JP2012234946A - Structure for installing solar power generation device - Google Patents

Structure for installing solar power generation device Download PDF

Info

Publication number
JP2012234946A
JP2012234946A JP2011101929A JP2011101929A JP2012234946A JP 2012234946 A JP2012234946 A JP 2012234946A JP 2011101929 A JP2011101929 A JP 2011101929A JP 2011101929 A JP2011101929 A JP 2011101929A JP 2012234946 A JP2012234946 A JP 2012234946A
Authority
JP
Japan
Prior art keywords
pebbles
installation
cylindrical solar
power generation
installation surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011101929A
Other languages
Japanese (ja)
Inventor
Hirohisa Hiraki
博久 平木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eco holdings co Ltd
Original Assignee
Eco holdings co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eco holdings co Ltd filed Critical Eco holdings co Ltd
Priority to JP2011101929A priority Critical patent/JP2012234946A/en
Publication of JP2012234946A publication Critical patent/JP2012234946A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structure for installing a solar power generation device comprising a plurality of cylindrical solar cells without fixing the device which enables the cylindrical solar cells to generate electricity by irradiating reflection light efficiently without causing light pollution.SOLUTION: A structure for installing a solar power generation device in which a plurality of cylindrical solar cells are arranged and held in a flat surface at required intervals in parallel or nearly in parallel with each other by a frame body while a plurality of leg parts attached to the frame body are installed on the installation surface without fixing comprises the installation surface in a recessed shape in which the plurality of cylindrical solar cells held in the frame body are installed through the plurality of leg parts, a plate-like material having water permeability and water retentivity which is arranged on the installation surface in a recessed shape, and a large number of small stones with a grain size of 0.1-5 cm comprising a white-colored granite-series main constituent which is mounted on the plate-like material.

Description

本発明は、複数の円筒型太陽電池を平面内に平行又はほぼ平行に配置してなる太陽光発電装置においてその設置構造に関するものである。   The present invention relates to an installation structure of a solar power generation apparatus in which a plurality of cylindrical solar cells are arranged in parallel or substantially parallel in a plane.

従来の太陽光発電装置においては、一般に、太陽電池を平面内に多数隙間無く配置して平面状となした太陽光発電パネルが広く普及している。この太陽光発電パネルは、周知されるように、発電能力が太陽光の照射角度に影響されるため、設置角度に制約があることに加えて、平面構造ゆえに風圧を過大に受け易いから、設置を強固に行う必要があるなどにより、設置コストが高くつくという欠点がある。   In a conventional solar power generation device, generally, a solar power generation panel in which a large number of solar cells are arranged without gaps in a plane and formed into a flat shape is widely used. As is well known, this solar power generation panel is installed because the power generation capacity is affected by the irradiation angle of sunlight, so that the installation angle is limited, and it is easy to receive excessive wind pressure due to the planar structure. There is a drawback in that the installation cost is high due to the necessity to perform it firmly.

このような平面形状の太陽光発電パネルとは異なり、米国のソリンドラ社により開発された円筒型太陽電池は上記太陽光発電パネルのような欠点がないことが指摘されている。   It has been pointed out that, unlike such a planar solar panel, a cylindrical solar cell developed by Sorindra in the United States does not have the disadvantages of the solar panel.

すなわち、円筒型太陽電池は、360度全周面が発電可能なために、直射光に限らず、反射光、その他の光などによって発電可能であって発電効率がよく、また、円筒型太陽電池間を風が通過するので風圧に強いなどにより、円筒型太陽電池を固定しないで設置することが可能となり、設置が簡易で安価に済むという利点がある。   In other words, since the cylindrical solar cell can generate power on the entire 360 ° circumference, it is not limited to direct light, but can generate power using reflected light, other light, etc., and has high power generation efficiency. Since the wind passes between them, the cylindrical solar cell can be installed without being fixed because it is strong against the wind pressure, and there is an advantage that the installation is simple and inexpensive.

この設置に関して、従来では、図12で示すように、四辺形状の枠体20に複数の円筒型太陽電池21を平面内に平行又はほぼ平行に配列保持し、この枠体20に脚部22を固定すると共にこの脚部22を介して円筒型太陽電池21を例えばビルの屋上面を設置面23として配置するような設置構造であった。   With respect to this installation, conventionally, as shown in FIG. 12, a plurality of cylindrical solar cells 21 are arranged and held in a plane in parallel or substantially parallel to a quadrilateral frame body 20, and leg portions 22 are attached to the frame body 20. The cylindrical solar cell 21 has an installation structure in which, for example, the roof surface of a building is disposed as an installation surface 23 through the legs 22 while being fixed.

このような円筒型太陽電池21を多数配置し、その発電電力を特に業務用として利用するような場合、設置面23が長期にわたり所期とおりの反射効率を維持して発電を効率的且つ安定的に供給できるようにすることが要求される。   When a large number of such cylindrical solar cells 21 are arranged and the generated power is used particularly for business purposes, the installation surface 23 maintains the desired reflection efficiency over a long period of time, thereby generating power efficiently and stably. It is required to be able to supply to

図12で示す従来の設置構造においては、発電効率向上のため設置面23からの反射光をより効果的に利用できるようにする方策の1つとして、例えば設置面23に光反射性樹脂塗料を塗布することが行なわれている。しかし、光反射性樹脂塗料を設置面23に塗布した場合には、太陽光の照射角度の変化に伴い、光反射性樹脂塗料からの反射角度が一様に変化し、その反射角度によっては樹脂塗布した設置面23からの反射光が周囲近隣に強すぎて、光公害を及ぼし得ることがある。一方、反射光が過度に強くならないようその強度を抑制したのでは、円筒型太陽電池21の特徴である反射光の利用率が低下し、発電性能がその分、低下する。また、設置面23は一般に塵埃で覆われると、その反射強度が低下し、また、設置面23表面の凹凸に雨水などが溜まると、設置面23に塗布した樹脂塗料に、雨水に溶け込んだ塵埃等の化学的酸化作用の影響で、樹脂塗料が早期に劣化しその反射効率が低下してきたり、あるいは物理的劣化で設置面23から樹脂塗料が剥離してくるなど、の課題がある。また、設置面23は夏季などで高温となると、樹脂塗料の劣化がより促進されて、反射光強度の早期低下と共に、発電効率が早期に低下してくるようになる。   In the conventional installation structure shown in FIG. 12, for example, a light-reflective resin paint is applied to the installation surface 23 as one of the measures for making it possible to use reflected light from the installation surface 23 more effectively in order to improve power generation efficiency. Application is performed. However, when the light-reflective resin paint is applied to the installation surface 23, the reflection angle from the light-reflective resin paint changes uniformly with the change in the irradiation angle of sunlight, and depending on the reflection angle, the resin The reflected light from the applied installation surface 23 may be too strong in the vicinity of the surroundings and may cause light pollution. On the other hand, if the intensity is suppressed so that the reflected light does not become excessively strong, the utilization factor of the reflected light, which is a feature of the cylindrical solar cell 21, is reduced, and the power generation performance is accordingly reduced. In general, when the installation surface 23 is covered with dust, the reflection intensity thereof decreases, and when rainwater or the like accumulates on the unevenness of the surface of the installation surface 23, the dust dissolved in the rainwater into the resin paint applied to the installation surface 23. Due to the effects of chemical oxidation such as the above, there are problems such that the resin paint deteriorates early and its reflection efficiency decreases, or the resin paint peels off from the installation surface 23 due to physical deterioration. Further, when the installation surface 23 becomes high in summer or the like, the deterioration of the resin paint is further promoted, and the power generation efficiency is lowered early as the reflected light intensity is lowered early.

