視観察光学系から入射する光軸と光伝送光学部の細長形状に形成された射出端から射出する光軸との間隔dを極力短くすることができるので画像の配光ムラや近接観察時のハレーションを極力低減できる。さらに、内視鏡先端部の長さLを短くすることができ、操作性が向上し、より狭い空間を観察することができるようになる。
However, the endoscope side illumination optical system according to the present invention is an endoscope provided with a side-view observation optical system having an observation window for taking in light from an observation object located on the side of the endoscope tip. A side illumination optical system for illuminating an observation object located on the side of an endoscope front end, and a light source having an exit opening facing the distal end of the endoscope, and emitted from the exit opening of the light source A reflecting surface that reflects the illumination light to the side and an outer periphery of the side-view observation optical system, the cross section is formed in a substantially U shape or a substantially J shape, and the outer surface is in the longitudinal direction of the endoscope A light transmission optical unit that guides the illumination light reflected by the reflecting surface toward the observation target side that is located to the side of the distal end of the endoscope. The exit end of the light transmission optical unit is formed in an elongated shape along the longitudinal direction of the endoscope, and It is disposed on the side of the window.
For this reason, according to the endoscope side illumination optical system of the present invention, a light guide for bending is not required, and bright side illumination can be performed with high transmission efficiency. In addition, since the distance d between the optical axis incident from the side-view observation optical system and the optical axis emitted from the elongated emission end of the optical transmission optical unit can be shortened as much as possible, uneven image distribution and proximity Halation during observation can be reduced as much as possible. Furthermore, the length L of the endoscope distal end can be shortened, the operability is improved, and a narrower space can be observed.

なお、本発明の内視鏡側方照明光学系においては、光伝送光学部の射出端の近傍に、散乱面を備えるのが好ましい。
このようにすれば、照明光の配光ムラをなくすことができる。
In the endoscope side illumination optical system of the present invention, it is preferable to provide a scattering surface in the vicinity of the exit end of the light transmission optical unit.
In this way, uneven distribution of illumination light can be eliminated.

また、本発明の内視鏡側方照明光学系においては、次の条件式(1)を満足するのが好ましい。
1.45<nIN ・・・(1)
但し、nINは光伝送光学部の屈折率である。
条件式(1)を満足すれば、臨界角が小さくなって光伝送光学部の内部に入射した光を外側面で全反射し易くなり、伝送効率を上げることができる。
In the endoscope side illumination optical system of the present invention, it is preferable that the following conditional expression (1) is satisfied.
1.45 <n IN (1)
Here, n IN is the refractive index of the optical transmission optical unit.
If the conditional expression (1) is satisfied, the critical angle becomes small and the light incident on the inside of the optical transmission optical part is easily totally reflected on the outer surface, so that the transmission efficiency can be increased.

また、本発明の内視鏡側方照明光学系においては、次の条件式(2)を満足するのが好ましい。
0.4<r/R ・・・(2)
但し、Rは光伝送光学部の前記外側面におけるシリンドリカル形状をなす円弧の半径、rは円弧の中心から光源部の射出開口の中心までの距離である。
光伝送光学部を省スペース化して、その内部に入射した光を伝送するには、光源部の射出開口と光伝送光学部の外側面とが互いに極力近づくような配置構成とするのが望ましい。
In the endoscope side illumination optical system of the present invention, it is preferable that the following conditional expression (2) is satisfied.
0.4 <r / R (2)
Here, R is a radius of a circular arc having a cylindrical shape on the outer surface of the optical transmission optical unit, and r is a distance from the center of the circular arc to the center of the emission opening of the light source unit.
In order to save the space of the optical transmission optical unit and transmit the light incident on the optical transmission optical unit, it is desirable that the arrangement is such that the exit opening of the light source unit and the outer surface of the optical transmission optical unit are as close as possible to each other.

図12は本発明の内視鏡側方照明光学系を構成する光伝送光学部の外側面におけるシリンドリカル形状をなす円弧の半径と、円弧の中心から光源部の射出開口の中心までの距離との関係を示す説明図で、(a)は光源部の射出開口が外側面から離れた位置に配置された構成例を示す図、(b)は光源部の射出開口が外側面に近い位置に配置された構成例を示す図である。
図12(a)に示すように、光源部の射出開口Aを外側面Bから離れた位置に配置すると、その分、側視観察光学系を配置するための内側領域Cのスペースが狭くなる。また、光源部を射出し、図示しない反射面で反射された照明光の外側面Bへの入射角が小さくなるので、その分、外側面Bで全反射されないで外側面Bを透過して外部に漏れ出てしまう光が多くなって、伝送効率が低下し易い。また、外側面Bに反射膜を設ければ、外部への光の漏れ出しを阻止できるが、外側面Bへの入射角が小さいと内側面Dの方向へ反射され、内側面Dと外側面Bとの間で反射を繰り返すことで反射膜に吸収されてロスする光量が多くなり、その分、伝送効率が低下し易い。
FIG. 12 shows the radius of a circular arc that forms a cylindrical shape on the outer surface of the light transmission optical unit constituting the endoscope side illumination optical system of the present invention, and the distance from the center of the circular arc to the center of the exit opening of the light source unit. In the explanatory diagram showing the relationship, (a) is a diagram showing a configuration example in which the emission opening of the light source unit is arranged at a position away from the outer surface, (b) is arranged at a position where the emission opening of the light source unit is close to the outer surface It is a figure which shows the example of a structure made.
As shown in FIG. 12A, when the emission opening A of the light source unit is arranged at a position away from the outer surface B, the space of the inner region C for arranging the side-view observation optical system is reduced accordingly. In addition, since the incident angle of the illumination light emitted from the light source unit and reflected by the reflecting surface (not shown) to the outer surface B is reduced, the outer surface B is not totally reflected by that amount and is transmitted through the outer surface B to the outside. The amount of light that leaks out increases and the transmission efficiency tends to decrease. Further, if a reflection film is provided on the outer surface B, leakage of light to the outside can be prevented, but if the incident angle to the outer surface B is small, the light is reflected in the direction of the inner surface D, and the inner surface D and the outer surface By repeating the reflection with B, the amount of light that is absorbed and lost by the reflective film increases, and the transmission efficiency tends to decrease accordingly.

