JP2012233751A - X-ray contrast medium for use with resin, structural change detecting method and internal structure determining method - Google Patents

X-ray contrast medium for use with resin, structural change detecting method and internal structure determining method Download PDF

Info

Publication number
JP2012233751A
JP2012233751A JP2011101542A JP2011101542A JP2012233751A JP 2012233751 A JP2012233751 A JP 2012233751A JP 2011101542 A JP2011101542 A JP 2011101542A JP 2011101542 A JP2011101542 A JP 2011101542A JP 2012233751 A JP2012233751 A JP 2012233751A
Authority
JP
Japan
Prior art keywords
resin
molded body
ray
resin molded
ray contrast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011101542A
Other languages
Japanese (ja)
Other versions
JP5792506B2 (en
Inventor
Susumu Eto
進 江渡
Yasuhiro Ozeki
康宏 尾関
Shinichi Hirota
晋一 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2011101542A priority Critical patent/JP5792506B2/en
Publication of JP2012233751A publication Critical patent/JP2012233751A/en
Application granted granted Critical
Publication of JP5792506B2 publication Critical patent/JP5792506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an X-ray contrast medium for use with resin, a method of detecting change in an internal structure of a molded resin object by using the X-ray contrast medium for use with resin, and a method of determining an internal structure of a molded resin object by using the X-ray contrast medium for use with resin.SOLUTION: A specific hydrocarbon compound is used as an X-ray contrast medium for use with resin. The X-ray contrast medium for use with resin is intended to be permeated into a molded resin object to be used in analyzing the internal structure of the molded resin object, and is composed of a hydrocarbon compound having a higher mass absorption coefficient than that of the resin making up the molded resin object. It is preferable to use a halogenated hydrocarbon compound as the X-ray contrast medium for use with resin.

Description

本発明は、樹脂用X線造影剤、構造変化検出方法、及び内部構造決定方法に関する。   The present invention relates to an X-ray contrast agent for resin, a structure change detection method, and an internal structure determination method.

樹脂成形体が有する機械的強度等の物性は、樹脂成形体の内部の構造の影響を受けて変動することが知られている。例えば、同じ原料を成形してなる樹脂成形体において、結晶化度が異なると、物性が異なることが知られている。また、樹脂成形体が充填剤を含む場合には、充填剤の分散状態等の影響を受けて、樹脂成形体の物性が変動することもある。   It is known that physical properties such as mechanical strength of a resin molded body vary under the influence of the internal structure of the resin molded body. For example, it is known that in a resin molded body formed by molding the same raw material, physical properties are different when the crystallinity is different. In addition, when the resin molded body contains a filler, the physical properties of the resin molded body may fluctuate due to the influence of the dispersion state of the filler.

そこで、特許文献1には、樹脂成形体の結晶化度及び配向度を用いた、樹脂成形体の機械的強度を予測する方法が開示されている。特許文献1に記載の方法は、先ず、樹脂成形体の結晶化度及び配向度と樹脂成形体の機械的強度との重相関データを実測により作成する。次いで、樹脂成形体の成形条件、形状及び樹脂の特性を含む成形諸元に基づく解析によって、樹脂成形体の結晶化度と配向度を求める。最後に、結晶化度及び配向度と、重相関データとから射出成形品の機械的強度を予測する。   Therefore, Patent Document 1 discloses a method for predicting the mechanical strength of a resin molded body using the crystallinity and orientation degree of the resin molded body. In the method described in Patent Document 1, first, multiple correlation data between the crystallinity and orientation degree of a resin molded body and the mechanical strength of the resin molded body is created by actual measurement. Next, the crystallinity and orientation degree of the resin molded body are determined by analysis based on molding conditions including molding conditions, shape, and resin characteristics of the resin molded body. Finally, the mechanical strength of the injection-molded product is predicted from the crystallinity and orientation, and the multiple correlation data.

特開平10−156885号公報Japanese Patent Laid-Open No. 10-156885

本発明は、樹脂用X線造影剤、当該樹脂用X線造影剤を用いて樹脂成形体の内部構造の変化を検出する方法、及び当該樹脂用X線造影剤を用いて樹脂成形体の内部構造を決定する方法を提供することにある。   The present invention relates to an X-ray contrast agent for resin, a method for detecting a change in the internal structure of a resin molded body using the X-ray contrast agent for resin, and an interior of the resin molded body using the X-ray contrast agent for resin. It is to provide a method for determining the structure.

本発明者らは、特定の炭化水素系化合物を樹脂用X線造影剤として用いれば、樹脂成形体の内部構造の変化を検出することができること、及び樹脂成形体の内部構造を決定できることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のものを提供する。   The present inventors have found that if a specific hydrocarbon compound is used as an X-ray contrast agent for a resin, it is possible to detect a change in the internal structure of the resin molded body and to determine the internal structure of the resin molded body. The present invention has been completed. More specifically, the present invention provides the following.

(1) 樹脂成形体に浸透させて、前記樹脂成形体の内部構造を分析するための樹脂用X線造影剤であって、前記樹脂成形体を構成する樹脂の質量吸収係数よりも高い質量吸収係数を有する、炭化水素系化合物から構成される樹脂用X線造影剤。   (1) An X-ray contrast agent for resin for infiltrating into a resin molded body and analyzing the internal structure of the resin molded body, wherein the mass absorption coefficient is higher than the mass absorption coefficient of the resin constituting the resin molded body An X-ray contrast agent for resin composed of a hydrocarbon-based compound having a coefficient.

(2) 前記炭化水素系化合物は、ハロゲン系炭化水素化合物である(1)に記載の樹脂用X線造影剤。   (2) The X-ray contrast agent for a resin according to (1), wherein the hydrocarbon compound is a halogenated hydrocarbon compound.

(3) 前記炭化水素系化合物は、ハロゲン系芳香族炭化水素化合物である(2)に記載の樹脂用X線造影剤。   (3) The X-ray contrast agent for a resin according to (2), wherein the hydrocarbon compound is a halogenated aromatic hydrocarbon compound.

(4) 前記炭化水素系化合物は、ヨウ素、臭素のいずれかを含む化合物である(3)に記載の樹脂用X線造影剤。   (4) The X-ray contrast agent for resins according to (3), wherein the hydrocarbon compound is a compound containing either iodine or bromine.

(5) 前記炭化水素系化合物は、ヨードベンゼン、ブロモトルエンのいずれかである(4)に記載の樹脂用X線造影剤。   (5) The X-ray contrast agent for resin according to (4), wherein the hydrocarbon compound is either iodobenzene or bromotoluene.

(6) (1)から(5)のいずれかに記載の樹脂用X線造影剤を、樹脂成形体に浸透させ、2以上の浸透時間の条件で撮影された、前記樹脂成形体の断面に対応するX線透過画像から、前記樹脂用X線造影剤が浸透する方向の深さ毎の浸透速度を導出し、前記浸透速度の変化に基づいて前記樹脂成形体の内部構造の変化を検出する構造変化検出方法。   (6) The X-ray contrast agent for resin according to any one of (1) to (5) is permeated into a resin molded body, and the cross section of the resin molded body is photographed under conditions of two or more penetration times. A penetration rate for each depth in the direction in which the resin X-ray contrast agent penetrates is derived from the corresponding X-ray transmission image, and a change in the internal structure of the resin molded body is detected based on the change in the penetration rate. Structural change detection method.

(7) X線透過画像がX線CT画像である(6)に記載の構造変化検出方法。   (7) The structural change detection method according to (6), wherein the X-ray transmission image is an X-ray CT image.

(8) 前記樹脂成形体は、結晶性熱可塑性樹脂から構成される(6)又は(7)に記載の構造変化検出方法。   (8) The structural change detection method according to (6) or (7), wherein the resin molded body is made of a crystalline thermoplastic resin.