なお、円筒型太陽電池それ自体も夏季などで高温となると、発電性能が低下してくるので冷却できるような設置構造が望ましいと共に、固定しないで上記設置面に設置すると、地震等の振動で設置位置がずれたりし易くその耐振動性高く設置できる設置構造も望ましい。   In addition, if the cylindrical solar cell itself becomes hot in the summer, etc., the power generation performance will decrease, so it is desirable to have an installation structure that can be cooled, and if it is installed on the installation surface without being fixed, it will be installed due to vibration such as an earthquake. It is also desirable to have an installation structure that can be easily displaced and installed with high vibration resistance.

特開2011−001800号公報JP2011-001800A 特開2010−285855号公報JP 2010-285855 A

本発明は、設置が簡易安価に済むという長所を維持しつつ、設置面からの反射光が周囲に光公害を及ぼすことなく、また、劣化などもなく長期にわたり効果的に反射し、発電効率を向上させる円筒型太陽電池の設置構造を提供するものである。   The present invention maintains the advantage that the installation is simple and inexpensive, and the reflected light from the installation surface does not cause light pollution to the surroundings, and is effectively reflected over a long period without deterioration, thereby improving the power generation efficiency. An improved cylindrical solar cell installation structure is provided.

本発明はまた、前記に加えて、さらに円筒型太陽電池を効率的に冷却し、かつ、耐振性に優れた円筒型太陽電池の設置構造を提供するものである。   In addition to the above, the present invention further provides an installation structure for a cylindrical solar cell that efficiently cools the cylindrical solar cell and has excellent vibration resistance.

本発明による太陽光発電装置の設置構造は、枠体により複数の円筒型太陽電池を平面内に平行又はほぼ平行に互いに所要間隔を隔てて配列保持すると共に前記枠体に取り付けた複数の脚部を設置面上に固定しないで設置する太陽光発電装置の設置構造であって、前記枠体に保持された複数の円筒型太陽電池が前記複数の脚部を介して設置される設置面と、前記設置面に配置された、ほぼ全てが相異なる非平面形状の多数の白色系小石とを具備したことを特徴とするものである。   The installation structure of the solar power generation device according to the present invention includes a plurality of leg portions attached to the frame body while holding the plurality of cylindrical solar cells arranged in parallel or substantially in parallel with each other at a predetermined interval by a frame body. Is installed on the installation surface without being fixed on the installation surface of the solar power generation apparatus, the installation surface on which the plurality of cylindrical solar cells held by the frame are installed via the plurality of legs, It is characterized by comprising a large number of non-planar white pebbles arranged almost on the installation surface.

好ましくは、前記小石が、白色系の花崗岩系主要構成物からなる粒度0.1〜5cm、より好ましくは、粒度0.1〜2cmの小石である。   Preferably, the pebbles are pebbles having a particle size of 0.1 to 5 cm, more preferably 0.1 to 2 cm, made of a white granite main constituent.

前記花崗岩系主要構成物は、石英、カリ長石、針長石、白雲母、普通角閃石の1種類以上が好ましい。   The granite-based main constituent is preferably one or more of quartz, potassium feldspar, acicular feldspar, muscovite, and ordinary amphibole.

本発明の設置構造によれば、各脚部を設置面上に固定しないので設置が簡易で安価に済むと同時に、前記設置面上白色系の花崗岩系主要構成物からなる前記粒度の多数の小石を配置したので、複数の円筒型太陽電池は直射光だけでなく多数の小石による設置面からの反射光を利用することができると共に、これら多数の小石は表面形状が光を乱反射させ易い非平面の、換言すれば凹凸形状を有すると共に、ほぼ全てが相異なる凹凸形状を有するため、これら多数の小石で反射する反射光は複数の円筒型太陽電池をほぼ均等に効率的に照射するよう乱反射させることができる設置構造で、且つ、円筒型太陽電池が設置された場所の近隣に反射光を集中照射する、いわゆる光公害を及ぼすことがない環境に優しい設置構造である。   According to the installation structure of the present invention, each leg is not fixed on the installation surface, so that the installation is simple and inexpensive, and at the same time, a large number of pebbles having the above-mentioned particle size composed of the main white granite-based components on the installation surface. The multiple cylindrical solar cells can use not only direct light but also the reflected light from the installation surface by a large number of pebbles, and the surface shape of these pebbles can easily reflect light irregularly. In other words, since it has a concavo-convex shape and almost all have a different concavo-convex shape, the reflected light reflected by these many pebbles is diffusely reflected so as to irradiate a plurality of cylindrical solar cells almost uniformly and efficiently. It is an environment-friendly installation structure that does not cause so-called light pollution, in which the reflected light is concentratedly irradiated in the vicinity of the place where the cylindrical solar cell is installed.

加えて、本発明の設置構造によれば、多数の小石で脚部下端を取り囲んだ状態で設置面上に設置しているので、地震等の振動が発生しても、各脚部は多数の小石のダンパ(衝撃緩衝)作用により、振動が吸収される結果、設置位置からのずれを抑制される。   In addition, according to the installation structure of the present invention, the legs are installed on the installation surface in a state in which the lower ends of the legs are surrounded by a large number of pebbles. As a result of the vibration being absorbed by the pebbles damper (impact buffer) action, the deviation from the installation position is suppressed.

本発明による太陽光発電装置の設置構造は、枠体により複数の円筒型太陽電池を平面内に平行又はほぼ平行に互いに所要間隔を隔てて配列保持すると共に前記枠体に取り付けた複数の脚部を設置面上に固定しないで設置する太陽光発電装置の設置構造であって、前記枠体に保持された複数の円筒型太陽電池が前記複数の脚部を介して設置される凹所形状の前記設置面と、前記凹所形状の設置面に配置された透水性および保水性を備える板状材と、前記板状材上に搭載された白色系の花崗岩系主要構成物からなる粒度0.1〜5cm多数の小石とを具備した、ことを特徴とする。   The installation structure of the solar power generation device according to the present invention includes a plurality of leg portions attached to the frame body while holding the plurality of cylindrical solar cells arranged in parallel or substantially in parallel with each other at a predetermined interval by a frame body. Is a solar power generation device installation structure that is installed without being fixed on the installation surface, and a plurality of cylindrical solar cells held by the frame body are provided in a recessed shape in which the plurality of cylindrical solar cells are installed via the plurality of legs. The particle size of the installation surface, a plate-like material having water permeability and water retention disposed on the installation surface of the recess shape, and a white granite-based main component mounted on the plate-like material. It is characterized by comprising 1 to 5 cm many pebbles.

前記板状材は、透水性および保水性を有するブロック材が、複数、平面内に集合配置されると共に、各ブロック材表面に前記小石が複数それぞれ固定されて構成されていることが好ましい。このブロック材は、例えば特許第4263385等に開示されている舗装材のように、透水性および保水性に優れた成形コンクリート舗装材で構成することが好ましい。   It is preferable that the plate-like material is configured such that a plurality of block materials having water permeability and water retention properties are gathered and arranged in a plane, and a plurality of the pebbles are fixed to the surface of each block material. This block material is preferably composed of a molded concrete pavement material excellent in water permeability and water retention, such as a pavement material disclosed in, for example, Japanese Patent No. 4263385.

