JP2012235074A - Barrel-type vapor-phase growth apparatus - Google Patents

Barrel-type vapor-phase growth apparatus Download PDF

Info

Publication number
JP2012235074A
JP2012235074A JP2011104614A JP2011104614A JP2012235074A JP 2012235074 A JP2012235074 A JP 2012235074A JP 2011104614 A JP2011104614 A JP 2011104614A JP 2011104614 A JP2011104614 A JP 2011104614A JP 2012235074 A JP2012235074 A JP 2012235074A
Authority
JP
Japan
Prior art keywords
pipe
sleeve
phase growth
bellows
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011104614A
Other languages
Japanese (ja)
Other versions
JP5747647B2 (en
Inventor
Mikio Watanabe
幹夫 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2011104614A priority Critical patent/JP5747647B2/en
Publication of JP2012235074A publication Critical patent/JP2012235074A/en
Application granted granted Critical
Publication of JP5747647B2 publication Critical patent/JP5747647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a barrel-type vapor-phase growth apparatus which can reduce the amount of a reaction product peeled from the inside of a bellows pipe, and can suppress the amount of particles loaded from an exhaust passage to a reaction chamber.SOLUTION: A sleeve having a smaller diameter than a bellows pipe is inserted into the bellows pipe in a cantilevered state only with an upstream-side pipe section. Therefore, most of a reaction product is attached to an inner peripheral surface of the sleeve of a gas exhaust pipe in the region of the bellows pipe. Even if the bellows pope is deformed due to a vibration of the apparatus or the like, the amount of particles peeled from the bellows pipe is small, thereby decreasing the amount of the particles loaded into the reaction chamber than that in a conventional apparatus. Consequently, the amount of the particles attached to a semiconductor wafer can be reduced.

Description

この発明は、バレル型気相成長装置、詳しくは半導体ウェーハの表面にエピタキシャル膜を気相成長させるバレル型気相成長装置に関する。   The present invention relates to a barrel-type vapor phase growth apparatus, and more particularly to a barrel-type vapor phase growth apparatus for vapor-phase growing an epitaxial film on the surface of a semiconductor wafer.

シリコンウェーハの表面に、シリコンからなるエピタキシャル膜を気相成長させてシリコンエピタキシャルウェーハを製造する装置として、バレル型(シリンダ型)の気相成長装置が開発されている。
この装置とは、バッチ式のバレル炉(ベルジャ)の反応室に、多角錐台のサセプタが、垂直な回転軸を中心として回転可能に配設している。サセプタの各側面には、ウェーハ収納用のザグリが上下に併設されている。また、反応室の外周りには、加熱手段としてのハロゲンランプが設けられている。
気相成長時には、ハロゲンランプにより加熱された反応室に、上方のガス供給管から気相成長ガス(反応ガス、キャリアガス)を供給する。これにより、気相成長ガスが回転中のサセプタの外周面に沿って流れ、各シリコンウェーハの表面にエピタキシャル膜を気相成長させる。未使用の気相成長ガスは、反応室の下部のガス排気管から外部へ排出される。
A barrel type (cylinder type) vapor phase growth apparatus has been developed as an apparatus for producing a silicon epitaxial wafer by vapor phase growth of an epitaxial film made of silicon on the surface of a silicon wafer.
In this apparatus, a susceptor having a polygonal frustum is disposed in a reaction chamber of a batch type barrel furnace (Belger) so as to be rotatable about a vertical rotation axis. On each side of the susceptor, counterbores for wafer storage are provided vertically. In addition, a halogen lamp as a heating means is provided around the reaction chamber.
At the time of vapor phase growth, vapor phase growth gas (reaction gas, carrier gas) is supplied from an upper gas supply pipe to a reaction chamber heated by a halogen lamp. As a result, the vapor growth gas flows along the outer peripheral surface of the rotating susceptor, and an epitaxial film is vapor grown on the surface of each silicon wafer. Unused vapor phase growth gas is discharged to the outside through a gas exhaust pipe at the bottom of the reaction chamber.

ところで、バレル炉においては、ベルジャおよびガス排気管の各内周面にも、反応生成物(シリコン)が生成する。反応生成物は膜状であり、装置振動、圧力変動、温度変化などにより剥離が生じる。この剥離物がパーティクルとなってシリコンウェーハに付着し、気相成長後のパーティクル検査時に、ウェーハ表面上の輝点となって検出されていた。
特に、気相成長条件が減圧下(80Torr以上760Torr未満)の場合、圧力変動が発生するため、バレル型気相成長装置の排気経路からのパーティクルの流入が生じ易い。
By the way, in the barrel furnace, reaction products (silicon) are also generated on the inner peripheral surfaces of the bell jar and the gas exhaust pipe. The reaction product is in the form of a film, and peeling occurs due to apparatus vibration, pressure fluctuation, temperature change, and the like. This exfoliated matter became particles and adhered to the silicon wafer, and was detected as a bright spot on the wafer surface during particle inspection after vapor phase growth.
In particular, when the vapor phase growth condition is under reduced pressure (80 Torr or more and less than 760 Torr), pressure fluctuations occur, so that particles tend to flow from the exhaust path of the barrel type vapor phase growth apparatus.

そこで、これを解消する従来技術として、例えば特許文献1が知られている。これは、ガス排気管と反応室との間の接続部分にロート形状のバッフルを設け、バッフルの反応室側の開口部よりガス排気管側の開口部を小さくしたものである。これにより、ガス排気管から反応室へのパーティクルの逆流を抑制することができる。   Thus, for example, Patent Document 1 is known as a conventional technique for solving this problem. In this method, a funnel-shaped baffle is provided at the connection portion between the gas exhaust pipe and the reaction chamber, and the opening on the gas exhaust pipe side is made smaller than the opening on the reaction chamber side of the baffle. Thereby, the backflow of the particles from the gas exhaust pipe to the reaction chamber can be suppressed.