(9) (1)から(5)のいずれかに記載の樹脂用X線造影剤を、樹脂成形体に浸透させ、2以上の浸透時間の条件で撮影された、前記樹脂成形体の断面に対応するX線透過画像から、前記樹脂用X線造影剤が浸透する方向の深さ毎の浸透速度を導出し、前記浸透速度毎に、前記樹脂成形体の内部構造に関する情報を分析することで、前記浸透速度と前記内部構造との関係を導出し、該関係を導出するために使用した樹脂用X線造影剤を、前記樹脂成形体を構成する樹脂と同様の樹脂から構成される分析用樹脂成形体に浸透させ、2以上の浸透時間の条件で撮影された、前記分析用樹脂成形体のX線透過画像から、前記樹脂用X線造影剤が浸透する方向の深さ毎の浸透速度を導出し、該浸透速度と前記関係とに基づいて、前記分析用樹脂成形体の内部構造を決定する内部構造決定方法。   (9) The X-ray contrast agent for resin according to any one of (1) to (5) is permeated into the resin molded body, and the cross section of the resin molded body is photographed under conditions of two or more penetration times. By deriving the penetration rate for each depth in the direction in which the X-ray contrast agent for resin penetrates from the corresponding X-ray transmission image, and analyzing the information on the internal structure of the resin molded body for each penetration rate The X-ray contrast agent for resin used for deriving the relationship between the permeation rate and the internal structure and analyzing the X-ray contrast agent used for deriving the relationship is composed of the same resin as that constituting the resin molded body. Permeation speed per depth in the direction in which the X-ray contrast agent for resin penetrates from the X-ray transmission image of the resin molding for analysis, which was infiltrated into the resin molding and photographed under conditions of two or more penetration times And the analytical resin composition based on the permeation rate and the relationship. Internal structure determination method of determining the internal structure of the body.

(10) X線透過画像がX線CT画像である(9)に記載の内部構造決定方法。   (10) The internal structure determination method according to (9), wherein the X-ray transmission image is an X-ray CT image.

(11) 前記樹脂成形体は結晶性熱可塑性樹脂から構成され、前記内部構造に関する情報は、前記深さ毎の、前記分析用樹脂成形体の結晶化度又は前記分析用樹脂成形体の配向度である(10)に記載の内部構造決定方法。   (11) The resin molded body is composed of a crystalline thermoplastic resin, and the information on the internal structure is the degree of crystallization of the analytical resin molded body or the orientation degree of the analytical resin molded body for each depth. The internal structure determination method according to (10).

本発明の樹脂用X線造影剤を用いれば、樹脂用X線造影剤の樹脂成形体への浸透速度の変化から樹脂成形体の内部構造の変化を容易に検出することができる。また、予め上記浸透速度と樹脂成形体内部の構造との関係を明らかにしておくことで、樹脂成形体の内部構造を容易に確認することができる。   If the X-ray contrast agent for resin of this invention is used, the change of the internal structure of a resin molding can be easily detected from the change of the penetration speed to the resin molding of the X-ray contrast agent for resin. Moreover, the internal structure of the resin molded body can be easily confirmed by clarifying the relationship between the penetration rate and the structure inside the resin molded body in advance.

図1は、X線CT装置の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of an X-ray CT apparatus. 図2は、浸透時間と浸透距離との関係を示すX線CT画像の例を示す模式図である。FIG. 2 is a schematic diagram showing an example of an X-ray CT image showing the relationship between the penetration time and the penetration distance. 図3は、浸透速度と浸透距離との関係を示す図である。FIG. 3 is a diagram showing the relationship between the penetration speed and the penetration distance. 図4は、内部構造に関する情報と浸透速度との関係を示す図である。FIG. 4 is a diagram showing the relationship between the information on the internal structure and the penetration rate. 図5は、実施例、比較例で使用したサンプルの形状を示す図である。FIG. 5 is a diagram showing the shapes of samples used in Examples and Comparative Examples. 図6は、初期重量を100%としたときの増加重量(%)と、サンプルを金属製耐圧容器に投入してからの時間との関係を示す図である。FIG. 6 is a diagram showing the relationship between the increased weight (%) when the initial weight is 100% and the time after the sample is put into the metal pressure vessel. 図7は、図6の結果を得るために採用した評価条件とは異なる条件で行った場合の、初期重量を100%としたときの増加重量(%)と、サンプルを金属製耐圧容器に投入してからの時間との関係を示す図である。FIG. 7 shows an increase in weight (%) when the initial weight is 100% and the sample is put into a metal pressure vessel when the evaluation is performed under conditions different from the evaluation conditions adopted to obtain the result of FIG. It is a figure which shows the relationship with time since then. 図8(a)は、図6及び7の結果を得るために採用した評価条件とは異なる条件で行った場合の、初期重量を100%としたときの増加重量(%)と、サンプルを金属製耐圧容器に投入してからの時間との関係を示す図である。図8(b)は、X線透過画像から求めた浸透距離と上記時間との関係を示す図である。FIG. 8 (a) shows an increase in weight (%) when the initial weight is 100% when the evaluation is performed under conditions different from the evaluation conditions employed to obtain the results of FIGS. It is a figure which shows the relationship with the time after throwing into a pressure-resistant container. FIG. 8B is a diagram showing the relationship between the penetration distance obtained from the X-ray transmission image and the above time. 図9(a)は金型温度が60℃の条件で成形した樹脂成形体を用いた場合の、FT−IRスペクトルのピーク強度比と測定箇所の深さとの関係を示す図であり、図9(b)は金型温度が140℃の条件で成形した樹脂成形体を用いた場合の、FT−IRスペクトルのピーク強度比と測定箇所の深さとの関係を示す図である。FIG. 9 (a) is a diagram showing the relationship between the peak intensity ratio of the FT-IR spectrum and the depth of the measurement location when a resin molded body molded at a mold temperature of 60 ° C. is used. (B) is a figure which shows the relationship between the peak intensity ratio of a FT-IR spectrum, and the depth of a measurement location at the time of using the resin molded object shape | molded on the conditions whose mold temperature is 140 degreeC.

以下、本発明の実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described in detail. In addition, this invention is not limited to the following embodiment.

<樹脂用X線造影剤>
樹脂用X線造影剤は、熱可塑性樹脂の質量吸収係数よりも高い質量吸収係数を有する炭化水素系化合物である。樹脂用X線造影剤は樹脂成形体に浸透する必要があるため、液体又は気体である。
<X-ray contrast agent for resin>
The X-ray contrast agent for resin is a hydrocarbon compound having a mass absorption coefficient higher than that of the thermoplastic resin. Since the X-ray contrast agent for resin needs to penetrate into the resin molding, it is liquid or gas.

熱可塑性樹脂は、炭素、酸素を含み、樹脂の種類によっては酸素、硫黄等のヘテロ原子を含む。「熱可塑性樹脂の質量吸収係数よりも高い質量吸収係数」とは、熱可塑性樹脂に含まれる原子の中で最も質量吸収係数の高い原子の持つ質量吸収係数よりも高い質量吸収係数を持つ原子を含む炭化水素系化合物を指す。   The thermoplastic resin contains carbon and oxygen, and depending on the type of resin, it contains heteroatoms such as oxygen and sulfur. “A mass absorption coefficient higher than the mass absorption coefficient of a thermoplastic resin” means an atom having a mass absorption coefficient higher than the mass absorption coefficient of the atom having the highest mass absorption coefficient among the atoms contained in the thermoplastic resin. It refers to a hydrocarbon-based compound.

樹脂用X線造影剤としては、例えば、ハロゲン原子が導入された炭化水素系化合物や有機金属化合物を使用することができる。本発明においては、ハロゲン原子が導入された炭化水素系化合物の使用が樹脂に浸透しやすく、質量吸収係数が高いという理由で好ましい。   As the X-ray contrast agent for resin, for example, a hydrocarbon compound or an organometallic compound into which a halogen atom is introduced can be used. In the present invention, the use of a hydrocarbon-based compound into which a halogen atom has been introduced is preferable because it easily penetrates into the resin and has a high mass absorption coefficient.

炭化水素系化合物に導入されるハロゲン原子は、特に限定されず、フッ素、塩素、臭素、ヨウ素のいずれでもよい。本発明においては、比較的高温までの広い温度範囲で液体状態であるため試験が行いやすいという理由から、臭素やヨウ素が導入された炭化水素系化合物の使用が好ましい。特に、ヨウ素は、質量吸収係数も非常に大きいため、特に好ましい。なお、炭化水素系化合物には、複数種類のハロゲン原子が導入されていてもよい。   The halogen atom introduced into the hydrocarbon compound is not particularly limited, and may be any of fluorine, chlorine, bromine and iodine. In the present invention, it is preferable to use a hydrocarbon-based compound into which bromine or iodine has been introduced because it is in a liquid state in a wide temperature range up to a relatively high temperature and therefore is easily tested. In particular, iodine is particularly preferable because it has a very large mass absorption coefficient. A plurality of types of halogen atoms may be introduced into the hydrocarbon compound.