本発明によれば、各脚部を設置面上に固定しないので設置が簡易で安価に済むと同時に、前記設置面上白色系の花崗岩系主要構成物からなる前記粒度の多数の小石を配置したので、小石により設置面からの反射光を利用することができると共に、こうした小石は天然石であり、表面形状が光を乱反射させ易い凹凸形状を有するため、多数の小石を配置しても、小石で反射する反射光は複数の円筒型太陽電池方向に均等に照射する一方、円筒型太陽電池が設置された場所の近隣には光公害を及ぼすような態様で光を照射することがなく環境に優しい。加えて、小石は吸水・保水性を有する板状材上に配置されているので、小石を介して通過した水分は板状材に吸水・保水され、円筒型太陽電池周囲の気温が上昇すると、板状材に含有する水分の蒸発による気化熱で円筒型太陽電池が冷却され、円筒型太陽電池の寿命向上や性能維持に寄与できる。さらに加えて、本発明第2の設置構造によれば、多数の小石で脚部下端を取り囲んだ状態で設置面上に設置しているので、地震等の振動が発生しても、各脚部は多数の小石のダンパ(衝撃緩衝)作用により、振動が吸収される結果、設置位置からのずれを抑制される。   According to the present invention, since each leg is not fixed on the installation surface, the installation is simple and inexpensive, and at the same time, a large number of pebbles of the above-mentioned particle size composed of white granite-based main components are arranged on the installation surface. Therefore, the reflected light from the installation surface can be used by the pebbles, and these pebbles are natural stones, and the surface shape has an uneven shape that easily diffuses light, so even if a large number of pebbles are arranged, Reflected reflected light illuminates evenly in the direction of multiple cylindrical solar cells, while it is environmentally friendly without irradiating light in a manner that causes light pollution in the vicinity of the place where the cylindrical solar cells are installed . In addition, since the pebbles are arranged on a plate-like material having water absorption and water retention, the moisture that has passed through the pebbles is absorbed and retained by the plate-like material, and the temperature around the cylindrical solar cell rises. The cylindrical solar cell is cooled by the heat of vaporization caused by the evaporation of moisture contained in the plate-like material, and can contribute to the improvement of the lifetime of the cylindrical solar cell and the maintenance of performance. In addition, according to the second installation structure of the present invention, since the installation is performed on the installation surface in a state where the lower end of the leg is surrounded by a large number of pebbles, each leg can be operated even if vibration such as an earthquake occurs. As a result of the vibrations being absorbed by the damper (impact buffering) action of a large number of pebbles, deviation from the installation position is suppressed.

なお、上記で天然石である小石であったが、人工石としては粒度0.1〜5cm、より好ましくは粒度0.1〜2cmで、且つ、表面が吸水性を有し、且つ、内部が保水性を有する小石とすれば、その小石に水分を吸水・保水させ、円筒型太陽電池周囲の気温が上昇すると、小石からそれに含有する水分を蒸発させ、その蒸発による気化熱で円筒型太陽電池を冷却することもできる。   In addition, although it was a pebble which is a natural stone as described above, the artificial stone has a particle size of 0.1 to 5 cm, more preferably a particle size of 0.1 to 2 cm, the surface has water absorption, and the inside is water-retaining. If the pebbles have the property, water is absorbed and retained in the pebbles, and when the temperature around the cylindrical solar cell rises, the water contained in the pebbles evaporates, and the cylindrical solar cell is formed by the heat of vaporization caused by the evaporation. It can also be cooled.

本発明による設置構造は、複数の円筒型太陽電池を平面内に平行又はほぼ平行に配列してなる太陽光発電装置と、前記太陽光発電装置の出力を電源として利用する電気設備と、を含む太陽光利用システムに対して、前記複数の円筒型太陽電池の設置に利用することができる。   An installation structure according to the present invention includes a solar power generation device in which a plurality of cylindrical solar cells are arranged in parallel or substantially parallel in a plane, and an electrical facility that uses the output of the solar power generation device as a power source. It can utilize for installation of these cylindrical solar cells with respect to a sunlight utilization system.

本発明によれば、複数の円筒型太陽電池からなる太陽光発電装置を固定しないで設置する設置構造において、周囲に光公害を及ぼすように光が反射しないで、発電効率が高まるようこの反射光を複数の円筒型太陽電池に乱反射させることができる設置構造を安価に提供することができる。   According to the present invention, in an installation structure in which a photovoltaic power generation device composed of a plurality of cylindrical solar cells is installed without being fixed, the reflected light is increased so that light is not reflected so as to cause light pollution in the surroundings and power generation efficiency is increased. Can be provided at low cost with a structure that can diffusely reflect the light to a plurality of cylindrical solar cells.

また、本発明によれば、円筒型太陽電池を脚部により設置面に設置した際に、円筒型太陽電池を効率的に冷却でき、特に、円筒型太陽電池を固定設置しないにもかかわらず、地震等の振動に強い設置構造を安価に提供することができる。   Further, according to the present invention, when the cylindrical solar cell is installed on the installation surface by the legs, the cylindrical solar cell can be efficiently cooled, in particular, although the cylindrical solar cell is not fixedly installed. An installation structure that is resistant to vibrations such as earthquakes can be provided at low cost.

図1(a)は円筒型太陽電池の側面図、図1(b)は図1(a)のA−A線の断面図、図1(c)は円筒型太陽電池に対する太陽光の照射の説明に用いる図である。FIG. 1A is a side view of a cylindrical solar cell, FIG. 1B is a cross-sectional view taken along line AA of FIG. 1A, and FIG. It is a figure used for description. 図2(a)は太陽光発電装置の概略斜視図、図2(b)は太陽光発電装置の拡大横側面図である。FIG. 2A is a schematic perspective view of the photovoltaic power generation apparatus, and FIG. 2B is an enlarged lateral side view of the photovoltaic power generation apparatus. 図3は本発明の実施形態に係る太陽光発電装置の設置構造を示す図である。FIG. 3 is a diagram showing the installation structure of the photovoltaic power generation apparatus according to the embodiment of the present invention. 図4は図3の要部を拡大して示す図である。FIG. 4 is an enlarged view showing a main part of FIG. 図5は実施形態にける小石により太陽光が乱反射されている様子を概念的に示す図である。FIG. 5 is a diagram conceptually showing a state in which sunlight is irregularly reflected by pebbles in the embodiment. 図6は本発明の他の実施形態に係る太陽光発電装置の設置構造を示す図である。FIG. 6 is a view showing an installation structure of a photovoltaic power generation apparatus according to another embodiment of the present invention. 図7はブロック材が集合配置された状態を示す図である。FIG. 7 is a diagram showing a state in which block members are collectively arranged. 図8はブロック材とそのブロック材に配置された小石との拡大側面図である。FIG. 8 is an enlarged side view of the block material and pebbles arranged on the block material. 図9はブロック材の他の例の一部構造を拡大して示す図である。FIG. 9 is an enlarged view showing a partial structure of another example of the block material. 図10はブロック材に含む水分が蒸発して円筒型太陽電池を冷却している様子を概念的に示す図である。FIG. 10 is a diagram conceptually showing a state in which water contained in the block material is evaporated to cool the cylindrical solar cell. 図11は太陽光発電装置に振動が加えられた場合の小石の振動抑制効果の説明に用いる図である。FIG. 11 is a diagram used for explaining the vibration suppression effect of pebbles when vibration is applied to the solar power generation device. 図12は従来の円筒型太陽電池の設置構造を概念的に示す図である。FIG. 12 is a diagram conceptually showing a conventional cylindrical solar cell installation structure.

