WO2019186718A1 - Optical fiber bundle, endoscope scope, and endoscope - Google Patents

Optical fiber bundle, endoscope scope, and endoscope Download PDF

Info

Publication number
WO2019186718A1
WO2019186718A1 PCT/JP2018/012557 JP2018012557W WO2019186718A1 WO 2019186718 A1 WO2019186718 A1 WO 2019186718A1 JP 2018012557 W JP2018012557 W JP 2018012557W WO 2019186718 A1 WO2019186718 A1 WO 2019186718A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
fiber bundle
optical
optical fibers
light
Prior art date
Application number
PCT/JP2018/012557
Other languages
French (fr)
Japanese (ja)
Inventor
英明 高久
Original Assignee
株式会社住田光学ガラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社住田光学ガラス filed Critical 株式会社住田光学ガラス
Priority to PCT/JP2018/012557 priority Critical patent/WO2019186718A1/en
Priority to CN201880089980.3A priority patent/CN111758062B/en
Publication of WO2019186718A1 publication Critical patent/WO2019186718A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images

Definitions

  • the present invention relates to an optical fiber bundle, an endoscope scope, and an endoscope.
  • a general optical fiber bundle is formed by bundling a large number of optical fibers of the same material.
  • Such an optical fiber bundle has a limit in the function and performance obtained.
  • the shape of the emission end face of the optical fiber bundle is processed into a non-flat shape such as a convex shape, a concave shape, a wave shape, etc. It is possible to adjust (for example, patent document 1, 2).
  • the processing of the end face of the optical fiber bundle is not easy, and is particularly difficult when the optical fiber bundle has a small diameter.
  • the light distribution characteristics cannot be greatly changed as required only by changing the end face shape of the optical fiber bundle.
  • an object of the present invention made by paying attention to this point is to provide an optical fiber bundle, an endoscope scope, and an endoscope capable of easily and freely adjusting a light distribution characteristic.
  • the optical fiber bundle of the present invention is In an optical fiber bundle having a configuration in which a plurality of optical fibers are bundled,
  • the plurality of optical fibers include two or more types of optical fibers having different numerical apertures NA. According to the optical fiber bundle of the present invention, the light distribution characteristics can be adjusted easily and freely.
  • optical fiber bundle of the present invention The plurality of optical fibers are fixed only at both ends of the optical fiber bundle, It is preferable that both end surfaces of the optical fiber bundle are optical polishing surfaces.
  • Such an optical fiber bundle is particularly suitable for being configured as a light guide.
  • You may comprise as a light guide which transmits the light from a light source only in the direction which goes to the other side from the one side of the longitudinal direction of the said optical fiber bundle.
  • the optical fiber bundle may be configured as a branched optical fiber bundle in which at least one of the one side and the other side in the longitudinal direction is branched.
  • Such an optical fiber bundle is particularly suitable for being configured as a light guide.
  • the plurality of optical fibers include at least one type of optical fiber in which at least one of the core and the clad is made of multicomponent glass. In this case, the light distribution characteristic can be adjusted more easily and freely.
  • the optical fiber bundle of the present invention is configured as a light guide, and it is preferable that the waveform representing the light distribution characteristic includes six or more inflection points. In this case, it is possible to simultaneously illuminate points with different distances from the emission end face with good illuminance.
  • the optical fiber bundle of the present invention is configured as a light guide
  • the plurality of optical fibers include a plurality of first optical fibers having a first numerical aperture NA1 and a plurality of second optical fibers having a second numerical aperture NA2 that is 0.15 or more larger than the first numerical aperture NA1. It is preferable. In this case, it is possible to simultaneously illuminate points with different distances from the emission end face with good illuminance.
  • the optical fiber bundle of the present invention is configured as a light guide
  • the plurality of optical fibers include a plurality of first optical fibers having a first numerical aperture NA1, and a plurality of second optical fibers having a second numerical aperture NA2 larger than the first numerical aperture NA1. It is preferable that the ratio (FN2 / FN1) of the number FN2 of the second optical fibers to the number FN1 of the first optical fibers is 0.05 to 9. In this case, it is possible to simultaneously illuminate points with different distances from the emission end face with good illuminance.
  • An endoscope scope according to the present invention includes the above-described optical fiber bundle. According to the endoscope scope of the present invention, the light distribution characteristic can be adjusted easily and freely.
  • the endoscope of the present invention includes the endoscope scope described above. According to the endoscope of the present invention, the light distribution characteristic can be adjusted easily and freely.
  • an optical fiber bundle an endoscope scope, and an endoscope that can adjust light distribution characteristics easily and freely.
  • FIG.1 (a) is a partial cross section side view which shows the optical fiber bundle which concerns on one Embodiment of this invention roughly by a partial cross section
  • FIG.1 (b) is the optical fiber of Fig.1 (a). It is a cross-sectional view which shows the edge part of a bundle roughly. It is a transverse cross section showing roughly the modification of the optical fiber bundle concerning one embodiment of the present invention. It is a partial cross section side view which shows roughly the other modification of the optical fiber bundle which concerns on one Embodiment of this invention by a partial cross section. It is a figure for demonstrating the experimental method of an Example and a comparative example.
  • the optical fiber bundle of the present invention has a configuration in which a plurality of optical fibers are bundled, and the plurality of optical fibers includes two or more types of optical fibers having different numerical apertures NA.
  • the optical fiber bundle of the present invention can be used as a light guide, an image guide, or various optical fibers for sensors in various fields such as the industrial field and the medical field. It is suitable when used as a light guide or image guide (further, a light guide) used for an endoscope or a light guide for a microscope.
  • FIG. 1 shows an example of an optical fiber bundle 1 according to an embodiment of the present invention.
  • Fig.1 (a) is a partial cross section side view which shows the optical fiber bundle 1 of this embodiment schematically by a partial cross section
  • FIG.1 (b) is the optical fiber bundle 1 of Fig.1 (a). It is a cross-sectional view which shows the edge part 1A of one side roughly.
  • the other end 1B of the optical fiber bundle 1 and the end faces on both sides of the optical fiber bundle 1 also have the same configuration as the cross section shown in FIG.
  • the optical fiber bundle 1 of this embodiment is configured as a light guide for transmitting light from a light source to a remote location.
  • the optical fiber bundle 1 has a configuration in which two types of optical fibers 11 and 12 having different numerical apertures NA are bundled.
  • the optical fibers 11 and 12 constituting the optical fiber bundle 1 may be collectively referred to as an “optical fiber group 10”.
  • the optical fiber group 10 includes a plurality of first optical fibers 11 and a plurality of second optical fibers 12.
  • the first optical fiber 11 and the second optical fiber 12 are single-core optical fibers composed of cores 11a and 12a and clads 11b and 12b covering the outer peripheral surfaces thereof, respectively.
  • the numerical aperture NA of the second optical fiber 12 (hereinafter also referred to as “second numerical aperture NA2”) is the numerical aperture NA of the first optical fiber 11 (hereinafter referred to as “first numerical aperture NA1”). It is also larger than.)
  • the cores 11a and 12a of the first optical fiber 11 and the second optical fiber 12 have a circular cross-sectional shape, and the claddings 11b and 12b of the first optical fiber 11 and the second optical fiber 12 are It has a circular outer edge shape.
  • the optical fibers 11 and 12 of the optical fiber group 10 are fixed in the tubular sleeves 2A and 2B by a solidifying agent 40 such as an adhesive.
  • the sleeves 2A and 2B are made of metal, for example.
  • End faces 10SA and 10SB on both sides of the optical fiber group 10 of the optical fiber bundle 1 are formed on the optically polished surface by a polishing process.
  • the end faces 10SA and 10SB on both sides of the optical fiber group 10 are, for example, flat surfaces.
  • the optical fiber group 10 is not fixed by the solidifying agent 40 or the like but is simply bundled, and is a flexible exterior. Covered by a tube 3.
  • the outer tube 3 is made of, for example, a resin tube or a bellows-like metal tube.
  • the optical fiber bundle 1 can use either one side or the other side in the longitudinal direction as the incident side, but the light from the light source is changed from one side to the other side at a time. It is configured to transmit only in one direction, and is not configured to transmit light in both directions at once.
  • one end 1 ⁇ / b> B of the optical fiber bundle 1 is used as the incident side, and is connected to a light source device (not shown), for example.
  • the other end 1A of the optical fiber bundle 1 is used as the emission side.
  • the refractive index n 1 of the core and the refractive index n 2 of the clad are obtained, for example, by measuring using the “optical refractive index measuring method” in the Japan Optical Glass Industry Association Standard when the core and the clad are made of glass. It is done.
  • is the light receiving angle (also referred to as the aperture angle) of the optical fiber.
  • the numerical aperture NA increases, and the optical fiber receives light in a wide angular range, Light is emitted in a wide angle range.
  • the optical fiber the difference between the refractive index n 2 of the refractive index n 1 and a cladding of the core is small, the numerical aperture NA is reduced, by receiving light in a narrow range of angles, the light in a narrow angular range It comes out.
  • the optical fiber bundle 1 of the present embodiment has a configuration in which two or more types (two types in the example of FIG. 1) of optical fibers 11 and 12 having different numerical apertures NA are bundled. Different light distribution characteristics can be obtained as compared with the case where only the optical fibers are bundled. That is, as described above, a conventional optical fiber bundle is a bundle of optical fibers made of the same material, that is, has a configuration in which only optical fibers having the same numerical aperture NA are bundled. . For example, when this conventional optical fiber bundle is used as a light guide and the inside of a tube is to be observed, when the amount of light is weak, only the front side of the tube is visible, and sufficient light does not reach the back side of the tube.
  • the optical fiber bundle 1 of the present embodiment has a configuration in which two or more types of optical fibers 11 and 12 having different numerical apertures NA are bundled, for example, when used as a light guide, light having a relatively large numerical aperture NA.
  • the optical fiber 11 having a relatively small numerical aperture NA can satisfactorily illuminate an object that is far from the exit end face, while the fiber 12 can satisfactorily illuminate the object that is close to the exit end face. In other words, it is possible to simultaneously illuminate points with different distances from the emission end face with good illuminance. Therefore, for example, when the optical fiber bundle 1 of the present embodiment is used for observation inside the tube as a light guide, it is possible to simultaneously illuminate and observe the near side and the far side in the tube at the same time.
  • the numerical aperture NA of each type of optical fiber 11, 12 constituting the optical fiber bundle 1 the ratio of the number of each type of optical fiber 11, 12, each type
  • the light distribution characteristics can be adjusted freely and easily.
  • the optical fiber group 10 includes a plurality of first optical fibers 11 having a first numerical aperture NA1 and a plurality of second optical fibers 12 having a second numerical aperture NA2.
  • the second numerical aperture NA2 of the second optical fiber 12 is preferably larger than the first numerical aperture NA1 of the first optical fiber 11 by 0.15 or more, more preferably by 0.2 or more, and further preferably by 0.55 or more.
  • This configuration is particularly suitable when the optical fiber bundle 1 is configured as a light guide, and thereby it is possible to simultaneously illuminate points with different distances from the emission end face with good illuminance.
  • the optical fiber bundle 1 is used as a light guide for observation inside the tube, both the near side and the far side in the tube can be observed more favorably.
  • the optical fiber group 10 includes a plurality of first optical fibers 11 having a first numerical aperture NA1, and a plurality of second optical apertures NA2 having a second numerical aperture NA2 larger than the first numerical aperture NA1.
  • the ratio of the number FN2 of the second optical fibers 12 to the number FN1 of the first optical fibers 11 (FN2 / FN1) is preferably 0.05 to 9, and more preferably 0.1 to 5.5. It is preferably 0.25 to 4, more preferably.
  • This configuration is particularly suitable when the optical fiber bundle 1 is configured as a light guide, and thereby it is possible to simultaneously illuminate points with different distances from the emission end face with good illuminance. For example, when the optical fiber bundle 1 is used as a light guide for observation inside the tube, both the near side and the far side in the tube can be observed more favorably.
  • the waveform representing the light distribution characteristic includes six or more inflection points Q.
  • This configuration is particularly suitable when the optical fiber bundle 1 is configured as a light guide, and thereby it is possible to simultaneously illuminate points with different distances from the emission end face with good illuminance.
  • the “waveform representing the light distribution characteristic” means that, as schematically shown in FIG. 6, the vertical axis represents the light intensity, and the horizontal axis represents the angle (°) from the exit end face 10SA of the optical fiber bundle 1. It refers to the waveform when. As a method of obtaining this waveform, for example, as will be described later with reference to FIGS.