なお、炭化水素系化合物には、本発明の効果を害さない範囲で、ハロゲン原子以外の官能基が導入されていてもよい。   In the hydrocarbon compound, a functional group other than a halogen atom may be introduced as long as the effects of the present invention are not impaired.

ハロゲン原子が導入された炭化水素系化合物は、特に限定されず、例えば、ハロゲン原子が導入された芳香族炭化水素系化合物、ハロゲン原子が導入された脂肪族炭化水素系化合物のいずれも使用可能である。   The hydrocarbon compound into which a halogen atom is introduced is not particularly limited, and for example, either an aromatic hydrocarbon compound into which a halogen atom is introduced or an aliphatic hydrocarbon compound into which a halogen atom is introduced can be used. is there.

芳香族炭化水素系化合物は、芳香族炭化水素系化合物、芳香族複素環化合物のいずれであってもよい。また、芳香族炭化水素系化合物は、単環であっても多環であってもよい。   The aromatic hydrocarbon compound may be either an aromatic hydrocarbon compound or an aromatic heterocyclic compound. In addition, the aromatic hydrocarbon compound may be monocyclic or polycyclic.

本発明において、ハロゲン原子が導入された芳香族炭化水素系化合物としては、入手しやすく樹脂への浸透速度の変化を観察しやすいという理由で、ヨードベンゼン、ブロモトルエン等の使用が好ましい。   In the present invention, as an aromatic hydrocarbon compound into which a halogen atom is introduced, iodobenzene, bromotoluene, and the like are preferable because they are easily available and it is easy to observe changes in the penetration rate into the resin.

脂肪族炭化水素系化合物は、鎖式炭化水素系化合物、脂環式炭化水素系化合物のいずれであってもよい。また、鎖式炭化水素系化合物は、直鎖状であっても、分枝鎖状であってもよい。   The aliphatic hydrocarbon compound may be either a chain hydrocarbon compound or an alicyclic hydrocarbon compound. The chain hydrocarbon-based compound may be linear or branched.

樹脂用X線造影剤は、樹脂成形体に浸透する必要があるため、通常、液体状又は気体状である。この浸透は、絡み合う高分子の分子鎖の隙間に樹脂用X線造影剤が入り込むことで生じる。したがって、上記隙間が小さければ、小さな炭化水素系化合物から構成される樹脂用X線造影剤を使用することが好ましく、隙間が大きければやや大きい炭化水素系化合物から構成される樹脂用X線造影剤を使用することもできる。このように、上記浸透のしやすさは、樹脂成形体を構成する熱可塑性樹脂の種類、樹脂用X線造影剤の分子量に依存すると考えられる。   Since the X-ray contrast agent for resin needs to permeate the resin molded body, it is usually liquid or gaseous. This permeation occurs when the resin X-ray contrast medium enters the gap between the entangled polymer molecular chains. Accordingly, if the gap is small, it is preferable to use an X-ray contrast agent for resin composed of a small hydrocarbon compound, and if the gap is large, an X-ray contrast agent for resin composed of a slightly large hydrocarbon compound. Can also be used. Thus, the ease of penetration is considered to depend on the type of thermoplastic resin constituting the resin molding and the molecular weight of the X-ray contrast agent for resin.

したがって、例えば、樹脂用X線造影剤の分子量が100以上400以下の範囲を目安に、樹脂成形体に浸透しやすいものを適宜選択すればよい。   Therefore, for example, a resin X-ray contrast agent having a molecular weight in the range of 100 to 400 can be selected as appropriate so that it can easily penetrate into the resin molding.

<構造変化検出方法>
本発明の構造変化検出方法は、以下の(a)〜(c)の工程を有する。
(a)上記の樹脂用X線造影剤を、樹脂成形体に浸透させる工程、
(b)2以上の浸透時間の条件で撮影された、上記樹脂成形体の断面に対応するX線透過画像から、上記樹脂用X線造影剤が浸透する方向の深さ毎の浸透速度を導出する工程、
(c)上記浸透速度の変化に基づいて上記樹脂成形体の内部構造の変化を検出する工程。
<Structural change detection method>
The structural change detection method of the present invention includes the following steps (a) to (c).
(A) a step of infiltrating the resin molded body with the X-ray contrast agent for resin,
(B) From the X-ray transmission image corresponding to the cross section of the resin molded body, taken under the condition of two or more penetration times, the penetration speed for each depth in the direction in which the resin X-ray contrast agent penetrates is derived. The process of
(C) The process of detecting the change of the internal structure of the said resin molding based on the change of the said penetration rate.

本発明の方法を適用する対象となる樹脂成形体は、特に、熱可塑性樹脂を含む樹脂組成物から構成されることが好ましい。熱可塑性樹脂は、特に限定されず、ポリオレフィン樹脂、ポリエステル樹脂、ポリアセタール樹脂、液晶性樹脂、ポリアリーレンサルファイド樹脂等を例示することができる。   The resin molded body to which the method of the present invention is applied is particularly preferably composed of a resin composition containing a thermoplastic resin. The thermoplastic resin is not particularly limited, and examples thereof include polyolefin resins, polyester resins, polyacetal resins, liquid crystalline resins, polyarylene sulfide resins, and the like.

樹脂組成物は、複数の熱可塑性樹脂を含んでもよいし、充填剤、酸化防止剤、安定剤、顔料等の一般的な添加剤を含んでもよい。ただし、ガラス繊維、炭素繊維、ガラスフレーク等の浸透の妨げになるものを含む場合には、浸透しやすい樹脂用X線造影剤を選択することが好ましい。   The resin composition may contain a plurality of thermoplastic resins, and may contain general additives such as a filler, an antioxidant, a stabilizer, and a pigment. However, in the case where a glass fiber, carbon fiber, glass flake or the like that impedes permeation is included, it is preferable to select an X-ray contrast agent for resin that easily permeates.

樹脂成形体は、上記の樹脂組成物を従来公知の方法で成形することで製造することができる。例えば、射出成形法、押出成形法等を挙げることができる。また、樹脂成形体の形状は特に限定されない。   The resin molding can be manufactured by molding the above resin composition by a conventionally known method. For example, an injection molding method, an extrusion molding method, etc. can be mentioned. Moreover, the shape of the resin molding is not particularly limited.

以下、直方体状の樹脂成形体を用いる場合を例に、本発明の構造変化検出方法について説明する。   Hereinafter, the structure change detection method of the present invention will be described by taking a case of using a rectangular parallelepiped resin molded body as an example.

[(a)工程]
樹脂成形体に樹脂用X線造影剤を浸透させる。浸透させる方法は特に限定されないが、例えば、X線造影剤中に樹脂成形体を浸漬させることで、樹脂成形体にX線造影剤を浸透させることができる。浸透速度は特に限定されないが、浸透速度の変化を観察しやすい範囲に調整することが好ましい。また、上記の浸透速度は、圧力、温度、造影剤の選択等により調整することができる。
[Step (a)]
An X-ray contrast agent for resin is infiltrated into the resin molding. The method for infiltration is not particularly limited. For example, the resin molded body can be penetrated by immersing the resin molded body in the X-ray contrast medium. The permeation rate is not particularly limited, but it is preferable to adjust the permeation rate so that the change in the permeation rate is easily observed. The penetration rate can be adjusted by selecting pressure, temperature, contrast agent, and the like.

樹脂成形体の内部に樹脂用X線造影剤が充分に浸透していることは重量変化等で確認することができる。   It can be confirmed by a change in weight or the like that the X-ray contrast medium for resin sufficiently penetrates into the resin molded body.

[(b)工程]
先ず、樹脂用X線造影剤の樹脂成形体への浸透時間がt1になったときに、樹脂成形体のX線透過画像を取得する。
[Step (b)]
First, when the penetration time of the resin X-ray contrast agent into the resin molded body reaches t1, an X-ray transmission image of the resin molded body is acquired.

X線透過画像の測定は、従来公知のX線回折装置を用いて行うことができる。具体的には、先ず、その樹脂成形体にX線を照射する。次いで、X線照射に伴う樹脂成形体のX線透過量をX線検出器で検出する。最後に、検出されたX線透過量に基づいて画像処理を行い、X線透過画像を得る。   The measurement of an X-ray transmission image can be performed using a conventionally known X-ray diffractometer. Specifically, first, the resin molded body is irradiated with X-rays. Next, the X-ray transmission amount of the resin molded body accompanying X-ray irradiation is detected by an X-ray detector. Finally, image processing is performed based on the detected X-ray transmission amount to obtain an X-ray transmission image.

