JP2012233609A - Hot water storage tank for fuel cell, and power generation system - Google Patents

Hot water storage tank for fuel cell, and power generation system Download PDF

Info

Publication number
JP2012233609A
JP2012233609A JP2011101083A JP2011101083A JP2012233609A JP 2012233609 A JP2012233609 A JP 2012233609A JP 2011101083 A JP2011101083 A JP 2011101083A JP 2011101083 A JP2011101083 A JP 2011101083A JP 2012233609 A JP2012233609 A JP 2012233609A
Authority
JP
Japan
Prior art keywords
heat exchanger
fuel cell
water
hot water
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011101083A
Other languages
Japanese (ja)
Inventor
Hidetoshi Wakamatsu
英俊 若松
Hiroshi Tatsui
洋 龍井
Junji Morita
純司 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011101083A priority Critical patent/JP2012233609A/en
Publication of JP2012233609A publication Critical patent/JP2012233609A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0206Heat exchangers immersed in a large body of liquid
    • F28D1/0213Heat exchangers immersed in a large body of liquid for heating or cooling a liquid in a tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0472Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being helically or spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0472Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being helically or spirally coiled
    • F28D1/0473Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being helically or spirally coiled the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/028Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of at least one medium being helically coiled, the coils having a conical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • F28D2020/0078Heat exchanger arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve the self-sustained operation of water in a fuel cell system and the continuation of long-term operation by efficiently recovering heat through a heat exchanger and lowering a water temperature of exhaust heat recovery water from a hot water storage tank to the fuel cell system.SOLUTION: A coiled exhaust heat recovery water heat exchanger 21 is arranged in the hot water storage tank 20, and the surface area per unit height of the upstream portion of the exhaust heat recovery water heat exchanger 21 is made larger than the surface area per unit height of the downstream portion thereof. At an upper side in the hot water storage tank 20, an area with the surface of the exhaust heat recovery water heat exchanger 21 brought into contact with city water in the hot water storage tank 20 is enlarged, thereby efficiently recovering the heat and lowering the temperature of the exhaust heat recovery water supplied to a fuel cell. Since the temperature of the exhaust heat recovery water is kept low, moisture contained in exhaust gas and exhaust air is recovered by condensation, the self-sustained operation of water in the fuel cell system is performed, and the continuation of the long-term operation is performed.

Description

本発明は、水素と酸素を反応させ発電する燃料電池システムに用いる燃料電池用貯湯タンク及びこれを用いた発電システムに関するものである。   The present invention relates to a hot water storage tank for a fuel cell used in a fuel cell system for generating electricity by reacting hydrogen and oxygen and a power generation system using the same.

従来から、高効率な小規模発電が可能である燃料電池システムは、発電の際に発生する熱エネルギーを利用するためのシステムの構築が容易であるため、高いエネルギー利用効率を実現可能な分散型の発電システムとして開発が進められている。   Conventionally, a fuel cell system capable of high-efficiency small-scale power generation is easy to build a system for using thermal energy generated during power generation. Development is underway as a power generation system.

燃料電池システムは、その発電部の本体として、燃料電池を備えている。この燃料電池では、発電のための燃料として、通常、水素(水素ガス)が用いられる。しかしながら、この燃料電池での発電に必要となる水素の供給手段は、現在、インフラストラクチャーとして整備されていない。そのため、従来の燃料電池システムには、発電に必要となる水素を生成するための水素生成装置が設けられている。この水素生成装置では、所定の改質反応によって天然ガス等の化石燃料が改質され、これにより、化石燃料から水素が生成される。つまり、従来の燃料電池システムでは、水素生成装置により生成される水素が発電のための燃料として燃料電池に供給される。そして、燃料電池では、水素生成装置から供給される水素が用いられて、所定の電力を出力するべく発電が行われる。   The fuel cell system includes a fuel cell as a main body of the power generation unit. In this fuel cell, hydrogen (hydrogen gas) is usually used as a fuel for power generation. However, the means for supplying hydrogen necessary for power generation by this fuel cell is not currently established as an infrastructure. Therefore, the conventional fuel cell system is provided with a hydrogen generator for generating hydrogen necessary for power generation. In this hydrogen generator, fossil fuel such as natural gas is reformed by a predetermined reforming reaction, and thereby hydrogen is generated from the fossil fuel. That is, in the conventional fuel cell system, hydrogen generated by the hydrogen generator is supplied to the fuel cell as fuel for power generation. In the fuel cell, hydrogen supplied from the hydrogen generator is used to generate power to output predetermined power.

水素生成装置で水素を生成するために用いられる改質反応としては、一般的に、水蒸気改質反応が用いられている。この水蒸気改質反応では、水蒸気を用いて化石燃料を改質することにより、その化石燃料から水素が生成される。そのため、燃料電池システムの発電運転の際、水素生成装置には、水蒸気を発生させるための水が供給される。つまり、燃料電池システムを用いて所定の電力を得るためには、その燃料電池システムの設置場所において水の供給源を確保することが必要不可欠となる。   In general, a steam reforming reaction is used as a reforming reaction used for generating hydrogen in a hydrogen generator. In this steam reforming reaction, hydrogen is generated from the fossil fuel by reforming the fossil fuel using steam. Therefore, during the power generation operation of the fuel cell system, water for generating water vapor is supplied to the hydrogen generator. In other words, in order to obtain a predetermined power using the fuel cell system, it is indispensable to secure a water supply source at the place where the fuel cell system is installed.

通常、燃料電池システムへ水を供給するための水の供給手段としては、水道が好適に用いられる。ここで、水の供給手段として水道が用いられる場合には、その水道により供給される水からカルシウムや塩素等の成分を十分に除去する必要がある。その理由は、カルシウムや塩素等の成分を含む水を供給すると、カルシウムの堆積や塩素による配管の腐食等により、燃料電池システムの性能が経時的に劣化するからである。そのため、従来の燃料電池システムには、水道により供給される水からカルシウムや塩素等の成分を十分に除去するために、イオン交換樹脂等を備える浄水器が設けられている。   Usually, water is suitably used as the water supply means for supplying water to the fuel cell system. Here, when water supply is used as the water supply means, it is necessary to sufficiently remove components such as calcium and chlorine from the water supplied by the water supply. The reason is that when water containing a component such as calcium or chlorine is supplied, the performance of the fuel cell system deteriorates with time due to accumulation of calcium, corrosion of piping due to chlorine, or the like. Therefore, the conventional fuel cell system is provided with a water purifier including an ion exchange resin or the like in order to sufficiently remove components such as calcium and chlorine from the water supplied by the water supply.

ところで、イオン交換樹脂等を備える浄水器によれば、水に含まれるカルシウムや塩素等の成分を十分に除去することが可能であるが、使用時間に応じてイオン交換樹脂等の浄水性能が劣化する。つまり、このイオン交換樹脂等を用いる構成では、浄水器を頻繁にメンテナンスする必要がある。これは、燃料電池システムのランニングコストを悪化させる要因となる。そのため、従来の燃料電池システムでは、燃料電池で発電に伴って生成する水や、燃料電池から排出される水分を含んだガスを冷却して得られる凝縮水等を回収して利用する、水の自立供給形態が採られることが多い。この水の自立供給形態によれば、浄水器が不要、若しくは、浄水器への負荷が低下してそのメンテナンスの頻度を低減することができるので、燃料電池システムのランニングコストを改善することが可能になる(特許文献1参照)。   By the way, according to a water purifier provided with an ion exchange resin or the like, it is possible to sufficiently remove components such as calcium and chlorine contained in water, but the water purification performance of the ion exchange resin and the like deteriorates depending on the use time. To do. That is, in the configuration using this ion exchange resin or the like, it is necessary to frequently maintain the water purifier. This becomes a factor that deteriorates the running cost of the fuel cell system. Therefore, in the conventional fuel cell system, the water generated by the power generation in the fuel cell or the condensed water obtained by cooling the gas containing moisture discharged from the fuel cell is recovered and used. In many cases, a self-supporting form is adopted. According to this water self-sustained supply mode, a water purifier is unnecessary, or the load on the water purifier is reduced and the frequency of maintenance can be reduced, so that the running cost of the fuel cell system can be improved. (See Patent Document 1).

また、燃料電池システムは発電の際に発生する熱エネルギーを給湯等に利用することで総合的に熱効率を向上させるコージェネレーションシステムとして一般的に利用されてい
る。図5に従来の燃料電池システムの構成図を示す。燃料電池システム100は、内部に排熱回収水熱交換器21を有した貯湯タンク20を備えている。燃料電池発電部5において発電時に発生する熱を、冷却水循環経路7に設けた冷却水熱交換器13を介して、排熱回収水経路9内の排熱回収水に回収される。排熱回収水の熱は、貯湯タンク20内の排熱回収水経路9に配置されたコイル状の排熱回収水熱交換器21を経由して貯湯タンク20内の市水に伝達され、冷却された排熱回収水は、排ガス熱交換器11、排空気熱交換器12、冷却水熱交換器13で再び熱を回収する。
The fuel cell system is generally used as a cogeneration system that comprehensively improves thermal efficiency by using thermal energy generated during power generation for hot water supply or the like. FIG. 5 shows a configuration diagram of a conventional fuel cell system. The fuel cell system 100 includes a hot water storage tank 20 having an exhaust heat recovery water heat exchanger 21 therein. Heat generated during power generation in the fuel cell power generation unit 5 is recovered into the exhaust heat recovery water in the exhaust heat recovery water path 9 through the cooling water heat exchanger 13 provided in the cooling water circulation path 7. The heat of the waste heat recovery water is transmitted to the city water in the hot water storage tank 20 via a coiled exhaust heat recovery water heat exchanger 21 disposed in the exhaust heat recovery water path 9 in the hot water storage tank 20 for cooling. The exhausted heat recovered water is recovered again by the exhaust gas heat exchanger 11, the exhaust air heat exchanger 12, and the cooling water heat exchanger 13.