  • the direction perpendicular to the end face is set to 0 ° and moved over an angle range of 90 ° to ⁇ 90 °, and during that time, the total amount of light transmitted through the optical fiber bundle 1 is measured. Thereby, a waveform representing the light distribution characteristic is obtained.
  • the “inflection point Q” refers to a point where the secondary differential value of the waveform curve representing the light distribution characteristic is 0, and the sign of the secondary differential value is reversed before and after that.
  • optical fiber bundle 1 of the present embodiment is not limited to the example of FIG. 1, and various modifications are possible.
  • the optical fiber bundle 1 may have a configuration in which three or more types of optical fibers having different numerical apertures NA are bundled.
  • Adjustment of the numerical aperture NA of each type of optical fiber constituting the optical fiber bundle 1 can be performed by adjusting the composition of each core and cladding of each type of optical fiber.
  • the core and clad of each type of optical fiber constituting the optical fiber bundle 1 may each be made of glass of any composition, such as multicomponent glass or quartz glass, or plastic.
  • the optical fiber bundle 1 includes at least one type of optical fiber in which at least one of the core and the clad is made of multicomponent glass, the numerical aperture NA of each optical fiber is greatly changed as necessary. Therefore, the light distribution characteristics can be adjusted more easily and freely. From the same viewpoint, it is further preferable that the core and the clad of each type of optical fiber constituting the optical fiber bundle 1 are each made of multicomponent glass.
  • the optical fibers 11 and 12 constituting the optical fiber bundle 1 have substantially the same outer diameter (and consequently cladding outer diameter) and core outer diameter, but this is not essential.
  • the outer diameter and core diameter of each type of optical fiber constituting the optical fiber bundle 1 may be different from each other. Or the outer diameter and core diameter of each optical fiber which comprises the optical fiber bundle 1 may mutually differ.
  • the distance between the optical fibers 11 and 12 constituting the optical fiber bundle 1 is substantially uniform when the cross sections or the end faces 10SA and 10SB of the end portions 1A and 1B of the optical fiber bundle 1 are viewed.
  • the optical fibers 11 and 12 of each type are randomly arranged, this is not essential. Any spacing may be selected between the optical fibers 11 and 12 constituting the optical fiber bundle 1 and the arrangement of the various types of optical fibers 11 and 12 may be selected.
  • the optical fibers 11 and 12 of the optical fiber group 10 are fixed by the solidifying agent 40 only at the end portions 1A and 1B on both sides of the optical fiber bundle 1, but this is essential. is not.
  • each light of the optical fiber group 10 is bonded by thermal fusion without using the solidifying agent 40 only at the ends 1 ⁇ / b> A and 1 ⁇ / b> B on both sides of the optical fiber bundle 1.
  • the fibers 11 and 12 may be fixed. In this case, as compared with the example of FIG. 1, the gap between the optical fibers 11 and 12 can be eliminated. As a result, the core occupied area ratio of the optical fiber bundle 1 can be increased.
  • the core occupied area ratio of the optical fiber bundle 1 is an optical fiber with respect to the cross-sectional area of the outer edge of the optical fiber group 10 (and thus the cross-sectional area of the inner peripheral surfaces of the sleeves 2A and 2B) in the cross section of the optical fiber bundle 1.
  • the total ratio of the areas of the cores 11a and 12a of the optical fibers 11 and 12 of the group 10 is indicated.
  • the location where the optical fibers 11 and 12 of the optical fiber bundle 1 are fixed by the solidifying agent 40 or heat fusion or the like is only one end portion of the optical fiber bundle 1 or a portion extending over the entire length of the optical fiber bundle 1. Any location may be used.
  • the intermediate portion of the optical fiber bundle 1 can be easily bent, so that it is used as a light guide. It is particularly suitable for the case.
  • any method for fixing the end portion of the optical fiber group 10 to the inner peripheral surface of the sleeve 2A any method such as fixing with a solidifying agent 40 or the like as shown in FIG. 2 or fixing by heat fusion may be used. .
  • the optical fiber group 10 has a substantially circular cross-sectional shape that is substantially the same as the cross-sectional shape of the inner peripheral surfaces of the sleeves 2A and 2B over the entire length of the optical fiber bundle 1. This is not mandatory.
  • the optical fiber group 10 may have an arbitrary cross-sectional shape at an arbitrary position in the longitudinal direction of the optical fiber bundle 1.
  • the shape of the optical fiber group 10 on the emission end face of the optical fiber bundle 1 may be generally an arbitrary shape such as a linear shape, a square shape, or an annular shape.
  • the optical fiber bundle 1 is a branched type light in which at least one of one side and the other side in the longitudinal direction of the optical fiber bundle is branched, as in another modification schematically shown in FIG. It may be configured as a fiber bundle. Such a configuration is particularly suitable when the optical fiber bundle 1 is used as a light guide. In the example of FIG. 3, only one side of the optical fiber bundle 1 is branched into two branched optical fiber bundles.
  • a branched optical fiber bundle having an optical fiber group 110 in which a plurality of types of optical fibers 111 and 112 having different NAs (two types in the example in the figure) are bundled A branched optical fiber bundle having an optical fiber group 210 in which a plurality of types of optical fibers 211 and 212 with different NAs (two types in the example in the figure) are bundled is formed.
  • the optical fibers 111, 112 of the optical fiber group 110 and the optical fibers 211, 212 of the optical fiber group 210 are respectively connected within the sleeves 102A, 202A. It is fixed.
  • These branched optical fiber bundles are coupled at an intermediate portion of the optical fiber bundle 1, and on the other side, the optical fiber group 10 in which the optical fiber groups 110 and 210 of each branched optical fiber bundle are bundled together. Is configured.
  • the optical fibers 111, 112, 211, 212 of the optical fiber group 10 are fixed in the sleeve 2B.
  • the end faces 110SA and 210SA of the branched optical fiber bundles of the optical fiber bundle 1 are used as the incident end faces, and the unbranched end face 10SB of the optical fiber bundle 1 is used as the outgoing end face as a light guide.
  • the end faces 110SA and 210SA of the branched optical fiber bundles of the optical fiber bundle 1 are used as emission end faces, and the unbranched end face 10SB of the optical fiber bundle 1 is used as an incident end face as a light guide.
  • the light can be distributed to a plurality of arbitrary locations with one light source.
  • both the one side and the other side of the longitudinal direction of the optical fiber bundle may be branched.
  • the number of branches may be three or more.
  • the configuration of the optical fiber groups 110 and 210 of each branch optical fiber bundle may be the same as or different from each other.
  • Each of the optical fiber groups 110 and 210 of each branch optical fiber bundle may include a plurality of types of optical fibers having different NAs, or may include only one type of optical fiber having the same NA.
  • FIG. 7 shows an example of an endoscope including the optical fiber bundle 1 according to the above-described embodiment of the present invention (for example, the example of FIG. 1 or FIG. 2).
  • the endoscope 50 of this example is an industrial or medical endoscope, and includes a scope (endoscope scope) 60, a light source 70, a control unit 80, and a display 90.
  • the scope 60 includes an operation unit 61 and an insertion unit 62.
  • a light guide 31 and an image guide 32 are provided inside the insertion portion 62 and the operation portion 61 of the scope 60.
  • an optical system disposed further on the distal end side with respect to the emission end of the light guide 31, the incident end of the image guide 32, and the incident end of the image guide 32.
  • an objective lens is arranged at the distal end of the insertion portion 62 of the scope 60.
  • the light guide 31 is configured to transmit light from the light source 70 and irradiate the object to be observed from the tip of the insertion portion 62.
  • the light guide 31 is comprised from the optical fiber bundle 1 which concerns on one Embodiment of this invention.
  • the image guide 32 is configured to transmit an image of the observation target image formed at the incident end thereof through, for example, an optical system (objective lens or the like).
  • the image transmitted by the image guide 32 enters the control unit 80 via, for example, an eyepiece (not shown).
  • the control unit 80 includes, for example, a photodetector, an ADC (analog-digital converter), a CPU, and a memory (RAM, ROM, etc.).
  • the control unit 80 performs image processing or the like based on the image incident from the image guide 32 to generate an image signal, and displays an image of the observation target on the display 90 based on the generated image signal.
  • the control unit 80 also controls the light source 70.
  • the image guide 32 may also be configured from the optical fiber bundle 1 according to an embodiment of the present invention.
  • the endoscope 50 shown in FIG. 7 is merely an example, and the endoscope 50 including the optical fiber bundle 1 according to the embodiment of the present invention may have a configuration different from that in FIG.
  • Examples 1 to 3 and Comparative Examples 1 and 2 of the optical fiber bundle according to the present invention were experimentally manufactured and evaluated by experiments, and will be described below with reference to FIGS.
  • FIG. 4 is a diagram for explaining the experimental method.
  • FIG. 5 is a diagram for explaining the experimental results.
  • the optical fiber bundles of Examples 1 to 3 are ride guides having a configuration similar to that described with reference to FIG. 1, and the optical fiber group 10 includes a plurality of first fibers having a first numerical aperture NA1.
  • the optical fiber 11 and a plurality of second optical fibers 12 having a second numerical aperture NA2 are bundled in a randomly arranged state.
  • NA2 ⁇ NA1 0.74.
  • is ⁇ in the formula (1).
  • the optical fiber group 10 was configured by bundling only the second optical fiber 12.
  • the optical fiber group 10 was configured by bundling only the first optical fibers 11.
  • only the ratio (FN1: FN2) of the number FN1 of the first optical fibers 11 and the number FN2 of the second optical fibers 12 is different as shown in FIG. Other configurations were the same.
  • the outer diameter of each of the optical fibers 11 and 12 was about 50 ⁇ m, and the outer diameter of the optical fiber group 10 was about 1 mm.
  • the filling ratio of the optical fibers 11 and 12 (the total cross-sectional area of the optical fibers 11 and 12 with respect to the cross-sectional area of the optical fiber group 10 (and thus the cross-sectional area of the inner peripheral surfaces of the sleeves 2A and 2B)) Ratio) was about 86%, and the total number of optical fibers 11 and 12 was about 344.
  • the outer tube 3 is made of nylon net
  • the incident end side sleeve 2B is made of aluminum
  • the emission end side sleeve 2A is made of stainless steel. Planar processing and optical polishing were performed on the end faces 10SB and 10SA on both sides of the optical fiber bundle 1.
  • the cores and claddings of the optical fibers 11 and 12 were each composed of multicomponent glass.
  • the first numerical aperture NA1 when calculates the second numerical aperture NA2 by the formula (1), the refractive index n 1 of the core, the refractive index n 2 of the cladding, the refractive index of the "optical in Japanese Optical Glass Industrial Standard It was obtained by measuring using the “measurement method”.
  • the light distribution characteristics of the optical fiber bundles of Examples 1 to 3 and Comparative Examples 1 and 2 were obtained by the experimental method described below.
  • the experiment was performed by a method based on the FFP method described in “Optical Fiber Structural Parameter Test Method—Optical Properties” defined in JIS C 6825: 2009. More specifically, as shown in FIG. 4, white light was incident on the incident end face 10 ⁇ / b> SB of the optical fiber bundle 1 with the light source 330 pressed.
  • the light source 330 an LED for illumination (product code: CL-L230-C10N-A) manufactured by Citizen was used.
  • FIG. 5 shows a waveform representing the light distribution characteristics obtained as a result.
  • the vertical axis of the graph represents the light intensity measured by the light receiving element 310, and the horizontal axis represents the angle (°) from the emission end face 10SA. Respectively.
  • the numerical value on the vertical axis is a value obtained by normalizing the light intensity when the angle is 0 ° for each optical fiber bundle 1 as 1.
  • the comparative example 1 comprised only from the 2nd optical fiber 12 with a large numerical aperture NA had strong light intensity over a wide angle range.
  • the illuminance on the near side as well as the back side in the tube was too strong, and as a result, the inside of the tube could not be sufficiently observed.
  • Comparative Example 2 composed of only the first optical fiber 11 having a small numerical aperture NA had strong light intensity only in the vicinity of 0 °, and sufficient light intensity could not be obtained in the angular range outside it.
  • the inside of the tube was illuminated using the optical fiber bundle of Comparative Example 2 only the back side in the tube was illuminated, and the near side could not be observed sufficiently.
  • Examples 1 to 3 which are composed of the first optical fiber 11 and the second optical fiber 12 having different numerical apertures NA, a strong light intensity was obtained in the vicinity of 0 °, and on the outside In this angle range, a moderate light intensity that was neither too strong nor too weak was obtained.
  • the waveforms representing the light distribution characteristics of Comparative Example 1 and Comparative Example 2 each had two inflection points Q.
  • the waveforms representing the light distribution characteristics of Examples 1 to 3 each had six or more inflection points Q.
  • the optical fiber bundle of the present invention can be used in various fields such as an industrial field and a medical field, for example, as a light guide, an image guide, or an optical fiber for sensors. It can be suitably used as a light guide or an image guide (further speaking, a light guide) used for a light source or a light guide for a microscope.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Astronomy & Astrophysics (AREA)
  • Biophysics (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Endoscopes (AREA)