上記の通り、X線透過画像を撮影する方法は特に限定されないが、本発明においては、X線CT装置によりX線CT画像を得る方法が好ましい。そこで、X線CT装置を用いる場合を例に、X線透過画像の取得方法についてさらに説明する。   As described above, a method for capturing an X-ray transmission image is not particularly limited, but in the present invention, a method for obtaining an X-ray CT image by an X-ray CT apparatus is preferable. Therefore, an X-ray transmission image acquisition method will be further described by taking an example of using an X-ray CT apparatus.

図1にはX線CT装置の一例を示す。X線CT装置1は、樹脂成形体2にX線を照射するためのX線照射部11と、樹脂成形体2を透過したX線を投影データとして検出するX線検出部12と、樹脂成形体2を保持する試料台13と、試料台13を上下移動(図1中の矢印方向の移動)及び回転移動(図1中の白抜き矢印方向の移動)させるための回転駆動部14と、複数の角度方向の投影データをX線CT画像として再構成する画像処理部15とを備える。   FIG. 1 shows an example of an X-ray CT apparatus. The X-ray CT apparatus 1 includes an X-ray irradiation unit 11 for irradiating the resin molded body 2 with X-rays, an X-ray detection unit 12 that detects X-rays transmitted through the resin molded body 2 as projection data, and resin molding. A sample stage 13 for holding the body 2, a rotation drive unit 14 for moving the sample stage 13 up and down (moving in the direction of the arrow in FIG. 1) and rotating (moving in the direction of the white arrow in FIG. 1); An image processing unit 15 that reconstructs projection data in a plurality of angular directions as an X-ray CT image.

X線照射部11は、樹脂成形体2にX線を照射させるための部位である。X線を照射できるものであれば特に限定されず、従来公知のX線照射装置を使用することができる。例えば、X線管等が挙げられる。X線照射部11では、樹脂成形体2に照射するX線の照射条件を調整することができる。X線の照射条件としては、例えば、管電圧、管電流、X線照射時間等がある。本発明では、X線の照射条件は特に限定されず、予測の対象となる樹脂成形体の形状、含まれる樹脂の種類等に応じて適宜変更できる。   The X-ray irradiation unit 11 is a part for irradiating the resin molded body 2 with X-rays. It will not specifically limit if it can irradiate X-ray | X_line, A conventionally well-known X-ray irradiation apparatus can be used. For example, an X-ray tube etc. are mentioned. In the X-ray irradiation part 11, the irradiation conditions of the X-ray irradiated to the resin molding 2 can be adjusted. Examples of X-ray irradiation conditions include tube voltage, tube current, and X-ray irradiation time. In the present invention, the X-ray irradiation conditions are not particularly limited, and can be appropriately changed according to the shape of the resin molding to be predicted, the type of resin contained, and the like.

X線検出部12は、樹脂成形体2を透過したX線を電気信号に変換した後、投影データとして検出する部位である。X線検出部12は、樹脂成形体2を間に挟んでX線照射部11に対向するように配置される。   The X-ray detection unit 12 is a part that detects X-rays transmitted through the resin molded body 2 as projection data after being converted into electric signals. The X-ray detection unit 12 is disposed so as to face the X-ray irradiation unit 11 with the resin molded body 2 interposed therebetween.

試料台13は、樹脂成形体2にX線が照射されるように樹脂成形体2を保持するための部位である。試料台はX線照射部11とX線検出部12との間に配置される。   The sample stage 13 is a part for holding the resin molded body 2 so that the resin molded body 2 is irradiated with X-rays. The sample stage is disposed between the X-ray irradiation unit 11 and the X-ray detection unit 12.

回転駆動部14は、試料台13を上下移動及び回転移動させて、樹脂成形体2に複数の角度方向からX線を照射させるための部位である。回転駆動部14は、試料台13に接続されている。回転駆動部14により、樹脂成形体2内の様々な位置に対して複数の方向からX線を照射できる。その結果、様々な角度から樹脂成形体2を透過したX線について、それぞれの投影データを得ることができる。   The rotation drive unit 14 is a part for moving the sample stage 13 up and down and rotating it so that the resin molded body 2 is irradiated with X-rays from a plurality of angular directions. The rotation drive unit 14 is connected to the sample stage 13. The rotational drive unit 14 can irradiate various positions in the resin molded body 2 with X-rays from a plurality of directions. As a result, projection data can be obtained for X-rays transmitted through the resin molded body 2 from various angles.

画像処理部15は、複数の角度方向の投影データをX線CT画像として再構成する部位である。画像処理部15はX線検出部12に接続されている。X線検出部12で検出された投影データが画像処理部15に送られ、従来公知の画像処理を行うことでX線CT画像が得られる。従来公知の画像処理方法とは、例えば、各方向の投影データを一次元フーリエ変換し、これらを合成して二次元フーリエ変換像を作成してこれを逆フーリエ変換して再構成画像を得る方法が挙げられる。   The image processing unit 15 is a part that reconstructs projection data in a plurality of angular directions as an X-ray CT image. The image processing unit 15 is connected to the X-ray detection unit 12. The projection data detected by the X-ray detection unit 12 is sent to the image processing unit 15, and an X-ray CT image is obtained by performing conventionally known image processing. The conventionally known image processing method is, for example, a method in which projection data in each direction is subjected to one-dimensional Fourier transform, these are combined to create a two-dimensional Fourier transform image, and this is subjected to inverse Fourier transform to obtain a reconstructed image. Is mentioned.

次いで、X線CT画像に基づいて、浸透深さ毎の浸透速度を、例えば以下の手順で導出する。図2(a)には、X線CT画像の一例を示す。実線で描かれた長方形が樹脂成形体の断面の輪郭である。点線は、樹脂成形体の左側の面から浸透した樹脂用X線造影剤が、浸透時間t1の時間で浸透した位置を表す。ここで樹脂用X線造影剤が浸透する方向は、上記左側の面(X線造影剤が浸透する面)に対して垂直な方向(x方向)である。このため、浸透時間t1での浸透距離L1は、図2(a)に示す通り、樹脂成形体の左側の面を表す実線と点線との間の距離になる。L1をt1で割ることで、浸透距離L1の深さまでの平均の浸透速度v1を導出できる。この浸透速度v1を浸透距離L1の深さでの浸透速度とする。なお、浸透速度v1を、浸透距離L1の中間であるL1/2の位置での浸透速度とする等の他の定義であってもよい。もしくは、浸透速度v1はフィックの拡散則に則り、L1を(t1)1/2で割ったものであってもよい。 Next, based on the X-ray CT image, the penetration speed for each penetration depth is derived, for example, by the following procedure. FIG. 2A shows an example of an X-ray CT image. The rectangle drawn with the solid line is the outline of the cross section of the resin molding. The dotted line represents the position where the X-ray contrast agent for resin that has permeated from the left side surface of the resin molded body has permeated for the time of permeation time t1. Here, the direction in which the X-ray contrast agent for resin penetrates is a direction (x direction) perpendicular to the left side surface (surface through which the X-ray contrast agent penetrates). Therefore, the permeation distance L1 at the permeation time t1 is a distance between a solid line and a dotted line representing the left surface of the resin molded body, as shown in FIG. By dividing L1 by t1, the average penetration speed v1 up to the depth of the penetration distance L1 can be derived. This penetration speed v1 is defined as a penetration speed at a depth of the penetration distance L1. Other definitions such as the penetration speed v1 being the penetration speed at the position of L1 / 2 which is the middle of the penetration distance L1 may be used. Alternatively, the permeation speed v1 may be obtained by dividing L1 by (t1) 1/2 according to Fick's diffusion law.

浸透時間t2(t2>t1)の場合についても同様にX線CT画像を取得し、浸透距離L2を導出し、浸透速度v2((L2−L1)/t2)を導出する。さらに、浸透時間t3(t3>t2)、浸透時間t4(t4>t3)の場合についても同様にしてX線CT画像を取得し、浸透距離L3及び浸透速度v3、浸透距離L4及び浸透速度v4を導出する。L1、L2、L3、L4を併せて図1(b)に示した。   Similarly, in the case of the penetration time t2 (t2> t1), an X-ray CT image is acquired, the penetration distance L2 is derived, and the penetration speed v2 ((L2-L1) / t2) is derived. Further, X-ray CT images are obtained in the same manner for the infiltration time t3 (t3> t2) and the infiltration time t4 (t4> t3), and the infiltration distance L3, the infiltration speed v3, the infiltration distance L4, and the infiltration speed v4 are obtained. To derive. L1, L2, L3, and L4 are shown together in FIG.