特許2503128号公報Japanese Patent No. 2503128

しかしながら、特許文献1では、このようにガス排気管と反応室との接続部分の外周部分のみを、ロート形状のバッフルによって被う構造を採用していた。そのため、ガス配管の中心部分を流れるガスは、バッフルの排気口を直接通過してしまい、反応室へのパーティクルの逆流を十分に抑えることができなかった。   However, in patent document 1, the structure which covers only the outer peripheral part of the connection part of a gas exhaust pipe and a reaction chamber in this way with the funnel-shaped baffle was employ | adopted. For this reason, the gas flowing through the central portion of the gas pipe directly passes through the exhaust port of the baffle, and the backflow of particles to the reaction chamber cannot be sufficiently suppressed.

そこで、発明者は鋭意研究の結果、反応性生物の剥離によるパーティクルの発生は、上流側配管部と下流側配管部とを連通する蛇腹配管部分で特に多いことを確認した。これは、蛇腹配管は振動などでフレキシブルに変形することから、内周面に付着した生成物が剥がれ易くなるためと考えられる。従って、蛇腹配管の内周面に反応生成物が直接付着しないように、蛇腹配管に比べて小径なスリーブを蛇腹配管の通路に片持ち状態で取り付ければ、反応ガスの排気中、反応生成物が生成するのは、スリーブの内周面が大半となる。これにより、仮に装置振動などで蛇腹配管が伸縮しても、蛇腹配管から剥がれるパーティクルは少量となり、その結果、反応室へのパーティクルの導入量を従来装置の場合に比べて抑えられることを知見し、この発明を完成させた。
この発明は、蛇腹配管の内周面から剥がれた反応生成物を原因とするパーティクルの発生量を低減することができ、その結果、排気経路から反応室へのパーティクルの導入量を抑制することができるバレル型気相成長装置を提供することを目的としている。
Thus, as a result of intensive studies, the inventor has confirmed that the generation of particles due to the separation of reactive organisms is particularly large in the bellows piping portion that connects the upstream piping portion and the downstream piping portion. This is presumably because the bellows pipe is flexibly deformed by vibration and the like, and the product attached to the inner peripheral surface is easily peeled off. Therefore, if a sleeve smaller in diameter than the bellows pipe is attached to the bellows pipe passage in a cantilever state so that the reaction product does not directly adhere to the inner peripheral surface of the bellows pipe, the reaction product is discharged during reaction gas exhaust. Most of the inner peripheral surface of the sleeve is generated. As a result, even if the bellows piping expands or contracts due to vibration of the device, the amount of particles that peel from the bellows piping is small, and as a result, the amount of particles introduced into the reaction chamber can be suppressed compared to the conventional device. The present invention has been completed.
This invention can reduce the amount of particles generated due to the reaction product peeled off from the inner peripheral surface of the bellows pipe, and as a result, the amount of particles introduced from the exhaust path into the reaction chamber can be suppressed. An object of the present invention is to provide a barrel type vapor phase growth apparatus that can be used.

請求項1に記載の発明は、半導体ウェーハ用のサセプタを収納したバレル型の反応室と、該反応室に供給した気相成長ガスを排出し、かつ上流側配管部と、下流側配管部と、これらをフレキシブルに連通するための蛇腹配管とを有するガス排気管とを備えたバレル型気相成長装置において、前記蛇腹配管の内部に、該蛇腹配管の内径より外径が小さいスリーブを、該スリーブの上流側の開口部のみを前記上流側配管部の下流側の開口部に固定した片持ち状態で挿入しているバレル型気相成長装置である。   The invention according to claim 1 is a barrel-type reaction chamber containing a susceptor for a semiconductor wafer, discharges a vapor phase growth gas supplied to the reaction chamber, and an upstream piping portion, a downstream piping portion, In the barrel type vapor phase growth apparatus provided with a gas exhaust pipe having a bellows pipe for communicating them flexibly, a sleeve having an outer diameter smaller than the inner diameter of the bellows pipe is provided inside the bellows pipe, It is a barrel type vapor phase growth apparatus in which only the upstream opening portion of the sleeve is inserted in a cantilever state in which the upstream opening portion is fixed to the downstream opening portion.

また、請求項2に記載の発明は、前記スリーブの内周面の全部を、前記上流側配管部の内周面と面一状態とした請求項1に記載のバレル型気相成長装置である。   The invention according to claim 2 is the barrel type vapor phase growth apparatus according to claim 1, wherein the entire inner peripheral surface of the sleeve is flush with the inner peripheral surface of the upstream-side piping portion. .

請求項1に記載の発明によれば、蛇腹配管の内径より外径が小さいスリーブを、蛇腹配管の内部(管路)に、一端部を上流側配管部のみに固定した片持ち状態で挿入したので、反応室から排出された気相成長ガスの通過中、蛇腹配管の領域で反応生成物が付着するのは、大半がガス排気管のスリーブの内周面となり、従来装置のように蛇腹配管の内周面とはならない。そのため、仮に装置振動などで蛇腹配管が変形した場合であっても、蛇腹配管から剥離するパーティクルの量は少ない。これにより、反応室へのパーティクルの導入量が従来装置の場合より低減し、半導体ウェーハに付着するパーティクル量を少なくすることができる。   According to the first aspect of the present invention, a sleeve having an outer diameter smaller than the inner diameter of the bellows pipe is inserted into the bellows pipe (pipe) in a cantilever state in which one end is fixed only to the upstream pipe section. Therefore, during the passage of the vapor phase growth gas discharged from the reaction chamber, most of the reaction products adhere to the bellows piping region on the inner peripheral surface of the sleeve of the gas exhaust pipe. It will not be the inner peripheral surface of. Therefore, even if the bellows pipe is deformed due to apparatus vibration or the like, the amount of particles peeled off from the bellows pipe is small. Thereby, the amount of particles introduced into the reaction chamber is reduced as compared with the conventional apparatus, and the amount of particles adhering to the semiconductor wafer can be reduced.