以下、添付した図面を参照して、本発明の実施の形態に係る太陽光発電装置の設置構造を詳細に説明する。   Hereinafter, an installation structure of a solar power generation device according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

まず、図1を参照して、同太陽光利用システムで用いる円筒型太陽電池を説明する。図1(a)は、円筒型太陽電池の側面、図1(b)は図1(a)のA−A線に沿う断面図である。この円筒型太陽電池1は、内管2と、外管3との二重管構造であり、内管2の外周面に発電層として銅、インジウム、ガリウム、セレンの4つの元素からなる化合物半導体膜(CIGS膜)4を形成し、この化合物半導体膜4の外面と外管3の内面との間に集光促進層5を形成して、円筒型に形成されたものである。外管3の両端は金属キャップ6で密閉されている。両端には電極7が突出しており、両端の電極3間に直流電力を出力するようになっている。この円筒型太陽電池1は、外周が円筒型で全周360度太陽光照射であるために、図1(c)で示すように、直射光だけでなく、散乱光、反射光も、発電のために利用することができ、発電効率が高い。   First, a cylindrical solar cell used in the solar light utilization system will be described with reference to FIG. FIG. 1A is a side view of a cylindrical solar cell, and FIG. 1B is a cross-sectional view taken along line AA in FIG. This cylindrical solar cell 1 has a double tube structure of an inner tube 2 and an outer tube 3, and a compound semiconductor composed of four elements of copper, indium, gallium and selenium as a power generation layer on the outer peripheral surface of the inner tube 2. A film (CIGS film) 4 is formed, and a condensing promoting layer 5 is formed between the outer surface of the compound semiconductor film 4 and the inner surface of the outer tube 3 to form a cylindrical shape. Both ends of the outer tube 3 are sealed with metal caps 6. Electrodes 7 protrude from both ends, and direct current power is output between the electrodes 3 at both ends. Since this cylindrical solar cell 1 has a cylindrical outer periphery and is irradiated with 360-degree sunlight all around, as shown in FIG. 1 (c), not only direct light but also scattered light and reflected light are used for power generation. Power generation efficiency is high.

図2を参照して、上記図1で説明した円筒型太陽電池を複数備えて構成される太陽光発電装置を説明する。図2(a)は太陽光発電装置の概略斜視図、図2(b)は太陽光発電装置の拡大横側面図である。   With reference to FIG. 2, a solar power generation apparatus including a plurality of cylindrical solar cells described in FIG. 1 will be described. FIG. 2A is a schematic perspective view of the photovoltaic power generation apparatus, and FIG. 2B is an enlarged lateral side view of the photovoltaic power generation apparatus.

これらの図を参照して、太陽光発電装置10は、複数の円筒型太陽電池11を含み、これら複数の円筒型太陽電池11は、対向する一対のL型の枠体12により、平面内で互いに平行に又はほぼ平行に配列保持されている。枠体12は、垂直枠部12aと、水平枠部12bとでL型になっている。図示例では、枠体12は説明の都合で対向する一対で示すが、この枠体12と直交する方向で対向する一対の枠体を含め、全体で四辺形状にして円筒型太陽電池を配列保持してもよい。こうして枠体12に配列保持された円筒型太陽電池11は、枠体12を含めて太陽電池モジュールと称してもよい。   With reference to these drawings, the solar power generation device 10 includes a plurality of cylindrical solar cells 11, and the plurality of cylindrical solar cells 11 are formed in a plane by a pair of opposed L-shaped frame bodies 12. The arrays are held parallel to each other or almost parallel to each other. The frame body 12 is L-shaped with a vertical frame portion 12a and a horizontal frame portion 12b. In the illustrated example, the frame bodies 12 are shown as a pair opposed to each other for convenience of explanation, but the cylindrical solar cells are arranged and held in a quadrilateral shape as a whole, including a pair of frames opposed in a direction orthogonal to the frame body 12. May be. The cylindrical solar cell 11 arranged and held in the frame body 12 in this way may be referred to as a solar cell module including the frame body 12.

枠体12には脚部13が等間隔に複数取り付けられている。脚部13の個数や形態等は、円筒型太陽電池の配列個数や重量等に応じて決めることができる。   A plurality of leg portions 13 are attached to the frame body 12 at equal intervals. The number, form, and the like of the leg portions 13 can be determined according to the number of arrayed cylindrical solar cells, the weight, and the like.

対向する一対の枠体12の垂直枠部12aの側面には電力取出電極12bが設けられている。電力取出電極12bは、円筒型太陽電池11の配列方向に沿って帯状に設けられている。電力取出電極12bは、円筒型太陽電池11の両端から突出する電極11aに接触する。この接触により円筒型太陽電池11の出力電力は、電力取出電極25bに取り出される。各円筒型太陽電池11は、それぞれの両端電極11aが、電力取出電極12bに共通接触することで、互いに並列接続されることになる。各枠体12には、電力ケーブル14が取り付けられている。電力ケーブル14は、一端側が電力取出電極12bに図示略の構造により接続されている。   A power extraction electrode 12b is provided on the side surface of the vertical frame portion 12a of the pair of opposed frame bodies 12. The power extraction electrode 12 b is provided in a strip shape along the arrangement direction of the cylindrical solar cells 11. The power extraction electrode 12 b is in contact with the electrodes 11 a protruding from both ends of the cylindrical solar cell 11. By this contact, the output power of the cylindrical solar cell 11 is extracted to the power extraction electrode 25b. The cylindrical solar cells 11 are connected in parallel to each other when both end electrodes 11a are in common contact with the power extraction electrode 12b. A power cable 14 is attached to each frame 12. One end of the power cable 14 is connected to the power extraction electrode 12b by a structure not shown.

枠体12の水平枠部12bの底面には、円筒型太陽電池11の設置部(図示略)が形成されている。この設置部は円筒型太陽電池11の配列間隔に合わせて形成されている。   An installation portion (not shown) for the cylindrical solar cell 11 is formed on the bottom surface of the horizontal frame portion 12 b of the frame body 12. This installation part is formed in accordance with the arrangement interval of the cylindrical solar cells 11.

太陽光発電装置10は、設置環境に合わせて、枠体12への円筒型太陽電池11の配列個数を設定したり、円筒型太陽電池11の配列間隔を調整したり、円筒型太陽電池の設置高さを調整したりすることが好ましい。   The solar power generation device 10 sets the number of arrangement of the cylindrical solar cells 11 on the frame body 12 according to the installation environment, adjusts the arrangement interval of the cylindrical solar cells 11, or installs the cylindrical solar cells. It is preferable to adjust the height.