[(c)工程]
浸透速度と浸透距離との関係が、例えば、図3のようになったとする。図3からV1とV2との差が小さく、V2とV3との差が大きく、V3とV4との差が小さいことが確認できる。この浸透速度の相違から、L1とL2との間、L3とL4との間には小さな構造変化があり、L2とL3との間に大きな構造変化があることが確認できる。
[(C) Step]
Assume that the relationship between the penetration speed and the penetration distance is as shown in FIG. 3, for example. From FIG. 3, it can be confirmed that the difference between V1 and V2 is small, the difference between V2 and V3 is large, and the difference between V3 and V4 is small. From this difference in permeation rate, it can be confirmed that there is a small structural change between L1 and L2, between L3 and L4, and a large structural change between L2 and L3.

本発明の構造変化検出方法によれば、樹脂成形体内部の構造変化を、樹脂成形体を破壊することなく確認することができる。なお、上記の説明では4つの浸透時間におけるX線CT画像を取得する場合について説明したが、二点のデータ(例えば、浸透時間t2、t3のX線CT画像)から構造変化を検出できるため、最低2つの浸透時間におけるX線CT画像を確認すれば、構造変化を検出することができる。   According to the structural change detection method of the present invention, the structural change inside the resin molded body can be confirmed without destroying the resin molded body. In the above description, the case where X-ray CT images at four penetration times are acquired has been described. However, since structural changes can be detected from two points of data (for example, X-ray CT images at penetration times t2 and t3), A structural change can be detected by checking X-ray CT images for at least two penetration times.

<内部構造決定方法>
本発明の内部構造決定方法は、以下の(A)〜(F)の工程を有する。
(A)上記の樹脂用X線造影剤を、樹脂成形体に浸透させる工程、
(B)2以上の浸透時間の条件で撮影された、上記樹脂成形体の断面に対応するX線透過画像から、上記樹脂用X線造影剤が浸透する方向の深さ毎の浸透速度を導出する工程、
(C)上記浸透速度毎に、上記樹脂成形体の内部構造に関する情報を分析することで、上記浸透速度と上記内部構造との関係を導出する工程、
(D)該関係を導出するために使用した樹脂用X線造影剤を、上記樹脂成形体を構成する樹脂と同様の樹脂から構成される分析用樹脂成形体に浸透させる工程、
(E)2以上の浸透時間の条件で撮影された、上記分析用樹脂成形体のX線透過画像から、上記樹脂用X線造影剤が浸透する方向の深さ毎の浸透速度を導出する工程、
(F)該浸透速度と上記関係とに基づいて、上記分析用樹脂成形体の内部構造を決定する工程。
<Internal structure determination method>
The internal structure determination method of the present invention includes the following steps (A) to (F).
(A) The above-mentioned resin X-ray contrast agent is infiltrated into the resin molded body,
(B) From the X-ray transmission image corresponding to the cross section of the resin molded body, which is taken under the conditions of two or more penetration times, the penetration speed for each depth in the direction in which the resin X-ray contrast agent penetrates is derived. The process of
(C) Deriving the relationship between the penetration rate and the internal structure by analyzing information on the internal structure of the resin molded body for each penetration rate;
(D) a step of infiltrating the X-ray contrast agent for resin used for deriving the relationship into an analytical resin molded body composed of a resin similar to the resin constituting the resin molded body,
(E) A step of deriving a permeation rate for each depth in the direction in which the X-ray contrast agent for resin penetrates, from an X-ray transmission image of the analysis resin molded article taken under conditions of two or more penetration times. ,
(F) A step of determining the internal structure of the analytical resin molding based on the permeation rate and the relationship.

内部構造決定方法に用いられる樹脂成形体は、構造変化検出方法で説明した樹脂成形体と同様であるため説明を省略する。   Since the resin molded body used for the internal structure determination method is the same as the resin molded body described in the structure change detection method, description thereof is omitted.

[(A)工程]
上記の樹脂用X線造影剤を樹脂成形体に浸透させる工程については、上記構造変化検出方法の(a)工程と同様の方法で行うことができるため説明を省略する。
[Step (A)]
The step of allowing the resin X-ray contrast agent to penetrate into the resin molded body can be performed by the same method as the step (a) of the structural change detection method, and thus the description thereof is omitted.

[(B)工程]
2以上の浸透時間の条件で撮影された、上記樹脂成形体の断面に対応するX線透過画像から、前記樹脂用X線造影剤が浸透する方向の深さ毎の浸透速度を導出する工程についても、構造変化検出方法の(b)工程と同様の方法で行うことができるため説明を省略する。
[Step (B)]
Deriving the penetration rate for each depth in the direction in which the X-ray contrast agent for resin penetrates from an X-ray transmission image corresponding to a cross section of the resin molded body, taken under conditions of two or more penetration times Since it can be performed by the same method as the step (b) of the structural change detection method, the description is omitted.

[(C)工程]
図3に示すような、浸透時間t1のときの浸透距離がL1であり、浸透距離L1における浸透速度がv1、浸透時間t2のときの浸透距離がL2であり、浸透距離L2における浸透速度がv2、浸透時間t3のときの浸透距離がL3であり、浸透距離L3における浸透速度がv3、浸透時間t4のときの浸透距離がL4であり、浸透距離L4における浸透速度がv4、の結果が(A)工程〜(B)工程で得られたとして(C)工程について説明する。
[Step (C)]
As shown in FIG. 3, the penetration distance at the penetration time t1 is L1, the penetration speed at the penetration distance L1 is v1, the penetration distance at the penetration time t2 is L2, and the penetration speed at the penetration distance L2 is v2. The penetration distance at the penetration time t3 is L3, the penetration speed at the penetration distance L3 is v3, the penetration distance at the penetration time t4 is L4, and the penetration speed at the penetration distance L4 is v4. Step (C) will be described as being obtained in steps (B) to (B).

上記浸透速度毎に、上記樹脂成形体の内部構造に関する情報を分析する。具体的には、各浸透距離L1〜L4における樹脂成形体の内部構造に関する情報を分析する。   Information on the internal structure of the resin molded body is analyzed for each penetration rate. Specifically, information on the internal structure of the resin molded body at each of the penetration distances L1 to L4 is analyzed.

樹脂成形体の内部構造に関する情報とは、例えば、密度、結晶化度、配向等に関する情報である。内部構造が異なれば、浸透速度が異なるため、上記情報と上記浸透速度との相関関係を予め導出しておけば、浸透速度に基づいて、樹脂成形体の内部構造を決定することができる。したがって、樹脂成形体の内部構造に関する情報と、浸透速度とは、一対一の一義的対応関係があることが好ましい。なお、一対一の一義的対応関係が無い場合には、浸透速度から一つの情報に決めることができないが、他の物性情報を考慮する等して決定できる。なお、密度、結晶化度、配向等の情報は、浸透速度と一対一の一義的対応関係があるといえる。   The information on the internal structure of the resin molded body is information on density, crystallinity, orientation, and the like, for example. If the internal structure is different, the permeation rate is different. Therefore, if the correlation between the information and the permeation rate is derived in advance, the internal structure of the resin molded body can be determined based on the permeation rate. Therefore, it is preferable that the information regarding the internal structure of the resin molded body and the penetration rate have a one-to-one unique correspondence. In addition, when there is no one-to-one unambiguous correspondence, it is not possible to determine one piece of information from the penetration rate, but it is possible to make a decision by considering other physical property information. Note that information such as density, crystallinity, and orientation has a one-to-one unique correspondence with permeation rate.

上記の樹脂成形体の内部構造に関する情報は、各情報の種類に応じて、従来公知の方法で測定することができる。ここで、L1での上記情報がI1、L2での上記情報がI2、L3での上記情報がI3、L4での上記情報がI4であったとする。   Information on the internal structure of the resin molded body can be measured by a conventionally known method according to the type of each information. Here, it is assumed that the information at L1 is I1, the information at L2 is I2, the information at L3 is I3, and the information at L4 is I4.