特に、請求項2に記載の発明によれば、スリーブの内周面の全部を、上流側配管部の内周面と段差がない面一状態としたため、スリーブの内周面の全域に、均一厚さで反応生成物を生成することができる。その結果、例えばスリーブの上流側配管部側に拡径部を有する場合に比べて、スリーブの内周面から剥離する反応生成物のパーティクル量を低減することができる。   In particular, according to the invention described in claim 2, since the entire inner peripheral surface of the sleeve is flush with the inner peripheral surface of the upstream pipe portion, there is no difference in level over the entire inner peripheral surface of the sleeve. The reaction product can be produced with a thickness. As a result, it is possible to reduce the amount of reaction product particles that peel from the inner peripheral surface of the sleeve, for example, compared to the case where the diameter-expanded portion is provided on the upstream pipe portion side of the sleeve.

この発明の実施例1に係るバレル型気相成長装置の全体構成を示す縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a longitudinal cross-sectional view which shows the whole structure of the barrel type vapor phase growth apparatus which concerns on Example 1 of this invention. この発明の実施例1に係るバレル型気相成長装置の要部拡大縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an enlarged longitudinal sectional view of a main part of a barrel type vapor phase growth apparatus according to Embodiment 1 of the present invention. この発明の実施例1の他の形態に係るバレル型気相成長装置の要部拡大縦断面図である。It is a principal part expanded longitudinal cross-sectional view of the barrel type vapor phase growth apparatus which concerns on the other form of Example 1 of this invention. この発明の実施例1に係るバレル型気相成長装置の蛇腹配管の通常使用状態を示す要部拡大縦断面図である。It is a principal part expanded vertical sectional view which shows the normal use state of the bellows piping of the barrel type vapor phase growth apparatus which concerns on Example 1 of this invention. この発明の実施例1に係るバレル型気相成長装置の蛇腹配管の収縮状態を示す要部拡大縦断面図である。It is a principal part expanded vertical sectional view which shows the contraction state of the bellows piping of the barrel type vapor phase growth apparatus which concerns on Example 1 of this invention.

この発明は、半導体ウェーハ用のサセプタを収納したバレル型の反応室と、反応室に供給した気相成長ガスを排出し、かつ上流側配管部と、下流側配管部と、これらをフレキシブルに連通するための蛇腹配管とを有するガス排気管とを備えたバレル型気相成長装置において、蛇腹配管の内部に、蛇腹配管の内径より外径が小さいスリーブを、スリーブの上流側の開口部のみを上流側配管部の下流側の開口部に固定した片持ち状態で挿入しているバレル型気相成長装置である。   According to the present invention, a barrel type reaction chamber containing a susceptor for a semiconductor wafer, a vapor phase growth gas supplied to the reaction chamber is discharged, and an upstream side piping unit and a downstream side piping unit are connected in a flexible manner. In a barrel type vapor phase growth apparatus having a gas exhaust pipe having a bellows pipe for carrying out, a sleeve having an outer diameter smaller than the inner diameter of the bellows pipe is provided inside the bellows pipe, and only an opening on the upstream side of the sleeve is provided. It is a barrel type vapor phase growth apparatus inserted in a cantilever state fixed to an opening on the downstream side of the upstream piping section.

この発明によれば、蛇腹配管より小径なスリーブを、上流側配管部の下流側の開口部に片持ち状態で蛇腹配管に挿入したので、反応室から排出された気相成長ガスが蛇腹配管を通過する際、気相成長ガスは蛇腹配管の内周面にほとんど接触せず、スリーブの内周面と接触して、反応生成物が膜状に生成する。その結果、仮に装置振動などを原因として蛇腹配管が変形(伸縮)しても、剛体であるスリーブは変形しないため、蛇腹配管の領域で反応生成物の剥がれを原因として発生するパーティクルの量は、従来の場合より減少する。これにより、ガス排気管からの反応室へのパーティクルの導入(侵入)量が従来装置に比べて低減し、半導体ウェーハに付着するパーティクル量を減少させることができる。   According to the present invention, since the sleeve having a smaller diameter than the bellows pipe is inserted into the bellows pipe in a cantilevered state at the downstream side opening of the upstream pipe section, the vapor growth gas discharged from the reaction chamber passes through the bellows pipe. When passing, the vapor phase growth gas hardly contacts the inner peripheral surface of the bellows pipe, but contacts the inner peripheral surface of the sleeve, and a reaction product is generated in the form of a film. As a result, even if the bellows pipe is deformed (stretched) due to apparatus vibration or the like, the sleeve that is a rigid body does not deform, so the amount of particles generated due to peeling of the reaction product in the region of the bellows pipe is Reduced compared to the conventional case. Thereby, the amount (intrusion) of particles introduced into the reaction chamber from the gas exhaust pipe is reduced as compared with the conventional apparatus, and the amount of particles adhering to the semiconductor wafer can be reduced.

半導体ウェーハとしては、例えば単結晶シリコンウェーハ、多結晶シリコンウェーハなどを採用することができる。
サセプタの形状としては、例えば四角錐台、五角錐台、六角錐台などを採用することができる。サセプタの各側面には、半導体ウェーハを納めるザグリが形成されている。
バレル型の反応室としては、例えば石英からなるペルジャを採用することができる。
気相成長ガスとは、例えば、水素ガスなどのキャリアガスと、シリコンなどのエピタキシャル膜(気相成長膜)を成長させる反応ガスとの混合ガスである。反応ガスとしては、例えばエピタキシャル膜がシリコンの場合には、SiHガス、SiHClガス、SiClガス、SiHClガスなどを採用することができる。また、気相成長ガス中には、所定のドーパントガス(PHガス、Bガスなど)を混入してもよい。
As the semiconductor wafer, for example, a single crystal silicon wafer, a polycrystalline silicon wafer, or the like can be employed.
As the shape of the susceptor, for example, a quadrangular frustum, a pentagonal frustum, a hexagonal frustum, or the like can be employed. Counterbore for housing the semiconductor wafer is formed on each side surface of the susceptor.
As the barrel type reaction chamber, for example, a pelja made of quartz can be adopted.
The vapor phase growth gas is, for example, a mixed gas of a carrier gas such as hydrogen gas and a reaction gas for growing an epitaxial film (vapor phase growth film) such as silicon. As the reaction gas, for example, when the epitaxial film is silicon, SiH 4 gas, SiH 2 Cl 2 gas, SiCl 4 gas, SiHCl 3 gas, or the like can be employed. Further, a predetermined dopant gas (PH 3 gas, B 2 H 6 gas, etc.) may be mixed in the vapor phase growth gas.