これに対し、図12(b)に示すように、光源部の射出開口Aを外側面Bに近い位置に配置すると、その分、側視観察光学系を配置するための内側領域Cのスペースを広く確保することができる。また、光源部を射出し、図示しない反射面で反射された照明光の外側面Bへの入射角が大きくなるので、その分、外側面Bで全反射され易くなって、外側面Bの外部に漏れ出てしまう光量が減少し、外側面Bに沿って全反射されながら光線が移動し、伝送効率が向上する。また、照明光束を全反射しながら伝搬する殆どの領域が、外側面Bに沿った領域となるので、内側面Dを外側面Bに近づけることができ、内側領域Cのスペースを大きく確保できる。また、内側領域Cのスペースを側視観察光学系を配置するのに必要な最小限度確保して外側面Bを内側面Dに近づけることもできる。このようにすれば、内視鏡先端部の径をより一層コンパクト化できる。   On the other hand, as shown in FIG. 12B, when the emission opening A of the light source unit is arranged at a position close to the outer surface B, the space of the inner region C for arranging the side-view observation optical system is correspondingly increased. Widely secured. In addition, since the incident angle of the illumination light emitted from the light source unit and reflected by the reflecting surface (not shown) to the outer surface B is increased, the light is easily totally reflected by the outer surface B, and the outside of the outer surface B is increased accordingly. The amount of light that leaks out decreases, the light beam moves while being totally reflected along the outer surface B, and transmission efficiency is improved. In addition, since most of the region that propagates while totally reflecting the illumination light beam is a region along the outer surface B, the inner surface D can be brought closer to the outer surface B, and a large space in the inner region C can be secured. Further, it is possible to secure the minimum space necessary for arranging the side-view observation optical system in the space of the inner region C and to bring the outer surface B closer to the inner surface D. In this way, the diameter of the endoscope tip can be further reduced.

しかるに、本発明の内視鏡側方照明光学系において、条件式(2)を満足すれば、内側の観察光学系を配置するスペースを確保でき、しかも伝送効率を良好なものとすることができる。   However, in the endoscope side illumination optical system of the present invention, if the conditional expression (2) is satisfied, a space for arranging the inner observation optical system can be secured, and the transmission efficiency can be improved. .

また、本発明の内視鏡側方照明光学系においては、次の条件式(3)を満足するのが好ましい。
1.4<nIN/nOUT ・・・(3)
但し、nINは光伝送光学部の屈折率、nOUTは光伝送光学部の外側面に接する物質の屈折率である。
条件式(3)を満足すれば、光伝送光学部の外側面に接する物質の屈折率に対する光伝送光学部の屈折率の比率が大きくなるので、光源部を射出し反射面で反射された光を外側面で全反射し易くなり、その結果、伝送効率を上げることができる。
In the endoscope side illumination optical system of the present invention, it is preferable that the following conditional expression (3) is satisfied.
1.4 <n IN / n OUT (3)
Here, n IN is the refractive index of the optical transmission optical unit, and n OUT is the refractive index of the substance in contact with the outer surface of the optical transmission optical unit.
If the conditional expression (3) is satisfied, the ratio of the refractive index of the optical transmission optical unit to the refractive index of the substance in contact with the outer surface of the optical transmission optical unit increases, so that the light emitted from the light source unit and reflected by the reflective surface Can easily be totally reflected on the outer surface, and as a result, transmission efficiency can be increased.

また、本発明の内視鏡側方照明光学系においては、光伝送光学部の外側面に、反射膜を備えるのが好ましい。
このようにすれば、屈折率が条件式(1)を満足せず、光源部を射出し反射面で反射された光が外側面に臨界角よりも小さい角度で入射するような構成の光伝送光学部であっても、反射面の外部への光の漏れ出しを阻止でき、伝送効率を良好なものにすることができる。
In the endoscope side illumination optical system of the present invention, it is preferable that a reflection film is provided on the outer surface of the light transmission optical unit.
In this way, the optical transmission is such that the refractive index does not satisfy the conditional expression (1), and the light emitted from the light source unit and reflected by the reflecting surface is incident on the outer surface at an angle smaller than the critical angle. Even in the optical part, it is possible to prevent light from leaking to the outside of the reflecting surface and to improve the transmission efficiency.

また、本発明の内視鏡側方照明光学系においては、反射面は、光源部の射出光軸と光伝送光学部の外側面におけるシリンドリカル形状をなす円弧の中心とを含む仮想平面内において射出光軸に対して垂直な仮想直線と、反射面の反射光軸とのなす角度が90°±20°となり、且つ、反射面の法線と、光源部の射出光軸とのなす角度が45°±20°となる向きに配置するのが好ましい。
このような範囲の向きに反射面を配置すれば、光伝送光学部の外側面を介して良好な伝送効率を維持して照明光を伝送することができる。
In the endoscope side illumination optical system of the present invention, the reflecting surface is emitted within a virtual plane including the emission optical axis of the light source unit and the center of a circular arc that forms a cylindrical shape on the outer surface of the light transmission optical unit. The angle formed by the virtual straight line perpendicular to the optical axis and the reflection optical axis of the reflection surface is 90 ° ± 20 °, and the angle formed by the normal line of the reflection surface and the emission optical axis of the light source unit is 45. It is preferable to arrange in the direction of ° ± 20 °.
If the reflecting surface is arranged in such a range, illumination light can be transmitted while maintaining good transmission efficiency via the outer surface of the optical transmission optical unit.