Abstract

An optical fiber bundle 1 has a configuration in which a plurality of optical fibers are bundled, wherein the plurality of optical fibers include at least two types of optical fibers 11, 12 having different numerical apertures NA.

Description

光ファイババンドル、内視鏡用スコープ、及び、内視鏡Optical fiber bundle, endoscope scope, and endoscope
 本発明は、光ファイババンドル、内視鏡用スコープ、及び、内視鏡に関する。 The present invention relates to an optical fiber bundle, an endoscope scope, and an endoscope.
 一般的な光ファイババンドルは、多数の同一材料の光ファイバを束ねてなるものである。このような光ファイババンドルは、得られる機能や性能に限界がある。
 例えば、このような光ファイババンドルをライトガイドとして管内の観察のために用いる場合、光ファイババンドルを構成する各光ファイバの光学特性に依っては、管内の手前側あるいは奥側しか十分に観察できず、管内の手前側と奥側の両方を良好に観察できない、といった問題がある。この問題を解決するための手法としては、光ファイババンドルの出射端面の形状を、例えば凸形状、凹形状、波形状等の非平坦形状に加工することで、光ファイババンドルの配光分布特性を調整することが考えられる(例えば、特許文献1、2)。
A general optical fiber bundle is formed by bundling a large number of optical fibers of the same material. Such an optical fiber bundle has a limit in the function and performance obtained.
For example, when such an optical fiber bundle is used as a light guide for observation in a tube, depending on the optical characteristics of each optical fiber constituting the optical fiber bundle, only the front side or the back side in the tube can be sufficiently observed. There is a problem that both the near side and the far side in the tube cannot be observed well. As a technique for solving this problem, the shape of the emission end face of the optical fiber bundle is processed into a non-flat shape such as a convex shape, a concave shape, a wave shape, etc. It is possible to adjust (for example, patent document 1, 2).
日本国実公昭52-010346号公報Japanese National Publication No. 52-010346 日本国特開平03-123311号公報Japanese Unexamined Patent Publication No. 03-123311
 しかし、光ファイババンドルの端面の加工は、容易ではなく、特に光ファイババンドルが細径の場合、非常に困難である。また、光ファイババンドルの端面形状を変えるだけでは、配光分布特性を必要に応じて大きく変えることはできない。 However, the processing of the end face of the optical fiber bundle is not easy, and is particularly difficult when the optical fiber bundle has a small diameter. In addition, the light distribution characteristics cannot be greatly changed as required only by changing the end face shape of the optical fiber bundle.
 したがって、この点に着目してなされた本発明の目的は、容易かつ自由に配光分布特性を調整できる、光ファイババンドル、内視鏡用スコープ、及び、内視鏡を提供することにある。 Therefore, an object of the present invention made by paying attention to this point is to provide an optical fiber bundle, an endoscope scope, and an endoscope capable of easily and freely adjusting a light distribution characteristic.
 本発明の光ファイババンドルは、
 複数の光ファイバが束ねられた構成を有する、光ファイババンドルにおいて、
 前記複数の光ファイバは、開口数NAの異なる2種類以上の光ファイバを含むものである。
 本発明の光ファイババンドルによれば、容易かつ自由に配光分布特性を調整できる。
The optical fiber bundle of the present invention is
In an optical fiber bundle having a configuration in which a plurality of optical fibers are bundled,
The plurality of optical fibers include two or more types of optical fibers having different numerical apertures NA.
According to the optical fiber bundle of the present invention, the light distribution characteristics can be adjusted easily and freely.
 本発明の光ファイババンドルにおいては、
 前記光ファイババンドルの両端部のみで、前記複数の光ファイバどうしが固定されており、
 前記光ファイババンドルの両端面が光学研磨面であるのが好ましい。
 このような光ファイババンドルは、ライトガイドとして構成されるのに特に好適なものである。
In the optical fiber bundle of the present invention,
The plurality of optical fibers are fixed only at both ends of the optical fiber bundle,
It is preferable that both end surfaces of the optical fiber bundle are optical polishing surfaces.
Such an optical fiber bundle is particularly suitable for being configured as a light guide.
 本発明の光ファイババンドルにおいては、
 光源からの光を前記光ファイババンドルの長手方向の一方側から他方側に向かう方向のみで伝送する、ライトガイドとして構成されていてもよい。
In the optical fiber bundle of the present invention,
You may comprise as a light guide which transmits the light from a light source only in the direction which goes to the other side from the one side of the longitudinal direction of the said optical fiber bundle.
 本発明の光ファイババンドルにおいては、
 前記光ファイババンドルの長手方向の一方側及び他方側のうち少なくともいずれか一方が分岐された、分岐型の光ファイババンドルとして構成されていてもよい。
 このような光ファイババンドルは、ライトガイドとして構成されるのに特に好適なものである。
In the optical fiber bundle of the present invention,
The optical fiber bundle may be configured as a branched optical fiber bundle in which at least one of the one side and the other side in the longitudinal direction is branched.
Such an optical fiber bundle is particularly suitable for being configured as a light guide.
 本発明の光ファイババンドルにおいては、
 前記複数の光ファイバは、コア及びクラッドのうち少なくとも一方が多成分系ガラスから構成された光ファイバを、少なくとも1種類含んでいると、好適である。
 この場合、より容易かつ自由に配光分布特性を調整できる。
In the optical fiber bundle of the present invention,
It is preferable that the plurality of optical fibers include at least one type of optical fiber in which at least one of the core and the clad is made of multicomponent glass.
In this case, the light distribution characteristic can be adjusted more easily and freely.
 本発明の光ファイババンドルにおいては、
 前記光ファイババンドルは、ライトガイドとして構成されており、その配光分布特性を表す波形が変曲点を6点以上含むと、好適である。
 この場合、出射端面からの距離が異なる地点を同時に良好な照度で照らすことができる。
In the optical fiber bundle of the present invention,
The optical fiber bundle is configured as a light guide, and it is preferable that the waveform representing the light distribution characteristic includes six or more inflection points.
In this case, it is possible to simultaneously illuminate points with different distances from the emission end face with good illuminance.
 本発明の光ファイババンドルにおいては、
 前記光ファイババンドルは、ライトガイドとして構成されており、
 前記複数の光ファイバは、第1開口数NA1を有する複数の第1光ファイバと、前記第1開口数NA1よりも0.15以上大きな第2開口数NA2を有する複数の第2光ファイバとを含んでいると、好適である。
 この場合、出射端面からの距離が異なる地点を同時に良好な照度で照らすことができる。
In the optical fiber bundle of the present invention,
The optical fiber bundle is configured as a light guide,
The plurality of optical fibers include a plurality of first optical fibers having a first numerical aperture NA1 and a plurality of second optical fibers having a second numerical aperture NA2 that is 0.15 or more larger than the first numerical aperture NA1. It is preferable.
In this case, it is possible to simultaneously illuminate points with different distances from the emission end face with good illuminance.
 本発明の光ファイババンドルにおいては、
 前記光ファイババンドルは、ライトガイドとして構成されており、
 前記複数の光ファイバは、第1開口数NA1を有する複数の第1光ファイバと、前記第1開口数NA1よりも大きな第2開口数NA2を有する複数の第2光ファイバとを含んでおり、
 前記第1光ファイバの数FN1に対する前記第2光ファイバの数FN2の比率(FN2/FN1)が、0.05~9であると、好適である。
 この場合、出射端面からの距離が異なる地点を同時に良好な照度で照らすことができる。
In the optical fiber bundle of the present invention,
The optical fiber bundle is configured as a light guide,
The plurality of optical fibers include a plurality of first optical fibers having a first numerical aperture NA1, and a plurality of second optical fibers having a second numerical aperture NA2 larger than the first numerical aperture NA1.
It is preferable that the ratio (FN2 / FN1) of the number FN2 of the second optical fibers to the number FN1 of the first optical fibers is 0.05 to 9.
In this case, it is possible to simultaneously illuminate points with different distances from the emission end face with good illuminance.
 本発明の内視鏡用スコープは、上記の光ファイババンドルを備えている。
 本発明の内視鏡用スコープによれば、容易かつ自由に配光分布特性を調整できる。
An endoscope scope according to the present invention includes the above-described optical fiber bundle.
According to the endoscope scope of the present invention, the light distribution characteristic can be adjusted easily and freely.
 本発明の内視鏡は、上記の内視鏡用スコープを備えている。
 本発明の内視鏡によれば、容易かつ自由に配光分布特性を調整できる。
The endoscope of the present invention includes the endoscope scope described above.
According to the endoscope of the present invention, the light distribution characteristic can be adjusted easily and freely.
 本発明によれば、容易かつ自由に配光分布特性を調整できる、光ファイババンドル、内視鏡用スコープ、及び、内視鏡を提供することができる。 According to the present invention, it is possible to provide an optical fiber bundle, an endoscope scope, and an endoscope that can adjust light distribution characteristics easily and freely.
図1(a)は、本発明の一実施形態に係る光ファイババンドルを一部断面により概略的に示す、部分断面側面図であり、図1(b)は、図1(a)の光ファイババンドルの端部を概略的に示す横断面図である。Fig.1 (a) is a partial cross section side view which shows the optical fiber bundle which concerns on one Embodiment of this invention roughly by a partial cross section, FIG.1 (b) is the optical fiber of Fig.1 (a). It is a cross-sectional view which shows the edge part of a bundle roughly. 本発明の一実施形態に係る光ファイババンドルの一変形例を概略的に示す横断面図である。It is a transverse cross section showing roughly the modification of the optical fiber bundle concerning one embodiment of the present invention. 本発明の一実施形態に係る光ファイババンドルの他の変形例を一部断面により概略的に示す、部分断面側面図である。It is a partial cross section side view which shows roughly the other modification of the optical fiber bundle which concerns on one Embodiment of this invention by a partial cross section. 実施例及び比較例の実験方法を説明するための図である。It is a figure for demonstrating the experimental method of an Example and a comparative example. 実施例及び比較例の実験結果として得られた配光分布特性を表す波形を説明するための図である。It is a figure for demonstrating the waveform showing the light distribution characteristic obtained as an experimental result of an Example and a comparative example. 配光分布特性を表す波形について説明するための図である。It is a figure for demonstrating the waveform showing the light distribution characteristic. 本発明の一実施形態に係る光ファイババンドルを備えた内視鏡の一例を概略的に示す図である。It is a figure showing roughly an example of an endoscope provided with an optical fiber bundle concerning one embodiment of the present invention.
 以下、本発明の実施形態について、図面を参照して例示説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本発明の光ファイババンドルは、複数の光ファイバが束ねられた構成を有しており、これら複数の光ファイバは、開口数NAの異なる2種類以上の光ファイバを含むものである。本発明の光ファイババンドルは、工業分野や医療分野等の様々な分野において、ライトガイド、イメージガイド、あるいは、種々のセンサー用光ファイバとして利用できるものであり、特に、工業用又は医療用の内視鏡に用いられるライトガイド又はイメージガイド(さらに言えばライトガイド)や、顕微鏡用のライトガイドとして利用されると好適なものである。 The optical fiber bundle of the present invention has a configuration in which a plurality of optical fibers are bundled, and the plurality of optical fibers includes two or more types of optical fibers having different numerical apertures NA. The optical fiber bundle of the present invention can be used as a light guide, an image guide, or various optical fibers for sensors in various fields such as the industrial field and the medical field. It is suitable when used as a light guide or image guide (further, a light guide) used for an endoscope or a light guide for a microscope.