上流側配管部および下流側配管部は、それぞれ複数の部分配管部(上流側部分配管、下流側部分配管)に分割することができる。その場合、各部分配管部間にこの蛇腹配管を配置してもよい。
上流側配管部と蛇腹配管との連結(連通)形態および蛇腹配管と下流側配管との連結形態としては、例えば、フランジ同士の連結を採用することができる。
蛇腹配管も含め各配管は、剛性および耐酸性に優れるステンレスなどで構成することが望ましく、蛇腹配管はフレキシブルな可動が行えるようにその厚みが薄く構成されている。
Each of the upstream piping section and the downstream piping section can be divided into a plurality of partial piping sections (upstream partial piping and downstream partial piping). In that case, you may arrange | position this bellows piping between each partial piping part.
For example, a connection between flanges can be adopted as a connection (communication) form between the upstream pipe portion and the bellows pipe and a connection form between the bellows pipe and the downstream pipe.
Each pipe including the bellows pipe is preferably made of stainless steel having excellent rigidity and acid resistance, and the bellows pipe is thin so that it can be moved flexibly.

スリーブの素材としては、例えばステンレス、インコネル、ハステロイなどを採用することができる。
スリーブの外径は、蛇腹配管を最も短縮した際の内径より小さい方が望ましい。また、スリーブの長さは、例えば上流側配管部と下流側配管部との連通状態における蛇腹配管の長さと同一か、それより若干長い方が好ましい。これは、スリーブの下流側の開口(排気口)から蛇腹配管の内周面へ回り込む気相成長ガスの流量をさらに低減し、蛇腹配管の内周面への反応生成物の付着量をより少なくできるためである。
As the material of the sleeve, for example, stainless steel, inconel, hastelloy, or the like can be used.
The outer diameter of the sleeve is preferably smaller than the inner diameter when the bellows pipe is most shortened. Further, the length of the sleeve is preferably the same as or slightly longer than the length of the bellows pipe in the communication state between the upstream pipe section and the downstream pipe section, for example. This further reduces the flow rate of the vapor phase growth gas that goes from the opening (exhaust port) on the downstream side of the sleeve to the inner peripheral surface of the bellows pipe, and reduces the amount of reaction product adhering to the inner peripheral surface of the bellows pipe. This is because it can.

この発明では、スリーブの内周面の全部を、上流側配管部の内周面と面一状態とした方が望ましい。ここでいう「面一状態」とは、スリーブの全長にわたってスリーブの内径が上流側配管部の内径(少なくとも上流側配管部の蛇腹配管側の開口部の内径)と同一で、段差がない状態を意味する。これにより、スリーブの内周面の全域に、均一厚さで反応生成物を生成することができる。その結果、例えばスリーブの上流側配管部側に拡径部を有する場合に比べて、スリーブの内周面から剥離する反応生成物のパーティクル量を低減することができる。   In the present invention, it is desirable that the entire inner peripheral surface of the sleeve is flush with the inner peripheral surface of the upstream pipe portion. The term “same state” as used herein refers to a state in which the inner diameter of the sleeve is the same as the inner diameter of the upstream piping section (at least the inner diameter of the opening on the bellows piping side of the upstream piping section) over the entire length of the sleeve and there is no step. means. Thereby, the reaction product can be generated with a uniform thickness over the entire inner peripheral surface of the sleeve. As a result, it is possible to reduce the amount of reaction product particles that peel from the inner peripheral surface of the sleeve, for example, compared to the case where the diameter-expanded portion is provided on the upstream pipe portion side of the sleeve.

また、スリーブの内周面の平滑度は高い方が望ましい。これは、仮にスリーブの内周面に突起などが存在すれば、その突起部分での反応生成物の生成量が増加し、これに伴い、その部分での反応生成物のパーティクル量も増加するためである。金属スリーブの場合には、内周面に突条部分が形成されないように、円柱体を中グリ加工してスリーブを製造するなど、各種のシームレス法により製造したものの方がよい。もちろん、鍛接法、電縫法、アーク溶接法など、内周面に突条部分が発生する方法により製造されたものでもよい。   Further, it is desirable that the smoothness of the inner peripheral surface of the sleeve is high. This is because if there is a protrusion or the like on the inner peripheral surface of the sleeve, the amount of reaction product generated at the protrusion increases, and the amount of reaction product particles at that portion increases accordingly. It is. In the case of a metal sleeve, it is preferable that the sleeve is manufactured by various seamless methods, such as manufacturing a sleeve by machining the cylindrical body in a semi-grid manner so that no protrusion is formed on the inner peripheral surface. Of course, it may be manufactured by a method in which a protruding portion is generated on the inner peripheral surface, such as a forging method, an electric sewing method, or an arc welding method.