以下、本発明の実施形態について、図面を用いて説明する。
第1実施形態
図1は本発明の第1実施形態にかかる内視鏡側方照明光学系の要部構成を示す説明図で、(a)は内視鏡側方照明光学系を光源部側からみた正面図,(b)は(a)の側面図、(c)は(a)を上方から見た図、(d)は内視鏡側方照明光学系を内視鏡先端側からみた斜視図である。
本実施形態の内視鏡側方照明光学系10は、光源部11と、反射面12aと、光伝送光学部13を有する。
光源部11は、ハロゲンやキセノン、或いはLED等の光源(図示省略)と、ライトガイド11aを有し、内視鏡の長手方向に沿って配置されている。
ライトガイド11aの射出端11a1は、光源部11の射出開口をなし、内視鏡の先端側を向いている。
反射面12aは、図1(c)に示すように、Vの字状に切りかかれた楔形状部12における楔面を構成する夫々の面に設けられており、光源部11の射出開口から射出した照明光を2つに分割して夫々の側方に反射する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First Embodiment FIG. 1 is an explanatory diagram showing the configuration of the main part of an endoscope side illumination optical system according to a first embodiment of the present invention. FIG. 1 (a) shows the endoscope side illumination optical system on the light source side. Front view, (b) is a side view of (a), (c) is a view of (a) from above, (d) is a view of the endoscope side illumination optical system from the end of the endoscope It is a perspective view.
The endoscope side illumination optical system 10 according to the present embodiment includes a light source unit 11, a reflection surface 12 a, and a light transmission optical unit 13.
The light source unit 11 includes a light source (not shown) such as halogen, xenon, or LED, and a light guide 11a, and is disposed along the longitudinal direction of the endoscope.
An exit end 11a1 of the light guide 11a forms an exit opening of the light source unit 11 and faces the distal end side of the endoscope.
As shown in FIG. 1C, the reflection surface 12 a is provided on each surface constituting the wedge surface in the wedge-shaped portion 12 cut into a V shape, and is emitted from the emission opening of the light source unit 11. The illuminated light is divided into two and reflected to the sides.

光伝送光学部13は、側視観察光学系20の外周に配置されている。図1(a)中、21は対物レンズ、22は側視方向に光路を折り曲げる偏向部材である。図1の例では、対物レンズ21の入射面21aは、側視観察光学系20における観察窓をなしている。
また、光伝送光学部13は、楔形状部12と相俟って断面が略U字状に形成され且つ外側面13aが内視鏡の長手方向に沿う軸O1を中心としたシリンドリカル形状に形成されている。そして、光伝送光学部13は、反射面12aで反射された照明光を内視鏡先端部の側方に位置する観察対象側に向けて導光するようになっている。光伝送光学部13の内側面13bは、凹状に形成されている。外側面13aの円弧は、軸O1を中心として180度以上の角度を有している。
光伝送光学部13の射出端13cは、内視鏡の長手方向に沿って細長形状に形成され、且つ、側視観察光学系20の観察窓21aの側方に配置されている。
また、光伝送光学部13は、1.45以上の屈折率を持つプラスチックや高屈折率ガラスなどの材料を用いて成形されている。
The light transmission optical unit 13 is disposed on the outer periphery of the side-view observation optical system 20. In FIG. 1A, reference numeral 21 denotes an objective lens, and 22 denotes a deflecting member that bends the optical path in the side view direction. In the example of FIG. 1, the incident surface 21 a of the objective lens 21 forms an observation window in the side-view observation optical system 20.
In addition, the optical transmission optical unit 13 is formed in a cylindrical shape centered on the axis O1 along the longitudinal direction of the endoscope, and the outer surface 13a is formed in a substantially U-shaped cross section together with the wedge-shaped unit 12. Has been. And the light transmission optical part 13 guides the illumination light reflected by the reflective surface 12a toward the observation object side located in the side of the endoscope front-end | tip part. The inner side surface 13b of the optical transmission optical unit 13 is formed in a concave shape. The arc of the outer side surface 13a has an angle of 180 degrees or more around the axis O1.
The exit end 13 c of the light transmission optical unit 13 is formed in an elongated shape along the longitudinal direction of the endoscope, and is disposed on the side of the observation window 21 a of the side-view observation optical system 20.
The optical transmission optical unit 13 is formed using a material such as plastic or high refractive index glass having a refractive index of 1.45 or more.

また、第1実施形態の内視鏡側視照明光学系10は、光伝送光学部13の外側面13aにおけるシリンドリカル形状をなす円弧の半径をR、円弧の中心O1から光源部11の射出開口(ライトガイド11aの射出端11a1)の中心O2までの距離をrとするとき、次の条件式(2)を満足している。
0.4<r/R ・・・(2)
また、光伝送光学部13の外側面13aは空気に接しており、光伝送光学部13の屈折率をnIN、光伝送光学部13の外側面13aに接する物質(空気)の屈折率をnOUTとするとき、次の条件式(3)を満足している。
1.4<nIN/nOUT ・・・(3)
なお、光伝送光学部13は、外側面13aに反射膜を備えてもよい。
また、反射面12aは、図1(a)に示すように、光源部11の射出光軸と光伝送光学部13の外側面13aにおけるシリンドリカル形状をなす円弧の中心O1とを含む仮想平面内(不図示)において、光源部11の射出光軸に対して垂直な仮想直線(図1(a)における円弧の中心O1と光源部11の射出開口の中心O2とを結ぶ直線)と、反射面12aの反射光軸とのなす角度αが90°±20°となり、且つ、図1(c)に示すように、反射面12aの法線と、光源部11の射出光軸とのなす角度βが45°±20°となる向きに配置されている。
また、光伝送光学部13の射出端13cの近傍の射出光軸上には、散乱面14aを備えた細長矩形状の光学部材14が備えられている。散乱面14aは、細長矩形状の光学部材14を構成する2つの光学部材141,142の間に挟まれている。なお、散乱面14aは、2つの光学部材141,142の間の代わりに、細長矩形状の光学部材14の入射面141a又は射出面142aに備えてもよい。
Further, the endoscope side illumination optical system 10 of the first embodiment has a radius of a circular arc that forms a cylindrical shape on the outer side surface 13a of the light transmission optical unit 13 as R, and an emission opening of the light source unit 11 from the center O1 of the circular arc ( When the distance to the center O2 of the exit end 11a1) of the light guide 11a is r, the following conditional expression (2) is satisfied.
0.4 <r / R (2)
The outer surface 13a of the optical transmission optical unit 13 is in contact with air, the refractive index of the optical transmission optical unit 13 is n IN , and the refractive index of the substance (air) in contact with the outer surface 13a of the optical transmission optical unit 13 is n. When OUT , the following conditional expression (3) is satisfied.
1.4 <n IN / n OUT (3)
The optical transmission optical unit 13 may include a reflective film on the outer surface 13a.
Further, as shown in FIG. 1A, the reflection surface 12a is within a virtual plane including the emission optical axis of the light source unit 11 and the center O1 of a circular arc that forms a cylindrical shape on the outer surface 13a of the light transmission optical unit 13. (Not shown), an imaginary straight line perpendicular to the emission optical axis of the light source unit 11 (a straight line connecting the center O1 of the arc in FIG. 1A and the center O2 of the emission opening of the light source unit 11) and the reflecting surface 12a. 1 is 90 ° ± 20 °, and as shown in FIG. 1 (c), the angle β between the normal line of the reflecting surface 12a and the emission optical axis of the light source unit 11 is It is arranged in the direction of 45 ° ± 20 °.
Further, an elongated rectangular optical member 14 having a scattering surface 14 a is provided on the exit optical axis in the vicinity of the exit end 13 c of the light transmission optical unit 13. The scattering surface 14 a is sandwiched between two optical members 14 1 and 14 2 that constitute the elongated rectangular optical member 14. Incidentally, the scattering surface 14a are two optical members 14 1, instead of between 14 2 may be provided on the incident surface 14 1 a or exit surface 14 2 a of the elongated rectangular optical member 14.