 図1は、本発明の一実施形態に係る光ファイババンドル1の一例を示している。図1(a)は、本実施形態の光ファイババンドル1を一部断面により概略的に示す、部分断面側面図であり、図1(b)は、図1(a)の光ファイババンドル1の一方側の端部1Aを概略的に示す横断面図である。なお、図1の例では、光ファイババンドル1の他方側の端部1B、及び、光ファイババンドル1の両側の端面も、図1(a)に示す横断面と同様の構成を有する。本実施形態の光ファイババンドル1は、光源からの光を離れた場所へ伝送するためのライトガイドとして構成されている。
 この光ファイババンドル1は、開口数NAの異なる2種類の光ファイバ11、12が束ねられた構成を有している。本明細書では、光ファイババンドル1を構成する光ファイバ11、12をあわせて「光ファイバ群10」ということがある。本例において、光ファイバ群10は、複数の第1光ファイバ11と複数の第2光ファイバ12とからなる。第1光ファイバ11、第2光ファイバ12は、それぞれ、コア11a、12aと、その外周面を覆うクラッド11b、12bとから構成された、単芯光ファイバである。
 図1の例において、第2光ファイバ12の開口数NA(以下、「第2開口数NA2」ともいう。)は、第1光ファイバ11の開口数NA(以下、「第1開口数NA1」ともいう。)よりも、大きくされている。
 図1の例では、第1光ファイバ11及び第2光ファイバ12のコア11a、12aは円形の断面形状を有しており、第1光ファイバ11及び第2光ファイバ12のクラッド11b、12bは円形の外縁形状を有している。
FIG. 1 shows an example of an optical fiber bundle 1 according to an embodiment of the present invention. Fig.1 (a) is a partial cross section side view which shows the optical fiber bundle 1 of this embodiment schematically by a partial cross section, and FIG.1 (b) is the optical fiber bundle 1 of Fig.1 (a). It is a cross-sectional view which shows the edge part 1A of one side roughly. In the example of FIG. 1, the other end 1B of the optical fiber bundle 1 and the end faces on both sides of the optical fiber bundle 1 also have the same configuration as the cross section shown in FIG. The optical fiber bundle 1 of this embodiment is configured as a light guide for transmitting light from a light source to a remote location.
The optical fiber bundle 1 has a configuration in which two types of optical fibers 11 and 12 having different numerical apertures NA are bundled. In this specification, the optical fibers 11 and 12 constituting the optical fiber bundle 1 may be collectively referred to as an “optical fiber group 10”. In this example, the optical fiber group 10 includes a plurality of first optical fibers 11 and a plurality of second optical fibers 12. The first optical fiber 11 and the second optical fiber 12 are single-core optical fibers composed of cores 11a and 12a and clads 11b and 12b covering the outer peripheral surfaces thereof, respectively.
In the example of FIG. 1, the numerical aperture NA of the second optical fiber 12 (hereinafter also referred to as “second numerical aperture NA2”) is the numerical aperture NA of the first optical fiber 11 (hereinafter referred to as “first numerical aperture NA1”). It is also larger than.)
In the example of FIG. 1, the cores 11a and 12a of the first optical fiber 11 and the second optical fiber 12 have a circular cross-sectional shape, and the claddings 11b and 12b of the first optical fiber 11 and the second optical fiber 12 are It has a circular outer edge shape.
 光ファイババンドル1の両側の端部1A、1Bにおいて、光ファイバ群10の光ファイバ11、12どうしは、接着剤等の固化剤40によって、管状のスリーブ2A、2B内で固定されている。スリーブ2A、2Bは、例えば金属製である。光ファイババンドル1の光ファイバ群10の両側の端面10SA、10SBは、研磨処理によって光学研磨面に形成されている。光ファイバ群10の両側の端面10SA、10SBは、例えば平坦面からなる。
 光ファイババンドル1の長手方向の両端部1A、1Bの間に位置する中間部において、光ファイバ群10は、固化剤40等によって固定されずに単に束ねられた状態で、可撓性のある外装管3によって覆われている。これによって、光ファイババンドル1は、容易に曲げることができるようにされている。外装管3は、例えば樹脂管、又は、蛇腹状の金属管等からなる。
 図1の例において、光ファイババンドル1は、長手方向の一方側又は他方側のどちらをも、入射側として用いることができるが、光源からの光を、一度にいずれか一方側から他方側に向かう一方向のみで伝送するように構成されており、一度に双方向に光を伝送するようには構成されていない。図1の例では、例えば、光ファイババンドル1の一方の端部1Bが、入射側として用いられ、例えば図示しない光源装置に接続される。また、光ファイババンドル1の他方の端部1Aは、出射側として用いられる。
At both ends 1A and 1B of the optical fiber bundle 1, the optical fibers 11 and 12 of the optical fiber group 10 are fixed in the tubular sleeves 2A and 2B by a solidifying agent 40 such as an adhesive. The sleeves 2A and 2B are made of metal, for example. End faces 10SA and 10SB on both sides of the optical fiber group 10 of the optical fiber bundle 1 are formed on the optically polished surface by a polishing process. The end faces 10SA and 10SB on both sides of the optical fiber group 10 are, for example, flat surfaces.
In an intermediate portion located between both end portions 1A and 1B in the longitudinal direction of the optical fiber bundle 1, the optical fiber group 10 is not fixed by the solidifying agent 40 or the like but is simply bundled, and is a flexible exterior. Covered by a tube 3. Thereby, the optical fiber bundle 1 can be easily bent. The outer tube 3 is made of, for example, a resin tube or a bellows-like metal tube.
In the example of FIG. 1, the optical fiber bundle 1 can use either one side or the other side in the longitudinal direction as the incident side, but the light from the light source is changed from one side to the other side at a time. It is configured to transmit only in one direction, and is not configured to transmit light in both directions at once. In the example of FIG. 1, for example, one end 1 </ b> B of the optical fiber bundle 1 is used as the incident side, and is connected to a light source device (not shown), for example. The other end 1A of the optical fiber bundle 1 is used as the emission side.
 一般的に、光ファイバの開口数NAは、コアの屈折率をnとし、クラッドの屈折率をnとし、光ファイバの外部が空気(屈折率が1)とすると、
Figure JPOXMLDOC01-appb-M000001
の式により求められる。コアの屈折率n、クラッドの屈折率nは、例えば、コア及びクラッドがガラスから構成される場合、日本光学硝子工業会規格における「光学の屈折率測定方法」を用いて測定して得られる。
 式(1)において、θは、光ファイバの受光角度(開口角とも呼ばれる)である。式(1)からわかるように、光ファイバは、コアの屈折率nとクラッドの屈折率nとの差が大きいと、開口数NAは大きくなり、広い角度範囲の光を受光して、広い角度範囲に光を出射するようになる。逆に、光ファイバは、コアの屈折率nとクラッドの屈折率nとの差が小さいと、開口数NAは小さくなり、狭い角度範囲の光を受光して、狭い角度範囲に光を出射するようになる。
Generally, the numerical aperture NA of the optical fiber, the refractive index of the core and n 1, the refractive index of the cladding and n 2, the external optical fiber air (refractive index 1) to,
Figure JPOXMLDOC01-appb-M000001
It is calculated by the following formula. The refractive index n 1 of the core and the refractive index n 2 of the clad are obtained, for example, by measuring using the “optical refractive index measuring method” in the Japan Optical Glass Industry Association Standard when the core and the clad are made of glass. It is done.
In equation (1), θ is the light receiving angle (also referred to as the aperture angle) of the optical fiber. As can be seen from the equation (1), when the difference between the refractive index n 1 of the core and the refractive index n 2 of the cladding is large, the numerical aperture NA increases, and the optical fiber receives light in a wide angular range, Light is emitted in a wide angle range. Conversely, the optical fiber, the difference between the refractive index n 2 of the refractive index n 1 and a cladding of the core is small, the numerical aperture NA is reduced, by receiving light in a narrow range of angles, the light in a narrow angular range It comes out.
 本実施形態の光ファイババンドル1は、開口数NAの異なる2種類以上(図1の例では2種類)の光ファイバ11、12が束ねられた構成を有するので、仮に開口数NAの同じ1種類の光ファイバのみが束ねられた構成を有する場合に比べて、異なる配光分布特性を得ることができる。
 すなわち、上述したように、従来において一般的な光ファイババンドルは、同一材料の光ファイバを束ねてなるものであり、すなわち、開口数NAの同じ光ファイバのみが束ねられた構成を有するものである。例えばこの従来の光ファイババンドルを、ライトガイドとして用いて、管内を観察しようとする場合、光量が弱いときは、管内の手前側しか見えず、管内の奥側に十分な光が届かなくなり、一方、光量が強いときは、管内の手前側の内壁でハレーションを起こす等、管内の手前側と奥側の両方を同時に良好に観察することは困難となる。このように、開口数NAの同じ光ファイバのみを束ねた光ファイババンドルを用いて、出射端面からの距離が異なる地点を同時に良好な照度で照らすことは、非常に困難である。特に、観察対象の管の内径が細ければ細いほど、この問題は顕著となる。
 一方、本実施形態の光ファイババンドル1では、開口数NAの異なる2種類以上の光ファイバ11、12が束ねられた構成を有するので、例えばライトガイドとして用いる場合、開口数NAの比較的大きな光ファイバ12が出射端面からの距離が近い対象物を良好に照明できると同時に、開口数NAの比較的小さな光ファイバ11が出射端面からの距離が遠い対象物を良好に照明できる。すなわち、出射端面からの距離が異なる地点を同時に良好な照度で照らすことができる。よって、例えば、本実施形態の光ファイババンドル1を、ライトガイドとして管内の観察のために用いる場合、管内の手前側と奥側とを同時に良好に照明し観察することが可能となる。
 そして、本実施形態の光ファイババンドル1においては、光ファイババンドル1を構成する各種類の光ファイバ11、12のそれぞれの開口数NA、各種類の光ファイバ11、12の数の比、各種類の光ファイバ11、12の数の合計等を調整することで、配光分布特性を自由かつ容易に調整することができる。
The optical fiber bundle 1 of the present embodiment has a configuration in which two or more types (two types in the example of FIG. 1) of optical fibers 11 and 12 having different numerical apertures NA are bundled. Different light distribution characteristics can be obtained as compared with the case where only the optical fibers are bundled.
That is, as described above, a conventional optical fiber bundle is a bundle of optical fibers made of the same material, that is, has a configuration in which only optical fibers having the same numerical aperture NA are bundled. . For example, when this conventional optical fiber bundle is used as a light guide and the inside of a tube is to be observed, when the amount of light is weak, only the front side of the tube is visible, and sufficient light does not reach the back side of the tube. When the amount of light is strong, it becomes difficult to observe both the front side and the back side in the tube simultaneously and satisfactorily, such as causing halation on the inner wall on the front side in the tube. As described above, it is very difficult to simultaneously illuminate points with different distances from the emission end face with good illuminance by using an optical fiber bundle in which only optical fibers having the same numerical aperture NA are bundled. In particular, this problem becomes more prominent as the inner diameter of the tube to be observed is thinner.
On the other hand, since the optical fiber bundle 1 of the present embodiment has a configuration in which two or more types of optical fibers 11 and 12 having different numerical apertures NA are bundled, for example, when used as a light guide, light having a relatively large numerical aperture NA. The optical fiber 11 having a relatively small numerical aperture NA can satisfactorily illuminate an object that is far from the exit end face, while the fiber 12 can satisfactorily illuminate the object that is close to the exit end face. In other words, it is possible to simultaneously illuminate points with different distances from the emission end face with good illuminance. Therefore, for example, when the optical fiber bundle 1 of the present embodiment is used for observation inside the tube as a light guide, it is possible to simultaneously illuminate and observe the near side and the far side in the tube at the same time.