次に、図面を参照して、この発明の実施例を説明する。
図1において、10はこの発明の実施例1に係るバレル型気相成長装置である。バレル型気相成長装置10は、シリコンウェーハ(半導体ウェーハ)Wの表面にシリコンエピタキシャル膜を気相成長するベルジャ11の反応室12と、反応室12に配置され、シリコンウェーハWを保持するサセプタ13と、ベルジャ11の上端部に設けられて反応室12に気相成長ガスを導入するガス導入管14と、ベルジャ11の周囲に設けられて反応室12を加熱する多数のハロゲンランプ15と、ベルジャ11の下端部に設けられて反応室12内の気相成長ガスを排気するガス排気管16とを備えている。
Next, embodiments of the present invention will be described with reference to the drawings.
In FIG. 1, reference numeral 10 denotes a barrel type vapor phase growth apparatus according to Embodiment 1 of the present invention. A barrel type vapor phase growth apparatus 10 includes a reaction chamber 12 of a bell jar 11 for vapor phase growth of a silicon epitaxial film on the surface of a silicon wafer (semiconductor wafer) W, and a susceptor 13 that is disposed in the reaction chamber 12 and holds the silicon wafer W. A gas introduction pipe 14 provided at the upper end of the bell jar 11 for introducing a vapor growth gas into the reaction chamber 12, a number of halogen lamps 15 provided around the bell jar 11 for heating the reaction chamber 12, and a bell jar 11 and a gas exhaust pipe 16 for exhausting the vapor phase growth gas in the reaction chamber 12.

ベルジャ11は、石英からなり、かつ円筒形状の胴部の下端部が徐々に先細りとなったシリンダで、その上端部の開口が蓋体17により閉蓋されている。
ガス導入管14は、蓋体17の外周部の一部に形成され、蓋体17の下部の内周面と外周面とを連通するガス導入口17aに装着されている。
また、ベルジャ11の胴部の外周の全域には、前記多数のハロゲンランプ15が配設されている。
サセプタ13は、反応室12の内部空間に、回転軸18を中心にして回転自在に吊下されている。
サセプタ13は六角錐台型の筒体で、6つの周側面には上下2段(合計12箇所)にザグリ19がそれぞれ形成されている。各ザグリ19は、シリコンウェーハWを載置する正面視して円形の浅い凹部である。
ガス排気管16は、ベルジャ11の下端部の排気口にフランジ20aを介して連通された上流側配管部20と、真空発生装置の吸気部に下流側の開口部が連通され、かつ途中部分に水冷式排気ライン、熱交換器などが連通された下流側配管部21と、これらの上,下流側配管部20、21をフレキシブルに連通する蛇腹配管22と、蛇腹配管22の内部に収納されるスリーブ23とを有している(図2および図4)。
The bell jar 11 is a cylinder made of quartz and having a cylindrical body whose lower end is gradually tapered, and an opening at the upper end is closed by a lid 17.
The gas introduction pipe 14 is formed in a part of the outer peripheral portion of the lid body 17 and is attached to a gas introduction port 17 a that communicates the inner peripheral surface and the outer peripheral surface of the lower portion of the lid body 17.
In addition, a large number of the halogen lamps 15 are disposed on the entire outer periphery of the body of the bell jar 11.
The susceptor 13 is suspended in the internal space of the reaction chamber 12 so as to be rotatable about the rotation shaft 18.
The susceptor 13 is a hexagonal frustum-shaped cylindrical body, and counterbore 19 is formed on each of the six peripheral side surfaces in two upper and lower stages (total of 12 locations). Each counterbore 19 is a shallow shallow circular portion when viewed from the front where the silicon wafer W is placed.
The gas exhaust pipe 16 has an upstream piping portion 20 communicated with an exhaust port at a lower end portion of the bell jar 11 through a flange 20a, a downstream opening portion communicated with an intake portion of the vacuum generator, and a midway portion. The downstream side piping part 21 with which a water-cooled exhaust line, a heat exchanger, etc. were connected, the bellows pipe 22 which flexibly connects these upper and downstream side pipe parts 20 and 21, and the inside of the bellows pipe 22 are accommodated. And a sleeve 23 (FIGS. 2 and 4).

蛇腹配管22は、ステンレスからなる伸縮自在なチューブで、その両端の開口部にフランジ22aを形成している。したがって、上,下流側配管部20、21と蛇腹配管22とは、互いのフランジを介して連結される。
スリーブ23は、ステンレスからなる円柱体に中グリ加工などを行って作製したもので(図1および図2)、スリーブ23の外径は、通常時の使用状態における蛇腹配管22の内径より短い(図2および図4)。また、スリーブ23の上流側の開口部には、段差状に大径化した拡径部23aが、スリーブ23と同一素材で一体形成されている。拡径部23aの厚さは、スリーブ23の通常部分の厚さと同一である。
The bellows pipe 22 is a stretchable tube made of stainless steel, and has flanges 22a at openings at both ends thereof. Therefore, the upper and downstream pipe portions 20 and 21 and the bellows pipe 22 are connected to each other through the flanges.
The sleeve 23 is manufactured by machining a cylindrical body made of stainless steel (FIGS. 1 and 2), and the outer diameter of the sleeve 23 is shorter than the inner diameter of the bellows pipe 22 in a normal use state ( 2 and 4). In addition, an enlarged diameter portion 23 a having a stepped diameter is integrally formed of the same material as that of the sleeve 23 in the opening on the upstream side of the sleeve 23. The thickness of the enlarged diameter portion 23 a is the same as the thickness of the normal portion of the sleeve 23.