このように構成された本実施系形態の側方照明光学系10では、光源部11の射出開口から射出した照明光は、反射面12aで2つに分割されて夫々の側方に反射され、夫々の外側面13aに入射する。夫々の外側面13aは、入射した照明光を全反射又は反射しながら細長形状に形成された射出端13cに導光する。射出端13cを射出した照明光は、光学部材14に入射し、散乱面14aで散乱されて光学部材14を射出する。光学部材14を射出した照明光は、側視観察光学系20の視野範囲を照明する。   In the side illumination optical system 10 of the present embodiment configured as described above, the illumination light emitted from the exit opening of the light source unit 11 is divided into two by the reflecting surface 12a and reflected to the respective sides, The light enters each outer surface 13a. Each outer surface 13a guides incident illumination light to an emission end 13c formed in an elongated shape while totally reflecting or reflecting. The illumination light emitted from the exit end 13c enters the optical member 14, is scattered by the scattering surface 14a, and exits the optical member 14. The illumination light emitted from the optical member 14 illuminates the visual field range of the side-view observation optical system 20.

本実施形態の内視鏡側方照明光学系10によれば、曲げ成形するライトガイドが不要となり、伝送効率良く明るい側方照明をすることができる。また、側視観察光学系20に入射する光軸とライトガイドの射出端から射出する光軸との間隔dを極力短くすることができるので、観察画像の配光ムラを極力低減し、特に、近接観察時のハレーションを低減できる。さらに、内視鏡先端部の長さLも短くすることができるので、より狭い空間を観察することができる。   According to the endoscope side illumination optical system 10 of the present embodiment, a light guide for bending is not required, and bright side illumination can be performed with high transmission efficiency. In addition, since the distance d between the optical axis incident on the side-view observation optical system 20 and the optical axis emitted from the exit end of the light guide can be shortened as much as possible, light distribution unevenness of the observation image is reduced as much as possible. Halation during close-up observation can be reduced. Furthermore, since the length L of the distal end portion of the endoscope can be shortened, a narrower space can be observed.

また、光伝送光学部13の射出端13cの近傍に、散乱面14aを備えたので、照明光の配光ムラをなくすことができる。
また、条件式(1)を満足するので、臨界角が小さくなって光伝送光学部13の内部に入射した光を外側面13aで全反射し易くなり、伝送効率を上げることができる。
また、条件式(2)を満足するので、側視観察光学系20を配置する内側領域のスペースを大きく確保でき、伝送効率を良好なものとすることができる。
また、条件式(3)を満足するので、光伝送光学部13の外側面13aに接する物質の屈折率に対する光伝送光学部13aの屈折率の比率が大きくなり、光源部11を射出し反射面12aで反射された光を外側面13aで全反射し易くなる。その結果、伝送効率を上げることができる。
また、光伝送光学部13の外側面13aに反射膜を備えたので、仮に、光伝送光学部13の屈折率が小さくても、光源部11を射出し反射面12aで反射された光を外側面13aで反射し易くなり、伝送効率を良好なものにすることができる。
また、光伝送光学部13の反射面13aを、光源部11の射出光軸と光伝送光学部13の外側面13aにおけるシリンドリカル形状をなす円弧の中心O1とを含む仮想平面内において、光源部11の射出光軸に対して垂直な仮想直線と、反射面12aの反射光軸とのなす角度αが90°±20°となり、且つ、反射面12aの法線と、光源部11の射出光軸とのなす角度βが45°±20°となる向きに配置したので、光伝送光学部13の外側面13aを介して良好な伝送効率を維持して照明光を伝送することができる。
In addition, since the scattering surface 14a is provided in the vicinity of the exit end 13c of the light transmission optical unit 13, uneven distribution of illumination light can be eliminated.
Further, since the conditional expression (1) is satisfied, the critical angle becomes small, and the light incident on the inside of the optical transmission optical unit 13 is easily totally reflected by the outer surface 13a, so that the transmission efficiency can be increased.
Further, since the conditional expression (2) is satisfied, a large space in the inner region in which the side-view observation optical system 20 is disposed can be secured, and the transmission efficiency can be improved.
Further, since the conditional expression (3) is satisfied, the ratio of the refractive index of the light transmission optical unit 13a to the refractive index of the substance in contact with the outer surface 13a of the light transmission optical unit 13 is increased, and the light source unit 11 is emitted and reflected. The light reflected by 12a is easily totally reflected by the outer surface 13a. As a result, transmission efficiency can be increased.
In addition, since the outer surface 13a of the optical transmission optical unit 13 is provided with a reflective film, even if the refractive index of the optical transmission optical unit 13 is small, the light emitted from the light source unit 11 and reflected by the reflective surface 12a It becomes easy to reflect on the side surface 13a, and the transmission efficiency can be improved.
In addition, the light source unit 11 has a reflecting surface 13a of the light transmission optical unit 13 in a virtual plane including the emission optical axis of the light source unit 11 and the center O1 of a circular arc that forms a cylindrical shape on the outer surface 13a of the light transmission optical unit 13. The angle α between the virtual straight line perpendicular to the emission optical axis of the light and the reflection optical axis of the reflection surface 12a is 90 ° ± 20 °, and the normal of the reflection surface 12a and the emission optical axis of the light source unit 11 Therefore, the illumination light can be transmitted while maintaining good transmission efficiency via the outer surface 13a of the optical transmission optical unit 13.

第2実施形態
図2は本発明の第2実施形態にかかる内視鏡側方照明光学系の要部構成を示す説明図で、(a)は内視鏡側方照明光学系を光源部側からみた正面図,(b)は(a)の側面図、(c)は(a)を上方から見た図、(d)は内視鏡側方照明光学系を内視鏡先端側からみた斜視図である。
本実施形態の内視鏡側視照明光学系10’では、光伝送光学部13’は、外側面13aと内側面13bが、軸O1を中心とする同心円上に位置する円柱面に形成され、肉厚が光源部11の射出開口(ライトガイド11aの射出端11a1)の直径と略同じ大きさを有しており、光源部11の射出開口は、外側面13aに近い位置に配置されている。
その他の構成は、第1実施形態の内視鏡側視照明光学系と略同じである。
Second Embodiment FIG. 2 is an explanatory diagram showing the configuration of the main part of an endoscope side illumination optical system according to a second embodiment of the present invention. FIG. 2 (a) shows the endoscope side illumination optical system on the light source side. Front view, (b) is a side view of (a), (c) is a view of (a) from above, (d) is a view of the endoscope side illumination optical system from the end of the endoscope It is a perspective view.
In the endoscope side illumination optical system 10 ′ of the present embodiment, the light transmission optical unit 13 ′ is formed on a cylindrical surface in which the outer surface 13a and the inner surface 13b are located on a concentric circle with the axis O1 as the center, The wall thickness is substantially the same as the diameter of the exit opening of the light source section 11 (the exit end 11a1 of the light guide 11a), and the exit opening of the light source section 11 is disposed at a position close to the outer surface 13a. .
Other configurations are substantially the same as those of the endoscope side-view illumination optical system of the first embodiment.

本実施形態の内視鏡側方照明光学系10’によれば、光源部1の射出開口を光伝送光学部13’の外側面13aに近い位置に配置したので、側視観察光学系20を配置するための内側領域のスペースを大きく確保できる上、反射面12aで反射された光を外側面13aの全範囲にわたって全反射しやすくなり、伝送効率をより一層良好なものとすることができる。
その他の作用効果は、第1実施形態の内視鏡側方照明光学系10と略同じである。
According to the endoscope side illumination optical system 10 ′ of the present embodiment, since the exit opening of the light source unit 1 is disposed at a position close to the outer surface 13a of the light transmission optical unit 13 ′, the side-view observation optical system 20 is arranged. In addition to ensuring a large space in the inner region for placement, the light reflected by the reflecting surface 12a is easily totally reflected over the entire range of the outer surface 13a, and transmission efficiency can be further improved.
Other functions and effects are substantially the same as those of the endoscope side illumination optical system 10 of the first embodiment.

第3実施形態
図3は本発明の第3実施形態にかかる内視鏡側方照明光学系の要部構成を示す説明図で、(a)は内視鏡側方照明光学系を光源部側からみた正面図,(b)は(a)の側面図、(c)は(a)を上方から見た図、(d)は内視鏡側方照明光学系を内視鏡先端側からみた斜視図である。
本実施形態の内視鏡側方照明光学系10”では、光伝送光学部13”は、外側面13aと内側面13bがそれぞれ異なる第1の軸O11、第2の軸O12を中心とする非同心の半径R1,R2を持つ円柱面に形成され、肉厚が反射面12aに対向する部位から射出面13cに向かうに従って薄くなっている。内側面13bの円弧は、第2の軸O12を中心として180度の角度にとどめている。
散乱面14aを備える光学部材14は、第1及び第2実施形態に比べて、入射面141aから射出面142aまでの厚みが大きくなっている。また、入射面141a及び射出面142aのまわりの側面には、反射膜が備えられている。
その他の構成は、第1実施形態の内視鏡側方照明光学系と略同じである。
Third Embodiment FIG. 3 is an explanatory view showing the configuration of the main part of an endoscope side illumination optical system according to a third embodiment of the present invention. FIG. 3 (a) shows the endoscope side illumination optical system on the light source side. Front view, (b) is a side view of (a), (c) is a view of (a) from above, (d) is a view of the endoscope side illumination optical system from the end of the endoscope It is a perspective view.
In the endoscope side illumination optical system 10 ″ of the present embodiment, the light transmission optical unit 13 ″ is centered on the first axis O1 1 and the second axis O1 2 that are different in the outer surface 13a and the inner surface 13b, respectively. Are formed on a cylindrical surface having non-concentric radii R1 and R2, and the thickness decreases from a portion facing the reflecting surface 12a toward the exit surface 13c. Arc of the inner surface 13b is kept at an angle of 180 degrees a second axis O1 2 as the center.
The optical member 14 comprises a scattering surface 14a, compared to the first and second embodiments, the thickness from the incident surface 14 1 a to the exit surface 14 2 a is larger. In addition, a reflective film is provided on the side surfaces around the entrance surface 14 1 a and the exit surface 14 2 a.
Other configurations are substantially the same as those of the endoscope side illumination optical system according to the first embodiment.

本実施形態の内視鏡側方照明光学系10”によれば、側視観察光学系20を配置する内側領域のスペースを確保しながら、側視観察光学系20の外周に配置する光学部材の外径を極力小さくすることができ、より一層狭い空間を観察することができる。また、全体のコンパクト化を達成しがなら、外側面13aの円弧の曲率半径を大きくすることができるので、反射面12aで反射された光を外側面13aで全範囲にわたって全反射しやすくなり、伝送効率をより一層良好なものとすることができる。
その他の作用効果は、第1実施形態の内視鏡側方照明光学系と略同じである。
According to the endoscope side illumination optical system 10 ″ of the present embodiment, the optical member disposed on the outer periphery of the side-view observation optical system 20 while ensuring a space in the inner region where the side-view observation optical system 20 is disposed. Since the outer diameter can be made as small as possible, a narrower space can be observed, and the radius of curvature of the arc of the outer surface 13a can be increased if the overall compactness is not achieved. The light reflected by the surface 12a is easily totally reflected by the outer surface 13a over the entire range, and the transmission efficiency can be further improved.
Other functions and effects are substantially the same as those of the endoscope side illumination optical system according to the first embodiment.

このように構成される上記各実施形態の内視鏡側方照明光学系は、図4に示すように、内視鏡先端部が本体部と一体型の内視鏡、内視鏡先端部が本体部に着脱可能な内視鏡のいずれにも適用できる。
図4は本発明の上記各実施形態の内視鏡側方照明光学系を用いた内視鏡先端部の外観を示す説明図で、(a)は先端部が本体部と一体的に構成されたタイプの側視型内視鏡に用いた例を示す図、(b)は先端部が内視鏡本体部と着脱可能に構成されたタイプの側視用内視鏡先端部に用いた例を示す図である。図4中、1は側視型内視鏡、1aは側視型内視鏡先端部、1a1は側視用内視鏡先端部、1a2は前方観察用内視鏡先端部、1bは内視鏡本体部、20’は前方観察用観察光学系、21’は前方観察用照明光学系である。
As shown in FIG. 4, the endoscope side illumination optical system according to each of the above embodiments configured as described above has an endoscope whose tip is integrated with the main body, and whose endoscope tip is The present invention can be applied to any endoscope that can be attached to and detached from the main body.
FIG. 4 is an explanatory view showing the appearance of the distal end portion of the endoscope using the endoscope side illumination optical system according to each of the embodiments of the present invention. FIG. 4A is a view showing that the distal end portion is integrally formed with the main body portion. The figure which shows the example used for the type of side-view type endoscope which was used, (b) is the example used for the endoscope front-end part of the type where the tip part was configured to be detachable from the endoscope body part FIG. In FIG. 4, 1 is a side-view endoscope, 1a is a side-view endoscope tip, 1a1 is a side-view endoscope tip, 1a2 is a front-view endoscope tip, and 1b is an endoscope. The mirror main body, 20 ′ is a front observation observation optical system, and 21 ′ is a front observation illumination optical system.

以上、本発明の実施形態の内視鏡側方照明光学系について説明したが、各実施形態の内視鏡側方照明光学系においては、光伝送光学部は、図1〜図3に示したような断面がU字状のものに限定されるものではなく、例えば断面がJ字状に形成されたものでもよい。その場合、反射面12aは、光源部11からの光を一方に反射させるように構成したものを用いるとよい。
また、図1〜3に示した上記各実施形態の内視鏡側方照明光学系では、光伝送光学部13(13’,13”)の外側面13aに空気が接する構成としたが、外側面13aは、接着剤を介して内視鏡先端部筐体に固定されていてもよい。その場合において、光伝送光学部13(13’,13”)の屈折率と接着剤の屈折率とに関し、条件式(3)を満足することができないときは、光伝送光学部13(13’,13”)の外側面13aに反射膜を備えるとよい。また、上記各実施形態においては、反射面12aを、Vの字の楔形状部12の楔面を構成する夫々の面に設けたが、楔形状部を介在させずに直接備えても良い。
また、反射面12aを有する楔形状部12と光伝送光学部13(13’,13”)は、互いを一体成形又は接合のいずれでもよい。
また、上記各実施形態の内視鏡側方照明光学系では、光伝送光学部13(13’,13”)の射出端13cを、内視鏡の長手方向に沿う細長形状に形成したが、例えば、ある程度の幅を持たせた矩形状に形成してもよい。
また、本発明の内視鏡側方照明光学系は、工業用の側視型内視鏡に用途が限定されるものではなく、例えば、医療用の側視型内視鏡に用いてもよい。
As described above, the endoscope side illumination optical system according to the embodiment of the present invention has been described. In the endoscope side illumination optical system according to each embodiment, the light transmission optical unit is illustrated in FIGS. Such a cross-section is not limited to a U-shape, and for example, a cross-section formed in a J-shape may be used. In that case, the reflection surface 12a may be configured to reflect light from the light source unit 11 to one side.
In the endoscope side illumination optical system of each of the above-described embodiments shown in FIGS. 1 to 3, air is in contact with the outer surface 13a of the light transmission optical unit 13 (13 ′, 13 ″). The side surface 13a may be fixed to the endoscope distal end housing with an adhesive. In that case, the refractive index of the optical transmission optical unit 13 (13 ′, 13 ″) and the refractive index of the adhesive When the conditional expression (3) cannot be satisfied, a reflection film may be provided on the outer surface 13a of the optical transmission optical unit 13 (13 ′, 13 ″). Although the surface 12a is provided on each surface constituting the wedge surface of the V-shaped wedge-shaped portion 12, it may be provided directly without interposing the wedge-shaped portion.
Further, the wedge-shaped part 12 having the reflecting surface 12a and the optical transmission optical part 13 (13 ′, 13 ″) may be integrally molded or joined to each other.
In the endoscope side illumination optical system of each of the above embodiments, the exit end 13c of the light transmission optical unit 13 (13 ′, 13 ″) is formed in an elongated shape along the longitudinal direction of the endoscope. For example, it may be formed in a rectangular shape having a certain width.
In addition, the use of the endoscope side illumination optical system of the present invention is not limited to an industrial side endoscope, and may be used, for example, for a medical side endoscope. .

本発明の内視鏡側方照明光学系は、例えば、スペースの狭い観察空間において側方に位置する観察対象を観察することが求められるあらゆる分野に有用である。   The endoscope side illumination optical system according to the present invention is useful in, for example, all fields in which it is required to observe an observation object positioned laterally in a narrow observation space.

1 側視型内視鏡
1a 側視型内視鏡先端部
1a1 側視用内視鏡先端部
1a2 前方観察用内視鏡先端部
1b 内視鏡本体部
10、10’、10” 内視鏡側方照明光学系
11a ライトガイド
11a1 射出端
12 Vの字状に切りかかれた楔形状部
12a 反射面
13、13’、13” 光伝送光学部
13a 外側面
13b 内側面
13c 射出端
14、141、142 光学部材
14a 散乱面
141a 入射面
142a 射出面
20 側視観察光学系
20’ 前方観察用観察光学系
21 対物レンズ
21a 入射面(観察窓)
21’ 前方観察用照明光学系
22 偏向部材
51 側方照明光学系
51a 発光体
51a1 ライトガイド
51b 照明レンズ
52 側視観察光学系
52a 対物レンズ
61 側方照明光学系
61a ライトガイドファイバ束
61b 照明範囲変換部
61b1 反射板
61b11 第1反射面
61b12 第2反射面
61b2 変換部本体
61b21 開口
62 側視観察光学系
62a 観察窓
62b プリズム
71 側方照明光学系
71a ライトガイド
71b 光学素子
71b1 入射面
71b2 反射面
71b3 射出面
72 側視観察光学系
72a プリズム
72b 対物レンズ
73 イメージガイド
71’ 側方照明光学系
71a’ ライトガイド
71b’ 光学素子
71b1’ 入射面
71b2’ 反射面
72’ 側視観察光学系
72a’ プリズム
72b’ 対物レンズ
73’ イメージガイド
81 内視鏡先端部
82 内視鏡本体部
83 側視観察光学系
83a 対物レンズ
83b プリズム
83b1 反射面
83c、83d レンズ
83e 撮像素子
84 側視観察光学系
84a ライトガイド
84a1 射出端
84b 照明レンズ
DESCRIPTION OF SYMBOLS 1 Side view type | mold endoscope 1a Side view type | mold endoscope front-end | tip part 1a1 Side view endoscope front end part 1a2 Front view endoscope end part 1b Endoscope main body part 10, 10 ', 10 "Endoscope Side illumination optical system 11a Light guide 11a1 Ejection end 12 V-shaped wedge-shaped portion 12a Reflected surfaces 13, 13 ', 13 "Light transmission optical unit 13a Outer side surface 13b Inner side surface 13c Ejection ends 14, 14 1 , 14 second optical member 14a scattering surface 14 1 a incident surface 14 2 a exit plane 20 side view observation optical system 20 'for observation front observation optical system 21 objective lens 21a incident surface (observation window)
21 'Front observation illumination optical system 22 Deflection member 51 Side illumination optical system 51a Light emitter 51a1 Light guide 51b Illumination lens 52 Side observation optical system 52a Objective lens 61 Side illumination optical system 61a Light guide fiber bundle 61b Illumination range conversion Part 61b1 Reflecting plate 61b11 First reflecting surface 61b12 Second reflecting surface 61b2 Conversion unit main body 61b21 Opening 62 Side viewing optical system 62a Observation window 62b Prism 71 Side illumination optical system 71a Light guide 71b Optical element 71b1 Incident surface 71b2 Reflecting surface 71b3 Exit surface 72 Side-view observation optical system 72a Prism 72b Objective lens 73 Image guide 71 'Side illumination optical system 71a' Light guide 71b 'Optical element 71b1' Incidence surface 71b2 'Reflection surface 72' Side-view observation optical system 72a 'Prism 72b 'Objective Lens 73' Image Guide 1 endoscope tip portion 82 within the endoscope body portion 83 side view observation optical system 83a objective lens 83b prism 83b1 reflecting surfaces 83c, 83d lens 83e imaging device 84 side view observation optical system 84a light guide 84a1 exit end 84b illumination lens

Claims (7)