図3および図4を参照して太陽光発電装置10の設置構造を説明する。図3は本発明の実施形態に係る太陽光発電装置の設置構造を示す図、図4は図3の要部を拡大して示す図である。これらの図に示す設置構造は、太陽光発電装置10が設置されるもので凹所面を有する設置面15と、その設置面15に敷き詰められる多数の小石16とを含む。多数の小石16は、脚部13を取り囲むように設置面15に置かれる。これら小石16は、ほぼ全てが相異なる非平面形状の多数の白色系小石であり、例えば白色系の花崗岩系主要構成物からなる多数の小石で構成される。非平面形状とはタイル状、板状など平面を有する形状以外の形状であり、また、これら小石16は、ほぼ全てが相異なる非平面形状であるので、これら小石16が敷き詰められている設置面15に同じ入射角度で太陽光が照射されても、その反射光は、ほとんど全てが多数の小石16で乱反射される。また、その太陽光の入射角度が午前から午後へと変化していっても、その乱反射状態はほぼ同様である。これら小石16の一例である玉砂利、大理石、等の花崗岩系鉱石の主要構成物としては、石英、カリ長石、針長石、白雲母、普通角閃石、等がある。小石16は、粒度が0.1〜5cm、好ましくは、粒度2〜3cmである。小石16は、好ましくは、粒度0.1〜2cmの小石と粒度3〜5cmの小石とがほぼ1:1の割合で混じっている。粒度がこのように分布することにより、小石の表面形状および表面色と相俟って太陽光はより効果的に乱反射される。   The installation structure of the solar power generation device 10 will be described with reference to FIGS. 3 and 4. FIG. 3 is a view showing the installation structure of the photovoltaic power generation apparatus according to the embodiment of the present invention, and FIG. 4 is an enlarged view showing the main part of FIG. The installation structure shown in these drawings includes an installation surface 15 having a recessed surface on which the solar power generation device 10 is installed, and a large number of pebbles 16 spread on the installation surface 15. A large number of pebbles 16 are placed on the installation surface 15 so as to surround the legs 13. These pebbles 16 are a large number of non-planar white pebbles that are almost all different, and are composed of, for example, a large number of pebbles made of a white granite main constituent. The non-planar shape is a shape other than a shape having a plane such as a tile shape or a plate shape, and these pebbles 16 are non-planar shapes that are almost different from each other, so that the installation surface on which these pebbles 16 are spread. Even if the sunlight is irradiated to 15 at the same incident angle, almost all of the reflected light is irregularly reflected by a large number of pebbles 16. Moreover, even if the incident angle of sunlight changes from morning to afternoon, the irregular reflection state is substantially the same. The main constituents of granite ores such as boulder gravel, marble, etc. which are examples of these pebbles 16 include quartz, potassium feldspar, feldspar, muscovite, ordinary amphibole, and the like. The pebbles 16 have a particle size of 0.1 to 5 cm, preferably 2 to 3 cm. The pebbles 16 are preferably a mixture of pebbles having a particle size of 0.1 to 2 cm and pebbles having a particle size of 3 to 5 cm in a ratio of approximately 1: 1. By distributing the particle size in this way, sunlight is diffused more effectively in combination with the surface shape and surface color of pebbles.

このような小石16は、白色系で且つ表面形状が非平面形状、すなわち、光を乱反射させ易い凹凸を有する形状を有する。小石6は、脚部13下端を取り囲むように設置面15に敷き詰めて設置される。   Such pebbles 16 are white and have a non-planar surface shape, that is, a shape having irregularities that easily diffuses light. The pebbles 6 are installed on the installation surface 15 so as to surround the lower ends of the legs 13.

図5を参照して、設置面15上方に配列した円筒型太陽電池11に太陽光17が照射されると、円筒型太陽電池11には太陽光17が直射される。   Referring to FIG. 5, when sunlight 17 is applied to cylindrical solar cells 11 arranged above installation surface 15, sunlight 17 is directly applied to cylindrical solar cells 11.

円筒型太陽電池11に直射されずに円筒型太陽電池11間を通過した太陽光17は、小石16が白色系で且つ表面形状が非平面形状、すなわち、光を乱反射させ易い凹凸を有する形状を有するので、これら小石16の外表面で乱反射され、各円筒型太陽電池11それぞれをほぼ均等に照射することができる。   The sunlight 17 that has passed between the cylindrical solar cells 11 without being directly irradiated to the cylindrical solar cells 11 has a pebbles 16 of a white system and a non-planar surface shape, that is, a shape having unevenness that easily diffuses light. Therefore, it is diffusely reflected on the outer surface of these pebbles 16 and each cylindrical solar cell 11 can be irradiated almost uniformly.

この場合、小石16のほぼ全てが相異なる非平面形状の白色系小石であるために、太陽光17が日中のどの時間帯において、設置面15への入射角度が変遷していっても、乱反射状態が一様となり、円筒型太陽電池11を効果的に乱反射光で照射させることができ、円筒型太陽電池11の発電効率を大きく向上させることができる。   In this case, since almost all of the pebbles 16 are different non-planar white pebbles, the incident angle of the sunlight 17 on the installation surface 15 changes at any time of day. The irregular reflection state becomes uniform, the cylindrical solar cell 11 can be effectively irradiated with irregularly reflected light, and the power generation efficiency of the cylindrical solar cell 11 can be greatly improved.

上記設置構造では、太陽光は日中のどの時間帯においても小石16により乱反射されて円筒型太陽電池11をほぼ均等に照射する一方、円筒型太陽電池11が設置された場所の近隣に日中のどの時間帯においても、また、どの地域の近隣に対して、反射光が集中させるような時間帯がなくなり、反射光が集中することによる光公害を及ぼすといったことがなくなり、環境に優しい設置構造となる。   In the above installation structure, sunlight is irregularly reflected by the pebbles 16 at any time of the day and irradiates the cylindrical solar cell 11 almost uniformly, while the daytime is close to the place where the cylindrical solar cell 11 is installed. Environment-friendly installation structure that eliminates the time zone where the reflected light concentrates in any time zone and the neighborhood of any region, and does not cause light pollution due to the concentration of reflected light It becomes.

また、上記光公害を回避するため従来では反射光が過度に強くならないようその強度を抑制していたが、実施形態では、小石16により設置面での反射光が円筒型太陽電池11に向けて効率的に乱反射し、光公害を無くすことができるので、小石16の表面色を反射光を抑制するため暗い表面色ではなく、明るい表面色である白色系統にすることができ、円筒型太陽電池21の特徴である反射光の利用率を高め、発電性能を飛躍的に向上させることができる。   In addition, in order to avoid the above light pollution, the intensity of the reflected light is conventionally suppressed so that the reflected light does not become excessively strong. However, in the embodiment, the reflected light on the installation surface is directed toward the cylindrical solar cell 11 by the pebbles 16. Since it can efficiently diffuse and eliminate light pollution, the surface color of the pebbles 16 can be a white system that is not a dark surface color but a bright surface color to suppress reflected light, and a cylindrical solar cell The utilization factor of the reflected light which is the characteristic of 21 can be raised, and electric power generation performance can be improved dramatically.