この拡径部23aに対応して、上流側配管部20の下流側のフランジ20aの内周部分と、蛇腹配管22の上流側のフランジ22aの内周部分とには、拡径部23aを協働して納めることで、上流側配管部20の内周面と拡径部23aの内周面とを段差のない面一状態とする一対の環状溝20b、22bが形成されている。
拡径部23aの外周面には、両フランジ20a、22aに比べて突出幅が短い短幅フランジ26が、スリーブ23と同一素材で一体的に形成されている。短幅フランジ26の外周面には、Oリング25を掛止する環状のシール溝26aが周設されている。Oリング25の太さ(直径)は、両フランジ20a、22a間の隙間を密封するため、短幅フランジ26の厚さより長い(大きい)。上流側配管部20および蛇腹配管22は、図示しないものの、互いのフランジ20a、22a間にOリング25を介在した状態で、所定形状のクランパによる挟持力で堅固に連結されている。
Corresponding to the enlarged diameter portion 23a, the enlarged diameter portion 23a is connected to the inner peripheral portion of the downstream flange 20a of the upstream pipe portion 20 and the inner peripheral portion of the upstream flange 22a of the bellows piping 22. By working and storing, a pair of annular grooves 20b and 22b are formed so that the inner peripheral surface of the upstream pipe portion 20 and the inner peripheral surface of the enlarged diameter portion 23a are flush with each other.
On the outer peripheral surface of the enlarged diameter portion 23a, a short-width flange 26 having a projecting width shorter than those of the flanges 20a and 22a is integrally formed of the same material as the sleeve 23. An annular seal groove 26 a for hooking the O-ring 25 is provided on the outer peripheral surface of the short-width flange 26. The thickness (diameter) of the O-ring 25 is longer (larger) than the thickness of the short-width flange 26 in order to seal the gap between the flanges 20a and 22a. Although not shown, the upstream pipe portion 20 and the bellows pipe 22 are firmly connected with a clamping force of a predetermined shape with an O-ring 25 interposed between the flanges 20a and 22a.

このスリーブ23の上流側の開口部の内周面には、拡径部23aの形成による段差部分aが存在する。そのため、上流側配管部20を通過した気相成長ガスの一部がこの段差部分aに衝突し、この部分での反応生成物の生成量が、通常の部分に比べて増加し易い。そこで、これを解消するため、短幅フランジ26の下流側面の元部のみに、拡径部23aと同一高さの環状の部分段差部26bをスリーブ23と同一素材で一体形成し、この部分段差部26bに、蛇腹配管22の上流側のフランジ22aの環状溝22bを嵌め込むように構成してもよい(図3)。これにより、上流側配管部20の内周面とスリーブ23の内周面の全部とが段差のない面一状態となり、スリーブ23の内周面の全域に、均一厚さで反応生成物を生成することができる。その結果、前記拡径部23aを有する場合に比べて、スリーブ23の内周面から剥離する反応生成物のパーティクル量を低減することができる。   On the inner peripheral surface of the upstream opening of the sleeve 23, there is a stepped portion a due to the formation of the enlarged diameter portion 23a. For this reason, a part of the vapor phase growth gas that has passed through the upstream pipe portion 20 collides with the stepped portion a, and the amount of reaction product generated in this portion is likely to increase as compared with a normal portion. Therefore, in order to solve this problem, an annular partial stepped portion 26b having the same height as the enlarged diameter portion 23a is integrally formed with the same material as the sleeve 23 only at the base portion of the downstream side surface of the short width flange 26. You may comprise so that the annular groove 22b of the flange 22a of the upstream of the bellows piping 22 may be engage | inserted in the part 26b (FIG. 3). As a result, the inner peripheral surface of the upstream pipe section 20 and the entire inner peripheral surface of the sleeve 23 are flush with each other, and a reaction product is generated with a uniform thickness over the entire inner peripheral surface of the sleeve 23. can do. As a result, it is possible to reduce the amount of particles of the reaction product that peels from the inner peripheral surface of the sleeve 23 as compared with the case where the enlarged diameter portion 23a is provided.

次に、図1、図2、図4および図5を参照して、この発明の実施例1に係るバレル型気相成長装置10を用いたエピタキシャルシリコンウェーハの製造方法を説明する。
まず、蓋体17を外してベルジャ11の上側の開口部から、サセプタ13の各ザグリ19に合計12枚のシリコンウェーハWを、各ウェーハ表面が外向きになるように立てかけて収納する。次に、蓋体17によりベルジャ11の上側の開口部を密閉し、真空発生装置により反応室12を80Torrの減圧状態とする。この状態で、反応室12において、窒素ガスによる空気の置換を行い、その後、水素ガスを導入して窒素ガスの置換を行う。
Next, an epitaxial silicon wafer manufacturing method using the barrel type vapor phase growth apparatus 10 according to the first embodiment of the present invention will be described with reference to FIGS.
First, the lid 17 is removed, and a total of 12 silicon wafers W are stood and stored in the counterbore 19 of the susceptor 13 from the opening on the upper side of the bell jar 11 so that the surface of each wafer faces outward. Next, the upper opening of the bell jar 11 is sealed with the lid 17, and the reaction chamber 12 is brought into a reduced pressure state of 80 Torr with a vacuum generator. In this state, air is replaced with nitrogen gas in the reaction chamber 12, and then hydrogen gas is introduced to replace nitrogen gas.

次に、各ハロゲンランプ15に通電し、シリコンウェーハWを1080℃まで加熱するとともに、回転軸18を中心にしてサセプタ13を所定方向へ所定速度で回転させながら、ガス導入管14から反応室12にトリクロロシラン(反応ガス)を供給し、シリコンウェーハWの表面に厚さ2〜10μmのシリコンエピタキシャル膜を気相成長する。
その後、未反応の気相成長ガスは、ベルジャ11の下側の開口部から上流側配管部20へ流れ込み、蛇腹配管22に収納されたスリーブ23と下流側配管部21とを順次通過して、最終的にはガス中の有害物質が除去されて大気解放される。
Next, each halogen lamp 15 is energized, the silicon wafer W is heated to 1080 ° C., and the susceptor 13 is rotated in a predetermined direction around the rotation shaft 18 at a predetermined speed, and then the reaction chamber 12 is connected to the reaction chamber 12. Is supplied with trichlorosilane (reactive gas), and a silicon epitaxial film having a thickness of 2 to 10 μm is vapor-phase grown on the surface of the silicon wafer W.
Thereafter, the unreacted vapor phase growth gas flows from the lower opening of the bell jar 11 into the upstream piping unit 20 and sequentially passes through the sleeve 23 and the downstream piping unit 21 housed in the bellows piping 22, Eventually, harmful substances in the gas are removed and the atmosphere is released.