例えば、密度、結晶化度が高いほど、また、配向が大きいほど、高分子が密にパッキングされることになるため、樹脂用X線造影剤の樹脂成形体への浸透速度は遅くなる傾向にある。例えば、図4に示すような関係を導出することができる。図4の4つのデータに基づいて、I=f(v)の近似式を導出することが好ましい。なお、Iは樹脂成形体の内部構造に関する情報を表し、vは上記浸透速度を表す。   For example, the higher the density and crystallinity, and the higher the orientation, the denser the polymer is packed, so the penetration rate of the resin X-ray contrast agent into the resin molding tends to be slower. is there. For example, a relationship as shown in FIG. 4 can be derived. It is preferable to derive an approximate expression of I = f (v) based on the four data in FIG. In addition, I represents the information regarding the internal structure of the resin molding, and v represents the penetration rate.

[(D)工程]
(D)工程では、分析対象となる分析用樹脂成形体に樹脂用X線造影剤を浸透させる。分析用樹脂成形体は、(A)工程で用いた樹脂成形体を構成する樹脂組成物と同様の樹脂組成物から構成される。また、樹脂用X線造影剤も(A)工程で使用したものと同様のものを使用する。具体的な浸透方法は(A)と同様である。
[Step (D)]
In step (D), an X-ray contrast agent for resin is infiltrated into the analysis resin molding to be analyzed. The resin molding for analysis is comprised from the resin composition similar to the resin composition which comprises the resin molding used at the (A) process. In addition, the same X-ray contrast agent for resin as that used in the step (A) is used. The specific penetration method is the same as (A).

[(E)工程]
(E)工程では、(B)工程と同様に、複数の浸透時間の条件での、X線透過画像から、深さ毎の浸透速度を導出する。
[Step (E)]
In the step (E), as in the step (B), the penetration rate for each depth is derived from the X-ray transmission image under a plurality of penetration time conditions.

[(F)工程]
(F)工程では、(E)工程で導出した浸透速度と、(C)工程で導出した関係であるI=f(v)とに基づいて、分析用樹脂成形体の内部構造を決定する。具体的には、(E)工程で導出した浸透速度を、I=f(v)に代入してIを求めればよい。
[Step (F)]
In step (F), the internal structure of the resin molding for analysis is determined based on the penetration rate derived in step (E) and I = f (v), which is the relationship derived in step (C). Specifically, I may be obtained by substituting the permeation rate derived in step (E) into I = f (v).

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

<材料>
樹脂用X線造影剤1:ヨードベンゼン
樹脂用X線造影剤2:ブロモトルエン
樹脂組成物1:ポリアセタール樹脂組成物(ポリプラスチックス社製、「ジュラコン(登録商標)M90−44」)
樹脂組成物2:ガラス繊維を25質量%含むポリアセタール樹脂組成物(ポリプラスチックス社製、「ジュラコン(登録商標)GH−25」)
樹脂組成物3:ポリブチレンテレフタレート樹脂組成物(ウィンテックポリマー社製、「ジュラネックス(登録商標)2002」)
樹脂組成物4:ガラス繊維を30質量%含むポリブチレンテレフタレート樹脂組成物(ウィンテックポリマー社製、「ジュラネックス(登録商標)3300」)
樹脂組成物5:ポリフェニレンサルファイド樹脂組成物(ポリプラスチックス社製、「フォートロン(登録商標)0220A9」)
樹脂組成物6:ガラス繊維を30質量%含むポリフェニレンサルファイド樹脂組成物(ポリプラスチックス社製、「フォートロン(登録商標)1130A1」)
樹脂組成物7:ガラス繊維と無機フィラーを65質量%含むポリフェニレンサルファイド樹脂組成物(ポリプラスチックス社製、「フォートロン(登録商標)6165A61」)
<Material>
X-ray contrast agent for resin 1: X-ray contrast agent for iodobenzene resin 2: Bromotoluene resin composition 1: Polyacetal resin composition (manufactured by Polyplastics, “Duracon (registered trademark) M90-44”)
Resin composition 2: Polyacetal resin composition containing 25% by mass of glass fiber (manufactured by Polyplastics, “Duracon (registered trademark) GH-25”)
Resin composition 3: Polybutylene terephthalate resin composition (Wintech Polymer Co., Ltd., “Duranex (registered trademark) 2002”)
Resin composition 4: Polybutylene terephthalate resin composition containing 30% by mass of glass fiber (manufactured by Wintech Polymer, "Duranex (registered trademark) 3300")
Resin composition 5: Polyphenylene sulfide resin composition (manufactured by Polyplastics, “Fortron (registered trademark) 0220A9”)
Resin composition 6: Polyphenylene sulfide resin composition containing 30% by mass of glass fiber (manufactured by Polyplastics, “Fortron (registered trademark) 1130A1”)
Resin composition 7: Polyphenylene sulfide resin composition containing 65% by mass of glass fiber and inorganic filler (manufactured by Polyplastics, “Fortron (registered trademark) 6165A61”)

<樹脂成形体>
樹脂組成物1〜7のそれぞれを、原料として、樹脂成形体を一般的な条件設定のもと射出成形法で製造した。上記の各樹脂成形体から図5に示すようなサンプル1〜7を切り出した。サンプルの寸法は図5に示す通り13mm×4.5mm×3.2mmである。図5中の「金型接触面」とは射出成形時に金型に接触していた部分を指す。また、「切り出し面」とは、サンプルを切り出すことによって形成された部分を指す。
<Resin molding>
Using each of the resin compositions 1 to 7 as a raw material, a resin molded body was produced by an injection molding method under general condition settings. Samples 1 to 7 as shown in FIG. 5 were cut out from the above resin molded bodies. The sample dimensions are 13 mm × 4.5 mm × 3.2 mm as shown in FIG. The “mold contact surface” in FIG. 5 refers to a portion that has been in contact with the mold at the time of injection molding. In addition, the “cut-out surface” refers to a portion formed by cutting out a sample.

<樹脂用X線造影剤の評価>
サンプル1〜7の初期重量を測定した。初期重量を測定後、サンプル1〜7をヨードベンゼンとともに金属製耐圧容器に入れた。サンプル1〜7を、80℃の金属製耐圧容器に入れた後、一時的に取り出し、サンプルの重量を測定した。初期重量を100%としたときの増加重量(%)と、サンプルを金属製耐圧容器に投入してからの時間との関係を図6に示した。
<Evaluation of X-ray contrast agent for resin>
The initial weight of samples 1-7 was measured. After measuring the initial weight, Samples 1 to 7 were placed in a metal pressure vessel together with iodobenzene. Samples 1 to 7 were placed in a metal pressure vessel at 80 ° C., and then temporarily removed to measure the weight of the sample. FIG. 6 shows the relationship between the increased weight (%) when the initial weight is 100% and the time after the sample is put into the metal pressure vessel.

また、樹脂組成物2、4、6から構成されるサンプル2、4、6を、初期重量測定後、ブロモトルエンとともに70℃の金属製耐圧容器に入れた。その後、一時的にサンプルを金属製耐圧容器から取り出し、重量を測定した。初期重量を100%としたときの増加重量(%)と、サンプルを金属製耐圧容器に投入してからの時間との関係を図7(a)に示した。また、ブロモトルエンをヨードベンゼンに変更して同様の測定を行った。測定結果を図7(b)に示した。   Samples 2, 4, and 6 composed of resin compositions 2, 4, and 6 were placed in a 70 ° C. metal pressure vessel together with bromotoluene after initial weight measurement. Thereafter, the sample was temporarily removed from the metal pressure vessel and the weight was measured. FIG. 7A shows the relationship between the increased weight (%) when the initial weight is 100% and the time after the sample is put into the metal pressure vessel. Further, the same measurement was performed by changing bromotoluene to iodobenzene. The measurement results are shown in FIG.

図6、7から、70℃〜80℃の温度において、上記の種類の樹脂組成物が原料の場合には、ヨードベンゼン、ブロモベンゼンのいずれも、樹脂成形体に浸透することが確認できた。   6 and 7, it was confirmed that at a temperature of 70 ° C. to 80 ° C., when the above-mentioned type of resin composition is a raw material, both iodobenzene and bromobenzene penetrate into the resin molded body.

また、図6からガラス繊維を含むことで、樹脂用X線造影剤が樹脂成形体内に浸透しにくくなることが確認された。   Moreover, it was confirmed from FIG. 6 that the X-ray contrast agent for resin hardly penetrates into the resin molded body by including glass fiber.

また、図6、図7(b)から、温度の条件が異なることで、樹脂用X線造影剤の樹脂成形体への浸透しやすさが異なることが確認された。   Moreover, from FIG. 6, FIG.7 (b), it was confirmed that the ease of osmosis | permeation to the resin molding of the X-ray contrast agent for resin differs by different temperature conditions.

また、図7(a)、(b)の比較から、上記の条件においては、ヨードベンゼンの方がブロモトルエンよりも樹脂成形体に浸透しやすいことが確認された。   Further, from the comparison between FIGS. 7A and 7B, it was confirmed that, under the above-mentioned conditions, iodobenzene penetrates the resin molded body more easily than bromotoluene.

<構造変化の検出>
サンプル6(金型温度140℃)ならびに、金型温度を60℃にして成形したサンプル6’の初期重量を測定した。次いで、サンプルをヨードベンゼンとともに、80℃の金属製耐圧容器に入れた。次いで、3時間、6時間、9時間、12時間で一時的にサンプルを金属製耐圧容器から取り出し、重量測定、X線透過画像の取得を行った。X線透過画像の取得は以下の方法で行った。なお、金型接触面に対して直交する断面のX線透過画像を取得した。
(X線透過画像の取得)
撮影装置には市販のX線CT装置(株式会社 日鉄エレックス製 ELE SCAN mini)を用いた。樹脂試験片をX線CT装置の試料台に乗せ定法により撮影した。
<Detection of structural changes>
The initial weight of sample 6 (mold temperature 140 ° C.) and sample 6 ′ molded at a mold temperature of 60 ° C. were measured. Next, the sample was placed in an 80 ° C. metal pressure vessel together with iodobenzene. Subsequently, the sample was temporarily taken out from the metal pressure vessel at 3 hours, 6 hours, 9 hours, and 12 hours, and weight measurement and X-ray transmission image acquisition were performed. Acquisition of an X-ray transmission image was performed by the following method. In addition, the X-ray transmission image of the cross section orthogonal to a metal mold | die contact surface was acquired.
(Acquisition of X-ray transmission image)
A commercially available X-ray CT apparatus (ELE SCAN mini manufactured by Nippon Steel Elex Co., Ltd.) was used as the imaging apparatus. The resin test piece was placed on a sample stage of an X-ray CT apparatus and photographed by a regular method.

初期重量を100%としたときの増加重量(%)と、サンプルを金属製耐圧容器に投入してからの時間との関係を図8(a)に示した。X線透過画像から求めた浸透距離と上記時間との関係を図8(b)に示した。   FIG. 8A shows the relationship between the increased weight (%) when the initial weight is 100% and the time after the sample is put into the metal pressure vessel. FIG. 8B shows the relationship between the penetration distance obtained from the X-ray transmission image and the above time.

図8(b)から、浸透速度の減少が確認された。したがって、金型接触面から約180μmの深さの間に樹脂成形体の構造変化があることが確認された。   From FIG. 8B, a decrease in the permeation rate was confirmed. Therefore, it was confirmed that there is a structural change of the resin molded body within a depth of about 180 μm from the mold contact surface.

<内部構造の決定>
図8(b)に示す各浸透距離における結晶化度の変化を以下の方法で測定した。
(測定方法)
各サンプルを用いて、各サンプルの表層から20μmの厚みの薄膜をミクロトームで削り出し、透過型FT−IR装置を用いてIRスペクトルを測定した。結晶化度はIRスペクトル中の1074cm−1付近のピーク(非晶成分に由来するピーク)と、1093cm−1付近のピーク(結晶成分に由来するピーク)の強度比(1093/1074)から算出した。金型温度が60℃の条件で成形した樹脂成形体を用いた場合の結果を図9(a)に示し、金型温度が140℃の条件で成形した樹脂成形体を用いた場合の結果を図9(b)に示した。
<Determination of internal structure>
The change in crystallinity at each penetration distance shown in FIG. 8B was measured by the following method.
(Measuring method)
Using each sample, a thin film having a thickness of 20 μm was cut out from the surface layer of each sample with a microtome, and an IR spectrum was measured using a transmission type FT-IR apparatus. Crystallinity peaks around 1074cm -1 in the IR spectrum (peak derived from the amorphous component) was calculated from the intensity ratio of 1093Cm -1 near the peak (peak derived from the crystalline component) (1093/1074) . FIG. 9 (a) shows the result when using a resin molded body molded under the condition that the mold temperature is 60 ° C., and the result when using the resin molded body molded under the condition where the mold temperature is 140 ° C. This is shown in FIG.

図9(a)のFT−IRスペクトルのピーク強度比と測定箇所の深さとの関係から、140μm〜220μmの間で結晶化度が大きく変化していることが確認された。図9(b)のFT−IRスペクトルのピーク強度比と測定箇所の深さとの関係から、結晶化度の変化が見られないことが確認された。図8及び図9の結果から、樹脂用X線造影剤の樹脂成形体への浸透挙動に基づいて、結晶化度を指標として、内部構造の変化を確認したり、内部構造を決定したりできることが確認された。   From the relationship between the peak intensity ratio of the FT-IR spectrum of FIG. 9A and the depth of the measurement site, it was confirmed that the crystallinity greatly changed between 140 μm and 220 μm. From the relationship between the peak intensity ratio of the FT-IR spectrum of FIG. 9B and the depth of the measurement location, it was confirmed that no change in crystallinity was observed. Based on the results of FIGS. 8 and 9, based on the penetration behavior of the resin X-ray contrast agent into the resin molding, it is possible to confirm the change in the internal structure or determine the internal structure using the crystallinity as an index. Was confirmed.

1 X線CT装置
11 X線照射部
12 X線検出部
13 試料台
14 回転駆動部
15 画像処理部
2 樹脂成形体
DESCRIPTION OF SYMBOLS 1 X-ray CT apparatus 11 X-ray irradiation part 12 X-ray detection part 13 Sample stand 14 Rotation drive part 15 Image processing part 2 Resin molding

Claims (11)

樹脂成形体に浸透させて、前記樹脂成形体の内部構造を分析するための樹脂用X線造影剤であって、
前記樹脂成形体を構成する樹脂の質量吸収係数よりも高い質量吸収係数を有する、炭化水素系化合物から構成される樹脂用X線造影剤。
An X-ray contrast agent for resin for infiltrating into a resin molded body and analyzing the internal structure of the resin molded body,
The X-ray contrast agent for resin comprised from the hydrocarbon type compound which has a mass absorption coefficient higher than the mass absorption coefficient of resin which comprises the said resin molding.
前記炭化水素系化合物は、ハロゲン系炭化水素化合物である請求項1に記載の樹脂用X線造影剤。   The X-ray contrast agent for resin according to claim 1, wherein the hydrocarbon compound is a halogenated hydrocarbon compound. 前記炭化水素系化合物は、ハロゲン系芳香族炭化水素化合物である請求項2に記載の樹脂用X線造影剤。   The X-ray contrast agent for resin according to claim 2, wherein the hydrocarbon compound is a halogenated aromatic hydrocarbon compound. 前記炭化水素系化合物は、ヨウ素、臭素のいずれかを含む化合物である請求項3に記載の樹脂用X線造影剤。   The X-ray contrast medium for resin according to claim 3, wherein the hydrocarbon compound is a compound containing either iodine or bromine. 前記炭化水素系化合物は、ヨードベンゼン、ブロモトルエンのいずれかである請求項4に記載の樹脂用X線造影剤。   The X-ray contrast agent for resin according to claim 4, wherein the hydrocarbon compound is either iodobenzene or bromotoluene. 請求項1から5のいずれかに記載の樹脂用X線造影剤を、樹脂成形体に浸透させ、
2以上の浸透時間の条件で撮影された、前記樹脂成形体の断面に対応するX線透過画像から、前記樹脂用X線造影剤が浸透する方向の深さ毎の浸透速度を導出し、
前記浸透速度の変化に基づいて前記樹脂成形体の内部構造の変化を検出する構造変化検出方法。
The resin X-ray contrast agent according to any one of claims 1 to 5 is permeated into a resin molded body,
From the X-ray transmission image corresponding to the cross section of the resin molded body, taken under conditions of two or more penetration times, the penetration speed for each depth in the direction in which the X-ray contrast agent for resin penetrates is derived,
A structure change detection method for detecting a change in an internal structure of the resin molded body based on a change in the penetration rate.
X線透過画像がX線CT画像である請求項6に記載の構造変化検出方法。   The structural change detection method according to claim 6, wherein the X-ray transmission image is an X-ray CT image. 前記樹脂成形体は、結晶性熱可塑性樹脂から構成される請求項6又は7に記載の構造変化検出方法。   The structure change detection method according to claim 6 or 7, wherein the resin molded body is made of a crystalline thermoplastic resin. 請求項1から5のいずれかに記載の樹脂用X線造影剤を、樹脂成形体に浸透させ、
2以上の浸透時間の条件で撮影された、前記樹脂成形体の断面に対応するX線透過画像から、前記樹脂用X線造影剤が浸透する方向の深さ毎の浸透速度を導出し、
前記浸透速度毎に、前記樹脂成形体の内部構造に関する情報を分析することで、前記浸透速度と前記内部構造との関係を導出し、
該関係を導出するために使用した樹脂用X線造影剤を、前記樹脂成形体を構成する樹脂と同様の樹脂から構成される分析用樹脂成形体に浸透させ、
2以上の浸透時間の条件で撮影された、前記分析用樹脂成形体のX線透過画像から、前記樹脂用X線造影剤が浸透する方向の深さ毎の浸透速度を導出し、
該浸透速度と前記関係とに基づいて、前記分析用樹脂成形体の内部構造を決定する内部構造決定方法。
The resin X-ray contrast agent according to any one of claims 1 to 5 is permeated into a resin molded body,
From the X-ray transmission image corresponding to the cross section of the resin molded body, taken under conditions of two or more penetration times, the penetration speed for each depth in the direction in which the X-ray contrast agent for resin penetrates is derived,
By analyzing the information on the internal structure of the resin molded body for each penetration rate, the relationship between the penetration rate and the internal structure is derived,
The resin X-ray contrast agent used for deriving the relationship is infiltrated into an analytical resin molded body composed of the same resin as the resin constituting the resin molded body,
From the X-ray transmission image of the analytical resin molded article taken under the condition of two or more penetration times, the penetration speed for each depth in the direction in which the resin X-ray contrast agent penetrates is derived,
An internal structure determination method for determining an internal structure of the analytical resin molding based on the permeation rate and the relationship.
X線透過画像がX線CT画像である請求項9に記載の内部構造決定方法。   The internal structure determination method according to claim 9, wherein the X-ray transmission image is an X-ray CT image. 前記樹脂成形体は結晶性熱可塑性樹脂から構成され、
前記内部構造に関する情報は、前記深さ毎の、前記分析用樹脂成形体の結晶化度又は前記分析用樹脂成形体の配向度である請求項10に記載の内部構造決定方法。
The resin molded body is composed of a crystalline thermoplastic resin,
The internal structure determination method according to claim 10, wherein the information related to the internal structure is a degree of crystallization of the analytical resin molded body or an orientation degree of the analytical resin molded body for each depth.
JP2011101542A 2011-04-28 2011-04-28 X-ray contrast agent for resin, structure change detection method, and internal structure determination method Active JP5792506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011101542A JP5792506B2 (en) 2011-04-28 2011-04-28 X-ray contrast agent for resin, structure change detection method, and internal structure determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011101542A JP5792506B2 (en) 2011-04-28 2011-04-28 X-ray contrast agent for resin, structure change detection method, and internal structure determination method

Publications (2)

Publication Number Publication Date
JP2012233751A true JP2012233751A (en) 2012-11-29
JP5792506B2 JP5792506B2 (en) 2015-10-14

Family

ID=47434213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011101542A Active JP5792506B2 (en) 2011-04-28 2011-04-28 X-ray contrast agent for resin, structure change detection method, and internal structure determination method

Country Status (1)

Country Link
JP (1) JP5792506B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4053548A1 (en) 2021-03-03 2022-09-07 Mazda Motor Corporation Method of analyzing structure of resin material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184845A (en) * 1983-04-04 1984-10-20 Naraken Measuring method of penetration region of antiseptic agent or the like injected into wood material
JPS59193857A (en) * 1983-02-25 1984-11-02 グエルベ・ソシエテ・アノニム Nonionic iodo- or bromo-benzene compounds and x ray contrastagent containing them
JPS6425045A (en) * 1987-07-21 1989-01-27 Mitsubishi Electric Corp Evaluating method of resin sealed semiconductor device
JPH10156885A (en) * 1996-11-28 1998-06-16 Mitsubishi Plastics Ind Ltd Method for predicting mechanical strength of injection-molded article of crystalline thermoplastic resin
JP2003149233A (en) * 2001-11-07 2003-05-21 Koji Otsuka Method for evaluation of deterioration degree of concrete by using x-ray contrast photographing
JP2010054500A (en) * 2008-07-29 2010-03-11 Nsk Ltd Rolling apparatus and interior observation method of rolling apparatus using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193857A (en) * 1983-02-25 1984-11-02 グエルベ・ソシエテ・アノニム Nonionic iodo- or bromo-benzene compounds and x ray contrastagent containing them
JPS59184845A (en) * 1983-04-04 1984-10-20 Naraken Measuring method of penetration region of antiseptic agent or the like injected into wood material
JPS6425045A (en) * 1987-07-21 1989-01-27 Mitsubishi Electric Corp Evaluating method of resin sealed semiconductor device
JPH10156885A (en) * 1996-11-28 1998-06-16 Mitsubishi Plastics Ind Ltd Method for predicting mechanical strength of injection-molded article of crystalline thermoplastic resin
JP2003149233A (en) * 2001-11-07 2003-05-21 Koji Otsuka Method for evaluation of deterioration degree of concrete by using x-ray contrast photographing
JP2010054500A (en) * 2008-07-29 2010-03-11 Nsk Ltd Rolling apparatus and interior observation method of rolling apparatus using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4053548A1 (en) 2021-03-03 2022-09-07 Mazda Motor Corporation Method of analyzing structure of resin material
US20220283102A1 (en) * 2021-03-03 2022-09-08 Mazda Motor Corporation Method of analyzing structure of resin material

Also Published As

Publication number Publication date
JP5792506B2 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
Hass et al. Adhesive penetration in beech wood: experiments
Yang et al. Imaging screw dislocations at atomic resolution by aberration-corrected electron optical sectioning
Koutsoumpis et al. Dynamic glass transition of the rigid amorphous fraction in polyurethane-urea/SiO 2 nanocomposites
KR102381017B1 (en) Method for evaluating crosslink concentration in crosslinked rubber
RU2013141026A (en) METHOD AND DEVICE FOR PRODUCING STANDARDS FOR NON-DESTRUCTIVE POROSITY CONTROL
JP5792506B2 (en) X-ray contrast agent for resin, structure change detection method, and internal structure determination method
du Plessis et al. Quality Investigation of 3D printer filament using laboratory X-ray tomography
Bugani et al. Study on the impregnation of archaeological waterlogged wood with consolidation treatments using synchrotron radiation microtomography
Cavallaro et al. Determining the selective impregnation of waterlogged archaeological woods with poly (ethylene) glycols mixtures by differential scanning calorimetry
Battu et al. Build orientation dependent microstructure in polymer laser sintering: Relationship to part performance and evolution with aging
Villarraga-Gómez Seeing is believing: X-ray computed tomography for quality control
Rafat et al. Surface characterization of hollow fiber membranes used in artificial kidney
Kuramochi et al. Direct observation of 890 ns dynamics of carbon black and polybutadiene in rubber materials using diffracted x-ray blinking
Chalmers et al. The bole of vibrational spectroscopy‐microscopy techniques in polymer characterisation
de Goede et al. Spatial Heterogeneity of Thermo‐Oxidative Degradation in Impact Poly (propylene) Copolymers
Wiener et al. Characterization methods for strain‐induced damage in polypropylene
Ji et al. Investigation of the state and distribution of water in poly (ethylene terephthalate)/polyethylene glycol copolymers with various molecular weight of polyethylene glycol
Nebesářová et al. The cutting of ultrathin sections with the thickness less than 20 nm from biological specimens embedded in resin blocks
Demco et al. Investigation of thermal aging of polyamide 4, 6 by 1H solid‐state NMR
Liebrich et al. Effect of thickness and build orientation on the water vapor and oxygen permeation properties of laser-sintered polyamide 12 sheets
CN112683933A (en) Method for measuring radiation sensitivity of additive manufacturing multilayer structure detection
Widakdo et al. Positron annihilation spectroscopy for the free volume depth profile analysis of multilayer and 2D materials composite membranes: A review
RU2310188C2 (en) Spectroscopic method for determining material porosity
Safandowska et al. Diminishment the gas permeability of polyethylene by “densification” of the amorphous regions
Helfer Morphology and fracture mechanical behavior of Polyoxymethylene platelets produced by injection molding under industrial-near processing conditions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150806

R150 Certificate of patent or registration of utility model

Ref document number: 5792506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250