また、本実施形態では、小石16を花崗岩系主要構成物として、石英、カリ長石、針長石、白雲母、普通角閃石、等としたので、小石16の表面には塵埃が付きにくく、したがって、長期にわたり、反射強度を高く維持することができる。さらに、小石16は、樹脂塗料とは異なって、雨水に溶け込んだ塵埃等の化学的酸化作用が作用しにくく、長期にわたり、反射効率を高く維持でき、さらには、物理的劣化はほとんどなく、また、夏季などの高温時でも、反射光強度の低下は無く、反射光により、円筒型太陽電池11に対しての発電効率を高く長期にわたり維持することができ、業務用として用いた場合に特に有用である。   Further, in the present embodiment, the pebbles 16 are made of granite-based main constituents such as quartz, potash feldspar, feldspar, muscovite, ordinary amphibole, etc., so that the surface of the pebbles 16 is not easily dusty. The reflection intensity can be kept high over a long period of time. Further, unlike the resin paint, the pebbles 16 are less susceptible to chemical oxidation such as dust dissolved in rainwater, can maintain high reflection efficiency over a long period of time, and have little physical deterioration. Even at high temperatures such as in summer, the reflected light intensity does not decrease, and the power generation efficiency for the cylindrical solar cell 11 can be maintained for a long time by the reflected light, which is particularly useful when used for business purposes. It is.

以上説明したように本実施形態の設置構造は、従来の設置面に光反射性樹脂塗料を塗布した設置構造とは異なって、太陽光の照射角度が変化しても円筒型太陽電池には一様に乱反射光を照射し発電効率を一定に維持することができ、また、従来の設置構造とは異なって、反射角度によって設置面からの反射光が周囲近隣に強すぎて、光公害を及ぼすといったことがない。また、本実施形態の設置構造では、小石16を白色系の花崗岩系主要構成物で構成するので、従来の設置構造のように設置面が塵埃で覆われて反射強度が低下したり、設置面の凹凸に溜まった雨水に溶け込んだ塵埃等の化学的酸化作用の影響で、樹脂塗料が早期に劣化しその反射効率が低下してきたり、あるいは物理的劣化で設置面から樹脂塗料が剥離してくるなど、の課題が無い設置構造である。   As described above, the installation structure of the present embodiment is different from the conventional installation structure in which a light-reflective resin paint is applied to the installation surface, and the cylindrical solar cell has no difference even if the sunlight irradiation angle changes. In this way, the power generation efficiency can be kept constant by irradiating diffusely reflected light, and unlike the conventional installation structure, the reflected light from the installation surface is too strong near the surroundings depending on the reflection angle, causing light pollution. There is no such thing. Moreover, in the installation structure of this embodiment, since the pebbles 16 are composed of white granite main constituents, the installation surface is covered with dust as in the conventional installation structure, and the reflection strength is reduced, or the installation surface is reduced. Due to the chemical oxidation action of dust etc. dissolved in rain water accumulated on the uneven surface of the resin, the resin paint deteriorates early and its reflection efficiency decreases, or the resin paint peels from the installation surface due to physical deterioration It is an installation structure that does not have any problems.

図6〜図9を参照して本発明の他の実施形態に係る設置構造を説明する。図6は本発明の他の実施形態に係る太陽光発電装置の設置構造を示す図、図7は複数のブロック材が同一平面内に集合配置された状態を示す図、図8は1つのブロック材の拡大側面図である。この設置構造は、路面が設置面とされるものである。なお、図解の都合で、図7の各ブロック材のうち、いくつかのブロック材19にのみ小石16を配置した状態で示し、他のブロック材19には小石16の配置の図示を略しているが、全てのブロック材19に小石16が埋め込み配置されている。図8では、ブロック材19に小石16がその一部を埋め込まれた状態を示すため、部分的に円A内にその埋め込み状態の断面構造を拡大して示す。小石16は一部、好ましくは、全体のうちの3分の2程度が埋め込まれて固定され、残部がブロック材19表面から所要高さで突出している。   An installation structure according to another embodiment of the present invention will be described with reference to FIGS. FIG. 6 is a diagram showing an installation structure of a photovoltaic power generation apparatus according to another embodiment of the present invention, FIG. 7 is a diagram showing a state in which a plurality of block members are collectively arranged in the same plane, and FIG. 8 is one block It is an expanded side view of material. In this installation structure, the road surface is the installation surface. For the convenience of illustration, the block members 19 shown in FIG. 7 are shown in a state in which the pebbles 16 are arranged only on some of the block members 19, and the illustration of the arrangement of the pebbles 16 is omitted on the other block members 19. However, the pebbles 16 are embedded in all the block members 19. In FIG. 8, in order to show a state in which the pebbles 16 are partially embedded in the block material 19, the embedded cross-sectional structure is partially shown in the circle A. A part of the pebbles 16, preferably about two-thirds of the whole, is embedded and fixed, and the remaining part protrudes from the surface of the block material 19 at a required height.

設置面15に透水性・保水性の薄板状ブロック材19が、円筒型太陽電池の設置状態に応じて、透水性および保水性を備える板状材として、複数集合し縦横密に配置される。   A plurality of water-permeable / water-retaining thin plate-like block members 19 are arranged on the installation surface 15 in a vertically and horizontally dense manner as plate-like materials having water permeability and water retention according to the installation state of the cylindrical solar cell.

ブロック材19は、周縁部に丸みを付けられた矩形形状のものでかつ該保水性と透水性に優れ、比較的比重が小さく、適度な強靱性を備える材料で構成することができる。   The block member 19 can be made of a material having a rectangular shape with a rounded periphery, excellent water retention and water permeability, a relatively small specific gravity, and appropriate moderate toughness.

ブロック材19は、透水性に富み曲げ強度、圧縮強度及び保水性に優れた成形コンクリート舗装材で構成することができる。   The block material 19 can be formed of a molded concrete pavement material that is rich in water permeability and excellent in bending strength, compressive strength, and water retention.

ブロック材19は、例えば、地球環境保全のための建設リサイクル法の施行に伴い、多量に発生する廃コンクリ−ト材を全量再生利用することを目的として開発した、透水性及び保水性に優れた舗装材料で構成することができる。   The block material 19 was developed for the purpose of recycling the entire amount of waste concrete material generated in large quantities with the enforcement of the Construction Recycling Law for global environmental conservation, for example, and has excellent water permeability and water retention. Can be composed of paving material.

ブロック材19は、透水性及び保水性を有するブロック材であれば、特に限定しないが、例えば特許第4263385号の成形コンクリート舗装材で構成することができる。   Although it will not specifically limit if the block material 19 is a block material which has water permeability and water retention property, For example, it can be comprised with the shaping | molding concrete pavement material of the patent 4263385.

この成形コンクリート舗装材は、骨材として廃コンクリート材を粉砕して得られた、粒度0.3mm以下の粒子の含有量が5重量%以下であり、粒度5mm以上の粒子の含有量が3重量%以下である廃コンクリート粒子のみを用い、これに対して、セメントを17重量%(乾量)以上、20重量%(乾量)以下を加え、更にこれらの固形分重量に対して水分を15%以上、25%以下を加えて混合した、見かけ上殆ど乾燥状態の混合物を調製し、高振動と高圧縮を併用して乾式成形し即時脱型工程によって成形物を得た後、スチームで飽和した雰囲気中で24時間以上養生してなる、透水係数が1.05×10-2cm/sec以上であり、曲げ強度、圧縮強度及び保水性に優れた成形コンクリート舗装材である。 This molded concrete pavement has a content of particles having a particle size of 0.3 mm or less, obtained by pulverizing waste concrete as an aggregate, of 5% by weight or less, and a content of particles having a particle size of 5 mm or more is 3% by weight. % Of waste concrete particles that are less than or equal to 15%, to which 17% by weight (dry weight) or more and 20% by weight (dry weight) or less of cement is added, and the moisture content of these solids is 15%. % And 25% or less added and mixed, apparently almost dry mixture, dry molding using both high vibration and high compression to obtain a molded product by an immediate demolding process, then saturated with steam It is a molded concrete pavement material that has a water permeability of 1.05 × 10 −2 cm / sec or more and is excellent in bending strength, compressive strength, and water retention.