ところで、気相成長中、ガス排気管16では、その内周面にトリクロロシランが接触し、ガス排気管16の全長にわたって、シリコンの反応生成物が生成する。特に、蛇腹配管22の領域では、蛇腹配管22の内周面の略全域をスリーブ23が管内方から被っているため、スリーブ23の内周面に反応生成物が膜状に生成する。
このとき、実施例1では、80Torrの減圧状態で気相成長されていることから、炉内圧力は変動し易く、その変動に伴い、ガス排気管16の蛇腹配管22がフレキシブルに変形(伸縮)する(図5)。
By the way, during the vapor phase growth, in the gas exhaust pipe 16, trichlorosilane comes into contact with the inner peripheral surface, and a silicon reaction product is generated over the entire length of the gas exhaust pipe 16. In particular, in the region of the bellows pipe 22, since the sleeve 23 covers substantially the entire inner peripheral surface of the bellows pipe 22 from the inside of the pipe, a reaction product is generated in the form of a film on the inner peripheral surface of the sleeve 23.
At this time, in Example 1, since the vapor phase growth is performed in a reduced pressure state of 80 Torr, the pressure in the furnace easily fluctuates, and the bellows pipe 22 of the gas exhaust pipe 16 is flexibly deformed (expanded) in accordance with the fluctuation. (FIG. 5).

しかしながら、内周面に反応生成物が生成したスリーブ23は、上述したように蛇腹配管22の内径より外径が小さいステンレスからなる剛体であって、上流側配管部20の下流側の開口部に片持ちされている。そのため、蛇腹配管22が変形しても、スリーブ23の内周面の反応生成物は、ほとんど剥がれ落ちない。その結果、蛇腹配管22の領域での反応生成物の剥がれを原因としたパーティクルの発生量は、従来の場合より減少する。よって、ガス排気管16から反応室12へのパーティクルの導入量(逆流量)は従来装置に比べて低減し、その結果、気相成長後のパーティクル検査時、パーティクルカウンタによりカウントされるウェーハ表面上のパーティクル数を減らすことができる。   However, the sleeve 23 in which the reaction product is generated on the inner peripheral surface is a rigid body made of stainless steel whose outer diameter is smaller than the inner diameter of the bellows pipe 22 as described above, and is formed in the opening on the downstream side of the upstream pipe section 20. Cantilevered. Therefore, even if the bellows pipe 22 is deformed, the reaction product on the inner peripheral surface of the sleeve 23 hardly peels off. As a result, the amount of particles generated due to peeling of the reaction product in the region of the bellows pipe 22 is reduced as compared with the conventional case. Therefore, the amount of particles introduced from the gas exhaust pipe 16 into the reaction chamber 12 (reverse flow rate) is reduced as compared with the conventional apparatus. As a result, the particle counter counts on the wafer surface counted during particle inspection after vapor phase growth. The number of particles can be reduced.

本発明では、蛇腹配管の内径により外径が小さいスリーブを、蛇腹配管の内部に、一端部を上流側配管部のみに固定した片持ち状態で挿入したことから、蛇腹配管が変形しても、蛇腹配管から剥離するパーティクルの量が減少し、半導体ウェーハに付着するパーティクル量を低減することができる。   In the present invention, because the sleeve having a small outer diameter due to the inner diameter of the bellows pipe is inserted into the bellows pipe in a cantilever state in which one end is fixed only to the upstream pipe part, even if the bellows pipe is deformed, The amount of particles peeled off from the bellows pipe is reduced, and the amount of particles adhering to the semiconductor wafer can be reduced.

10 バレル型気相成長装置、
12 反応室、
13 サセプタ、
16 ガス排気管、
20 上流側配管部、
21 下流側配管部、
22 蛇腹配管、
23 スリーブ、
W 半導体ウェーハ。
10 barrel type vapor phase growth equipment,
12 reaction chamber,
13 Susceptor,
16 gas exhaust pipe,
20 Upstream piping section,
21 Downstream piping section,
22 bellows piping,
23 sleeve,
W Semiconductor wafer.

Claims (2)

半導体ウェーハ用のサセプタを収納したバレル型の反応室と、
該反応室に供給した気相成長ガスを排出し、かつ上流側配管部と、下流側配管部と、これらをフレキシブルに連通するための蛇腹配管とを有するガス排気管とを備えたバレル型気相成長装置において、
前記蛇腹配管の内部に、該蛇腹配管の内径より外径が小さいスリーブを、該スリーブの上流側の開口部のみを前記上流側配管部の下流側の開口部に固定した片持ち状態で挿入しているバレル型気相成長装置。
A barrel type reaction chamber containing a semiconductor wafer susceptor;
A barrel type gas exhaust having a gas exhaust pipe for discharging the vapor phase growth gas supplied to the reaction chamber and having an upstream pipe section, a downstream pipe section, and a bellows pipe for flexibly communicating them. In the phase growth device,
A sleeve having an outer diameter smaller than the inner diameter of the bellows pipe is inserted into the bellows pipe in a cantilever state in which only the upstream opening of the sleeve is fixed to the downstream opening of the upstream pipe. Barrel type vapor phase growth equipment.
前記スリーブの内周面の全部を、前記上流側配管部の内周面と面一状態とした請求項1に記載のバレル型気相成長装置。   The barrel type vapor phase growth apparatus according to claim 1, wherein the entire inner peripheral surface of the sleeve is flush with the inner peripheral surface of the upstream pipe portion.
JP2011104614A 2011-05-09 2011-05-09 Barrel type vapor phase growth system Active JP5747647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011104614A JP5747647B2 (en) 2011-05-09 2011-05-09 Barrel type vapor phase growth system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011104614A JP5747647B2 (en) 2011-05-09 2011-05-09 Barrel type vapor phase growth system