In the optical fiber bundle 1 of the present embodiment, the numerical aperture NA of each type of optical fiber 11, 12 constituting the optical fiber bundle 1, the ratio of the number of each type of optical fiber 11, 12, each type By adjusting the total number of the optical fibers 11 and 12, etc., the light distribution characteristics can be adjusted freely and easily.
 なお、図1の例のように、光ファイバ群10が、第1開口数NA1を有する複数の第1光ファイバ11と、第2開口数NA2を有する複数の第2光ファイバ12とを含む場合、第2光ファイバ12の第2開口数NA2は、第1光ファイバ11の第1開口数NA1よりも、0.15以上大きいと好ましく、0.2以上大きいとより好ましく、0.55以上大きいとさらに好ましい。この構成は、光ファイババンドル1がライトガイドとして構成される場合に特に好適であり、これにより、出射端面からの距離が異なる地点を同時に良好な照度で照らすことができる。例えば、この光ファイババンドル1をライトガイドとして管内の観察のために用いる場合、管内の手前側と奥側の両方をより良好に観察できる。
 また、図1の例のように、光ファイバ群10が、第1開口数NA1を有する複数の第1光ファイバ11と、第1開口数NA1よりも大きな第2開口数NA2を有する複数の第2光ファイバ12とを含む場合、第1光ファイバ11の数FN1に対する第2光ファイバ12の数FN2の比率(FN2/FN1)が、0.05~9であると好ましく、0.1~5.5であるとより好ましく、0.25~4であるとさらに好ましい。この構成は、光ファイババンドル1がライトガイドとして構成される場合に特に好適であり、これにより、出射端面からの距離が異なる地点を同時に良好な照度で照らすことができる。例えば、この光ファイババンドル1をライトガイドとして管内の観察のために用いる場合、管内の手前側と奥側の両方をより良好に観察できる。
As in the example of FIG. 1, the optical fiber group 10 includes a plurality of first optical fibers 11 having a first numerical aperture NA1 and a plurality of second optical fibers 12 having a second numerical aperture NA2. The second numerical aperture NA2 of the second optical fiber 12 is preferably larger than the first numerical aperture NA1 of the first optical fiber 11 by 0.15 or more, more preferably by 0.2 or more, and further preferably by 0.55 or more. This configuration is particularly suitable when the optical fiber bundle 1 is configured as a light guide, and thereby it is possible to simultaneously illuminate points with different distances from the emission end face with good illuminance. For example, when the optical fiber bundle 1 is used as a light guide for observation inside the tube, both the near side and the far side in the tube can be observed more favorably.
As in the example of FIG. 1, the optical fiber group 10 includes a plurality of first optical fibers 11 having a first numerical aperture NA1, and a plurality of second optical apertures NA2 having a second numerical aperture NA2 larger than the first numerical aperture NA1. In the case of including two optical fibers 12, the ratio of the number FN2 of the second optical fibers 12 to the number FN1 of the first optical fibers 11 (FN2 / FN1) is preferably 0.05 to 9, and more preferably 0.1 to 5.5. It is preferably 0.25 to 4, more preferably. This configuration is particularly suitable when the optical fiber bundle 1 is configured as a light guide, and thereby it is possible to simultaneously illuminate points with different distances from the emission end face with good illuminance. For example, when the optical fiber bundle 1 is used as a light guide for observation inside the tube, both the near side and the far side in the tube can be observed more favorably.
 また、この光ファイババンドル1においては、その配光分布特性を表す波形が変曲点Qを6点以上含むと、好適である。
 この構成は、光ファイババンドル1がライトガイドとして構成される場合に特に好適であり、これにより、出射端面からの距離が異なる地点を同時に良好な照度で照らすことができる。
 ここで、「配光分布特性を表す波形」とは、図6に概略的に示すように、縦軸を光強度、横軸を光ファイババンドル1の出射端面10SAからの角度(°)としたときの波形を指す。この波形を得る方法としては、例えば、後に図4及び図5を参照して説明するように、JIS C 6825:2009 に規定された「光ファイバ構造パラメータ試験方法-光学的特性」に記載のFFP法に準拠した方法がある。この方法では、光ファイババンドル1の入射端面10SBに、光源330を押し付けた状態で、光(例えば白色光)を入射させる。そして、受光面にピンホール320a付きの絞り部材320が貼られた受光素子310を、光ファイババンドル1の出射端面10SAを中心とする所定半径rの円弧経路に沿って、光ファイババンドル1の出射端面に垂直な向きを0°として90°~-90°の角度範囲にわたって移動させ、その間、光ファイババンドル1を透過した全光量を測定する。これによって、配光分布特性を表す波形が得られる。
 また、「変曲点Q」とは、配光分布特性を表す波形曲線の2次微分値が0を示し、かつその前後で2次微分値の符号が逆転する点を指す。
In the optical fiber bundle 1, it is preferable that the waveform representing the light distribution characteristic includes six or more inflection points Q.
This configuration is particularly suitable when the optical fiber bundle 1 is configured as a light guide, and thereby it is possible to simultaneously illuminate points with different distances from the emission end face with good illuminance.
Here, the “waveform representing the light distribution characteristic” means that, as schematically shown in FIG. 6, the vertical axis represents the light intensity, and the horizontal axis represents the angle (°) from the exit end face 10SA of the optical fiber bundle 1. It refers to the waveform when. As a method of obtaining this waveform, for example, as will be described later with reference to FIGS. 4 and 5, FFP described in “Optical fiber structure parameter test method—optical characteristics” defined in JIS C 6825: 2009. There are methods that comply with the law. In this method, light (for example, white light) is incident on the incident end face 10SB of the optical fiber bundle 1 while the light source 330 is pressed. Then, the light receiving element 310 with the aperture member 320 having the pinhole 320a attached to the light receiving surface is emitted from the optical fiber bundle 1 along an arc path having a predetermined radius r centering on the output end surface 10SA of the optical fiber bundle 1. The direction perpendicular to the end face is set to 0 ° and moved over an angle range of 90 ° to −90 °, and during that time, the total amount of light transmitted through the optical fiber bundle 1 is measured. Thereby, a waveform representing the light distribution characteristic is obtained.
Further, the “inflection point Q” refers to a point where the secondary differential value of the waveform curve representing the light distribution characteristic is 0, and the sign of the secondary differential value is reversed before and after that.
 なお、本実施形態の光ファイババンドル1は、図1の例に限らず、様々な変形例が可能である。
 例えば、光ファイババンドル1は、開口数NAの異なる3種類以上の光ファイバが束ねられた構成を有していてもよい。
Note that the optical fiber bundle 1 of the present embodiment is not limited to the example of FIG. 1, and various modifications are possible.
For example, the optical fiber bundle 1 may have a configuration in which three or more types of optical fibers having different numerical apertures NA are bundled.
 光ファイババンドル1を構成する各種類の光ファイバのそれぞれの開口数NAの調整は、各種類の光ファイバのそれぞれのコア及びクラッドの組成の調整により行うことができる。
 光ファイババンドル1を構成する各種類の光ファイバのコア及びクラッドは、それぞれ、例えば、多成分系ガラスあるいは石英系ガラス等、任意の組成のガラス、又は、プラスチック等から構成されてもよい。ただし、光ファイババンドル1は、コア及びクラッドのうち少なくとも一方が多成分系ガラスから構成された光ファイバを、少なくとも1種類含んでいると、各光ファイバの開口数NAを必要に応じて大きく変えることができるので、より容易かつ自由に配光分布特性を調整できるようになる。同様の観点から、光ファイババンドル1を構成する各種類の光ファイバのコア及びクラッドが、それぞれ多成分系ガラスから構成されると、さらによい。
Adjustment of the numerical aperture NA of each type of optical fiber constituting the optical fiber bundle 1 can be performed by adjusting the composition of each core and cladding of each type of optical fiber.
The core and clad of each type of optical fiber constituting the optical fiber bundle 1 may each be made of glass of any composition, such as multicomponent glass or quartz glass, or plastic. However, if the optical fiber bundle 1 includes at least one type of optical fiber in which at least one of the core and the clad is made of multicomponent glass, the numerical aperture NA of each optical fiber is greatly changed as necessary. Therefore, the light distribution characteristics can be adjusted more easily and freely. From the same viewpoint, it is further preferable that the core and the clad of each type of optical fiber constituting the optical fiber bundle 1 are each made of multicomponent glass.
 図1の例では、光ファイババンドル1を構成する各種類の光ファイバ11、12の外径(ひいてはクラッド外径)やコア外径がほぼ同じであるが、このことは必須ではない。例えば、光ファイババンドル1を構成する各種類の光ファイバの外径やコア径は互いに異なるものでもよい。あるいは、光ファイババンドル1を構成する各光ファイバの外径やコア径は互いに異なるものでもよい。
 また、図1の例では、光ファイババンドル1の端部1A、1Bの横断面又は端面10SA、10SBを観たときに、光ファイババンドル1を構成する各光ファイバ11、12の間隔がほぼ均一であり、また、各種類の光ファイバ11、12はランダムに配列されているが、このことは必須ではない。光ファイババンドル1を構成する各光ファイバ11、12の間隔や、各種類の光ファイバ11、12の配列は、任意のものを選択してよい。
In the example of FIG. 1, the optical fibers 11 and 12 constituting the optical fiber bundle 1 have substantially the same outer diameter (and consequently cladding outer diameter) and core outer diameter, but this is not essential. For example, the outer diameter and core diameter of each type of optical fiber constituting the optical fiber bundle 1 may be different from each other. Or the outer diameter and core diameter of each optical fiber which comprises the optical fiber bundle 1 may mutually differ.
In the example of FIG. 1, the distance between the optical fibers 11 and 12 constituting the optical fiber bundle 1 is substantially uniform when the cross sections or the end faces 10SA and 10SB of the end portions 1A and 1B of the optical fiber bundle 1 are viewed. In addition, although the optical fibers 11 and 12 of each type are randomly arranged, this is not essential. Any spacing may be selected between the optical fibers 11 and 12 constituting the optical fiber bundle 1 and the arrangement of the various types of optical fibers 11 and 12 may be selected.
 また、図1の例では、光ファイババンドル1の両側の端部1A、1Bのみにおいて、固化剤40によって光ファイバ群10の各光ファイバ11、12どうしを固定しているが、このことは必須ではない。
 例えば、図2に概略的に示す変形例のように、光ファイババンドル1の両側の端部1A、1Bのみにおいて、固化剤40を用いずに、熱融着によって、光ファイバ群10の各光ファイバ11、12どうしを固定してもよい。この場合、図1の例に比べて、各光ファイバ11、12どうしの間隙を無くすことができる結果、光ファイババンドル1のコア占有面積比率を高めることができるので、光ファイババンドル1の光透過率ひいては光量を高めることができる。なお、光ファイババンドル1のコア占有面積比率とは、光ファイババンドル1の横断面において、光ファイバ群10の外縁の横断面積(ひいてはスリーブ2A、2Bの内周面の横断面積)に対する、光ファイバ群10の各光ファイバ11、12のコア11a、12aの面積の合計の割合を指す。
 また、光ファイババンドル1の光ファイバ11、12どうしを固化剤40又は熱融着等によって固定する箇所は、光ファイババンドル1の一方側の端部のみ、あるいは、光ファイババンドル1の全長にわたる部分など、任意の箇所としてよい。ただし、図1の例のように、光ファイババンドル1の両端部のみで光ファイバ11、12どうしを固定する場合、光ファイババンドル1の中間部を容易に曲げることができるので、ライトガイドとして用いる場合に特に好適である。
 光ファイバ群10の端部をスリーブ2Aの内周面に固定する手法としては、図2に示すように固化剤40等による固定、あるいは、熱融着による固定など、任意の手法を用いてよい。
In the example of FIG. 1, the optical fibers 11 and 12 of the optical fiber group 10 are fixed by the solidifying agent 40 only at the end portions 1A and 1B on both sides of the optical fiber bundle 1, but this is essential. is not.