あるいは、この成形コンクリート舗装材は、廃コンクリート材を粉砕して得られた、粒子径が 0.6mm以下の粒子の含有量が10重量%以下であり、粒子径が 2.5mm以上の粒子の含有量が20重量%以下である、前記透水係数が1.05×10-2cm/sec以上であり、曲げ強度、圧縮強度及び保水性に優れた成形コンクリート舗装材である。 Alternatively, this molded concrete paving material is obtained by pulverizing waste concrete material, the content of particles having a particle size of 0.6 mm or less is 10% by weight or less, and the particle size is 2.5 mm or more. The molded concrete pavement has a content of 20% by weight or less, a water permeability of 1.05 × 10 −2 cm / sec or more, and is excellent in bending strength, compressive strength and water retention.

あるいは、この成形コンクリート舗装材は、上記成形コンクリート舗装材において、その曲げ強度が 3.0N/mm2以上の圧縮強度及び保水性に優れた成形コンクリート舗装材である。 Alternatively, this molded concrete pavement is a molded concrete pavement excellent in compressive strength and water retention with a bending strength of 3.0 N / mm 2 or more in the above-described molded concrete pavement.

各ブロック材19の上面には、前記した白色系の花崗岩系主要構成物からなる粒度0.1〜5cm程度、好ましくは、粒度0.1〜2cm程度の多数の小石16が所要の配置密度でその一部、好ましくは、ほぼ3分の2程度が埋め込み固定され、残部のほぼ3分の1程度がブロック材19表面から所要高さで突出している。   On the upper surface of each block material 19, a large number of pebbles 16 having a particle size of about 0.1 to 5 cm, preferably about 0.1 to 2 cm, composed of the above-described white granite-based main constituents, have a required arrangement density. A part thereof, preferably about two-thirds, is embedded and fixed, and about one-third of the remaining part protrudes from the surface of the block member 19 at a required height.

ブロック材19は、平面形状が例えば25〜30cm程度の長方形で、厚さ3.5cm程度の板状である。このブロック材19に固定される小石16は、好ましくは、例えば粒度0.5cm程度の小石と粒度1.0cm程度の小石とがほぼ1:1の割合で混合されている。   The block material 19 has a rectangular shape with a planar shape of about 25 to 30 cm, for example, and a plate shape with a thickness of about 3.5 cm. In the pebbles 16 fixed to the block material 19, for example, pebbles having a particle size of about 0.5 cm and pebbles having a particle size of about 1.0 cm are mixed in a ratio of approximately 1: 1.

図9を参照して、設置面15における設置構造は、ブロック材19と小石16との2層構造であるので、雨天あるいは水散布等による水分は、ブロック材19に吸水且つ保水される。そして、温度が上昇すると、ブロック材19に保水されている水分が蒸発18すると、水分が蒸発したときの気化熱により円筒型太陽電池11は冷却される。このようにブロック材19からの蒸発した水分が気化する際の熱により、円筒型太陽電池11は冷却されるので、その寿命や性能は維持される。   Referring to FIG. 9, the installation structure on installation surface 15 is a two-layer structure of block material 19 and pebbles 16, so that moisture due to rain or water spraying is absorbed and retained by block material 19. When the temperature rises and the water retained in the block material 19 evaporates 18, the cylindrical solar cell 11 is cooled by the heat of vaporization when the water evaporates. Thus, the cylindrical solar cell 11 is cooled by the heat generated when the evaporated water from the block material 19 is vaporized, so that the life and performance thereof are maintained.

以上の本実施形態の設置構造では、設置面15に、多数の小石16が埋め込み固定された複数のブロック材19が設置された構造であるので、まず、多数の小石16の表面における乱反射により、各円筒型太陽電池11全体の発電効率が大きくなる設置構造であり、朝昼夕いずれの時間帯においても、小石16での乱反射光が、設置面15周囲へ眩しさを感じるような強度(光公害)で照射されないことに加えて、周囲温度が上昇した場合には小石16を埋め込み固定してある複数のブロック材19に保水された水分が蒸発し、その気化熱で各円筒型太陽電池11が冷却され、その発電効率がより向上する。   In the installation structure of the above embodiment, since a plurality of block members 19 in which a large number of pebbles 16 are embedded and fixed are installed on the installation surface 15, first, by irregular reflection on the surface of the large number of pebbles 16, It is an installation structure in which the power generation efficiency of each cylindrical solar cell 11 as a whole is increased, and the intensity (light) that the diffusely reflected light from the pebbles 16 feels dazzling around the installation surface 15 in both the morning and noon time zones. In addition to being not irradiated by pollution), when the ambient temperature rises, the water retained in the plurality of block members 19 in which the pebbles 16 are embedded and fixed evaporates, and each cylindrical solar cell 11 is heated by its vaporization heat. Is cooled, and the power generation efficiency is further improved.

前記ブロック材19の他の例としては、図10で示すように、例えば透水層19aと、フィルタ層19bと、保水層19cとの3層とし、表層19aは降雨時などに水分を透水する透水性を備えた表層であり、例えば、多孔質のセラミックスで構成することができる。フィルタ層19bは、表層を通過した雨水等の水分を保水層に浸透させ、且つ、浸透水分による軟弱化等を防止する層であり、例えば、砂などの細骨材で構成することができる。保水層19cは、浸透してきた水分を保水する層であり、例えば石炭フライアッシュで構成することができる。   As another example of the block member 19, as shown in FIG. 10, for example, a water permeable layer 19a, a filter layer 19b, and a water retaining layer 19c have three layers, and the surface layer 19a is permeable to moisture when it rains. For example, the surface layer can be made of porous ceramics. The filter layer 19b is a layer that allows moisture such as rainwater that has passed through the surface layer to permeate into the water retaining layer and prevents softening due to the permeated moisture, and can be made of fine aggregate such as sand. The water retention layer 19c is a layer that retains moisture that has permeated, and can be composed of, for example, coal fly ash.

なお、図11を参照して、設置面15上の太陽光発電装置10に対して、地震等の振動が作用すると、太陽光発電装置10は、設置面15に固定設置されていないので、設置面15上をその振動方向に移動しようとする。しかし、設置面15は底面15aとその底面四週の側面15bとで囲む凹所面形状になっており、実施形態1では小石16が、図11で示すように、また、実施形態2では図示しないが、ブロック材19上の小石16が、設置面15内に配置されて、太陽光発電装置10の脚部13周囲を取り囲んでいる。   Referring to FIG. 11, when a vibration such as an earthquake acts on the solar power generation device 10 on the installation surface 15, the solar power generation device 10 is not fixedly installed on the installation surface 15. It tries to move on the surface 15 in the direction of vibration. However, the installation surface 15 has a concave surface shape surrounded by a bottom surface 15a and a side surface 15b of the bottom surface for four weeks. In the first embodiment, the pebbles 16 are not shown in the second embodiment as shown in FIG. However, the pebbles 16 on the block material 19 are arranged in the installation surface 15 and surround the legs 13 of the solar power generation device 10.