Publications (2)

Publication Number Publication Date
JP2012235074A true JP2012235074A (en) 2012-11-29
JP5747647B2 JP5747647B2 (en) 2015-07-15

Family

ID=47435095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011104614A Active JP5747647B2 (en) 2011-05-09 2011-05-09 Barrel type vapor phase growth system

Country Status (1)

Country Link
JP (1) JP5747647B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093195A1 (en) * 2014-12-08 2016-06-16 株式会社Sumco Method for manufacturing epitaxial silicon wafer and vapor phase growth device
KR101994094B1 (en) * 2018-05-04 2019-07-01 (주)유니엠 Flexible heater

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153987A (en) * 1989-11-10 1991-07-01 Nkk Corp Expansion joint
JPH0531347A (en) * 1991-06-05 1993-02-09 Tokyo Electron Ltd Structure of exhaust port of vacuum container
JPH0955374A (en) * 1995-06-08 1997-02-25 Tokyo Electron Ltd Plasma treatment apparatus
US6039807A (en) * 1998-03-17 2000-03-21 Memc Electronic Materials, Inc. Apparatus for moving exhaust tube of barrel reactor
JP2003332245A (en) * 2002-05-14 2003-11-21 Renesas Technology Corp Semiconductor manufacturing apparatus
JP2008275117A (en) * 2007-05-07 2008-11-13 Toyo Tire & Rubber Co Ltd Heat-resistant gas piping structure
WO2010103631A1 (en) * 2009-03-11 2010-09-16 電気化学工業株式会社 Apparatus for producing trichlorosilane
JP2010212434A (en) * 2009-03-10 2010-09-24 Mitsui Eng & Shipbuild Co Ltd Atomic layer deposition apparatus, and method of forming thin film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153987A (en) * 1989-11-10 1991-07-01 Nkk Corp Expansion joint
JPH0531347A (en) * 1991-06-05 1993-02-09 Tokyo Electron Ltd Structure of exhaust port of vacuum container
JPH0955374A (en) * 1995-06-08 1997-02-25 Tokyo Electron Ltd Plasma treatment apparatus
US6039807A (en) * 1998-03-17 2000-03-21 Memc Electronic Materials, Inc. Apparatus for moving exhaust tube of barrel reactor
JP2002507068A (en) * 1998-03-17 2002-03-05 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Device for moving the exhaust pipe of a barrel reactor
JP2003332245A (en) * 2002-05-14 2003-11-21 Renesas Technology Corp Semiconductor manufacturing apparatus
JP2008275117A (en) * 2007-05-07 2008-11-13 Toyo Tire & Rubber Co Ltd Heat-resistant gas piping structure
JP2010212434A (en) * 2009-03-10 2010-09-24 Mitsui Eng & Shipbuild Co Ltd Atomic layer deposition apparatus, and method of forming thin film
WO2010103631A1 (en) * 2009-03-11 2010-09-16 電気化学工業株式会社 Apparatus for producing trichlorosilane

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093195A1 (en) * 2014-12-08 2016-06-16 株式会社Sumco Method for manufacturing epitaxial silicon wafer and vapor phase growth device
JP2016111226A (en) * 2014-12-08 2016-06-20 株式会社Sumco Manufacturing method of epitaxial silicon wafer, and vapor growth device
CN107251194A (en) * 2014-12-08 2017-10-13 胜高股份有限公司 The manufacture method and vapor phase growing apparatus of epitaxial silicon wafer
KR101907482B1 (en) 2014-12-08 2018-12-05 가부시키가이샤 사무코 Method for manufacturing epitaxial silicon wafer and vapor phase growth device
US10600651B2 (en) 2014-12-08 2020-03-24 Sumco Corporation Method for manufacturing epitaxial silicon wafer and vapor phase growth device
CN107251194B (en) * 2014-12-08 2020-06-05 胜高股份有限公司 Method for manufacturing epitaxial silicon wafer and vapor deposition apparatus
KR101994094B1 (en) * 2018-05-04 2019-07-01 (주)유니엠 Flexible heater

Also Published As

Publication number Publication date
JP5747647B2 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
US8293014B2 (en) Substrate processing apparatus and reaction tube for processing substrate
JP5727362B2 (en) System and method for flowing gas through a chemical vapor deposition reactor
TWI630282B (en) Film-forming device
US20110306212A1 (en) Substrate processing apparatus, semiconductor device manufacturing method and substrate manufacturing method
GB2379450A (en) Control of gas temperature and distribution in CVD
WO2006093037A1 (en) Semiconductor production system and semiconductor production method
JP6324810B2 (en) Vapor growth equipment
JP5747647B2 (en) Barrel type vapor phase growth system
JP2011165964A (en) Method of manufacturing semiconductor device
JP6541257B2 (en) Method of cleaning a silicon carbide film deposition apparatus
JP2012175072A (en) Substrate processing apparatus
JP2011216848A (en) Method of manufacturing semiconductor device, and manufacturing method and processing apparatus for substrate
JP3912293B2 (en) Silicon carbide film deposition system
JP2010212712A (en) Method of manufacturing semiconductor device, cleaning method, and apparatus for manufacturing semiconductor device
JPH0658880B2 (en) Vapor phase epitaxial growth system
JP5370209B2 (en) Manufacturing method of silicon epitaxial wafer
JP3611780B2 (en) Semiconductor manufacturing equipment
JP2013115281A (en) Vapor phase growth apparatus
JPH0494117A (en) Vapor growth device
JP2714576B2 (en) Heat treatment equipment
JPH07221022A (en) Barrel-type vapor-phase growth system
JPS60113921A (en) Method for vapor-phase reaction and device thereof
JP2006066605A (en) Vapor phase growth device
JPH1145858A (en) Compound semiconductor vapor growth equipment and its method
JPH02156523A (en) Upright wafer boat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150427

R150 Certificate of patent or registration of utility model

Ref document number: 5747647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250