For example, as in the modification schematically shown in FIG. 2, each light of the optical fiber group 10 is bonded by thermal fusion without using the solidifying agent 40 only at the ends 1 </ b> A and 1 </ b> B on both sides of the optical fiber bundle 1. The fibers 11 and 12 may be fixed. In this case, as compared with the example of FIG. 1, the gap between the optical fibers 11 and 12 can be eliminated. As a result, the core occupied area ratio of the optical fiber bundle 1 can be increased. As a result, the amount of light can be increased. The core occupied area ratio of the optical fiber bundle 1 is an optical fiber with respect to the cross-sectional area of the outer edge of the optical fiber group 10 (and thus the cross-sectional area of the inner peripheral surfaces of the sleeves 2A and 2B) in the cross section of the optical fiber bundle 1. The total ratio of the areas of the cores 11a and 12a of the optical fibers 11 and 12 of the group 10 is indicated.
Moreover, the location where the optical fibers 11 and 12 of the optical fiber bundle 1 are fixed by the solidifying agent 40 or heat fusion or the like is only one end portion of the optical fiber bundle 1 or a portion extending over the entire length of the optical fiber bundle 1. Any location may be used. However, when the optical fibers 11 and 12 are fixed only at both ends of the optical fiber bundle 1 as in the example of FIG. 1, the intermediate portion of the optical fiber bundle 1 can be easily bent, so that it is used as a light guide. It is particularly suitable for the case.
As a method for fixing the end portion of the optical fiber group 10 to the inner peripheral surface of the sleeve 2A, any method such as fixing with a solidifying agent 40 or the like as shown in FIG. 2 or fixing by heat fusion may be used. .
 また、図1や図2の例では、光ファイババンドル1の全長にわたって、光ファイバ群10が、スリーブ2A、2Bの内周面の断面形状とほぼ同じの、略円形の横断面形状を有しているが、このことは必須ではない。光ファイバ群10は、光ファイババンドル1の長手方向の任意の位置で、任意の横断面形状を有してよい。例えば、光ファイババンドル1の出射端面において、光ファイバ群10の形状は、概して、直線形状、四角形状、あるいは、円環形状等、任意の形状でよい。 In the example of FIGS. 1 and 2, the optical fiber group 10 has a substantially circular cross-sectional shape that is substantially the same as the cross-sectional shape of the inner peripheral surfaces of the sleeves 2A and 2B over the entire length of the optical fiber bundle 1. This is not mandatory. The optical fiber group 10 may have an arbitrary cross-sectional shape at an arbitrary position in the longitudinal direction of the optical fiber bundle 1. For example, the shape of the optical fiber group 10 on the emission end face of the optical fiber bundle 1 may be generally an arbitrary shape such as a linear shape, a square shape, or an annular shape.
 また、光ファイババンドル1は、図3に概略的に示す他の変形例のように、光ファイババンドルの長手方向の一方側及び他方側のうち少なくともいずれか一方が分岐された、分岐型の光ファイババンドルとして構成されていてもよい。このような構成は、光ファイババンドル1がライトガイドとして用いられる場合に特に好適なものである。
 図3の例では、光ファイババンドル1の一方側のみで、2つの分岐光ファイババンドルに分岐されている。より具体的には、光ファイババンドル1の一方側では、NAの異なる複数種類(図の例では2種類)の光ファイバ111、112が束ねられた光ファイバ群110を有する分岐光ファイババンドルと、NAの異なる複数種類(図の例では2種類)の光ファイバ211、212が束ねられた光ファイバ群210を有する分岐光ファイババンドルとが、形成されている。各分岐光ファイババンドルの一方側の端部101A、201Aにおいて、光ファイバ群110の各光ファイバ111、112どうし、光ファイバ群210の各光ファイバ211、212どうしは、それぞれスリーブ102A、202A内で固定されている。そして、これらの分岐光ファイババンドルは、光ファイババンドル1の中間部で結合されており、それより他方側では、各分岐光ファイババンドルの光ファイバ群110、210どうしが束ねられた光ファイバ群10が構成されている。光ファイババンドル1の他方側の端部1Bにおいて、光ファイバ群10の各光ファイバ111、112、211、212どうしは、スリーブ2B内で固定されている。図3の例において、光ファイババンドル1の各分岐光ファイババンドルの端面110SA、210SAを入射端面とし、光ファイババンドル1の分岐されていないほうの端面10SBを出射端面として、ライトガイドとして用いる場合は、例えば、複数の光源の光量が合わさった強い光量の光を出射させることができる。一方、図3の例において、光ファイババンドル1の各分岐光ファイババンドルの端面110SA、210SAを出射端面とし、光ファイババンドル1の分岐されていないほうの端面10SBを入射端面として、ライトガイドとして用いる場合は、例えば、1の光源で、光を複数の任意の場所へ分配させることができる。
 なお、光ファイババンドルの長手方向の一方側及び他方側の両方が分岐されていてもよい。また、分岐の数は、3つ以上でもよい。
 各分岐光ファイババンドルの光ファイバ群110、210の構成は、互いに同じでもよいし異なっていてもよい。各分岐光ファイババンドルの光ファイバ群110、210は、それぞれ、NAの異なる複数種類の光ファイバを含んでいてもよいし、NAの同じ1種類の光ファイバのみを含んでいてもよい。
Further, the optical fiber bundle 1 is a branched type light in which at least one of one side and the other side in the longitudinal direction of the optical fiber bundle is branched, as in another modification schematically shown in FIG. It may be configured as a fiber bundle. Such a configuration is particularly suitable when the optical fiber bundle 1 is used as a light guide.
In the example of FIG. 3, only one side of the optical fiber bundle 1 is branched into two branched optical fiber bundles. More specifically, on one side of the optical fiber bundle 1, a branched optical fiber bundle having an optical fiber group 110 in which a plurality of types of optical fibers 111 and 112 having different NAs (two types in the example in the figure) are bundled, A branched optical fiber bundle having an optical fiber group 210 in which a plurality of types of optical fibers 211 and 212 with different NAs (two types in the example in the figure) are bundled is formed. At one end 101A, 201A of each branched optical fiber bundle, the optical fibers 111, 112 of the optical fiber group 110 and the optical fibers 211, 212 of the optical fiber group 210 are respectively connected within the sleeves 102A, 202A. It is fixed. These branched optical fiber bundles are coupled at an intermediate portion of the optical fiber bundle 1, and on the other side, the optical fiber group 10 in which the optical fiber groups 110 and 210 of each branched optical fiber bundle are bundled together. Is configured. At the other end 1B of the optical fiber bundle 1, the optical fibers 111, 112, 211, 212 of the optical fiber group 10 are fixed in the sleeve 2B. In the example of FIG. 3, when the end faces 110SA and 210SA of the branched optical fiber bundles of the optical fiber bundle 1 are used as the incident end faces, and the unbranched end face 10SB of the optical fiber bundle 1 is used as the outgoing end face as a light guide. For example, it is possible to emit a strong light amount in which the light amounts of a plurality of light sources are combined. On the other hand, in the example of FIG. 3, the end faces 110SA and 210SA of the branched optical fiber bundles of the optical fiber bundle 1 are used as emission end faces, and the unbranched end face 10SB of the optical fiber bundle 1 is used as an incident end face as a light guide. In this case, for example, the light can be distributed to a plurality of arbitrary locations with one light source.
In addition, both the one side and the other side of the longitudinal direction of the optical fiber bundle may be branched. Further, the number of branches may be three or more.
The configuration of the optical fiber groups 110 and 210 of each branch optical fiber bundle may be the same as or different from each other. Each of the optical fiber groups 110 and 210 of each branch optical fiber bundle may include a plurality of types of optical fibers having different NAs, or may include only one type of optical fiber having the same NA.
 図7は、上述した本発明の一実施形態(例えば、図1又は図2の例)に係る光ファイババンドル1を備えた、内視鏡の一例を示している。本例の内視鏡50は、工業用又は医療用の内視鏡であり、スコープ(内視鏡用スコープ)60と、光源70と、制御部80と、ディスプレイ90とを、備えている。スコープ60は、操作部61と、挿入部62とを、有している。スコープ60の挿入部62及び操作部61の内部には、ライトガイド31とイメージガイド32が設けられている。スコープ60の挿入部62の先端部には、例えば、ライトガイド31の出射端と、イメージガイド32の入射端と、イメージガイド32の入射端に対してさらに先端側に配置された、光学系(例えば、対物レンズ)とが、配置されている。ライトガイド31は、光源70からの光を、伝送し、挿入部62の先端から観察対象物に向けて照射するように、構成されている。本例において、ライトガイド31は、本発明の一実施形態に係る光ファイババンドル1から構成されている。イメージガイド32は、例えば光学系(対物レンズ等)を介して、その入射端にて結像される観察対象物の像を、伝送するように構成されている。イメージガイド32により伝送された像は、例えば接眼レンズ(図示せず)を介して、制御部80に入射される。制御部80は、例えば、光検出器、ADC(アナログ-デジタル変換器)、CPU、メモリ(RAM、ROM等)を含んで構成されている。制御部80は、イメージガイド32から入射される像に基づいて画像処理等を行って画像信号を生成し、生成した画像信号に基づいて、観察対象物の画像をディスプレイ90に表示する。また、制御部80は、光源70の制御も行う。
 なお、ライトガイド31に代えて/又は加えて、イメージガイド32も、本発明の一実施形態に係る光ファイババンドル1から構成されてもよい。
 また、図7に示す内視鏡50は、あくまで一例であり、本発明の一実施形態に係る光ファイババンドル1を備えた内視鏡50は、図7とは異なる構成を持つものでもよい。
FIG. 7 shows an example of an endoscope including the optical fiber bundle 1 according to the above-described embodiment of the present invention (for example, the example of FIG. 1 or FIG. 2). The endoscope 50 of this example is an industrial or medical endoscope, and includes a scope (endoscope scope) 60, a light source 70, a control unit 80, and a display 90. The scope 60 includes an operation unit 61 and an insertion unit 62. A light guide 31 and an image guide 32 are provided inside the insertion portion 62 and the operation portion 61 of the scope 60. At the distal end of the insertion portion 62 of the scope 60, for example, an optical system (disposed further on the distal end side with respect to the emission end of the light guide 31, the incident end of the image guide 32, and the incident end of the image guide 32). For example, an objective lens) is arranged. The light guide 31 is configured to transmit light from the light source 70 and irradiate the object to be observed from the tip of the insertion portion 62. In this example, the light guide 31 is comprised from the optical fiber bundle 1 which concerns on one Embodiment of this invention. The image guide 32 is configured to transmit an image of the observation target image formed at the incident end thereof through, for example, an optical system (objective lens or the like). The image transmitted by the image guide 32 enters the control unit 80 via, for example, an eyepiece (not shown). The control unit 80 includes, for example, a photodetector, an ADC (analog-digital converter), a CPU, and a memory (RAM, ROM, etc.). The control unit 80 performs image processing or the like based on the image incident from the image guide 32 to generate an image signal, and displays an image of the observation target on the display 90 based on the generated image signal. The control unit 80 also controls the light source 70.
Note that, instead of / in addition to the light guide 31, the image guide 32 may also be configured from the optical fiber bundle 1 according to an embodiment of the present invention.