したがって、太陽光発電装置10の脚部13に地震等の振動が作用し、当該脚部13を介して太陽光発電装置10が設置面15上を種々な方向に移動しようとしても、多数の小石16が、脚部13に対して、太陽光発電装置10の上記移動を阻止する方向に緩衝する、いわゆるダンパとして作用する。そのため、太陽光発電装置10はその振動に対して位置ずれすることが抑制される。   Therefore, even if a vibration such as an earthquake acts on the leg portion 13 of the solar power generation device 10 and the solar power generation device 10 tries to move on the installation surface 15 in various directions via the leg portion 13, a large number of pebbles 16 acts as a so-called damper that buffers the leg portion 13 in a direction that prevents the movement of the photovoltaic power generation apparatus 10. Therefore, it is suppressed that the solar power generation device 10 shifts | deviates with respect to the vibration.

10 太陽光発電装置
11 円筒型太陽電池
12 枠体
13 脚部
14 電力ケーブル
15 設置面
16 小石
19 ブロック材
DESCRIPTION OF SYMBOLS 10 Photovoltaic power generation device 11 Cylindrical solar cell 12 Frame body 13 Leg part 14 Power cable 15 Installation surface 16 Pebble 19 Block material

Claims (4)

枠体により複数の円筒型太陽電池を平面内に平行又はほぼ平行に互いに所要間隔を隔てて配列保持すると共に前記枠体に取り付けた複数の脚部を設置面上に固定しないで設置する太陽光発電装置の設置構造であって、
前記枠体に保持された複数の円筒型太陽電池が前記複数の脚部を介して設置される設置面と、前記設置面に配置された、ほぼ全てが相異なる非平面形状の多数の白色系小石とを具備した、ことを特徴とする設置構造。
A plurality of cylindrical solar cells are arranged and held by a frame in parallel or substantially parallel to each other at a required interval, and the plurality of legs attached to the frame are installed without being fixed on the installation surface. A power generator installation structure,
An installation surface on which the plurality of cylindrical solar cells held by the frame body are installed via the plurality of legs, and a large number of non-planar white systems arranged on the installation surface that are almost all different from each other An installation structure characterized by comprising pebbles.
前記小石が、白色系の花崗岩系主要構成物からなる粒度0.1〜5cmの小石である、請求項1に記載の設置構造。   The installation structure according to claim 1, wherein the pebbles are pebbles having a particle size of 0.1 to 5 cm made of a white granite main constituent. 枠体により複数の円筒型太陽電池を平面内に平行又はほぼ平行に互いに所要間隔を隔てて配列保持すると共に前記枠体に取り付けた複数の脚部を設置面上に固定しないで設置する太陽光発電装置の設置構造であって、
前記枠体に保持された複数の円筒型太陽電池が前記複数の脚部を介して設置される前記設置面と、前記設置面に配置された、透水性および保水性を備える板状材と、前記板状材上に固定された、白色系の花崗岩系主要構成物からなる粒度0.1〜5cmの多数の小石とを具備した、ことを特徴とする設置構造。
A plurality of cylindrical solar cells are arranged and held by a frame in parallel or substantially parallel to each other at a required interval, and the plurality of legs attached to the frame are installed without being fixed on the installation surface. A power generator installation structure,
The installation surface on which a plurality of cylindrical solar cells held by the frame are installed via the plurality of legs, and a plate-like material having water permeability and water retention disposed on the installation surface, An installation structure characterized by comprising a large number of pebbles having a particle size of 0.1 to 5 cm made of a white granite main constituent fixed on the plate-like material.
前記板状材は、透水性および保水性を有するブロック材が、複数、平面内に集合配置されてなると共に、前記小石は、複数個ずつ、各ブロック材表面にその一部分が埋め込み固定され、その残りの部分が各ブロック材表面から所要高さで突出した状態で配置されている、請求項3に記載の設置構造。   The plate-like material is made up of a plurality of block materials having water permeability and water retention, which are collectively arranged in a plane, and a plurality of the pebbles are embedded and fixed on the surface of each block material. The installation structure of Claim 3 arrange | positioned in the state which the remaining part protruded from each block material surface by required height.
JP2011101929A 2011-04-28 2011-04-28 Structure for installing solar power generation device Pending JP2012234946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011101929A JP2012234946A (en) 2011-04-28 2011-04-28 Structure for installing solar power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011101929A JP2012234946A (en) 2011-04-28 2011-04-28 Structure for installing solar power generation device

Publications (1)

Publication Number Publication Date
JP2012234946A true JP2012234946A (en) 2012-11-29

Family

ID=47434988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011101929A Pending JP2012234946A (en) 2011-04-28 2011-04-28 Structure for installing solar power generation device

Country Status (1)

Country Link
JP (1) JP2012234946A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065326A (en) * 2013-09-25 2015-04-09 株式会社シーマコンサルタント Photovoltaic power generation facility

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532870A (en) * 2006-03-30 2009-09-10 ソルインドラ,インコーポレーテッド Non-planar solar unit assembly with internal spacing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532870A (en) * 2006-03-30 2009-09-10 ソルインドラ,インコーポレーテッド Non-planar solar unit assembly with internal spacing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065326A (en) * 2013-09-25 2015-04-09 株式会社シーマコンサルタント Photovoltaic power generation facility

Similar Documents

Publication Publication Date Title
Khatib et al. Effect of dust deposition on the performance of multi-crystalline photovoltaic modules based on experimental measurements
Kaldellis et al. Ash deposition impact on the energy performance of photovoltaic generators
TWI565220B (en) Method and device for improving power generation efficiency of solar cell
US20210324586A1 (en) Photovoltaic panel assemblies for structurally demanding applications
CN202131720U (en) Novel roofing rainwater collection and heat insulation module capable of loading people
JP3917976B2 (en) SOLAR POWER GENERATION SYSTEM AND SOLAR POWER GENERATION DEVICE USED FOR THE SYSTEM
CN207458952U (en) Roofing solar cell module dust-proof, easy to install
JP2012234946A (en) Structure for installing solar power generation device
CN201518457U (en) Solar energy generation device erected on traffic pavement
KR100967380B1 (en) Solar light collecting apparatus and solar power generation system using the multiple reflection effect
Liu et al. Effects of Particle concentration, deposition and accumulation on Photovoltaic device surface
CN103034245A (en) Honeycomb type solar energy collecting device
CN107768450A (en) Roofing solar cell module dust-proof, easy to install
TWM474121U (en) Solar panel mounting structure
CN106972825A (en) Camber reflection focusing solar energy photovoltaic generator
CN204596804U (en) The solar panel of tool waterproof antifreeze function
Bryan et al. Building-integrated carbon capture: development of an appropriate and applicable building-integrated system for carbon capture and shade
CN205453621U (en) Self -cleaning photovoltaic assembly
WO2014180098A1 (en) Application method of tubular photovoltaic power generation component
CN205945587U (en) Board -like sunlight photovoltaic power generation and complemental photovoltaic power supply station of moonlight photovoltaic power generation turn over
CN206948254U (en) Camber reflection focusing solar energy photovoltaic generator
JP2011196168A (en) Mounting structure of structure
CN102235062A (en) Solar cell panel member with adjustable inclination angle for outer wall decoration
CN209105110U (en) Solar battery sheet beam condensing unit and solar cell module
KR102485598B1 (en) Solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140325

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140325

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140325

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140916