燃料電池コージェネレーションシステムでは、エネルギーの有効利用を図るために、燃料電池の排熱エネルギーの熱交換により得られた湯を回収した貯湯・給湯システムが考えられる。燃料電池で発生した熱を熱媒体を介して回収し、その熱を熱媒体を介して貯湯タンクに伝達するというものである。   In the fuel cell cogeneration system, in order to effectively use energy, a hot water storage / hot water supply system that recovers hot water obtained by heat exchange of exhaust heat energy of the fuel cell can be considered. The heat generated in the fuel cell is recovered via a heat medium, and the heat is transmitted to the hot water storage tank via the heat medium.

貯湯、給湯効率を高める方法として、貯湯タンク内の上方に熱交換コイルを配置することが提案されている(特許文献2参照)。   As a method for increasing the efficiency of hot water storage and hot water supply, it has been proposed to arrange a heat exchange coil above the hot water storage tank (see Patent Document 2).

特開2005−243623号公報JP 2005-243623 A 特開2003−214711号公報JP 2003-214711 A

しかしながら、前記従来(特許文献1)の構成では、燃料電池システムに供給される排熱回収水の水温が高い場合には、燃料電池システム内の排ガス中の水分を十分に回収することができなくなり、改質反応に用いられる水が不足する。即ち、燃料電池システム内で水の自立供給形態をとることができないため、運転を継続できないという課題を有していた。ここで、排熱回収水とは、貯湯タンク内に配置されたコイル状の熱交換器内を流れる熱媒体であり、燃料電池の排熱エネルギーの回収し、貯湯タンク内の市水に伝達する役目を担うものである。   However, in the conventional configuration (Patent Document 1), when the temperature of the exhaust heat recovery water supplied to the fuel cell system is high, the moisture in the exhaust gas in the fuel cell system cannot be sufficiently recovered. Insufficient water is used for the reforming reaction. That is, there is a problem that the operation cannot be continued because the self-sustained supply form of water cannot be taken in the fuel cell system. Here, the exhaust heat recovery water is a heat medium that flows in a coiled heat exchanger disposed in the hot water storage tank, recovers the exhaust heat energy of the fuel cell, and transmits it to the city water in the hot water storage tank. It takes on a role.

そこで本発明者らは鋭意検討を行った結果、水自立を行うという観点から未だ改善の余地があることを見出した。即ち、特許文献1の技術を特許文献2に適用した場合に、貯湯タンク内のコイル状の熱交換器を循環する熱媒体である排熱回収水と貯湯タンク内の水とが効率的に熱交換を行えていない為、燃料電池システムに供給される排熱回収水の水温を十分に低温にできないという課題があることを見出した。   Therefore, as a result of intensive studies, the present inventors have found that there is still room for improvement from the viewpoint of water independence. That is, when the technique of Patent Document 1 is applied to Patent Document 2, exhaust heat recovery water that is a heat medium circulating through a coiled heat exchanger in the hot water storage tank and water in the hot water storage tank are efficiently heated. It has been found that there is a problem that the temperature of the exhaust heat recovery water supplied to the fuel cell system cannot be sufficiently lowered because the replacement cannot be performed.

本発明は、前記従来の課題を解決するもので、燃料電池システム内で発生した熱エネルギーをコイル状の熱交換器を内蔵した貯湯タンクにて効率的に熱回収し、燃料電池システムに供給される排熱回収水の水温を低くすることで、燃料電池発電部の排空気と水素生成部の内部の改質加熱部における燃焼排ガスから凝縮によって水分を回収し、燃料電池システム内の水の自立を可能にすることで、長時間運転を継続させることができる燃料電池用貯湯タンクを提供することを目的とする。   The present invention solves the above-described conventional problems, and efficiently recovers heat energy generated in the fuel cell system in a hot water storage tank incorporating a coiled heat exchanger and is supplied to the fuel cell system. By reducing the water temperature of the exhaust heat recovery water, water is recovered from the exhaust air in the fuel cell power generation section and the combustion exhaust gas in the reforming heating section inside the hydrogen generation section by condensation, and the water in the fuel cell system is self-supporting. It is an object of the present invention to provide a hot water storage tank for a fuel cell that can be operated for a long time.

前記従来の課題を解決するために、本発明の燃料電池用貯湯タンクは、コイル状の経路を有する熱交換器と、前記熱交換器を内部に有する貯湯タンクと、を備えた燃料電池用貯湯タンクにおいて、前記熱交換器は、前記熱交換器の出口側の部分である下流部が、前記熱交換器の入口側の部分である上流部より重力方向の下側に配置されており、前記熱交換器の上流部の表面積は、前記熱交換器の下流部の表面積より大きいことを特徴とするもので
ある。
In order to solve the conventional problems, a hot water storage tank for a fuel cell according to the present invention includes a heat exchanger having a coiled path and a hot water storage tank having the heat exchanger therein. In the tank, the heat exchanger is arranged such that a downstream portion which is a portion on the outlet side of the heat exchanger is disposed below a gravity direction from an upstream portion which is a portion on the inlet side of the heat exchanger, The surface area of the upstream part of the heat exchanger is larger than the surface area of the downstream part of the heat exchanger.

ここで、熱交換器の上流側の一端を上流端とし、熱交換器の下流側の他端を下流端とし、上流端の高さ及び下流端の高さの高さ方向の中間に位置する点を熱交換器の中間点とする場合に、上流部とは、中間点より上流側の熱交換器の部分であり、下流部とは、中間点より下流側の熱交換器の部分である。   Here, one end on the upstream side of the heat exchanger is defined as an upstream end, and the other end on the downstream side of the heat exchanger is defined as a downstream end, and is located in the middle of the height direction of the upstream end and the height of the downstream end. When the point is an intermediate point of the heat exchanger, the upstream part is a part of the heat exchanger upstream from the intermediate point, and the downstream part is a part of the heat exchanger downstream from the intermediate point. .

貯湯タンク内には、比重の差により上方に高温層、下方に低温層をともなう温度積層構造が生成されるが、熱交換器の入口側である上流部が上方に配置され、かつ下流部に比べて表面積が大きく構成されていることで、貯湯タンク内上方でコイル状の熱交換器の表面とタンク内の水とが接触する面積が大きくなるので、貯湯タンク内上方で効率良く熱回収を行うことができ、貯湯タンク下方では十分に冷えた水となるので、燃料電池システムに供給される排熱回収水の温度を低くすることができる。また、貯湯タンク内上方で積極的に熱回収を行うことで、熱交換器の上流側と下流側で単位高さ当たりの表面積が一定のものに比べて、短時間で貯湯タンク内の上方に高温層を生成することができるので、燃料電池の発電開始から給湯利用が可能となるまでの時間の短縮も図ることが出来る。さらに、貯湯タンク内の市水と排熱回収水の経路を分けることで、排熱回収水の勢いによって貯湯タンク内の市水がかき回されることがないため、温度積層構造は安定に保たれることで、給湯時の温度も安定する。   In the hot water storage tank, a temperature laminated structure with a high temperature layer on the upper side and a low temperature layer on the lower side is generated due to the difference in specific gravity, but the upstream part on the inlet side of the heat exchanger is arranged on the upper side, and in the downstream part. Compared to the surface area of the hot water storage tank, the surface area of the coiled heat exchanger and the water in the tank come into contact with each other. Since the water is sufficiently cooled below the hot water storage tank, the temperature of the exhaust heat recovery water supplied to the fuel cell system can be lowered. In addition, by actively recovering heat above the hot water storage tank, the surface area per unit height on the upstream and downstream sides of the heat exchanger can be increased in a short time above the hot water storage tank. Since a high temperature layer can be generated, it is possible to shorten the time from the start of power generation of the fuel cell until the use of hot water supply becomes possible. Furthermore, by separating the city water and waste heat recovery water paths in the hot water storage tank, the city water in the hot water storage tank will not be stirred by the momentum of the exhaust heat recovery water, so the temperature lamination structure is kept stable. As a result, the temperature during hot water supply is also stabilized.

燃料電池システムに供給される排熱回収水の温度を低くすることで、燃料電池発電部のカソード側から排出される排空気と、水素生成部の内部の改質加熱部における燃焼排ガスの各々から、それぞれ排空気熱交換器、排ガス熱交換器を介して、排熱回収水と熱交換を行い、水素生成装置で水素を生成するために必要な水分を、凝縮によって回収することができるので、燃料電池システム内の水の自立が可能となり、長時間運転を継続させることができる。   By reducing the temperature of the exhaust heat recovery water supplied to the fuel cell system, the exhaust air discharged from the cathode side of the fuel cell power generation unit and the combustion exhaust gas in the reforming heating unit inside the hydrogen generation unit , Through the exhaust air heat exchanger and the exhaust gas heat exchanger, respectively, heat exchange with the exhaust heat recovery water, water necessary for generating hydrogen in the hydrogen generator can be recovered by condensation, Water in the fuel cell system can become independent, and operation can be continued for a long time.

本発明の燃料電池用貯湯タンクは、コイル状の熱交換器を介して効率的に熱回収を行い、燃料電池システムに供給される排熱回収水の水温を低くすることで、燃焼排ガス中の水分を凝縮によって回収し、燃料電池システム内の水の自立を可能にすることで、長時間運転を継続させることができる燃料電池システムを提供することができる。   The hot water storage tank for a fuel cell according to the present invention efficiently recovers heat through a coiled heat exchanger and lowers the temperature of the exhaust heat recovery water supplied to the fuel cell system. By collecting moisture by condensation and enabling the water in the fuel cell system to be independent, it is possible to provide a fuel cell system capable of continuing operation for a long time.