Further, the endoscope 50 shown in FIG. 7 is merely an example, and the endoscope 50 including the optical fiber bundle 1 according to the embodiment of the present invention may have a configuration different from that in FIG.
 本発明の光ファイババンドルの実施例1~3及び比較例1~2を試作して実験により評価したので、以下に、図4及び図5を参照しながら説明する。図4は、実験方法を説明するための図である。図5は、実験結果を説明するための図である。
 実施例1~3の光ファイババンドルは、図1を参照して説明したのと同様の構成を備えたライドガイドであり、その光ファイバ群10は、第1開口数NA1を有する複数の第1光ファイバ11と、第2開口数NA2を有する複数の第2光ファイバ12とを、ランダムに配列した状態で束ねて構成した。第1開口数NA1は0.13(開口角2θ=15°)、第2開口数NA2は0.87(開口角2θ=120°)であり、NA2-NA1=0.74であった。ここで、θは、前記式(1)のθである。比較例1の光ファイババンドルは、その光ファイバ群10を、第2光ファイバ12のみを束ねて構成した。比較例2の光ファイババンドルは、その光ファイバ群10を、第1光ファイバ11のみを束ねて構成した。実施例1~3及び比較例1~2では、図5に示すように第1光ファイバ11の数FN1と第2光ファイバ12の数FN2との比(FN1:FN2)のみが異なるものとし、その他の構成は同じとした。具体的には、比較例1ではFN1:FN2=0:100(すなわちFN2/FN1=無限大)、実施例1ではFN1:FN2=25:75(すなわちFN2/FN1=3)、実施例2ではFN1:FN2=50:50(すなわちFN2/FN1=1)、実施例3ではFN1:FN2=75:25(すなわちFN2/FN1=0.33)、比較例2ではFN1:FN2=100:0(FN2/FN1=0)であった。
 各実施例、比較例において、各光ファイバ11、12の外径は約50μmとし、光ファイバ群10の外径は約1mmとした。各実施例、比較例において、光ファイバ11、12の充填率(光ファイバ群10の横断面積(ひいてはスリーブ2A、2Bの内周面の断面積)に対する光ファイバ11、12の横断面積の合計の割合)は約86%であり、光ファイバ11、12の数の合計は約344本であった。各実施例、比較例において、外装管3はナイロンネット製とし、入射端側のスリーブ2Bはアルミ製とし、出射端側のスリーブ2Aはステンレス製とした。光ファイババンドル1の両側の端面10SB、10SAには、平面加工及び光学研磨を行った。
 各実施例、比較例において、各光ファイバ11、12のコア及びクラッドは、それぞれ多成分系ガラスから構成した。第1開口数NA1、第2開口数NA2を上記式(1)により算出するにあたっては、コアの屈折率n、クラッドの屈折率nを、日本光学硝子工業会規格における「光学の屈折率測定方法」を用いて測定して得た。
Examples 1 to 3 and Comparative Examples 1 and 2 of the optical fiber bundle according to the present invention were experimentally manufactured and evaluated by experiments, and will be described below with reference to FIGS. FIG. 4 is a diagram for explaining the experimental method. FIG. 5 is a diagram for explaining the experimental results.
The optical fiber bundles of Examples 1 to 3 are ride guides having a configuration similar to that described with reference to FIG. 1, and the optical fiber group 10 includes a plurality of first fibers having a first numerical aperture NA1. The optical fiber 11 and a plurality of second optical fibers 12 having a second numerical aperture NA2 are bundled in a randomly arranged state. The first numerical aperture NA1 was 0.13 (opening angle 2θ = 15 °), the second numerical aperture NA2 was 0.87 (opening angle 2θ = 120 °), and NA2−NA1 = 0.74. Here, θ is θ in the formula (1). In the optical fiber bundle of Comparative Example 1, the optical fiber group 10 was configured by bundling only the second optical fiber 12. In the optical fiber bundle of Comparative Example 2, the optical fiber group 10 was configured by bundling only the first optical fibers 11. In Examples 1 to 3 and Comparative Examples 1 and 2, only the ratio (FN1: FN2) of the number FN1 of the first optical fibers 11 and the number FN2 of the second optical fibers 12 is different as shown in FIG. Other configurations were the same. Specifically, in Comparative Example 1, FN1: FN2 = 0: 100 (that is, FN2 / FN1 = infinity), in Example 1, FN1: FN2 = 25: 75 (that is, FN2 / FN1 = 3), and in Example 2, FN1: FN2 = 50: 50 (ie, FN2 / FN1 = 1), FN1: FN2 = 75: 25 (ie, FN2 / FN1 = 0.33) in Example 3, and FN1: FN2 = 100: 0 in Comparative Example 2 FN2 / FN1 = 0).
In each example and comparative example, the outer diameter of each of the optical fibers 11 and 12 was about 50 μm, and the outer diameter of the optical fiber group 10 was about 1 mm. In each example and comparative example, the filling ratio of the optical fibers 11 and 12 (the total cross-sectional area of the optical fibers 11 and 12 with respect to the cross-sectional area of the optical fiber group 10 (and thus the cross-sectional area of the inner peripheral surfaces of the sleeves 2A and 2B)) Ratio) was about 86%, and the total number of optical fibers 11 and 12 was about 344. In each of the examples and comparative examples, the outer tube 3 is made of nylon net, the incident end side sleeve 2B is made of aluminum, and the emission end side sleeve 2A is made of stainless steel. Planar processing and optical polishing were performed on the end faces 10SB and 10SA on both sides of the optical fiber bundle 1.
In each of the examples and comparative examples, the cores and claddings of the optical fibers 11 and 12 were each composed of multicomponent glass. The first numerical aperture NA1, when calculates the second numerical aperture NA2 by the formula (1), the refractive index n 1 of the core, the refractive index n 2 of the cladding, the refractive index of the "optical in Japanese Optical Glass Industrial Standard It was obtained by measuring using the “measurement method”.
 そして、実施例1~3及び比較例1~2の光ファイババンドルについて、それぞれ、つぎに説明する実験方法で、配光分布特性を得た。実験は、JIS C 6825:2009 に規定された「光ファイバ構造パラメータ試験方法-光学的特性」に記載のFFP法に準拠した方法で行った。より具体的には、図4に示すように、光ファイババンドル1の入射端面10SBに、光源330を押し付けた状態で、白色光を入射させた。光源330としては、シチズン社製の照明用LED(製品コード:CL-L230-C10N-A)を使用した。そして、受光面にピンホール320a付きの絞り部材320が貼られた受光素子310を、光ファイババンドル1の出射端面10SAを中心とする半径r=50mmの円弧経路に沿って、光ファイババンドル1の出射端面に垂直な向きを0°として90°~-90°の角度範囲にわたって移動させ、その間、光ファイババンドル1を透過した全光量を測定した。図5は、その結果として得られた配光分布特性を表す波形を示しており、グラフの縦軸が受光素子310によって測定された光強度を、横軸が出射端面10SAからの角度(°)を、それぞれ示している。縦軸の数値は、各光ファイババンドル1について角度が0°のときの光強度を1として正規化した値である。 The light distribution characteristics of the optical fiber bundles of Examples 1 to 3 and Comparative Examples 1 and 2 were obtained by the experimental method described below. The experiment was performed by a method based on the FFP method described in “Optical Fiber Structural Parameter Test Method—Optical Properties” defined in JIS C 6825: 2009. More specifically, as shown in FIG. 4, white light was incident on the incident end face 10 </ b> SB of the optical fiber bundle 1 with the light source 330 pressed. As the light source 330, an LED for illumination (product code: CL-L230-C10N-A) manufactured by Citizen was used. Then, the light receiving element 310 having the aperture member 320 with the pinhole 320a attached to the light receiving surface is moved along the circular path having a radius r = 50 mm centered on the emission end surface 10SA of the optical fiber bundle 1. The direction perpendicular to the emission end face was set to 0 ° and moved over an angle range of 90 ° to −90 °, and during that time, the total amount of light transmitted through the optical fiber bundle 1 was measured. FIG. 5 shows a waveform representing the light distribution characteristics obtained as a result. The vertical axis of the graph represents the light intensity measured by the light receiving element 310, and the horizontal axis represents the angle (°) from the emission end face 10SA. Respectively. The numerical value on the vertical axis is a value obtained by normalizing the light intensity when the angle is 0 ° for each optical fiber bundle 1 as 1.
 図5に示すように、開口数NAの大きな第2光ファイバ12のみから構成された比較例1は、広い角度範囲にわたって強い光強度をもつものであった。比較例1の光ファイババンドルを用いて管内を照明した際には、管内の奥側だけでなく手前側の照度も強すぎる結果、管内を十分に観察できなかった。一方、開口数NAの小さな第1光ファイバ11のみから構成された比較例2は、0°近傍のみで強い光強度をもち、それより外側の角度範囲では十分な光強度が得られなかった。比較例2の光ファイババンドルを用いて管内を照明した際には、管内の奥側しか照らされず、手前側を十分に観察できなかった。これに対し、開口数NAの異なる第1光ファイバ11及び第2光ファイバ12から構成された実施例1~3は、0°近傍で強い光強度が得られたのに加えて、それより外側の角度範囲では、強すぎず弱すぎない、ほどよい光強度が得られた。その結果、各実施例1~3の光ファイババンドルを用いて管内を照明した際には、管内の内側と奥側の両方を良好に照明し観察することができた。
 なお、比較例1、比較例2の配光分布特性を表す波形は、それぞれ変曲点Qを2点有していた。実施例1~3の配光分布特性を表す波形は、それぞれ変曲点Qを6点以上有していた。
As shown in FIG. 5, the comparative example 1 comprised only from the 2nd optical fiber 12 with a large numerical aperture NA had strong light intensity over a wide angle range. When the inside of the tube was illuminated using the optical fiber bundle of Comparative Example 1, the illuminance on the near side as well as the back side in the tube was too strong, and as a result, the inside of the tube could not be sufficiently observed. On the other hand, Comparative Example 2 composed of only the first optical fiber 11 having a small numerical aperture NA had strong light intensity only in the vicinity of 0 °, and sufficient light intensity could not be obtained in the angular range outside it. When the inside of the tube was illuminated using the optical fiber bundle of Comparative Example 2, only the back side in the tube was illuminated, and the near side could not be observed sufficiently. On the other hand, in Examples 1 to 3, which are composed of the first optical fiber 11 and the second optical fiber 12 having different numerical apertures NA, a strong light intensity was obtained in the vicinity of 0 °, and on the outside In this angle range, a moderate light intensity that was neither too strong nor too weak was obtained. As a result, when the inside of the tube was illuminated using the optical fiber bundles of Examples 1 to 3, both the inside and the inside of the tube could be well illuminated and observed.
The waveforms representing the light distribution characteristics of Comparative Example 1 and Comparative Example 2 each had two inflection points Q. The waveforms representing the light distribution characteristics of Examples 1 to 3 each had six or more inflection points Q.
 本発明の光ファイババンドルは、例えばライトガイド、イメージガイド、又はセンサー用光ファイバ等として、工業分野や医療分野等の様々な分野で利用できるものであり、特に工業用又は医療用の内視鏡に用いられるライトガイド又はイメージガイド(さらに言えばライトガイド)や、顕微鏡用のライトガイドとして好適に利用できるものである。 The optical fiber bundle of the present invention can be used in various fields such as an industrial field and a medical field, for example, as a light guide, an image guide, or an optical fiber for sensors. It can be suitably used as a light guide or an image guide (further speaking, a light guide) used for a light source or a light guide for a microscope.
 1 光ファイババンドル
 1A、1B、101A、201A 端部
 2A、2B、102A、202A スリーブ
 3、103、203 外装管
 10、110、210 光ファイバ群
 10SA、10SB、110SA、210SA 端面
 11、12、111、112、211、212 光ファイバ
 11a、12a コア
 11b、12b クラッド
 31 ライトガイド
 32 イメージガイド
 40 固化剤
 50 内視鏡
 60 スコープ(内視鏡用スコープ)
 61 操作部
 62 挿入部
 70 光源
 80 制御部
 90 ディスプレイ
 310 受光素子
 320 絞り部材
 320a ピンホール
 330 光源
 Q 変曲点
 