内視鏡先端部の側方に位置する観察対象からの光を取り込む観察窓を有する側視観察光学系を備えた内視鏡において該内視鏡先端部の側方に位置する観察対象を照明する側方照明光学系であって、
前記内視鏡の先端側を向いた射出開口を有する光源部と、
前記光源部の前記射出開口から射出した照明光を側方に反射する反射面と、
前記側視観察光学系の外周に配置され、断面が略U字状又は略J字状に形成されるとともに、外側面が内視鏡の長手方向に沿う所定軸を中心としたシリンドリカル形状に形成されていて、前記反射面で反射された照明光を前記内視鏡先端部の側方に位置する観察対象側に向けて導光する光伝送光学部を有し、
前記光伝送光学部の射出端が、内視鏡の長手方向に沿って細長形状に形成され、且つ、前記観察窓の側方に配置されていることを特徴とする内視鏡用側方照明光学系。
Illuminating an observation object positioned laterally of the endoscope distal end in an endoscope provided with a side-view observation optical system having an observation window for taking in light from the observation object positioned laterally of the endoscope distal end A side illumination optical system,
A light source unit having an exit opening facing the distal end side of the endoscope;
A reflecting surface that reflects the illumination light emitted from the exit opening of the light source section to the side;
Located on the outer periphery of the side-view observation optical system, the cross section is formed in a substantially U shape or a substantially J shape, and the outer surface is formed in a cylindrical shape centering on a predetermined axis along the longitudinal direction of the endoscope. And an optical transmission optical unit that guides the illumination light reflected by the reflecting surface toward the observation target side positioned on the side of the endoscope distal end,
End illumination of the endoscope, wherein an exit end of the optical transmission optical unit is formed in an elongated shape along a longitudinal direction of the endoscope and is disposed on a side of the observation window. Optical system.
前記光伝送光学部の前記射出端の近傍に、散乱面を備えたことを特徴とする請求項1に記載の内視鏡側方照明光学系。   The endoscope side illumination optical system according to claim 1, further comprising a scattering surface in the vicinity of the exit end of the light transmission optical unit. 次の条件式を満足することを特徴とする請求項1又は2に記載の内視鏡側方照明光学系。
1.45<nIN
但し、nINは前記光伝送光学部の屈折率である。
The endoscope side illumination optical system according to claim 1, wherein the following conditional expression is satisfied.
1.45 <n IN
Here, n IN is the refractive index of the optical transmission optical unit.
次の条件式を満足することを特徴とする請求項1〜3のいずれかに記載の内視鏡側方照明光学系。
0.4<r/R
但し、Rは前記光伝送光学部の前記外側面におけるシリンドリカル形状をなす円弧の半径、rは前記円弧の中心から前記光源部の前記射出開口の中心までの距離である。
The endoscope side illumination optical system according to claim 1, wherein the following conditional expression is satisfied.
0.4 <r / R
Here, R is a radius of a circular arc having a cylindrical shape on the outer surface of the optical transmission optical unit, and r is a distance from the center of the circular arc to the center of the emission opening of the light source unit.
次の条件式を満足することを特徴とする請求項1〜4のいずれかに記載の内視鏡側方照明光学系。
1.4<nIN/nOUT
但し、nINは前記光伝送光学部の屈折率、nOUTは前記光伝送光学部の前記外側面に接する物質の屈折率である。
The endoscope side illumination optical system according to any one of claims 1 to 4, wherein the following conditional expression is satisfied.
1.4 <n IN / n OUT
Here, n IN is a refractive index of the optical transmission optical unit, and n OUT is a refractive index of a substance in contact with the outer surface of the optical transmission optical unit.
前記光伝送光学部の前記外側面に、反射膜を備えたことを特徴とする請求項1〜5のいずれかに記載の内視鏡側方照明光学系。   The endoscope side illumination optical system according to any one of claims 1 to 5, wherein a reflection film is provided on the outer surface of the light transmission optical unit. 前記反射面は、前記光源部の射出光軸と前記光伝送光学部の前記外側面におけるシリンドリカル形状をなす円弧の中心とを含む仮想平面内において前記射出光軸に対して垂直な仮想直線と、前記反射面の反射光軸とのなす角度が90°±20°となり、且つ、前記反射面の法線と、前記光源部の射出光軸とのなす角度が45°±20°となる向きに配置されていることを特徴とする請求項1〜6のいずれかに記載の内視鏡側方照明光学系。   The reflection surface is a virtual straight line perpendicular to the emission optical axis in a virtual plane including an emission optical axis of the light source unit and a center of a circular arc forming a cylindrical shape on the outer surface of the light transmission optical unit; The angle formed by the reflection optical axis of the reflection surface is 90 ° ± 20 °, and the angle formed by the normal line of the reflection surface and the emission optical axis of the light source unit is 45 ° ± 20 °. The endoscope side illumination optical system according to claim 1, wherein the endoscope side illumination optical system is disposed.
JP2011105033A 2011-05-10 2011-05-10 Endoscope lateral side illumination optical system Withdrawn JP2012235821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011105033A JP2012235821A (en) 2011-05-10 2011-05-10 Endoscope lateral side illumination optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011105033A JP2012235821A (en) 2011-05-10 2011-05-10 Endoscope lateral side illumination optical system

Publications (1)

Publication Number Publication Date
JP2012235821A true JP2012235821A (en) 2012-12-06

Family

ID=47459322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011105033A Withdrawn JP2012235821A (en) 2011-05-10 2011-05-10 Endoscope lateral side illumination optical system

Country Status (1)

Country Link
JP (1) JP2012235821A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019069043A (en) * 2017-10-10 2019-05-09 オリンパス株式会社 Illumination optical system, endoscope optical system, and endoscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019069043A (en) * 2017-10-10 2019-05-09 オリンパス株式会社 Illumination optical system, endoscope optical system, and endoscope
US11054631B2 (en) * 2017-10-10 2021-07-06 Olympus Corporation Illumination optical system, endoscope optical system, and endoscope

Similar Documents

Publication Publication Date Title
JP5891208B2 (en) Endoscope illumination optics
JP5274719B2 (en) Endoscope and endoscope illumination device
CN103813760B (en) There is the ophthalmology endo-illuminator of directional light
US9122067B2 (en) Endoscope
US20200264424A1 (en) Negative Lens and Endoscope Objective
US20110157574A1 (en) Endoscope
JP2015036050A5 (en)
JP2002186578A (en) Light guide and endoscope
US10064542B2 (en) Bending apparatus with bending direction restriction mechanism
JP6917414B2 (en) Image fibers, endoscopes with image fibers, and endoscope systems with endoscopes
WO2020031261A1 (en) Wafer lens, layered lens array, and endoscope
JP5345171B2 (en) Endoscope
JP2012235821A (en) Endoscope lateral side illumination optical system
CN111031890B (en) Illumination unit for endoscope and endoscope
EP1662967A1 (en) Endoscope
JP2002182126A (en) Illuminating optical system for light guide and endoscope
JPWO2017179168A1 (en) Imaging device
WO2019186718A1 (en) Optical fiber bundle, endoscope scope, and endoscope
EP2959821A1 (en) Endoscopic device
WO2022176197A1 (en) Endoscope and endoscope system
JP6564712B2 (en) Endoscopic imaging apparatus and endoscope
US6497653B2 (en) Probe of endoscope
JP5922026B2 (en) Light source module
US10709320B2 (en) Illumination optical system and image-acquisition apparatus
US8270794B2 (en) Light guide for endoscopes

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805