本発明の実施の形態1における燃料電池システムの構成図1 is a configuration diagram of a fuel cell system according to Embodiment 1 of the present invention. 本発明の実施の形態2における燃料電池システムの構成図Configuration diagram of a fuel cell system according to Embodiment 2 of the present invention 本発明の実施の形態3における燃料電池システムの構成図Configuration diagram of fuel cell system according to Embodiment 3 of the present invention 本発明の実施の形態4における燃料電池システムの構成図Configuration diagram of fuel cell system according to Embodiment 4 of the present invention 従来の燃料電池システムの構成図Configuration diagram of conventional fuel cell system

第1の発明は、コイル状の経路を有する熱交換器と、前記熱交換器を内部に有する貯湯タンクと、を備えた燃料電池用貯湯タンクにおいて、前記熱交換器は、前記熱交換器の出口側の部分である下流部が、前記熱交換器の入口側の部分である上流部より重力方向の下側に配置されており、前記熱交換器の上流部の表面積は、前記熱交換器の下流部の表面積より大きい、燃料電池用貯湯タンクとすることにより、貯湯タンク内上方でコイル状の熱交換器の表面とタンク内の水とが接触する面積が大きくなるので、貯湯タンク内上方で効率良く熱回収を行うことができ、貯湯タンク下方では十分に冷えた水となるので、燃料電池システムに供給される排熱回収水の温度を低くすることができる。   1st invention is a hot water storage tank for fuel cells provided with the heat exchanger which has a coil-shaped path | route, and the hot water storage tank which has the said heat exchanger inside, The said heat exchanger is the said heat exchanger. The downstream part which is a part on the outlet side is disposed below the upstream part which is a part on the inlet side of the heat exchanger in the gravity direction, and the surface area of the upstream part of the heat exchanger is the surface area of the heat exchanger. By using a hot water storage tank for fuel cells that is larger than the surface area of the downstream part, the area where the surface of the coiled heat exchanger and the water in the tank are in contact with each other is increased. Thus, heat recovery can be performed efficiently, and the water is sufficiently cooled below the hot water storage tank, so that the temperature of the exhaust heat recovery water supplied to the fuel cell system can be lowered.

ここで、熱交換器の上流側の一端を上流端とし、熱交換器の下流側の他端を下流端とし、上流端の高さ及び下流端の高さの高さ方向の中間に位置する点を熱交換器の中間点とする場合に、上流部とは、中間点より上流側の熱交換器の部分であり、下流部とは、中間点より下流側の熱交換器の部分である。   Here, one end on the upstream side of the heat exchanger is defined as an upstream end, and the other end on the downstream side of the heat exchanger is defined as a downstream end, and is located in the middle of the height direction of the upstream end and the height of the downstream end. When the point is an intermediate point of the heat exchanger, the upstream part is a part of the heat exchanger upstream from the intermediate point, and the downstream part is a part of the heat exchanger downstream from the intermediate point. .

第2の発明は、特に、第1の発明の熱交換器を、前記熱交換器の上流部及び下流部がコイル状に巻かれた経路を有しており、前記熱交換器の上流部の外径が、前記熱交換器の下流部の外径より大きい、燃料電池用貯湯タンクとすることにより、貯湯タンク内上方でコイル状の熱交換器の表面とタンク内の水とが接触する面積が大きくなるので、貯湯タンク内上方で効率良く熱回収を行うことができ、貯湯タンク下方では十分に冷えた水となるので、燃料電池システムに供給される排熱回収水の温度を低くすることができる。   In particular, the second invention has a path in which the upstream portion and the downstream portion of the heat exchanger are wound in a coil shape, and the upstream portion of the heat exchanger By making the fuel cell hot water storage tank having an outer diameter larger than the outer diameter of the downstream portion of the heat exchanger, the surface of the coiled heat exchanger and the water in the tank are in contact with each other above the hot water storage tank. Therefore, heat recovery can be performed efficiently in the upper part of the hot water tank, and the water is sufficiently cooled below the hot water tank. Therefore, the temperature of the exhaust heat recovery water supplied to the fuel cell system should be lowered. Can do.

ここで、上流部の外径とは、上流部の内部を流れる流体の進行方向に垂直な断面における経路の外径であり、下流部の外径とは、下流部の内部を流れる流体の進行方向に垂直な断面における経路の外径である。   Here, the outer diameter of the upstream portion is the outer diameter of the path in a cross section perpendicular to the traveling direction of the fluid flowing inside the upstream portion, and the outer diameter of the downstream portion is the progression of the fluid flowing inside the downstream portion. It is the outer diameter of the path in a cross section perpendicular to the direction.

第3の発明は、特に、第1の発明の熱交換器を、前記熱交換器の上流部及び下流部がコイル状に巻かれた経路を有しており、前記熱交換器の上流部の巻き数が、前記熱交換器の下流部の巻き数より多い、燃料電池用貯湯タンクとすることにより、貯湯タンク内上方でコイル状の熱交換器の表面とタンク内の水とが接触する面積が大きくなるので、貯湯タンク内上方で効率良く熱回収を行うことができ、貯湯タンク下方では十分に冷えた水となるので、燃料電池システムに供給される排熱回収水の温度を低くすることができる。また、位置によってコイル状の熱交換器の巻き数を変化させているだけであり、熱交換器の途中でコイル径を変化させる必要がなくなることから、製造コストを抑えることもできる。   In particular, the third invention has a path in which the upstream portion and the downstream portion of the heat exchanger are wound in a coil shape in the heat exchanger of the first invention, and the upstream portion of the heat exchanger An area where the surface of the coiled heat exchanger and the water in the tank are in contact with each other above the hot water storage tank by forming a hot water storage tank for the fuel cell, the number of windings being larger than the number of windings in the downstream portion of the heat exchanger. Therefore, heat recovery can be performed efficiently in the upper part of the hot water tank, and the water is sufficiently cooled below the hot water tank. Therefore, the temperature of the exhaust heat recovery water supplied to the fuel cell system should be lowered. Can do. Moreover, since only the number of turns of the coiled heat exchanger is changed depending on the position, and it is not necessary to change the coil diameter in the middle of the heat exchanger, the manufacturing cost can be suppressed.

ここで、上流部の巻き数とは、上流部におけるコイル状の経路の巻き数であり、下流部の巻き数とは、下流部におけるコイル状の経路の巻き数である。   Here, the number of turns in the upstream part is the number of turns in the coiled path in the upstream part, and the number of turns in the downstream part is the number of turns in the coiled path in the downstream part.

第4の発明は、特に、第1の発明の熱交換器を、前記熱交換器の上流部及び前記下流部がコイル状に巻かれた経路を有しており、前記熱交換器の上流部の巻き半径が、前記熱交換器の下流部の巻き半径より大きい、燃料電池用貯湯タンクとすることにより、貯湯タンク内上方でコイル状の熱交換器の表面とタンク内の水とが接触する面積が大きくなるので、貯湯タンク内上方で効率良く熱回収を行うことができ、貯湯タンク下方では十分に冷えた水となるので、燃料電池システムに供給される排熱回収水の温度を低くすることができる。また、位置によってコイル状の熱交換器の巻き半径を変化させているだけであり、熱交換器の途中でコイル径を変化させる必要がなくなることから、製造コストを抑えることもできる。   In particular, the fourth aspect of the invention includes the heat exchanger according to the first aspect of the invention having a path in which the upstream part and the downstream part of the heat exchanger are wound in a coil shape, and the upstream part of the heat exchanger. The surface of the coiled heat exchanger and the water in the tank are in contact with each other above the hot water storage tank by using a hot water storage tank for the fuel cell that has a winding radius larger than that of the downstream portion of the heat exchanger. Since the area increases, heat recovery can be efficiently performed in the upper part of the hot water tank, and the water is sufficiently cooled below the hot water tank, so that the temperature of the exhaust heat recovery water supplied to the fuel cell system is lowered. be able to. Further, the winding radius of the coiled heat exchanger is merely changed depending on the position, and it is not necessary to change the coil diameter in the middle of the heat exchanger, so that the manufacturing cost can be suppressed.

ここで、上流部の巻き半径とは、上流部におけるコイル状の経路の巻き半径であり、下流部の巻き半径とは、下流部におけるコイル状の経路の巻き半径である。   Here, the winding radius of the upstream part is the winding radius of the coiled path in the upstream part, and the winding radius of the downstream part is the winding radius of the coiled path in the downstream part.

第5の発明は、特に、第1〜第4のいずれか1つの発明の燃料電池用貯湯タンクと、原料ガスと凝縮水との改質反応から生成される燃料ガスと酸化剤ガスとを用いて発電を行い、電力と熱を供給する燃料電池装置と、前記燃料電池から排出される水分を含んだガスを冷却して凝縮水を発生させる凝縮器と、熱媒体を循環し、前記凝縮器及び前記燃料電池からの熱を回収する熱利用経路と、を備え、前記熱利用経路の一端は、前記熱交換器の上流部に連通し、他端は前記熱交換器の下流部に連通するように構成されている、発電システムとすることにより、貯湯タンク内上方で効率良く熱回収を行うことができ、貯湯タンク下方では十分に冷えた水となるので、燃料電池システムに供給される排熱回収水の温度を低くすることができるので、燃料電池発電部のカソード側から排出される排空気と、水素
生成部の内部の改質加熱部における燃焼排ガスの各々から、それぞれ排空気熱交換器、排ガス熱交換器を介して、排熱回収水と熱交換を行い、水素生成装置で水素を生成するために必要な水分を、凝縮によって回収することができるので、燃料電池システム内の水の自立が可能となり、長時間運転を継続させることができる。
In particular, the fifth invention uses a hot water storage tank for a fuel cell according to any one of the first to fourth inventions, and a fuel gas and an oxidant gas generated from a reforming reaction between a raw material gas and condensed water. A fuel cell device for generating electric power and supplying electric power and heat; a condenser for generating condensed water by cooling a gas containing water discharged from the fuel cell; and circulating the heat medium, the condenser And a heat utilization path for recovering heat from the fuel cell, wherein one end of the heat utilization path communicates with an upstream portion of the heat exchanger, and the other end communicates with a downstream portion of the heat exchanger. With the power generation system configured as described above, heat recovery can be efficiently performed in the upper part of the hot water storage tank, and the water is sufficiently cooled in the lower part of the hot water storage tank. Since the temperature of the heat recovery water can be lowered, From the exhaust air exhausted from the cathode side of the battery power generation unit and the combustion exhaust gas in the reforming heating unit inside the hydrogen generation unit, the exhaust heat recovery water passes through the exhaust air heat exchanger and the exhaust gas heat exchanger, respectively. The water necessary for generating hydrogen in the hydrogen generator can be recovered by condensation, so that the water in the fuel cell system can become independent and the operation can be continued for a long time. it can.

また、貯湯タンク内上方で積極的に熱回収を行うことで、熱交換器の上流側と下流側の表面積が一定のものに比べて、短時間で貯湯タンク内の上方に高温層を生成することができるので、燃料電池の発電開始から給湯利用が可能となるまでの時間の短縮も図ることが出来る。さらに、貯湯タンク内の市水と排熱回収水の経路を分けていることで、排熱回収水の勢いによって貯湯タンク内の市水がかき回されることがないため、温度積層構造は安定に保たれることで、給湯時の温度も安定する。   Also, by actively recovering heat above the hot water tank, a high-temperature layer is generated above the hot water tank in a short time compared to a constant surface area on the upstream and downstream sides of the heat exchanger. Therefore, it is possible to shorten the time from the start of power generation by the fuel cell until the hot water supply can be used. Furthermore, the city water in the hot water storage tank and the exhaust heat recovery water are separated from each other, so that the city water in the hot water storage tank is not stirred by the momentum of the exhaust heat recovery water. By leaning, the temperature at the time of hot water supply is also stabilized.

第6の発明は、特に、第5の発明の発電システムを、前記熱利用経路上に配置され、前記熱媒体を前記熱交換器の上流部に供給し、前記熱媒体を前記熱交換器の下流部から排出するための熱媒体循環装置を備えたことにより、貯湯タンク内上方で効率良く熱回収を行うことができ、貯湯タンク下方では十分に冷えた水となるので、燃料電池システムに供給される排熱回収水の温度を低くすることができるので、燃料電池発電部のカソード側から排出される排空気と、水素生成部の内部の改質加熱部における燃焼排ガスの各々から、それぞれ排空気熱交換器、排ガス熱交換器を介して、排熱回収水と熱交換を行い、水素生成装置で水素を生成するために必要な水分を、凝縮によって回収することができるので、燃料電池システム内の水の自立が可能となり、長時間運転を継続させることができる。さらに、熱媒体循環装置により、排熱回収水の流量を調整することで、燃料電池の温度を適温に調整することができるので、燃料電池システムを安定に運転させることが出来る。   According to a sixth aspect of the invention, in particular, the power generation system of the fifth aspect of the invention is arranged on the heat utilization path, supplies the heat medium to an upstream portion of the heat exchanger, and supplies the heat medium to the heat exchanger. By providing the heat medium circulation device for discharging from the downstream part, heat recovery can be efficiently performed in the upper part of the hot water tank, and the water is sufficiently cooled in the lower part of the hot water tank, so it is supplied to the fuel cell system. Since the temperature of the exhaust heat recovered water can be lowered, the exhaust air discharged from the cathode side of the fuel cell power generation unit and the combustion exhaust gas in the reforming heating unit inside the hydrogen generation unit are respectively discharged. The fuel cell system is capable of recovering the water necessary for generating hydrogen in the hydrogen generator by condensation through the air heat exchanger and the exhaust gas heat exchanger, and collecting the moisture necessary for generating hydrogen in the hydrogen generator. The independence of water in Becomes a function, it is possible to continue the long-term operation. Furthermore, the temperature of the fuel cell can be adjusted to an appropriate temperature by adjusting the flow rate of the exhaust heat recovery water by the heat medium circulation device, so that the fuel cell system can be stably operated.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment.

(実施の形態1)
図1は、本発明の実施の形態1 に係る燃料電池システムの構成図を示すものである。尚、図1において、燃料電池システムを構成する各構成要素の間の実線は配管を示しており、それらの実線上に記される矢印は、配管内に流れる水や改質ガス等の通常時における流動方向を示している。
(Embodiment 1)
FIG. 1 shows a configuration diagram of a fuel cell system according to Embodiment 1 of the present invention. In FIG. 1, the solid lines between the components constituting the fuel cell system indicate piping, and the arrows marked on the solid lines indicate normal times such as water and reformed gas flowing in the piping. The flow direction in is shown.

図1に示すように、本実施の形態に係る燃料電池システム100は、水素生成部1を備えている。この水素生成部1は、天然ガス、LPG等の炭化水素系成分、メタノール等のアルコール、或いは、ナフサ成分等に例示される少なくとも炭素及び水素から構成される有機化合物を含む原料と水蒸気とが用いられる改質反応を主に進行させ、この改質反応により水素を豊富に含む改質ガスを生成する。ここで、この水素生成部1は、図1では特に図示しないが、上述した改質反応を進行させるための改質部と、この改質部から排出される改質ガス中の一酸化炭素を低減するための一酸化炭素変成部(以下、単に変成部という)及び一酸化炭素除去部(以下、単に浄化部という)とを備えている。尚、改質部は、改質反応を進行させるための改質触媒と、改質反応を進行させるために必要な熱を供給するための、原料の一部を燃焼させる、或いは改質ガスの供給先(即ち、燃料電池)から戻されるオフガス(余剰の改質ガス、又はオフ水素ガス)を燃焼させる火炎バーナーと、燃焼空気供給用のシロッコファンとを備えている。又、変成部は、改質部から排出される改質ガス中の一酸化炭素と水蒸気とを反応させるための変成触媒を備えている。又、浄化部は、変成部から排出される改質ガス中の一酸化炭素を酸化或いはメタン化させるためのC O除去触媒を備えている。これらの変成部及び浄化部は、改質ガスに含まれる一酸化炭素を効果的に低減するために、それぞれの化学反応に適した温度条件の下、各々運転される。尚、ここでは、水素生成部1の内部における上述した改質部及び変成部及び浄化部以外
の構成に関する詳細な説明は省略する。
As shown in FIG. 1, the fuel cell system 100 according to the present embodiment includes a hydrogen generator 1. This hydrogen generation unit 1 uses a raw material containing water and steam containing organic compounds composed of at least carbon and hydrogen, such as natural gas, hydrocarbon components such as LPG, alcohols such as methanol, or naphtha components. The reforming reaction to be performed mainly proceeds, and this reforming reaction generates a reformed gas rich in hydrogen. Here, although not particularly shown in FIG. 1, the hydrogen generating unit 1 is provided with a reforming unit for advancing the reforming reaction described above and carbon monoxide in the reformed gas discharged from the reforming unit. A carbon monoxide shifter (hereinafter simply referred to as a shifter) and a carbon monoxide removal unit (hereinafter simply referred to as a purifier) for reduction are provided. The reforming unit combusts a part of the raw material for supplying the reforming catalyst for proceeding the reforming reaction and the heat necessary for proceeding the reforming reaction, or the reformed gas A flame burner for burning off-gas (excess reformed gas or off-hydrogen gas) returned from a supply destination (that is, a fuel cell) and a sirocco fan for supplying combustion air are provided. The shift section includes a shift catalyst for reacting carbon monoxide and steam in the reformed gas discharged from the reforming section. The purification unit also includes a CO removal catalyst for oxidizing or methanating carbon monoxide in the reformed gas discharged from the shift unit. In order to effectively reduce the carbon monoxide contained in the reformed gas, these shift and purification sections are each operated under a temperature condition suitable for each chemical reaction. It should be noted that here, a detailed description of the configuration other than the above-described reforming unit, transformation unit, and purification unit inside the hydrogen generation unit 1 is omitted.

又、図1に示すように、この燃料電池システム100は、原料供給部2を備えている。この原料供給部2は、上述した水素生成部1に向けて、水素を生成するために用いる天然ガス等の原料を供給する。本実施の形態では、この原料供給部2を、原料としての天然ガスを天然ガスのインフラストラクチャーから供給する構成としている。尚、本実施の形態では、水素を生成するための原料として天然ガスを用いる形態について説明しているが、この形態に限定されることはなく、上述したように、LPG等の炭化水素系成分、メタノール等のアルコール、或いは、ナフサ成分等に例示される少なくとも炭素及び水素から構成される有機化合物を含む原料であれば、如何なる原料を用いてもよい。例えば、原料としてLPGが用いられる場合には、原料供給部2 にはLPGタンクが配設される。   Further, as shown in FIG. 1, the fuel cell system 100 includes a raw material supply unit 2. The raw material supply unit 2 supplies a raw material such as natural gas used for generating hydrogen to the hydrogen generation unit 1 described above. In the present embodiment, the raw material supply unit 2 is configured to supply natural gas as a raw material from a natural gas infrastructure. In the present embodiment, the mode of using natural gas as a raw material for generating hydrogen is described. However, the present invention is not limited to this mode, and as described above, hydrocarbon-based components such as LPG. Any raw material may be used as long as it is a raw material containing an organic compound composed of at least carbon and hydrogen exemplified by alcohols such as methanol or naphtha components. For example, when LPG is used as a raw material, an LPG tank is disposed in the raw material supply unit 2.

又、この燃料電池システム100は、水供給経路3を備えている。この水供給経路3は、上述した水素生成部1に向けて、改質反応に用いられる水蒸気を生成するための水を供給する。ここで、本実施の形態では、この水供給経路3はプランジャーポンプを備えており、このプランジャーポンプの動作により、水素生成部1に向けて水を送出する。又、この送出される水は、水浄化部(図示せず)によって浄化された後、水素生成部1に供給される。ここで、水浄化部は活性炭とイオン交換樹脂とを備えている。尚、水浄化部に用いる不純物除去部材としては、活性炭及びイオン交換樹脂に限定されることはなく、水中のイオンや有機物等の不純物が除去可能な不純物除去部材であれば、ゼオライト、セラミック等の如何なる不純物除去部材を用いても構わない。   The fuel cell system 100 includes a water supply path 3. The water supply path 3 supplies water for generating steam used for the reforming reaction toward the hydrogen generator 1 described above. Here, in the present embodiment, the water supply path 3 includes a plunger pump, and water is sent out toward the hydrogen generator 1 by the operation of the plunger pump. Further, the pumped water is purified by a water purification unit (not shown) and then supplied to the hydrogen generation unit 1. Here, the water purification unit includes activated carbon and an ion exchange resin. The impurity removing member used in the water purification section is not limited to activated carbon and ion exchange resin, and any impurity removing member capable of removing impurities such as ions and organic substances in water can be made of zeolite, ceramic, etc. Any impurity removing member may be used.

又、この燃料電池システム100は、その発電部の本体としての燃料電池発電部5を備えている。この燃料電池発電部5は、水素生成部1から排出されて燃料電池発電部5のアノード側(燃料極側)に供給される水素を豊富に含む改質ガスと、後述するブロアー6によって吸入されて燃料電池発電部5のカソード側(空気極側)に供給される空気とを用いて、所定の電力を出力するべく発電を行う。ここで、本実施の形態では、燃料電池発電部5は、固体高分子型の燃料電池を備えている。そして、燃料電池発電部5は、そのカソード側に供給される空気が、燃料電池発電部5の内部で発電のために使用した後の排空気等が有する水分を利用して加湿される構成とされている。更に、この燃料電池発電部5では、そのカソード側に供給される空気の加湿度が不足する場合には、冷却水循環経路7に貯えられている冷却水の一部を燃料電池発電部5の内部で蒸発させることにより、前記加湿度が適切な加湿度になるように調整される。尚、図1に示すように、水素生成部1において生成される改質ガスは、水素供給経路4aを介して燃料電池発電部5のアノード側に供給される。又、燃料電池発電部5から排出される、発電に用いられなかった余剰の改質ガスは、オフ水素ガス経路4bを介して水素生成部1に戻される。このオフ水素ガス経路4bを介して水素生成部1に戻される余剰の改質ガスは、改質部における火炎バーナーに供給され、この火炎バーナーにおいて改質反応を進行させるために燃焼される。又、この燃料電池発電部5の構成は、一般的な燃料電池発電部の構成と同様であるため、ここでは更なる内部構成に関する詳細な説明は省略する。   The fuel cell system 100 includes a fuel cell power generation unit 5 as a main body of the power generation unit. The fuel cell power generation unit 5 is sucked by a reformed gas rich in hydrogen discharged from the hydrogen generation unit 1 and supplied to the anode side (fuel electrode side) of the fuel cell power generation unit 5 and a blower 6 described later. Using the air supplied to the cathode side (air electrode side) of the fuel cell power generation unit 5, power generation is performed so as to output predetermined power. Here, in the present embodiment, the fuel cell power generation unit 5 includes a solid polymer fuel cell. The fuel cell power generation unit 5 has a configuration in which the air supplied to the cathode side is humidified using moisture contained in exhaust air after being used for power generation inside the fuel cell power generation unit 5. Has been. Further, in the fuel cell power generation unit 5, when the humidification of the air supplied to the cathode side is insufficient, a part of the cooling water stored in the cooling water circulation path 7 is transferred to the inside of the fuel cell power generation unit 5. By evaporating in step (b), the humidification is adjusted to be an appropriate humidification. In addition, as shown in FIG. 1, the reformed gas produced | generated in the hydrogen production | generation part 1 is supplied to the anode side of the fuel cell power generation part 5 via the hydrogen supply path | route 4a. The surplus reformed gas that has not been used for power generation and is discharged from the fuel cell power generation unit 5 is returned to the hydrogen generation unit 1 through the off-hydrogen gas path 4b. Excess reformed gas returned to the hydrogen generator 1 via the off-hydrogen gas path 4b is supplied to a flame burner in the reformer, and is burned in order to advance the reforming reaction in the flame burner. Further, the configuration of the fuel cell power generation unit 5 is the same as the configuration of a general fuel cell power generation unit, and therefore, a detailed description of a further internal configuration is omitted here.

又、この燃料電池システム100は、ブロアー6を備えている。このブロアー6は、大気を吸入することにより、燃料電池発電部5のカソード側に空気を供給する。このブロアー6としては、シロッコファン等が好適に用いられる。   The fuel cell system 100 includes a blower 6. The blower 6 supplies air to the cathode side of the fuel cell power generation unit 5 by sucking air. A sirocco fan or the like is preferably used as the blower 6.

又、この燃料電池システム100は、冷却水循環経路7を備えている。この冷却水循環経路7は、本実施の形態では、冷却水を貯えるための小型の貯水タンク(図示せず)と、冷却水を循環させるための給水ポンプ(図示せず)とを備えている。この冷却水の循環により、冷却水循環経路7は、燃料電池発電部5において発電時に発生する熱を回収して、これにより燃料電池発電部5を冷却する。   The fuel cell system 100 includes a cooling water circulation path 7. In the present embodiment, the cooling water circulation path 7 includes a small water storage tank (not shown) for storing the cooling water and a water supply pump (not shown) for circulating the cooling water. Due to the circulation of the cooling water, the cooling water circulation path 7 recovers heat generated during power generation in the fuel cell power generation unit 5, thereby cooling the fuel cell power generation unit 5.

又、この燃料電池システム100は、水回収部8を備えている。この水回収部8は、燃料電池発電部5のカソード側及び水素生成部1から排出される排空気、及び水素生成部1の内部の改質加熱部における燃焼排ガスの各々から、それぞれ排空気熱交換器12、排ガス熱交換器11を介して、排熱回収水と熱交換を行い、凝縮によって水分を回収する。この時、排熱回収水の温度が低い方が凝縮水を多く回収することが出来る為、上述した水素生成部1に向けて、改質反応に用いられる水蒸気を生成するための水を安定的に供給することができる。   The fuel cell system 100 includes a water recovery unit 8. The water recovery unit 8 is configured to remove exhaust air heat from each of exhaust air discharged from the cathode side of the fuel cell power generation unit 5 and the hydrogen generation unit 1 and combustion exhaust gas in the reforming heating unit inside the hydrogen generation unit 1. Heat exchange with exhaust heat recovery water is performed via the exchanger 12 and the exhaust gas heat exchanger 11, and moisture is recovered by condensation. At this time, the lower the temperature of the exhaust heat recovery water, the more the condensed water can be recovered, so that the water for generating the steam used for the reforming reaction is stably directed toward the hydrogen generation unit 1 described above. Can be supplied to.

又、この燃料電池システム100は、内部に排熱回収水熱交換器21を有した貯湯タンク20を備えている。燃料電池発電部5において発電時に発生する熱を、冷却水循環経路7に設けた冷却水熱交換器13を介して、排熱回収水経路9内の排熱回収水に回収される。排熱回収水の熱は、貯湯タンク20内の排熱回収水経路9に配置されたコイル状の排熱回収水熱交換器21を経由して貯湯タンク20内の市水に伝達され、冷却された排熱回収水は、排ガス熱交換器11、排空気熱交換器12、冷却水熱交換器13で再び熱を回収する。   The fuel cell system 100 includes a hot water storage tank 20 having an exhaust heat recovery water heat exchanger 21 therein. Heat generated during power generation in the fuel cell power generation unit 5 is recovered into the exhaust heat recovery water in the exhaust heat recovery water path 9 through the cooling water heat exchanger 13 provided in the cooling water circulation path 7. The heat of the waste heat recovery water is transmitted to the city water in the hot water storage tank 20 via a coiled exhaust heat recovery water heat exchanger 21 disposed in the exhaust heat recovery water path 9 in the hot water storage tank 20 for cooling. The exhausted heat recovered water is recovered again by the exhaust gas heat exchanger 11, the exhaust air heat exchanger 12, and the cooling water heat exchanger 13.

又、この燃料電池システム100は、燃料電池システム100を構成する各構成要素の動作を適宜制御するための制御部101を備えている。この制御部101は、例えば、図1 では特に図示しないが、記憶部、中央演算処理装置( C P U ) 等を備えている。尚、燃料電池システム100の各構成要素の動作に係るプログラムは予め制御部101の記憶部に記憶されており、この記憶部に記憶されているプログラムに基づいて、制御部101が燃料電池システム100の動作を適宜制御する。   The fuel cell system 100 also includes a control unit 101 for appropriately controlling the operation of each component constituting the fuel cell system 100. The control unit 101 includes, for example, a storage unit, a central processing unit (C P U) and the like, which are not particularly illustrated in FIG. A program relating to the operation of each component of the fuel cell system 100 is stored in advance in the storage unit of the control unit 101, and the control unit 101 controls the fuel cell system 100 based on the program stored in the storage unit. Is appropriately controlled.

次に、本発明の実施の形態1 に係る燃料電池システムの動作について、図面を参照しながら詳細に説明する。   Next, the operation of the fuel cell system according to Embodiment 1 of the present invention will be described in detail with reference to the drawings.

燃料電池システム100は、制御部101の制御によって以下の動作を行う。ここで、本明細書において、燃料電池システム100の発電運転とは、発電運転の開始動作(起動モード)と、これに続く定常的な発電運転(発電モード)と、これに続く発電運転の終了動作(停止モード)とを含む動作をいう。そして、発電運転の開始動作(起動モード)とは、燃料電池システム100を発電運転のために安定して立ち上げるための動作をいう。又、発電運転の終了動作とは、燃料電池システム100を発電運転から安定して停止させるための動作をいう。   The fuel cell system 100 performs the following operation under the control of the control unit 101. Here, in this specification, the power generation operation of the fuel cell system 100 refers to the start operation (start mode) of the power generation operation, the subsequent steady power generation operation (power generation mode), and the end of the subsequent power generation operation. An operation including an operation (stop mode). The start operation (start-up mode) of the power generation operation is an operation for starting up the fuel cell system 100 stably for the power generation operation. The power generation operation end operation refers to an operation for stably stopping the fuel cell system 100 from the power generation operation.

先ず、図1に示す燃料電池システム100の発電運転を開始する際には、燃料電池発電部5の発電運転に必要となる水素を豊富に含む改質ガスを生成するために、水素生成部1を作動させる。具体的には、水素を生成するための原料となる天然ガスを、原料供給部2から水素生成部1の改質部に供給する。又、改質反応を進行させるための水蒸気を生成するために、水供給経路3を作動させて、水素生成部1の改質部に水を供給する。この水は、水供給経路3の動作により水浄化部を通過した後、供給量が制御されながら、水素生成部1の改質部に供給される。又、この際、改質反応を進行させるために、改質部に設けられている改質触媒を、火炎バーナーにおいてオフ水素ガスを燃焼させて発生する熱により加熱する。又、このオフ水素ガスの燃焼のために、燃焼空気供給用のシロッコファンから火炎バーナーに空気を供給する。これにより、水素生成部1の改質部は、水蒸気改質反応によって水素を豊富に含む改質ガスを生成する。尚、この水素生成部1の改質部で生成される改質ガスは、その後、変成部及び浄化部に供給される。そして、この変成部及び浄化部において、改質ガスに含まれる一酸化炭素が効果的に低減及び除去される。そして、変成部及び浄化部において一酸化炭素が効果的に低減及び除去された改質ガスは、燃料電池発電部5が有する燃料電池のアノード側に供給される。   First, when the power generation operation of the fuel cell system 100 shown in FIG. 1 is started, in order to generate the reformed gas containing abundant hydrogen necessary for the power generation operation of the fuel cell power generation unit 5, the hydrogen generation unit 1 Is activated. Specifically, natural gas as a raw material for generating hydrogen is supplied from the raw material supply unit 2 to the reforming unit of the hydrogen generation unit 1. In addition, the water supply path 3 is activated to supply water to the reforming section of the hydrogen generating section 1 in order to generate steam for advancing the reforming reaction. This water passes through the water purification unit by the operation of the water supply path 3 and is then supplied to the reforming unit of the hydrogen generation unit 1 while the supply amount is controlled. At this time, in order to advance the reforming reaction, the reforming catalyst provided in the reforming section is heated by heat generated by burning off-hydrogen gas in the flame burner. In order to burn off the off-hydrogen gas, air is supplied from a sirocco fan for supplying combustion air to the flame burner. As a result, the reforming unit of the hydrogen generating unit 1 generates a reformed gas rich in hydrogen by the steam reforming reaction. The reformed gas generated in the reforming section of the hydrogen generating section 1 is then supplied to the shift section and the purification section. And in this metamorphic part and purification | cleaning part, the carbon monoxide contained in reformed gas is reduced and removed effectively. Then, the reformed gas from which carbon monoxide has been effectively reduced and removed in the transformation unit and the purification unit is supplied to the anode side of the fuel cell included in the fuel cell power generation unit 5.

水素生成部1から燃料電池発電部5の燃料電池のアノード側に水素を豊富に含む改質ガスが供給されると共に、ブロアー6からそのカソード側に空気が供給されると、燃料電池発電部5では、そのアノード側及びカソード側に供給される改質ガス及び空気が用いられて、所定の電力を出力するべく発電が行われる。尚、発電に用いられなかった余剰の改質ガスは、燃料電池のアノード側から排出された後、水素生成部1に戻される。そして、この水素生成部1が有する火炎バーナーに供給され、この火炎バーナーにおいて改質反応を進行させるために燃焼される。又、後述するように、燃料電池のカソード側から排出される排空気は、その水分を回収するために排空気熱交換器12を介して凝縮され水回収部8に供給される。   When reformed gas containing abundant hydrogen is supplied from the hydrogen generator 1 to the anode side of the fuel cell of the fuel cell power generation unit 5 and air is supplied from the blower 6 to the cathode side, the fuel cell power generation unit 5 Then, the reformed gas and air supplied to the anode side and the cathode side are used, and power generation is performed to output predetermined power. The surplus reformed gas that has not been used for power generation is discharged from the anode side of the fuel cell and then returned to the hydrogen generator 1. And it supplies to the flame burner which this hydrogen production | generation part 1 has, and it burns in order to advance a reforming reaction in this flame burner. As will be described later, the exhaust air discharged from the cathode side of the fuel cell is condensed via the exhaust air heat exchanger 12 and supplied to the water recovery unit 8 in order to recover the moisture.

この発電運転の際、燃料電池発電部5は、発電のための電気化学反応によって燃料電池が発熱するため、発電に伴って発熱する。この燃料電池発電部5で発生する熱は、冷却水循環経路7に設けた冷却水熱交換器13を介して排熱回収水に回収される。排熱回収水の熱は、貯湯タンク20内の排熱回収水経路9に配置されたコイル状の排熱回収水熱交換器21を経由して貯湯タンク20内の市水に伝達され、冷却された排熱回収水は、排ガス熱交換器11、排空気熱交換器12、冷却水熱交換器13で再び熱を回収する。この時、熱交換器によって温められた貯湯タンク20内の市水は、貯湯タンク20内部に充填された低温の貯湯水との温度差により生じる密度差によって、低密度の高温貯湯水は上方に移動する。この構成では、貯湯タンク20内の市水と排熱回収水の経路を分けることで、排熱回収水の勢いによって貯湯タンク20内の市水がかき回されることがないため、温度積層構造は安定に保たれるため、給湯時の温度も安定する。貯湯タンク20には、その底面側に設けられた補給口より市水が供給され、上面側に設けられた給湯口より給湯器や暖房等の外部給湯負荷に湯水が供給される。   During the power generation operation, the fuel cell power generation unit 5 generates heat due to power generation because the fuel cell generates heat due to an electrochemical reaction for power generation. The heat generated in the fuel cell power generation unit 5 is recovered into exhaust heat recovery water through a cooling water heat exchanger 13 provided in the cooling water circulation path 7. The heat of the waste heat recovery water is transmitted to the city water in the hot water storage tank 20 via a coiled exhaust heat recovery water heat exchanger 21 disposed in the exhaust heat recovery water path 9 in the hot water storage tank 20 for cooling. The exhausted heat recovered water is recovered again by the exhaust gas heat exchanger 11, the exhaust air heat exchanger 12, and the cooling water heat exchanger 13. At this time, the city water in the hot water storage tank 20 heated by the heat exchanger is moved upward due to the density difference caused by the temperature difference from the low temperature hot water charged in the hot water storage tank 20. Moving. In this configuration, the city water in the hot water storage tank 20 and the exhaust heat recovery water are separated from each other, so that the city water in the hot water storage tank 20 is not stirred by the momentum of the exhaust heat recovery water. The temperature at the time of hot water supply is also stable. City water is supplied to the hot water storage tank 20 from a replenishing port provided on the bottom surface side, and hot water is supplied to an external hot water supply load such as a water heater or a heater from a hot water supply port provided on the upper surface side.

又、この発電運転の際、燃料電池発電部5からは、発電に伴って生成した水を含む排空気が排出される。又、水素生成部1からは、水分を含む燃焼排ガスが排出される。これらの排空気及び燃焼排ガスは、それぞれ排空気熱交換器12、排ガス熱交換器11を介して、排熱回収水と熱交換を行い、この水回収部8においてその水分が回収される。つまり、水回収部8は、排空気及び燃焼排ガスに含まれる水を凝縮することにより回収する。そして、この水回収部8は、排空気及び燃焼排ガスから回収した水を、水素生成部1の改質部に供給する。   Further, during the power generation operation, the fuel cell power generation unit 5 discharges exhaust air containing water generated along with power generation. In addition, combustion exhaust gas containing moisture is discharged from the hydrogen generator 1. These exhaust air and combustion exhaust gas exchange heat with exhaust heat recovery water via the exhaust air heat exchanger 12 and exhaust gas heat exchanger 11, respectively, and the water recovery unit 8 recovers the moisture. That is, the water recovery unit 8 recovers the water contained in the exhaust air and the combustion exhaust gas by condensing. The water recovery unit 8 supplies water recovered from the exhaust air and the combustion exhaust gas to the reforming unit of the hydrogen generation unit 1.

水回収部8から送出された水は、水供給経路3の動作によって水浄化部に供給される。そして、水浄化部の活性炭及びイオン交換樹脂が有する浄水機能によって、水中の不純物が除去される。不純物が除去された水は、その後、供給量が制御され、水素生成部1に供給される。このように、本実施の形態に係る燃料電池システム100では、上述した水回収部8によって回収した水を水素生成部1に供給することにより、外部から水を補充することなく、連続して発電動作が行われる。   The water sent from the water recovery unit 8 is supplied to the water purification unit by the operation of the water supply path 3. And the impurity in water is removed by the water purification function which the activated carbon and ion exchange resin of a water purification part have. Thereafter, the supply amount of the water from which impurities have been removed is controlled and supplied to the hydrogen generator 1. As described above, in the fuel cell system 100 according to the present embodiment, the water recovered by the water recovery unit 8 described above is supplied to the hydrogen generation unit 1 to continuously generate power without replenishing water from the outside. Operation is performed.

上述したように、本実施の形態に係る燃料電池システム100の基本的な発電動作は、従来の燃料電池システムの発電動作と同様である。即ち、従来の燃料電池システムの場合と同様にして、本実施の形態に示す燃料電池システム100においても、その内部で回収した水を利用する水の自立供給形態において発電運転が行われる。   As described above, the basic power generation operation of the fuel cell system 100 according to the present embodiment is the same as the power generation operation of the conventional fuel cell system. That is, in the same manner as in the case of the conventional fuel cell system, also in the fuel cell system 100 shown in the present embodiment, the power generation operation is performed in the self-sustained supply form of water using the water collected therein.

この時、燃料電池発電部5で発生する熱の回収に使用される貯湯タンク20において、貯湯タンク20内のコイル状の排熱回収水熱交換器21の上流部の単位高さ当たりの表面積が、下流部の単位高さ当たりの表面積より大きくすることにより、貯湯タンク20内の上方で排熱回収水熱交換器21の表面と貯湯タンク20内の市水とが接触する面積が大きくなるので、貯湯タンク20内上方で効率良く熱回収を行うことができ、貯湯タンク20
下方では十分に冷えた水となるので、燃料電池システムに供給される排熱回収水の温度を低くすることができる。これによって、燃料電池発電部のカソード側から排出される排空気と、水素生成部の内部の改質加熱部における燃焼排ガスの各々から、それぞれ排空気熱交換器、排ガス熱交換器を介して、排熱回収水と熱交換を行い、水素生成装置で水素を生成するために必要な水分を、凝縮によって回収することができるので、燃料電池システム内の水の自立が可能となり、長時間運転を継続させることができる。また、貯湯タンク内上方で積極的に熱回収を行うことで、熱交換器の上流側と下流側で単位高さ当たりの表面積が一定のものに比べて、短時間で貯湯タンク内の上方に高温層を生成することができるので、燃料電池の発電開始から給湯利用が可能となるまでの時間の短縮も図ることが出来る。
At this time, in the hot water storage tank 20 used for recovering the heat generated in the fuel cell power generation unit 5, the surface area per unit height of the upstream portion of the coiled exhaust heat recovery water heat exchanger 21 in the hot water storage tank 20 is as follows. By increasing the surface area per unit height of the downstream portion, the area where the surface of the exhaust heat recovery water heat exchanger 21 and the city water in the hot water storage tank 20 are in contact with each other above the hot water storage tank 20 is increased. In the hot water storage tank 20, heat can be recovered efficiently and the hot water storage tank 20
Since the water is sufficiently cooled below, the temperature of the exhaust heat recovery water supplied to the fuel cell system can be lowered. Thereby, from each of the exhaust air discharged from the cathode side of the fuel cell power generation unit and the combustion exhaust gas in the reforming heating unit inside the hydrogen generation unit, through the exhaust air heat exchanger and the exhaust gas heat exchanger, respectively. Heat exchange with the exhaust heat recovery water is performed, and the water necessary to generate hydrogen in the hydrogen generator can be recovered by condensation, so that the water in the fuel cell system can be self-supported and operated for a long time. Can continue. In addition, by actively recovering heat above the hot water storage tank, the surface area per unit height on the upstream and downstream sides of the heat exchanger can be increased in a short time above the hot water storage tank. Since a high temperature layer can be generated, it is possible to shorten the time from the start of power generation of the fuel cell until the use of hot water supply becomes possible.

尚、熱交換器の出口側の部分である下流部が、熱交換器の入口側の部分である上流部より重力方向の下側に配置されており、前記上流部の表面積が、前記下流部の表面積より大きい構成であれば、排熱回収水熱交換器21は、貯湯タンク20内の重力方向に対してほぼ全域にわたって配置されている必要はなく、例えば貯湯タンク20内の中央より下方に配置されていても良い。さらに、燃料電池発電部以外の熱(例えばボイラ等)を回収する別系統の熱交換器が貯湯タンク20内に複数存在しても良い。別系統の熱交換器は、排熱回収水熱交換器と重力方向に上下に並べて配置したり、排熱回収水熱交換器と同心円状に巻き半径を変えて配置しても良い。その際、燃料電池システムに供給される排熱回収水の温度を低くするためには、貯湯タンク20内に存在する別系統の熱交換器に対して、排熱回収水熱交換器21の下流側は重力方向の下側に配置されていることが望ましい。   In addition, the downstream part which is a part on the outlet side of the heat exchanger is arranged below the gravity direction from the upstream part which is a part on the inlet side of the heat exchanger, and the surface area of the upstream part is the downstream part. The exhaust heat recovery water heat exchanger 21 does not need to be disposed over almost the entire area in the direction of gravity in the hot water storage tank 20, for example, below the center in the hot water storage tank 20. It may be arranged. Furthermore, a plurality of heat exchangers of different systems that recover heat (for example, a boiler or the like) other than the fuel cell power generation unit may exist in the hot water storage tank 20. The heat exchanger of another system may be arranged side by side with the exhaust heat recovery water heat exchanger in the gravitational direction, or may be disposed concentrically with the exhaust heat recovery water heat exchanger with a different winding radius. At that time, in order to lower the temperature of the exhaust heat recovery water supplied to the fuel cell system, the downstream of the exhaust heat recovery water heat exchanger 21 with respect to another heat exchanger in the hot water storage tank 20. The side is preferably located below the gravitational direction.

(実施の形態2)
図2は本発明の第2の実施の形態における燃料電池システムの構成図を示すものである。貯湯タンク20内に配置されたコイル状の排熱回収水熱交換器21は、排熱回収水熱交換器21の上流部の単位高さ当たりの経路の巻き数が、下流部の単位高さ当たりの経路の巻き数より多くすることにより、貯湯タンク20内上方でコイル状の熱交換器と貯湯タンク20内の水とが接触する面積が大きくなるので、貯湯タンク20内上方で効率良く熱回収を行うことができ、貯湯タンク20下方では十分に冷えた水となるので、燃料電池システムに供給される排熱回収水の温度を低くすることができる。これによって、燃料電池発電部のカソード側から排出される排空気と、水素生成部の内部の改質加熱部における燃焼排ガスの各々から、それぞれ排空気熱交換器、排ガス熱交換器を介して、排熱回収水と熱交換を行い、水素生成装置で水素を生成するために必要な水分を、凝縮によって回収することができるので、燃料電池システム内の水の自立が可能となり、長時間運転を継続させることができる。
(Embodiment 2)
FIG. 2 shows a configuration diagram of a fuel cell system according to the second embodiment of the present invention. The coil-shaped exhaust heat recovery water heat exchanger 21 arranged in the hot water storage tank 20 has a number of windings per unit height upstream of the exhaust heat recovery water heat exchanger 21 so that the unit height of the downstream portion is high. By increasing the number of turns of the winning path, the area where the coiled heat exchanger and the water in the hot water tank 20 come into contact with each other in the upper part of the hot water tank 20 is increased. Recovery can be performed, and the water is sufficiently cooled below the hot water storage tank 20, so that the temperature of the exhaust heat recovery water supplied to the fuel cell system can be lowered. Thereby, from each of the exhaust air discharged from the cathode side of the fuel cell power generation unit and the combustion exhaust gas in the reforming heating unit inside the hydrogen generation unit, through the exhaust air heat exchanger and the exhaust gas heat exchanger, respectively. Heat exchange with the exhaust heat recovery water is performed, and the water necessary to generate hydrogen in the hydrogen generator can be recovered by condensation, so that the water in the fuel cell system can be self-supported and operated for a long time. Can continue.

(実施の形態3)
図3は本発明の第3の実施の形態における燃料電池システムの構成図を示すものである。貯湯タンク20内に配置されたコイル状の排熱回収水熱交換器21は、上流部の経路の巻き半径が、下流部の半径より大きくすることにより、貯湯タンク20内上方でコイル状の熱交換器と貯湯タンク20内の水とが接触する面積が貯湯タンク20下方に比べて大きくなるので、貯湯タンク20内上方で効率良く熱回収を行うことができ、貯湯タンク20下方では十分に冷えた水となるので、燃料電池システムに供給される排熱回収水の温度を低くすることができる。これによって、燃料電池発電部のカソード側から排出される排空気と、水素生成部の内部の改質加熱部における燃焼排ガスの各々から、それぞれ排空気熱交換器、排ガス熱交換器を介して、排熱回収水と熱交換を行い、水素生成装置で水素を生成するために必要な水分を、凝縮によって回収することができるので、燃料電池システム内の水の自立が可能となり、長時間運転を継続させることができる。
(Embodiment 3)
FIG. 3 shows a configuration diagram of a fuel cell system according to the third embodiment of the present invention. The coiled exhaust heat recovery water heat exchanger 21 disposed in the hot water storage tank 20 has a coiled heat above the hot water storage tank 20 by making the winding radius of the upstream path larger than the radius of the downstream part. Since the area of contact between the exchanger and the water in the hot water storage tank 20 is larger than that below the hot water storage tank 20, heat recovery can be performed efficiently above the hot water storage tank 20. Therefore, the temperature of the exhaust heat recovery water supplied to the fuel cell system can be lowered. Thereby, from each of the exhaust air discharged from the cathode side of the fuel cell power generation unit and the combustion exhaust gas in the reforming heating unit inside the hydrogen generation unit, through the exhaust air heat exchanger and the exhaust gas heat exchanger, respectively. Heat exchange with the exhaust heat recovery water is performed, and the water necessary to generate hydrogen in the hydrogen generator can be recovered by condensation, so that the water in the fuel cell system can be self-supported and operated for a long time. Can continue.

(実施の形態4)
図4は本発明の第4の実施の形態における燃料電池システムの構成図を示すものである。排熱回収水経路9上に、排熱回収水熱交換器21の上流部に排熱回収水を供給し、排熱回収水を排熱回収水熱交換器21の下流部から排出するための排熱回収水循環ポンプ22を備えたことにより、排熱回収水の流量を調整することで、貯湯タンク20内上方で効率良く熱回収を行うことができ、貯湯タンク20下方では十分に冷えた水となるので、燃料電池システムに供給される排熱回収水の温度を低くすることができる。これによって、燃料電池発電部のカソード側から排出される排空気と、水素生成部の内部の改質加熱部における燃焼排ガスの各々から、それぞれ排空気熱交換器、排ガス熱交換器を介して、排熱回収水と熱交換を行い、水素生成装置で水素を生成するために必要な水分を、凝縮によって回収することができるので、燃料電池システム内の水の自立が可能となり、長時間運転を継続させることができる。
(Embodiment 4)
FIG. 4 shows a configuration diagram of a fuel cell system according to a fourth embodiment of the present invention. The exhaust heat recovery water is supplied to the upstream portion of the exhaust heat recovery water heat exchanger 21 on the exhaust heat recovery water path 9, and the exhaust heat recovery water is discharged from the downstream portion of the exhaust heat recovery water heat exchanger 21. By providing the exhaust heat recovery water circulation pump 22, it is possible to efficiently recover heat above the hot water storage tank 20 by adjusting the flow rate of the exhaust heat recovery water, and sufficiently cool water below the hot water storage tank 20. Therefore, the temperature of the exhaust heat recovery water supplied to the fuel cell system can be lowered. Thereby, from each of the exhaust air discharged from the cathode side of the fuel cell power generation unit and the combustion exhaust gas in the reforming heating unit inside the hydrogen generation unit, through the exhaust air heat exchanger and the exhaust gas heat exchanger, respectively. Heat exchange with the exhaust heat recovery water is performed, and the water necessary to generate hydrogen in the hydrogen generator can be recovered by condensation, so that the water in the fuel cell system can be self-supported and operated for a long time. Can continue.

以上のように、本発明の燃料電池用貯湯タンクは、コイル状の熱交換器を介して効率的に熱回収を行い、燃料電池システムに供給される排熱回収水の水温を低くすることで、燃料電池発電部の排空気と水素生成部の内部の改質加熱部における燃焼排ガスから凝縮によって水分を回収し、燃料電池システム内の水の自立を可能にすることで、長時間運転を継続させることができる為、様々な形態の燃料電池システムに適用できる。   As described above, the fuel cell hot water storage tank of the present invention efficiently recovers heat through the coiled heat exchanger, and lowers the temperature of the exhaust heat recovery water supplied to the fuel cell system. Continues operation for a long time by recovering moisture from the exhaust air in the fuel cell power generation unit and the combustion exhaust gas in the reforming heating unit inside the hydrogen generation unit, allowing water in the fuel cell system to become independent Therefore, it can be applied to various types of fuel cell systems.

1 水素生成部
2 原料供給部
3 水供給経路
4a 水素供給経路
4b オフ水素ガス経路
5 燃料電池発電部
6 ブロアー
7 冷却水循環経路
8 水回収部
9 排熱回収水経路
11 排ガス熱交換器
12 排空気熱交換器
13 冷却水熱交換器
20 貯湯タンク
21 排熱回収水熱交換器
22 排熱回収水循環ポンプ
100 燃料電池システム
101 制御部
DESCRIPTION OF SYMBOLS 1 Hydrogen production | generation part 2 Raw material supply part 3 Water supply path 4a Hydrogen supply path 4b Off-hydrogen gas path 5 Fuel cell power generation part 6 Blower 7 Coolant circulation path 8 Water recovery part 9 Waste heat recovery water path 11 Exhaust gas heat exchanger 12 Exhaust air Heat exchanger 13 Cooling water heat exchanger 20 Hot water storage tank 21 Waste heat recovery water heat exchanger 22 Waste heat recovery water circulation pump 100 Fuel cell system 101 Control unit

Claims (6)

コイル状の経路を有する熱交換器と、前記熱交換器を内部に有する貯湯タンクと、を備えた燃料電池用貯湯タンクにおいて、
前記熱交換器は、前記熱交換器の出口側の部分である下流部が、前記熱交換器の入口側の部分である上流部より重力方向の下側に配置されており、前記熱交換器の上流部の表面積は、前記熱交換器の下流部の表面積より大きい、燃料電池用貯湯タンク。
In a hot water storage tank for a fuel cell comprising a heat exchanger having a coiled path, and a hot water storage tank having the heat exchanger inside,
In the heat exchanger, a downstream portion that is a portion on the outlet side of the heat exchanger is disposed below a gravity direction from an upstream portion that is a portion on the inlet side of the heat exchanger, and the heat exchanger The hot water storage tank for a fuel cell, wherein the surface area of the upstream portion is larger than the surface area of the downstream portion of the heat exchanger.
前記熱交換器は、前記熱交換器の上流部及び下流部がコイル状に巻かれた経路を有しており、
前記熱交換器の上流部の外径が、前記熱交換器の下流部の外径より大きい、請求項1に記載の燃料電池用貯湯タンク。
The heat exchanger has a path in which an upstream part and a downstream part of the heat exchanger are wound in a coil shape,
The hot water storage tank for a fuel cell according to claim 1, wherein an outer diameter of an upstream portion of the heat exchanger is larger than an outer diameter of a downstream portion of the heat exchanger.
前記熱交換器は、前記熱交換器の上流部及び下流部がコイル状に巻かれた経路を有しており、
前記熱交換器の上流部の巻き数が、前記熱交換器の下流部の巻き数より多い、請求項1に記載の燃料電池用貯湯タンク。
The heat exchanger has a path in which an upstream part and a downstream part of the heat exchanger are wound in a coil shape,
The hot water storage tank for a fuel cell according to claim 1, wherein the number of turns in the upstream portion of the heat exchanger is greater than the number of turns in the downstream portion of the heat exchanger.
前記熱交換器は、前記熱交換器の上流部及び下流部がコイル状に巻かれた経路を有しており、
前記熱交換器の上流部の巻き半径が、前記熱交換器の下流部の巻き半径より大きい、請求項1に記載の燃料電池用貯湯タンク。
The heat exchanger has a path in which an upstream part and a downstream part of the heat exchanger are wound in a coil shape,
The hot water storage tank for a fuel cell according to claim 1, wherein a winding radius of an upstream portion of the heat exchanger is larger than a winding radius of a downstream portion of the heat exchanger.
請求項1〜4のいずれかに記載の燃料電池用貯湯タンクと、原料ガスと凝縮水との改質反応から生成される燃料ガスと、酸化剤ガスとを用いて発電を行い、電力と熱を供給する燃料電池装置と、
前記燃料電池から排出される水分を含んだガスを冷却して凝縮水を発生させる凝縮器と、
熱媒体を循環し、前記凝縮器及び前記燃料電池からの熱を回収する熱利用経路と、を備え、
前記熱利用経路の一端は、前記熱交換器の上流部に連通し、他端は前記熱交換器の下流部に連通するように構成されている、発電システム。
Electricity is generated by using the hot water storage tank for a fuel cell according to any one of claims 1 to 4, a fuel gas generated from a reforming reaction between a raw material gas and condensed water, and an oxidant gas to generate electric power and heat. A fuel cell device for supplying
A condenser for generating condensed water by cooling a gas containing moisture discharged from the fuel cell;
A heat utilization path for circulating a heat medium and recovering heat from the condenser and the fuel cell, and
One end of the heat utilization path communicates with an upstream portion of the heat exchanger, and the other end communicates with a downstream portion of the heat exchanger.
前記熱利用経路上に配置され、前記熱媒体を前記熱交換器の上流部に供給し、前記熱媒体を前記熱交換器の下流部から排出するための熱媒体循環装置を備えた、請求項5に記載の発電システム。   The heat medium circulation device which is arranged on the heat utilization path, supplies the heat medium to the upstream part of the heat exchanger, and discharges the heat medium from the downstream part of the heat exchanger. 5. The power generation system according to 5.
JP2011101083A 2011-04-28 2011-04-28 Hot water storage tank for fuel cell, and power generation system Pending JP2012233609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011101083A JP2012233609A (en) 2011-04-28 2011-04-28 Hot water storage tank for fuel cell, and power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011101083A JP2012233609A (en) 2011-04-28 2011-04-28 Hot water storage tank for fuel cell, and power generation system

Publications (1)

Publication Number Publication Date
JP2012233609A true JP2012233609A (en) 2012-11-29

Family

ID=47434093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011101083A Pending JP2012233609A (en) 2011-04-28 2011-04-28 Hot water storage tank for fuel cell, and power generation system

Country Status (1)

Country Link
JP (1) JP2012233609A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104654586A (en) * 2015-01-21 2015-05-27 阮自恒 Electric leakage-preventing and standby power supply of electric water heater
CN105509305A (en) * 2015-12-28 2016-04-20 安徽农业大学 PTC water heater for automobile air conditioning heating
JP2017116115A (en) * 2015-12-21 2017-06-29 パナソニックIpマネジメント株式会社 Cogeneration system, fuel cell system and operation method of fuel cell system
JP2018006016A (en) * 2016-06-28 2018-01-11 三浦工業株式会社 Fuel cell system
CN109682236A (en) * 2018-12-25 2019-04-26 中国船舶重工集团公司第七一九研究所 A kind of etch-proof ship high temperature heat exchanger
CN116072920A (en) * 2023-02-01 2023-05-05 青岛阳氢集团有限公司 Methanol recombination hydrogen production fuel cell power generation waste heat utilization system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075392A (en) * 2000-09-05 2002-03-15 Toyota Industries Corp Heat accumulating device for fuel cell power generation system
JP2007280970A (en) * 2007-07-27 2007-10-25 Aisin Seiki Co Ltd Fuel cell system
JP2008267790A (en) * 2007-03-27 2008-11-06 Daikin Ind Ltd Heat pump type hot water supply apparatus and heating hot water supply apparatus
JP2009276050A (en) * 2008-02-01 2009-11-26 Daikin Ind Ltd Hot-water storage water heater and hot-water storage heating water heater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075392A (en) * 2000-09-05 2002-03-15 Toyota Industries Corp Heat accumulating device for fuel cell power generation system
JP2008267790A (en) * 2007-03-27 2008-11-06 Daikin Ind Ltd Heat pump type hot water supply apparatus and heating hot water supply apparatus
JP2007280970A (en) * 2007-07-27 2007-10-25 Aisin Seiki Co Ltd Fuel cell system
JP2009276050A (en) * 2008-02-01 2009-11-26 Daikin Ind Ltd Hot-water storage water heater and hot-water storage heating water heater

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104654586A (en) * 2015-01-21 2015-05-27 阮自恒 Electric leakage-preventing and standby power supply of electric water heater
JP2017116115A (en) * 2015-12-21 2017-06-29 パナソニックIpマネジメント株式会社 Cogeneration system, fuel cell system and operation method of fuel cell system
CN105509305A (en) * 2015-12-28 2016-04-20 安徽农业大学 PTC water heater for automobile air conditioning heating
JP2018006016A (en) * 2016-06-28 2018-01-11 三浦工業株式会社 Fuel cell system
CN109682236A (en) * 2018-12-25 2019-04-26 中国船舶重工集团公司第七一九研究所 A kind of etch-proof ship high temperature heat exchanger
CN116072920A (en) * 2023-02-01 2023-05-05 青岛阳氢集团有限公司 Methanol recombination hydrogen production fuel cell power generation waste heat utilization system
CN116072920B (en) * 2023-02-01 2024-04-05 青岛阳氢集团有限公司 Methanol recombination hydrogen production fuel cell power generation waste heat utilization system

Similar Documents

Publication Publication Date Title
JP5331819B2 (en) MCFC power generation system
JP5129452B2 (en) Fuel cell power generation system
KR101843380B1 (en) Cooling and heating device
JP2006309982A (en) Solid oxide fuel cell system
JP5528451B2 (en) Fuel cell device
JP2009230926A (en) Fuel cell system
JP2012233609A (en) Hot water storage tank for fuel cell, and power generation system
JP2009123488A (en) Fuel cell system
JP2010238446A (en) Fuel cell system
JP5519357B2 (en) Solid oxide fuel cell system and cogeneration system equipped with the same
JP5763480B2 (en) Fuel cell system
EP2810329A1 (en) Fuel cell module
JP5763481B2 (en) Fuel cell system
JPWO2013046582A1 (en) High temperature operation fuel cell module and high temperature operation fuel cell system
JP2008234994A (en) Fuel cell system
JP2015076399A (en) Heating device and heating method for fuel cell and fuel cell system including the heating device
KR101897500B1 (en) Fuel cell system with heat exchager using reformed gas or anode off gas
KR101721237B1 (en) Solid oxide fuel cell system heated by externel hear source
JP2014182923A (en) Fuel cell system and operation method thereof
JP5873962B2 (en) Power generation system
JP5498552B2 (en) Fuel cell system
JP2018195377A (en) Fuel battery and composite power generation system
JP5643731B2 (en) Fuel cell system
JP2011175745A (en) Fuel cell system
JP6851261B2 (en) Cogeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140310

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140414

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150728