DESCRIPTION OF SYMBOLS 1 Optical fiber bundle 1A, 1B, 101A, 201A End part 2A, 2B, 102A, 202A Sleeve 3, 103, 203 Outer tube 10, 110, 210 Optical fiber group 10SA, 10SB, 110SA, 210SA End face 11, 12, 111, 112, 211, 212 Optical fiber 11a, 12a Core 11b, 12b Clad 31 Light guide 32 Image guide 40 Solidifying agent 50 Endoscope 60 Scope (Scope for endoscope)
61 Operation part 62 Insertion part 70 Light source 80 Control part 90 Display 310 Light receiving element 320 Diaphragm member 320a Pinhole 330 Light source Q Inflection point

Claims (10)

  1.  複数の光ファイバが束ねられた構成を有する、光ファイババンドルにおいて、
     前記複数の光ファイバは、開口数NAの異なる2種類以上の光ファイバを含む、光ファイババンドル。
    In an optical fiber bundle having a configuration in which a plurality of optical fibers are bundled,
    The plurality of optical fibers includes an optical fiber bundle including two or more types of optical fibers having different numerical apertures NA.
  2.  前記光ファイババンドルの両端部のみで、前記複数の光ファイバどうしが固定されており、
     前記光ファイババンドルの両端面が光学研磨面である、請求項1に記載の光ファイババンドル。
    The plurality of optical fibers are fixed only at both ends of the optical fiber bundle,
    The optical fiber bundle according to claim 1, wherein both end faces of the optical fiber bundle are optically polished surfaces.
  3.  光源からの光を前記光ファイババンドルの長手方向の一方側から他方側に向かう方向のみで伝送する、ライトガイドとして構成されている、請求項2に記載の光ファイババンドル。 The optical fiber bundle according to claim 2, wherein the optical fiber bundle is configured as a light guide that transmits light from a light source only in a direction from one side of the longitudinal direction of the optical fiber bundle to the other side.
  4.  前記光ファイババンドルの長手方向の一方側及び他方側のうち少なくともいずれか一方が分岐された、分岐型の光ファイババンドルとして構成されている、請求項1に記載の光ファイババンドル。 The optical fiber bundle according to claim 1, wherein the optical fiber bundle is configured as a branched optical fiber bundle in which at least one of one side and the other side in the longitudinal direction of the optical fiber bundle is branched.
  5.  前記複数の光ファイバは、コア及びクラッドのうち少なくとも一方が多成分系ガラスから構成された光ファイバを、少なくとも1種類含んでいる、請求項1~4のいずれか一項に記載の光ファイババンドル。 The optical fiber bundle according to any one of claims 1 to 4, wherein the plurality of optical fibers include at least one type of optical fiber in which at least one of a core and a clad is made of multicomponent glass. .
  6. 前記光ファイババンドルは、ライトガイドとして構成されており、その配光分布特性を表す波形が変曲点を6点以上含む、請求項1~5のいずれか一項に記載の光ファイババンドル。 The optical fiber bundle according to any one of claims 1 to 5, wherein the optical fiber bundle is configured as a light guide, and a waveform representing the light distribution characteristic includes six or more inflection points.
  7.  前記光ファイババンドルは、ライトガイドとして構成されており、
     前記複数の光ファイバは、第1開口数NA1を有する複数の第1光ファイバと、前記第1開口数NA1よりも0.15以上大きな第2開口数NA2を有する複数の第2光ファイバとを含んでいる、請求項1~6のいずれか一項に記載の光ファイババンドル。
    The optical fiber bundle is configured as a light guide,
    The plurality of optical fibers include a plurality of first optical fibers having a first numerical aperture NA1 and a plurality of second optical fibers having a second numerical aperture NA2 that is 0.15 or more larger than the first numerical aperture NA1. The optical fiber bundle according to any one of claims 1 to 6.
  8.  前記光ファイババンドルは、ライトガイドとして構成されており、
     前記複数の光ファイバは、第1開口数NA1を有する複数の第1光ファイバと、前記第1開口数NA1よりも大きな第2開口数NA2を有する複数の第2光ファイバとを含んでおり、
     前記第1光ファイバの数FN1に対する前記第2光ファイバの数FN2の比率(FN2/FN1)が、0.05~9である、請求項1~7のいずれか一項に記載の光ファイババンドル。
    The optical fiber bundle is configured as a light guide,
    The plurality of optical fibers include a plurality of first optical fibers having a first numerical aperture NA1, and a plurality of second optical fibers having a second numerical aperture NA2 larger than the first numerical aperture NA1.
    The optical fiber bundle according to any one of claims 1 to 7, wherein a ratio (FN2 / FN1) of the number FN2 of the second optical fibers to the number FN1 of the first optical fibers is 0.05 to 9.
  9.  請求項1~8のいずれか一項に記載の光ファイババンドルを備えた、内視鏡用スコープ。 An endoscope scope comprising the optical fiber bundle according to any one of claims 1 to 8.
  10.  請求項9に記載の内視鏡用スコープを備えた、内視鏡。
     
    An endoscope comprising the endoscope scope according to claim 9.
PCT/JP2018/012557 2018-03-27 2018-03-27 Optical fiber bundle, endoscope scope, and endoscope WO2019186718A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/012557 WO2019186718A1 (en) 2018-03-27 2018-03-27 Optical fiber bundle, endoscope scope, and endoscope
CN201880089980.3A CN111758062B (en) 2018-03-27 2018-03-27 Optical fiber bundle, endoscope body for endoscope, and endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012557 WO2019186718A1 (en) 2018-03-27 2018-03-27 Optical fiber bundle, endoscope scope, and endoscope

Publications (1)

Publication Number Publication Date
WO2019186718A1 true WO2019186718A1 (en) 2019-10-03

Family

ID=68059380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012557 WO2019186718A1 (en) 2018-03-27 2018-03-27 Optical fiber bundle, endoscope scope, and endoscope

Country Status (2)

Country Link
CN (1) CN111758062B (en)
WO (1) WO2019186718A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084562A1 (en) * 2022-10-18 2024-04-25 日本電信電話株式会社 Bundled optical fiber

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727206A (en) * 1980-07-28 1982-02-13 Sumitomo Electric Ind Ltd Bundle fiber
JPS60257404A (en) * 1984-06-04 1985-12-19 Olympus Optical Co Ltd Bundle fiber for image transmission
JPS61137104A (en) * 1984-12-08 1986-06-24 Hitachi Cable Ltd Image fiber
JPH0966020A (en) * 1995-09-01 1997-03-11 Toshiba Corp Endoscope apparatus
JPH10293217A (en) * 1997-04-21 1998-11-04 Olympus Optical Co Ltd Light guide
JP2001166172A (en) * 1999-12-07 2001-06-22 Hitachi Ltd Optical fiber, optical signal receiver and optical signal transmitter
JP2002521713A (en) * 1998-07-24 2002-07-16 コージェント・ライト・テクノロジーズ・インコーポレーテッド Device for coupling low numerical aperture light input to high numerical aperture optics
JP2003157710A (en) * 2001-11-26 2003-05-30 Kyoto Denkiki Kk Light source for light guide
JP2006317692A (en) * 2005-05-12 2006-11-24 Swcc Showa Device Technology Co Ltd Optical fiber
US20070269173A1 (en) * 2006-05-17 2007-11-22 Lu Chun I Multiple numerical aperture fiber optics array
JP2010190934A (en) * 2009-02-16 2010-09-02 Fujifilm Corp Light-guide, light source apparatus and endoscope system
JP2011143350A (en) * 2010-01-14 2011-07-28 Fujikura Ltd Light irradiation device
WO2014042156A1 (en) * 2012-09-13 2014-03-20 オリンパス株式会社 Measurement probe and biological optical measurement system
JP2018097031A (en) * 2016-12-08 2018-06-21 株式会社住田光学ガラス Optical fiber bundle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100422775C (en) * 2006-09-29 2008-10-01 上海智源光电子有限公司 Multi-optical-fiber port platform and mfg. method
JP6480680B2 (en) * 2014-08-02 2019-03-13 株式会社アドテックエンジニアリング Illuminance ratio changing method and exposure method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727206A (en) * 1980-07-28 1982-02-13 Sumitomo Electric Ind Ltd Bundle fiber
JPS60257404A (en) * 1984-06-04 1985-12-19 Olympus Optical Co Ltd Bundle fiber for image transmission
JPS61137104A (en) * 1984-12-08 1986-06-24 Hitachi Cable Ltd Image fiber
JPH0966020A (en) * 1995-09-01 1997-03-11 Toshiba Corp Endoscope apparatus
JPH10293217A (en) * 1997-04-21 1998-11-04 Olympus Optical Co Ltd Light guide
JP2002521713A (en) * 1998-07-24 2002-07-16 コージェント・ライト・テクノロジーズ・インコーポレーテッド Device for coupling low numerical aperture light input to high numerical aperture optics
JP2001166172A (en) * 1999-12-07 2001-06-22 Hitachi Ltd Optical fiber, optical signal receiver and optical signal transmitter
JP2003157710A (en) * 2001-11-26 2003-05-30 Kyoto Denkiki Kk Light source for light guide
JP2006317692A (en) * 2005-05-12 2006-11-24 Swcc Showa Device Technology Co Ltd Optical fiber
US20070269173A1 (en) * 2006-05-17 2007-11-22 Lu Chun I Multiple numerical aperture fiber optics array
JP2010190934A (en) * 2009-02-16 2010-09-02 Fujifilm Corp Light-guide, light source apparatus and endoscope system
JP2011143350A (en) * 2010-01-14 2011-07-28 Fujikura Ltd Light irradiation device
WO2014042156A1 (en) * 2012-09-13 2014-03-20 オリンパス株式会社 Measurement probe and biological optical measurement system
JP2018097031A (en) * 2016-12-08 2018-06-21 株式会社住田光学ガラス Optical fiber bundle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024084562A1 (en) * 2022-10-18 2024-04-25 日本電信電話株式会社 Bundled optical fiber

Also Published As

Publication number Publication date
CN111758062B (en) 2022-05-31
CN111758062A (en) 2020-10-09

Similar Documents

Publication Publication Date Title
CN101833130B (en) Light-guide, light source apparatus and endoscope system
US8380037B2 (en) Lateral light emitting device and method of producing the same
JP5258613B2 (en) Light guide, light source device and endoscope system
US9848761B2 (en) Method and apparatus for fiberscope employing single fiber bundle for co-propagation of image and illumination
JP2002521713A (en) Device for coupling low numerical aperture light input to high numerical aperture optics
US20160166130A1 (en) Optical sensor, optical sensor system, and endoscope
JP2002186578A (en) Light guide and endoscope
JP2015223463A5 (en)
US20220257098A1 (en) Image fiber, endoscope having image fiber, and endoscope system having endoscope
US20200026062A1 (en) Shortwave Infrared Imaging System
JP6721496B2 (en) Endoscope
JP2015136545A5 (en)
WO2019186718A1 (en) Optical fiber bundle, endoscope scope, and endoscope
JP5180704B2 (en) Endoscope light guide
JP2012055342A (en) Luminaire of fiberscope apparatus
US8343044B2 (en) Light guide for endoscopes
JP2010051606A (en) Illumination optical system and endoscope using the same
JP2004513386A (en) Apparatus for providing an image of a remote object accessible only through a finite diameter opening
WO2005023099A1 (en) Endoscope
JP2002182126A (en) Illuminating optical system for light guide and endoscope
WO2020141568A1 (en) Endoscopic device
JP5456710B2 (en) Image guide and light guide integrated fiber and endoscope apparatus using the same
JP2005237698A (en) Soft endoscope and light guide
US20230404370A1 (en) Objective optical system, optical unit, and endoscope apparatus
JP2022545478A (en) Optical system with tapered optical transmission element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP