JP2012232813A - Granule supplying device using horizontal turntable - Google Patents

Granule supplying device using horizontal turntable Download PDF

Info

Publication number
JP2012232813A
JP2012232813A JP2011101111A JP2011101111A JP2012232813A JP 2012232813 A JP2012232813 A JP 2012232813A JP 2011101111 A JP2011101111 A JP 2011101111A JP 2011101111 A JP2011101111 A JP 2011101111A JP 2012232813 A JP2012232813 A JP 2012232813A
Authority
JP
Japan
Prior art keywords
horizontal
rotary table
granular material
inner cylinder
horizontal rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011101111A
Other languages
Japanese (ja)
Other versions
JP5774362B2 (en
Inventor
Osamu Yoshikawa
修 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshikawa Corp
Original Assignee
Yoshikawa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshikawa Corp filed Critical Yoshikawa Corp
Priority to JP2011101111A priority Critical patent/JP5774362B2/en
Priority to KR1020110104685A priority patent/KR101765342B1/en
Publication of JP2012232813A publication Critical patent/JP2012232813A/en
Application granted granted Critical
Publication of JP5774362B2 publication Critical patent/JP5774362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G65/00Loading or unloading
    • B65G65/30Methods or devices for filling or emptying bunkers, hoppers, tanks, or like containers, of interest apart from their use in particular chemical or physical processes or their application in particular machines, e.g. not covered by a single other subclass
    • B65G65/34Emptying devices
    • B65G65/40Devices for emptying otherwise than from the top
    • B65G65/48Devices for emptying otherwise than from the top using other rotating means, e.g. rotating pressure sluices in pneumatic systems
    • B65G65/4809Devices for emptying otherwise than from the top using other rotating means, e.g. rotating pressure sluices in pneumatic systems rotating about a substantially vertical axis
    • B65G65/4818Devices for emptying otherwise than from the top using other rotating means, e.g. rotating pressure sluices in pneumatic systems rotating about a substantially vertical axis and having the form of rotating tables or pans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/26Hoppers, i.e. containers having funnel-shaped discharge sections
    • B65D88/28Construction or shape of discharge section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G29/00Rotary conveyors, e.g. rotating discs, arms, star-wheels or cones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/02Devices for feeding articles or materials to conveyors
    • B65G47/16Devices for feeding articles or materials to conveyors for feeding materials in bulk
    • B65G47/18Arrangements or applications of hoppers or chutes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/34Devices for discharging articles or materials from conveyor 
    • B65G47/44Arrangements or applications of hoppers or chutes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G65/00Loading or unloading
    • B65G65/30Methods or devices for filling or emptying bunkers, hoppers, tanks, or like containers, of interest apart from their use in particular chemical or physical processes or their application in particular machines, e.g. not covered by a single other subclass
    • B65G65/34Emptying devices
    • B65G65/40Devices for emptying otherwise than from the top
    • B65G65/48Devices for emptying otherwise than from the top using other rotating means, e.g. rotating pressure sluices in pneumatic systems
    • B65G65/4809Devices for emptying otherwise than from the top using other rotating means, e.g. rotating pressure sluices in pneumatic systems rotating about a substantially vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/04Bulk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2812/00Indexing codes relating to the kind or type of conveyors
    • B65G2812/06Skip or hopper conveyors
    • B65G2812/0609Constitutive elements or auxiliary devices
    • B65G2812/0618Skips, hoppers or similar containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2812/00Indexing codes relating to the kind or type of conveyors
    • B65G2812/14Turntables

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a granule supplying device which enables granules to be supplied in a fixed quantity without using a discharge scraper.SOLUTION: A horizontal turntable 8 is provided in a casing 1, a circular interval S is formed between an outer peripheral edge of the turntable 8 and an inner periphery face of the casing, an inner cylinder 4 is coupled to a lower end of a feeding hopper 3, a horizontal flange 5 is provided at a lower edge of the inner cylinder 4, and the inner cylinder 4 is disposed above the horizontal turntable 8 to provide a material discharge interval t, so that the granules fed to the inner cylinder 4 are made to flow out on the horizontal turntable 8 from a lower end of the inner cylinder at a fixed repose angle θ, and a plurality of longitudinal linear projections 6 are formed on an inner face of the inner cylinder 4, and a plurality of radial linear projections 7 are formed on a lower face of the horizontal flange, and by rotating the horizontal turntable 8, the granules flowing out on the horizontal turntable 8 are moved in an outer peripheral edge direction of the table so that the granules are dropped and supplied from the outer peripheral edge 8a of the horizontal rotation table via the circular interval S.

Description

本発明は水平回転テーブルを用いた粉粒体供給装置に関し、排出スクレーパ等を用いることなく円滑に石・金属・樹脂の破砕物その他の粉粒体の定量供給を可能とした水平回転テーブルによる粉粒体供給装置に関するものである。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a granular material supply apparatus using a horizontal rotating table, and a powder by a horizontal rotating table that can smoothly supply a fixed amount of crushed stone, metal, resin and other granular materials without using a discharge scraper or the like. The present invention relates to a granular material supply apparatus.

従来、機枠に台盤を設け、台盤の中心部に直立回転軸を設け、該回転軸の上端部に回転テーブルを設け、該回転テーブル上に供給ホッパーを設けて該ホッパーから上記回転テーブル上に粉粒体を落下供給し、該回転テーブル上に配置された排出スクレーパによって上記テーブル上の粉粒体をテーブルの外周縁方向又はテーブルの内周側開口部方向に導き、該粉粒体を上記テーブル外周縁又は内周側開口部から下方に落下させることにより、上記テーブルから上記粉粒体を定量供給するテーブルフィーダが提案されている(特許文献1,2)。   Conventionally, a base is provided in the machine frame, an upright rotary shaft is provided at the center of the base, a rotary table is provided at the upper end of the rotary shaft, a supply hopper is provided on the rotary table, and the rotary table is provided from the hopper. The powder particles are dropped and supplied onto the table, and the powder particles on the table are guided toward the outer peripheral edge of the table or the inner peripheral side of the table by the discharge scraper disposed on the rotary table. A table feeder has been proposed in which a powder is supplied in a fixed amount from the table by dropping it downward from the outer peripheral edge of the table or the opening on the inner peripheral side (Patent Documents 1 and 2).

特開昭63−71030号公報JP-A-63-71030 実公平4−27833号公報Japanese Utility Model Publication 4-27833

ところで、上記従来のテーブルフィーダは、何れも、テーブル上の排出スクレーパにて粉粒体をテーブルから下方に誘導し落下させるものであるため、上記粉粒体は一旦、スクレーパに当接した後、該スクレーパによって進路変更された上でテーブルから落下していく。   By the way, since all the conventional table feeders are to guide and drop the powder particles downward from the table by the discharge scraper on the table, the powder particles are once brought into contact with the scraper, The route is changed by the scraper and then falls from the table.

しかしながら、供給すべき粉粒体の性質上、搬送経路において、できるだけ排出スクレーパ等の金属製部材との接触を回避すべきである場合、例えば、粉粒体原料の材質からして、粉粒体が金属製スクレーパに接触することでスクレーパ表面が傷付き、これによって生じた金属粉等が不純物として粉粒体原料中に混入してしまう等の場合は、排出スクレーパを用いずに原料を定量供給する装置が望まれている。   However, due to the nature of the granular material to be supplied, in the conveying path, contact with a metal member such as a discharge scraper should be avoided as much as possible. If the scraper surface is damaged due to contact with the metal scraper and the resulting metal powder or the like is mixed into the granular material as impurities, the raw material is supplied quantitatively without using the discharge scraper. There is a need for a device that does this.

本発明は、上記従来の課題に鑑みてなされたものであり、排出スクレーパを用いることなく円滑に石・金属・樹脂の破砕物等の粉粒体の定量供給を可能とした水平回転テーブルによる粉粒体供給装置を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and is a powder by a horizontal rotary table that can smoothly supply a fixed amount of powder particles such as stone, metal, and resin crushed material without using a discharge scraper. It aims at providing a granular material supply apparatus.

上記の目的を達成するため本発明は、
第1に、円筒状のケーシング内に機枠を固定し、該機枠に直立回転軸を設けると共に上記直立回転軸の上部に該直立回転軸を中心軸線とする水平回転テーブルを設け、該水平回転テーブルの外周縁と上記ケーシング内周面との間に材料排出用の環状間隔を形成し、上記ケーシングの上面に開口部を設けると共に、上記開口部に上記中心軸線を共通とする逆円錐形状の投入ホッパーを接続し、該投入ホッパーの下端に該投入ホッパーと上記中心軸線を共通とする内筒を接続し、上記内筒の下縁に、外方向に水平に突出し上記中心軸線を共通とする円環状の水平フランジを設け、上記内筒を上記水平回転テーブルの上方位置に配置して、上記内筒下端部と上記水平回転テーブルとの間に材料排出間隔を形成し、上記内筒内に投入された粉粒体が上記内筒の下端部から上記水平回転テーブル上に一定の安息角を以って流出するように構成し、上記内筒の内周面に、その内周に沿う均等間隔毎に該内筒中心方向に突出する縦方向線状突起を複数本設けると共に、上記水平フランジの下面に、円周方向の均等間隔毎に下方向に突出する放射状線状突起を複数本設け、電動機により上記水平回転テーブルを回転することにより、上記水平回転テーブル上に流出した上記粉粒体を上記水平回転テーブルの外周縁方向に移動させ、上記粉粒体を上記水平回転テーブルの外周縁から上記環状間隔を介して上記ケーシング下方に落下供給するものである水平回転テーブルによる粉粒体供給装置により構成される。
In order to achieve the above object, the present invention
First, a machine frame is fixed in a cylindrical casing, an upright rotating shaft is provided on the machine frame, and a horizontal rotary table having the upright rotating shaft as a central axis is provided above the upright rotating shaft. An inverted conical shape in which an annular space for discharging material is formed between the outer peripheral edge of the rotary table and the inner peripheral surface of the casing, an opening is provided on the upper surface of the casing, and the central axis is common to the opening. A charging hopper connected to the lower end of the charging hopper, an inner cylinder having the same central axis as the charging hopper, and a lower edge of the inner cylinder that protrudes horizontally and has a common central axis. An annular horizontal flange is provided, the inner cylinder is disposed above the horizontal rotary table, a material discharge interval is formed between the lower end of the inner cylinder and the horizontal rotary table, and the inner cylinder The granular material put in The inner cylinder is configured to flow out from the lower end portion of the inner cylinder onto the horizontal rotary table with a certain angle of repose, and the inner cylinder is directed toward the inner circumferential surface of the inner cylinder at equal intervals along the inner circumference. A plurality of longitudinal linear projections projecting downward are provided, and a plurality of radial linear projections projecting downward at equal circumferential intervals are provided on the lower surface of the horizontal flange, and the horizontal rotary table is mounted by an electric motor. By rotating, the granular material that has flowed out on the horizontal rotating table is moved toward the outer peripheral edge of the horizontal rotating table, and the granular material is moved from the outer peripheral edge of the horizontal rotating table via the annular interval. It is comprised by the granular material supply apparatus by the horizontal rotary table which is what is supplied by dropping below a casing.

上記機枠は水平機枠(10)により構成することができる。このように構成すると、上記水平回転テーブルの回転により上記材料排出間隔にある粉粒体には、水平回転テーブルの外周縁方向に押し出す力(矢印F2方向)と、上記水平回転テーブルの回転方向に向かう接線方向の力(矢印F1方向)が作用するので、上記粉粒体は上記水平回転テーブルの回転方向に沿った斜め外周方向(矢印A’方向(矢印A’方向の力=矢印F1方向の力+矢印F2方向の力))に向かって上記テーブルの外周縁方向に移動していくため、従来の供給装置における排出スクレーパ等を用いることなく、上記水平回転テーブルの略全周域から粉粒体を定量的に落下供給することができる。   The machine frame can be constituted by a horizontal machine frame (10). If comprised in this way, with the rotation of the said horizontal turntable, the force (arrow F2 direction) pushed out to the outer periphery direction of a horizontal turntable will be applied to the granular material which exists in the said material discharge space | interval, and the rotation direction of the said horizontal turntable Since the tangential force (arrow F1 direction) which acts is applied, the said granular material is the slant outer periphery direction (arrow A 'direction (arrow A' direction force = arrow F1 direction) along the rotation direction of the said horizontal turntable. Force + force in the direction of arrow F2)) toward the outer peripheral edge of the table, so that the powder particles from substantially the entire circumference of the horizontal rotary table without using a discharge scraper or the like in the conventional feeding device The body can be quantitatively dropped.

第2に、上記水平フランジの下面に位置する上記粉粒体は、上記水平フランジ下面の上記放射状線状突起との接触により、上記放射状線状突起との間で摩擦抵抗を生じ、これにより上記材料排出間隔にある上記粉粒体は、上記水平回転テーブルの回転に基づいて上記水平回転テーブルの外周縁に向かう方向に移動し得るように構成したものであることを特徴とする上記第1記載の水平回転テーブルによる粉粒体供給装置により構成される。   Second, the granular material located on the lower surface of the horizontal flange generates a frictional resistance with the radial linear projections by contact with the radial linear projections on the lower surface of the horizontal flange, thereby The said 1st aspect characterized by the above-mentioned. The said granular material in a material discharge | emission space | interval is comprised so that it can move to the direction which goes to the outer periphery of the said horizontal rotation table based on rotation of the said horizontal rotation table. It is comprised by the granular material supply apparatus by the horizontal rotating table of.

このように構成すると、上記水平フランジの下面に位置する粉粒体は、上記放射状線状突起との接触摩擦により上記水平回転テーブルとの供回りが防止されるため、排出スクレーパ等を用いることなく、上記材料排出間隔にある粉粒体を確実に上記水平回転テーブルの外周縁の方向に移動させて定量排出を行うことができる。   If comprised in this way, since the granular material located in the lower surface of the said horizontal flange will be prevented from the rotation with the said horizontal rotary table by the contact friction with the said radial linear protrusion, without using a discharge scraper etc. Quantitative discharge can be performed by reliably moving the granular material at the material discharge interval in the direction of the outer peripheral edge of the horizontal rotary table.

第3に、上記内筒の下端に対応する上記水平回転テーブル上の位置(4b)から上記水平回転テーブルの外周縁までの距離(L)は、上記位置(4b)から上記安息角(θ)で流出する上記粉粒体の上記水平回転テーブル上の外縁までの距離(K)の2倍である上記第1又は2記載の水平回転テーブルによる粉粒体供給装置により構成される。   Third, the distance (L) from the position (4b) on the horizontal turntable corresponding to the lower end of the inner cylinder to the outer periphery of the horizontal turntable is the repose angle (θ) from the position (4b). The granular material supply apparatus using the horizontal rotating table according to the first or second aspect, which is twice the distance (K) of the granular material flowing out at the outer edge on the horizontal rotating table.

即ち、上記内筒の下端に対応する上記水平回転テーブル上の位置(4b)から上記水平回転テーブルの外周縁までの距離(L)は、式(1)に従って決定することが好ましい。このように構成すると、排出スクレーパ等を用いることなく、水平回転テーブルの略全周域から粉粒体を定量的かつ安定して落下供給することができる。   That is, it is preferable that the distance (L) from the position (4b) on the horizontal rotary table corresponding to the lower end of the inner cylinder to the outer peripheral edge of the horizontal rotary table is determined according to the equation (1). If comprised in this way, a granular material can be fall-supplied quantitatively and stably from the substantially perimeter area of a horizontal rotary table, without using a discharge scraper etc.

第4に、上記放射状線状突起の本数は、上記縦方向線状突起の本数より多くなるように形成したものであることを特徴とする上記第1〜3の何れかに記載の水平回転テーブルによる粉粒体供給装置により構成される。   Fourth, the horizontal rotary table according to any one of the first to third aspects, wherein the number of the radial linear protrusions is greater than the number of the longitudinal linear protrusions. It is comprised by the granular material supply apparatus by.

例えば実施形態に示されるように、縦方向線状突起の数を6本、放射状線状突起の数を12本とする。このように構成すると、内筒から流出する粉粒体を放射状線状突起によって円滑に水平回転テーブルの外周方向に誘導することができる。   For example, as shown in the embodiment, the number of longitudinal linear protrusions is 6 and the number of radial linear protrusions is 12. If comprised in this way, the granular material which flows out out of an inner cylinder can be smoothly guide | induced to the outer peripheral direction of a horizontal turntable with a radial linear protrusion.

第5に、上記縦方向線状突起の本数は上記放射状線状突起の本数の1/2であり、上記縦方向線状突起は上記放射状線状突起の一つ置きの角度位置に対応して設けられているものである上記第4に記載の水平回転テーブルによる粉粒体供給装置により構成される。   Fifth, the number of the vertical linear protrusions is ½ of the number of the radial linear protrusions, and the vertical linear protrusions correspond to the angular positions of the other radial linear protrusions. It is comprised by the granular material supply apparatus by the horizontal rotary table of the said 4th what is provided.

このように構成すると、上記内筒内における縦方向線状突起により粉粒体の供回り現象を防止しつつ、上記水平フランジ下面に位置する粉粒体の供回り現象をも防止することができるため、排出スクレーパ等を用いることなく、水平回転テーブルの略全周域から粉粒体の定量排出を実現することができる。   If comprised in this way, the circulation phenomenon of the granular material located in the said horizontal flange lower surface can also be prevented, preventing the circulation phenomenon of a granular material by the vertical linear protrusion in the said inner cylinder. Therefore, it is possible to realize a quantitative discharge of the granular material from substantially the entire peripheral area of the horizontal rotary table without using a discharge scraper or the like.

上述のように本発明によれば、従来の供給装置における排出スクレーパ等を用いることなく、水平回転テーブルの全周域から粉粒体を定量的に落下供給することができるので、例えば、金属製の排出スクレーパ等との接触を避ける必要のある粉粒体材料等であっても支障なく定量供給することができるものである。   As described above, according to the present invention, the granular material can be quantitatively dropped from the entire circumference of the horizontal rotary table without using a discharge scraper or the like in a conventional supply device. Even if it is a granular material etc. which need to avoid contact with the discharge scraper etc. of this, it can supply quantitatively without trouble.

また、水平フランジの下面に位置する粉粒体は、放射状線状突起との接触摩擦により水平回転テーブルとの供回りが効果的に防止されるため、排出スクレーパ等を用いることなく円滑に粉粒体を定量的に供給することができる。   In addition, the granular material located on the lower surface of the horizontal flange is effectively prevented from rotating with the horizontal rotary table due to contact friction with the radial linear protrusions, so that the granular material can be smoothly dispersed without using a discharge scraper or the like. The body can be supplied quantitatively.

また、上記内筒内における縦方向線状突起により粉粒体の供回り現象を防止しつつ、放射状線状突起により水平フランジ下面に位置する粉粒体の供回り現象をも防止することができるため、排出スクレーパ等を用いることなく水平回転テーブルの略全周域から粉粒体の定量排出を実現することができるものである。   Further, while preventing the granular material from rotating due to the longitudinal linear protrusions in the inner cylinder, the radial linear protrusion can also prevent the rotating particles from being distributed on the lower surface of the horizontal flange. Therefore, it is possible to realize the quantitative discharge of the granular material from the substantially entire circumference of the horizontal rotary table without using a discharge scraper or the like.

本発明に係る水平回転テーブルによる粉粒体供給装置の側面断面図である。It is side surface sectional drawing of the granular material supply apparatus by the horizontal turntable which concerns on this invention. 同上供給装置の平面図である。It is a top view of a supply apparatus same as the above. 同上装置の電動機近傍の一部切欠側面図である。It is a partially cutaway side view of the vicinity of the electric motor of the apparatus. 図1のX1−X1線断面図である。It is the X1-X1 sectional view taken on the line of FIG. 図1のX2−X2線断面図である。It is the X2-X2 sectional view taken on the line of FIG. 図1のX3−X3線断面図である。It is the X3-X3 sectional view taken on the line of FIG. 図1のX4−X4線断面図である。It is the X4-X4 sectional view taken on the line of FIG. 同上装置の材料排出間隔t近傍の側面断面図である。It is side surface sectional drawing of material discharge interval t vicinity of an apparatus same as the above. 同上装置の内筒近傍の斜視図である。It is a perspective view of the inner cylinder vicinity of an apparatus same as the above. 図1のX5−X5線矢視図である。It is the X5-X5 line arrow figure of FIG. (a)は縦方向線状突起の断面図、(b)放射方向線状突起の断面図である。(A) is sectional drawing of a longitudinal direction linear protrusion, (b) It is sectional drawing of a radial direction linear protrusion.

図1に本発明の水平回転テーブルによる粉粒体供給装置の側面断面図を示す。同図において、1は共通の中心軸線Cを中心とする円筒状のケーシングであり、円筒状の上部ケーシング1aと円筒状の下部ケーシング1bがフランジFにてボルトB1により接続され、上記上部ケーシング1a上部開口縁1a”はリング状上蓋2で閉止されている。また、上記下部ケーシング1bの下端には上記中心軸線Cを共通中心とする逆円錐状の排出ホッパー1cがフランジF’を以ってボルトB2により接続されている。
上記リング状上蓋2の中央には上記中心軸線Cを共通とする円形開口部(開口部)2aが設けられており、該円形開口部2a上に上記中心軸線Cを中心とする原料投入用の逆円錐形状の投入ホッパー3がその下端部3aを以って接続されている。
FIG. 1 shows a side cross-sectional view of a granular material supply apparatus using a horizontal rotary table of the present invention. In the figure, reference numeral 1 denotes a cylindrical casing centering on a common central axis C. A cylindrical upper casing 1a and a cylindrical lower casing 1b are connected by a bolt B1 at a flange F, and the upper casing 1a. The upper opening edge 1a "is closed by a ring-shaped upper lid 2. Further, an inverted conical discharge hopper 1c having the central axis C as a common center is provided at the lower end of the lower casing 1b with a flange F '. It is connected by a bolt B2.
A circular opening (opening) 2a having the central axis C in common is provided at the center of the ring-shaped upper lid 2, and a raw material charging center around the central axis C is provided on the circular opening 2a. An inverted conical charging hopper 3 is connected via its lower end 3a.

上記円形開口部2aから上記ケーシング1内部方向には、上記ホッパー3の下端部3aに連続して上記中心軸線Cを中心とする円筒状の内筒4が接続されている。そして、この内筒4の下縁には外周方向に水平に、上記内筒4外周から直角方向外側に突出する円環状の水平フランジ5が形成されている。   A cylindrical inner cylinder 4 centering on the central axis C is connected to the lower end portion 3a of the hopper 3 in the direction toward the inside of the casing 1 from the circular opening 2a. An annular horizontal flange 5 is formed on the lower edge of the inner cylinder 4 horizontally in the outer peripheral direction and protrudes outward in the direction perpendicular to the outer periphery of the inner cylinder 4.

上記内筒4の内周面には、その内周に沿う均等間隔毎(60度間隔毎)に、上記内筒4の上端から下端に至る縦方向線状突起6が6箇所に施してある(図4、図7、図9参照)。この縦方向線状突起6は横幅e1約3mm、高さe2(円筒中心方向の突出高さ)約1.5mmの上下方向の突条により構成されており(図11(a)参照)、例えば幅約3mmの肉盛溶接により形成される。これらの縦方向線状突起6は内筒4内において後述の水平回転テーブル8と共に回転しようとする粉粒体に抵抗を与えることで、粉粒体の供回りを防止するものである。   On the inner peripheral surface of the inner cylinder 4, longitudinal linear protrusions 6 extending from the upper end to the lower end of the inner cylinder 4 are provided at six locations at equal intervals along the inner periphery (every 60 degrees). (See FIGS. 4, 7, and 9). The vertical linear protrusion 6 is composed of a vertical protrusion having a lateral width e1 of about 3 mm and a height e2 (projection height in the direction of the center of the cylinder) of about 1.5 mm (see FIG. 11A). It is formed by overlay welding with a width of about 3 mm. These vertical linear projections 6 prevent resistance of the powder particles by providing resistance to the powder particles to be rotated together with the horizontal rotary table 8 described later in the inner cylinder 4.

上記水平フランジ5の下面5aには、その円周方向の均等間隔毎(30度間隔毎)に、内周縁から外周縁に至る放射状線状突起7が12箇所に放射状に施してある(図4、図7、図9参照)。この放射状線状突起7は、上記縦方向線状突起6と同様に、横幅e1’約3mm、高さe2’(下方向の突出高さ)約1.5mmの外周方向の突条により構成されており(図11(b)参照)、例えば幅約3mmの肉盛溶接により形成される。これらの放射状線状突起7の内、1つ置きの6箇所の放射状線状突起7は上記円筒4の内周面4aの縦方向線状突起6の下端から連続的に設けられている。即ち、上記縦方向線状突起6の本数は上記放射状線状突起7の本数の1/2であり、上記縦方向線状突起6は上記放射状線状突起7の一つ置きの角度位置に対応して設けられている。これらの放射状線状突起7は後述の水平回転テーブル8と共に回転しようとする粉粒体に抵抗を与えることで、粉粒体の供回りを防止し、粉粒体が上記水平回転テーブル8の外周縁8aから排出し易くするためのものである。
このように、上記放射状線状突起7の本数は、上記縦方向線状突起6の本数より多くなるように形成することが好ましい。このように構成することにより、水平フランジ5の下面5a下方に位置する粉粒体に確実に放射状線状突起7が接触するようにして、上記下面5aの下に位置する粉粒体を円滑に水平回転テーブル8の外周方向に誘導することができる。
On the lower surface 5a of the horizontal flange 5, radial linear projections 7 extending radially from the inner peripheral edge to the outer peripheral edge are radially provided at equal intervals in the circumferential direction (every 30 degrees) (FIG. 4). FIG. 7 and FIG. 9). Similar to the longitudinal linear protrusions 6, the radial linear protrusions 7 are constituted by outer circumferential protrusions having a lateral width e1 ′ of about 3 mm and a height e2 ′ (downward protruding height) of about 1.5 mm. (See FIG. 11B), for example, formed by overlay welding with a width of about 3 mm. Of these radial linear projections 7, every other six radial linear projections 7 are continuously provided from the lower end of the longitudinal linear projection 6 on the inner peripheral surface 4 a of the cylinder 4. That is, the number of the vertical linear protrusions 6 is ½ of the number of the radial linear protrusions 7, and the vertical linear protrusions 6 correspond to the angular positions of the radial linear protrusions 7. Is provided. These radial linear protrusions 7 provide resistance to the powder particles to be rotated together with the horizontal rotary table 8 described later, thereby preventing the powder particles from rotating, and the powder particles are outside the horizontal rotary table 8. This is intended to facilitate discharge from the peripheral edge 8a.
Thus, it is preferable that the number of the radial linear protrusions 7 is larger than the number of the longitudinal linear protrusions 6. By configuring in this way, the radial linear projections 7 are surely brought into contact with the granular material positioned below the lower surface 5a of the horizontal flange 5, and the granular material positioned below the lower surface 5a is smoothly smoothed. It can be guided in the outer peripheral direction of the horizontal rotary table 8.

ここで、本実施形態において使用する「粉粒体」との文言は、例えば電子部品等に使用される鉱石を5mm〜10mmに破砕したもの、5mm前後のプラスチック破砕物を含む概念であり、さらには直径1mm以下の細かい粉状物等をも含む広い概念として使用する。   Here, the term “powder” used in the present embodiment is a concept including, for example, a crushed ore used for an electronic component or the like to 5 mm to 10 mm, and a plastic crushed material of about 5 mm. Is used as a broad concept including fine powders having a diameter of 1 mm or less.

上記ケーシング1内部の上記内筒4の下方位置には、一定の材料搬出間隔tを介して円板状の水平回転テーブル8が設けられている(図1、図5、図7、図8参照)。この水平回転テーブル8は上記中心軸線Cを共通中心とする表面平坦な円盤であり、その裏面の中心軸線C上に駆動用の直立回転軸9が接続されており、該回転軸9の下端は、上記ケーシング1内の中程に位置する減速機11に接続されている。この減速機11は、上記ケーシング1内の中程の一側内周面1dに固定された水平機枠10にその上部を固定されている。   A disc-shaped horizontal rotary table 8 is provided at a position below the inner cylinder 4 inside the casing 1 with a constant material carry-out interval t (see FIGS. 1, 5, 7, and 8). ). The horizontal rotary table 8 is a flat surface disk having the central axis C as a common center, and an upright rotary shaft 9 for driving is connected to the central axis C on the back surface of the horizontal rotary table 8. The lower end of the rotary shaft 9 is The speed reducer 11 is located in the middle of the casing 1. The speed reducer 11 has an upper portion fixed to a horizontal machine frame 10 fixed to an inner peripheral surface 1 d in the middle of the casing 1.

そして、上記ケーシング1の上記一側内周面1dの外側には電動機12が上記ケーシング1に支持された固定枠12aを以って固定されており、当該電動機12の駆動軸が上記ケーシング1の壁面を介してケーシング1内部に延出され上記減速機11に接続されている。従って、上記電動機12を駆動することにより、上記水平回転テーブル8は矢印A方向に一定速度で回転駆動し得るように構成されている。   And the electric motor 12 is being fixed to the outer side of the said 1 side inner peripheral surface 1d of the said casing 1 with the fixed frame 12a supported by the said casing 1, The drive shaft of the said electric motor 12 is the said casing 1's. It extends into the casing 1 through a wall surface and is connected to the speed reducer 11. Therefore, by driving the electric motor 12, the horizontal rotary table 8 can be rotated in the direction of arrow A at a constant speed.

上記水平回転テーブル8は、上記上部ケーシング1aの内周面1a’より小の直径を有する円盤であり、上記水平回転テーブル8の外周縁8aと上記内周面1a’との間には材料通過用の環状間隔Sが形成されるように構成されている(図5、図7参照)。   The horizontal rotary table 8 is a disk having a smaller diameter than the inner peripheral surface 1a ′ of the upper casing 1a, and a material passes between the outer peripheral edge 8a of the horizontal rotary table 8 and the inner peripheral surface 1a ′. An annular interval S is formed (see FIGS. 5 and 7).

図1中、13は上記ケーシング1内において、上記減速機11の外側を覆う円筒状カバーであり(図6参照)、上記中心軸線Cを中心として上記減速機11の外周部を上記ケーシング1と同心的に被覆する円筒部13aを具備している。この円筒状カバー13の上記円筒部13aの上記電動機12側の一側面は開口13bされており(図6参照)、当該開口13bと上記ケーシング1内の上記一側内周面1dとは一対の板状の接続板13c,13cにて完全に閉鎖されており、これにより接続部13c’が形成されている。さらに上記円筒状カバー13の下端、即ち、上記円筒部13a下端と上記接続部13c’下端は下端板13dによって完全に閉鎖され、上記円筒状カバー13の上端、即ち、上記円筒部13a上端と上記接続部13c’上端は上記水平機枠10によって完全に閉鎖されており、その結果、上記減速機11は上記円筒状カバー13内の密閉空間内に配置されている。   In FIG. 1, reference numeral 13 denotes a cylindrical cover that covers the outside of the speed reducer 11 in the casing 1 (see FIG. 6). The outer periphery of the speed reducer 11 is centered on the central axis C and the casing 1. A cylindrical portion 13a that concentrically covers is provided. One side surface of the cylindrical portion 13a of the cylindrical cover 13 on the motor 12 side is formed with an opening 13b (see FIG. 6), and the opening 13b and the one side inner peripheral surface 1d in the casing 1 are a pair. The plate-like connection plates 13c and 13c are completely closed, thereby forming a connection portion 13c ′. Further, the lower end of the cylindrical cover 13, that is, the lower end of the cylindrical portion 13a and the lower end of the connecting portion 13c 'are completely closed by a lower end plate 13d, and the upper end of the cylindrical cover 13, that is, the upper end of the cylindrical portion 13a and the above-mentioned The upper end of the connecting portion 13c ′ is completely closed by the horizontal machine frame 10. As a result, the speed reducer 11 is disposed in a sealed space in the cylindrical cover 13.

また、上記水平機枠10の上方には、上記中心軸線Cを中心とする上部円筒機枠14が固定されており、上記上部円筒機枠14の上端は中心軸線Cを中心とするリング14aの外周縁が接続されており、当該リング14aの上面が上記水平回転テーブル8の裏面に近接配置されている。   Further, an upper cylindrical machine frame 14 centered on the central axis C is fixed above the horizontal machine frame 10, and the upper end of the upper cylindrical machine frame 14 has a ring 14a centered on the central axis C. The outer peripheral edge is connected, and the upper surface of the ring 14 a is disposed close to the rear surface of the horizontal rotary table 8.

上記円筒状機枠14と上記ケーシング1の上記上部ケーシング1aの内周面1a’との間は、上記環状間隔Sに続く環状の円筒状空間P1が形成されており、上記円筒状カバー13と上記ケーシング1の上記下部ケーシング1bの内周面1b’との間は上記円筒状空間P1に続く環状の円筒状空間P2が形成されており、これらの円筒状空間P1,P2を通じて上記水平回転テーブル8の外周縁8aから落下した粉粒体はケーシング1内を下方に落下し、排出ホッパー1cを通って排出口1c’から排出されていく。   An annular cylindrical space P1 following the annular interval S is formed between the cylindrical machine casing 14 and the inner peripheral surface 1a ′ of the upper casing 1a of the casing 1, and the cylindrical cover 13 and An annular cylindrical space P2 following the cylindrical space P1 is formed between the casing 1 and the inner peripheral surface 1b ′ of the lower casing 1b, and the horizontal rotary table is formed through these cylindrical spaces P1 and P2. The granular material that has fallen from the outer peripheral edge 8a of 8 falls downward in the casing 1, and is discharged from the discharge port 1c 'through the discharge hopper 1c.

但し、上記円筒状空間P2は、完全な円筒状ではなく、上述のように、上記空間P2の一部に上記接続部13c’が存在している状態となっており(図5、図6参照)、上記円筒状空間P2は上記接続部13c’の部分においては円筒空間が連続しておらず、不連続な空間となっている。また上記接続部13c’の上部における上記水平機枠10の上部には、図3、図5に示すように上記中心軸線Cより少しずれた位置を頂点Qとして、該頂点Qから両側方向に、水平線から約45度の角度で一対の下り傾斜面を形成するテーパ板15,15が設けられている。   However, the cylindrical space P2 is not completely cylindrical, and as described above, the connection portion 13c ′ is present in a part of the space P2 (see FIGS. 5 and 6). ), The cylindrical space P2 is not a continuous cylindrical space in the connection portion 13c ′, and is a discontinuous space. Further, in the upper part of the horizontal machine casing 10 above the connection part 13c ′, a position slightly shifted from the central axis C as shown in FIGS. Tapered plates 15 and 15 that form a pair of descending inclined surfaces at an angle of about 45 degrees from the horizon are provided.

上記テーパ板15,15の頂点Qは上記水平回転テーブル8の外周縁8aの若干下側に位置しているので(図1参照)、上記外周縁8aから上記テーパ板15,15上に落下した粉粒体は、上記テーパ板15,15によって両側に案内されながら下方に落下し、上記接続部13c’の接続板13c,13cに沿って上記空間P2を落下してゆき、上記排出ホッパー1c方向に円滑に落下し得るよう構成されている。即ち、上記外周縁8aから落下した粉粒体は、上記テーパ板15,15の傾斜面に沿って円滑に落下していくので、上記水平機枠10上に直接落下することはない。   Since the apex Q of the tapered plates 15 and 15 is located slightly below the outer peripheral edge 8a of the horizontal rotary table 8 (see FIG. 1), the apex Q falls from the outer peripheral edge 8a onto the tapered plates 15 and 15. The granular material falls downward while being guided to both sides by the taper plates 15 and 15, falls along the connection plates 13 c and 13 c of the connection portion 13 c ′, and falls in the space P 2, in the direction of the discharge hopper 1 c. It is configured to be able to fall smoothly. That is, the granular material that has fallen from the outer peripheral edge 8a smoothly falls along the inclined surfaces of the tapered plates 15 and 15, and therefore does not fall directly on the horizontal machine frame 10.

このように、上記水平回転テーブル8の外周縁8aから落下する材料は、上記水平回転テーブル8の外周縁8aから上記環状間隔Sを介して下方の上記円筒状空間P1,P2を通って上記排出ホッパー1cに落下していくが、上記接続部13c’の上記テーパ板15,15上に落下した材料は、テーパ板15,15の傾斜方向に振り分けられ、上記接続部13c’の接続板13c,13cの側方に沿って下方の上記排出ホッパー1cに円滑に落下供給されていく。   Thus, the material falling from the outer peripheral edge 8a of the horizontal rotating table 8 passes through the cylindrical spaces P1 and P2 below from the outer peripheral edge 8a of the horizontal rotating table 8 through the annular space S and is discharged. The material dropped onto the hopper 1c, but the material dropped onto the tapered plates 15 and 15 of the connecting portion 13c 'is distributed in the inclined direction of the tapered plates 15 and 15, and the connecting plates 13c and 15c of the connecting portion 13c' It is smoothly dropped and supplied to the lower discharge hopper 1c along the side of 13c.

次に、上記内筒4と上記水平フランジ5に設けられた縦方向線状突起6及び放射状線状突起7の機能について説明する。   Next, functions of the longitudinal linear protrusions 6 and the radial linear protrusions 7 provided on the inner cylinder 4 and the horizontal flange 5 will be described.

上記粉粒体を上記投入ホッパー3に投入すると、粉粒体は上記投入ホッパー3及び内筒4内に充填され、内筒4下端から水平回転テーブル8上に載置された状態になるが、このとき粉粒体は、材料排出間隔tを介して一定の安息角θにて内筒4下端から上記水平回転テーブル8上に外周方向(外周縁8aの方向)に傾斜面r1にて広がった状態となる(図8中粉粒体の傾斜面r1参照)。そして、この状態で上記電動機12を駆動して上記水平回転テーブル8を矢印A方向に回転すると、上記内筒4内に収納されている粉粒体rの内、上記水平回転テーブル8近傍に位置する粉粒体は、上記水平回転テーブル8上面8bとの摩擦力によって上記水平回転テーブル8の矢印A方向の回転に従って、図7に示すように、矢印F1方向(水平回転テーブル8の外周円の接線方向)の力を受ける。   When the powder particles are charged into the charging hopper 3, the powder particles are filled into the charging hopper 3 and the inner cylinder 4, and are placed on the horizontal rotary table 8 from the lower end of the inner cylinder 4. At this time, the powder particles spread on the inclined surface r1 in the outer peripheral direction (in the direction of the outer peripheral edge 8a) from the lower end of the inner cylinder 4 on the horizontal rotary table 8 at a constant repose angle θ through the material discharge interval t. It will be in a state (refer to inclined surface r1 of the granular material in FIG. 8). In this state, when the electric motor 12 is driven to rotate the horizontal rotary table 8 in the direction of arrow A, the powder particles r stored in the inner cylinder 4 are positioned in the vicinity of the horizontal rotary table 8. According to the rotation of the horizontal rotary table 8 in the direction of arrow A by the frictional force with the upper surface 8b of the horizontal rotary table 8, as shown in FIG. Receives tangential force.

また、同時に、上記水平回転テーブル8の矢印A方向の回転に従って、上記材料排出間隔tの粉粒体には、上記粉粒体自身の荷重により上記材料排出間隔tから外周縁方向(外向半径方向)F2に押し出される力が作用する。   At the same time, according to the rotation of the horizontal turntable 8 in the direction of arrow A, the granular material having the material discharge interval t is moved from the material discharge interval t to the outer peripheral direction (outward radial direction) by the load of the granular material itself. ) Force pushed to F2 acts.

よって、上記材料排出間隔tにある粉粒体には全体として上記矢印F1方向の力と矢印F2方向の力の合成力である略矢印A’(F1+F2)方向の力(回転方向に対して斜め外周方向の力)の力が作用し、上記矢印A’方向に移動しながら水平回転テーブル8の外周縁の方向に徐々に移動して行き、上記材料排出間隔t内の粉粒体は、上記材料排出間隔tから水平回転テーブル8の外周縁8aの方向に徐々に押し出され、上記水平回転テーブル8の外周縁8aの全周から略均等に下方に落下して行く(図8矢印G方向)。このとき、上記粉粒体の傾斜面はr1から傾斜面r2に移行して行き、水平回転テーブル8の外周縁8aに達した粉粒体は該外周縁8aから定量的に落下していく(図8中粉粒体の傾斜面r2及び矢印G参照)。   Accordingly, the powder particles at the material discharge interval t as a whole are substantially in the direction of the arrow A ′ (F1 + F2), which is the combined force of the force in the direction of the arrow F1 and the force in the direction of the arrow F2, and (Force in the outer peripheral direction) acts, and gradually moves in the direction of the outer peripheral edge of the horizontal rotary table 8 while moving in the direction of the arrow A ′, and the granular material in the material discharge interval t It is gradually pushed out in the direction of the outer peripheral edge 8a of the horizontal rotary table 8 from the material discharge interval t, and falls downward substantially uniformly from the entire circumference of the outer peripheral edge 8a of the horizontal rotary table 8 (arrow G direction in FIG. 8). . At this time, the inclined surface of the granular material moves from r1 to the inclined surface r2, and the granular material reaching the outer peripheral edge 8a of the horizontal rotary table 8 falls quantitatively from the outer peripheral edge 8a ( In FIG. 8, refer to the inclined surface r2 and the arrow G of the granular material).

ここで、かかる供給状態において、何らかの原因(例えば投入ホッパー3内の粉粒体の減少等)により内筒4内の粉粒体と上記内筒4内周面4aとの摩擦力が上記水平回転テーブル8の攪拌力(上記上面8bと粉粒体との摩擦力)より低下すると、上記水平回転テーブル8の回転に伴って上記内筒4内の粉粒体の全体が塊となって矢印A方向に回転する、所謂、供回り現象が発生し、その結果、上記材料排出間隔tから外周方向に材料を押し出す力(矢印F2方向の力)が消滅又は低下し、粉粒体の供給が停止してしまう。よって、このような粉粒体の供回り現象を防止するために、上記内筒4内周面に複数の上記縦方向線状突起6が形成されている。   Here, in such a supply state, the frictional force between the granular material in the inner cylinder 4 and the inner peripheral surface 4a of the inner cylinder 4 due to some cause (for example, decrease in the granular material in the charging hopper 3) is the horizontal rotation. When the stirring force of the table 8 (the frictional force between the upper surface 8b and the granular material) is reduced, the entire granular material in the inner cylinder 4 becomes a lump as the horizontal rotating table 8 rotates, and the arrow A A so-called rotation phenomenon that rotates in the direction occurs, and as a result, the force for pushing the material in the outer circumferential direction from the material discharge interval t (force in the direction of arrow F2) disappears or decreases, and the supply of the granular material stops. Resulting in. Therefore, in order to prevent such a phenomenon in which the granular material is rotated, a plurality of the longitudinal linear protrusions 6 are formed on the inner peripheral surface of the inner cylinder 4.

即ち、上記水平回転テーブル8が回転している状態においては、当該テーブル8の回転によって上記材料排出間隔tにある粉粒体には、上記水平回転テーブル8の外周縁8aの方向F2に押し出される力が作用しているが、上記内筒4内の粉粒体は内周面4aに均等に存在する6箇所の上記縦方向線状突起6から、上記水平回転テーブル8の回転方向Aとは対抗する方向の圧力(抵抗)を均等に受けるため、上記粉粒体rと上記内筒4内周面4aとの摩擦力が維持され、その結果、内筒4内での粉粒体rの供回り現象が効果的に防止される。従って、上記材料排出間隔tから外周縁8aの方向に粉粒体を押し出す力(矢印F2方向の力)は維持される。よって、上記材料排出間隔tにある粉粒体は継続的に外周縁の方向に送り出される。   That is, in the state in which the horizontal rotary table 8 is rotating, the powder at the material discharge interval t is pushed out in the direction F2 of the outer peripheral edge 8a of the horizontal rotary table 8 by the rotation of the table 8. Although the force is acting, the granular material in the inner cylinder 4 is defined by the rotational direction A of the horizontal rotary table 8 from the six longitudinal linear protrusions 6 that are evenly present on the inner peripheral surface 4a. In order to receive the pressure (resistance) in the opposing direction evenly, the frictional force between the granular material r and the inner peripheral surface 4a of the inner cylinder 4 is maintained. As a result, the granular material r in the inner cylinder 4 is maintained. The traveling phenomenon is effectively prevented. Therefore, the force (force in the direction of the arrow F2) for pushing out the granular material from the material discharge interval t in the direction of the outer peripheral edge 8a is maintained. Therefore, the granular material in the material discharge interval t is continuously sent out in the direction of the outer peripheral edge.

上記水平回転テーブル8の回転により、上記テーブル8の外周縁8aから粉粒体が継続的に押し出され落下している状態が継続すると、上記材料排出間隔tに位置する粉粒体はさらに全体が外周方向(矢印F2方向)に押し出されて行き、粉粒体は図8の粉粒体の傾斜面r3のように上記水平フランジ5の下面5aにも位置する状態となる。このように、水平フランジ5の下面5aに粉粒体が位置した状態において、仮に上記水平フランジ下面5aと粉粒体との摩擦力が低下すると、上記水平フランジ5の下面5aに位置する粉粒体が上記水平回転テーブル8と共に回る供回りが現象が発生し、該供回り現象が発生すると、粉粒体の外周縁の方向(矢印F2方向)への押し出し力が消滅又は減少してしまう。そこで、上記水平フランジ5下面5aに上記放射状線状突起7を設けることで、かかる供回り現象を防止している。   If the state in which the granular material is continuously pushed out and dropped from the outer peripheral edge 8a of the table 8 by the rotation of the horizontal rotating table 8, the whole of the granular material positioned at the material discharge interval t is further removed. The powder particles are pushed in the outer peripheral direction (arrow F2 direction), and the powder particles are also located on the lower surface 5a of the horizontal flange 5 like the inclined surface r3 of the powder particles in FIG. Thus, in the state where the granular material is positioned on the lower surface 5a of the horizontal flange 5, if the frictional force between the horizontal flange lower surface 5a and the granular material is reduced, the granular material positioned on the lower surface 5a of the horizontal flange 5 will be described. A phenomenon occurs in which the body rotates together with the horizontal rotary table 8, and when this phenomenon occurs, the pushing force in the direction of the outer periphery of the granular material (the direction of the arrow F2) disappears or decreases. Therefore, by providing the radial linear protrusions 7 on the lower surface 5a of the horizontal flange 5, such a traveling phenomenon is prevented.

即ち、上記水平フランジ5の下面5aに位置する粉粒体は水平回転テーブル8の矢印A方向の回転によって、上記矢印F1方向の力が作用して同方向に移動しようとする。このとき、上記水平フランジ5の下面5aの放射状線状突起7は、上記水平フランジ5の下面5aに接する粉粒体に対して上記回転方向Aとは対抗する方向の圧力(抵抗)を均等に与えるため、上記水平フランジ5の下面5aに位置する粉粒体は、上記水平回転テーブル8と共に供回りすることなく、その結果、上記水平回転テーブル8の上面8b近傍の粉粒体に水平回転テーブル8の外周縁の方向(矢印F2方向)に押し出す力が正常に作用し、当該粉粒体は水平回転テーブル8の外周縁方向(矢印A’方向)に押し出されてゆく。このように、上記水平フランジ5の下面5aの放射状線状突起7は、上記材料排出間隔tに位置する粉粒体との摩擦力を維持することで、粉粒体を水平回転テーブル8の外周縁8aの方向に押し出す機能を有している。   That is, the granular material located on the lower surface 5a of the horizontal flange 5 tries to move in the same direction by the force in the direction of arrow F1 due to the rotation of the horizontal rotary table 8 in the direction of arrow A. At this time, the radial linear projections 7 on the lower surface 5a of the horizontal flange 5 uniformly apply pressure (resistance) in the direction opposite to the rotational direction A to the powder particles in contact with the lower surface 5a of the horizontal flange 5. Therefore, the granular material positioned on the lower surface 5a of the horizontal flange 5 does not rotate with the horizontal rotating table 8, and as a result, the horizontal rotating table is placed on the granular material near the upper surface 8b of the horizontal rotating table 8. The force pushed out in the direction of the outer peripheral edge 8 (arrow F2 direction) is normally applied, and the granular material is pushed out in the outer peripheral edge direction (arrow A ′ direction) of the horizontal rotary table 8. As described above, the radial linear protrusions 7 on the lower surface 5a of the horizontal flange 5 maintain the frictional force with the powder particles located at the material discharge interval t, so that the powder particles are removed from the horizontal rotary table 8. It has a function of pushing in the direction of the peripheral edge 8a.

また、上記水平フランジ5の下面5aにおいて粉粒体を外周縁方向(矢印F2方向)に押し出す力は、水平フランジ5の下面5aの円環部(フランジ部)においては、内周部より外周部に行くほど弱くなるが、上記放射状線状突起7は上記水平フランジ5の外周部側に位置する粉粒体に対しても確実な抵抗力(矢印A方向に抗する抵抗力)を作用させるため、上記放射状線状突起7は上記水平フランジ5の外周寄りに位置する粉粒体をも外方向(矢印F2方向)に確実に押し出す機能を有するものである。このように、放射状線状突起7は粉粒体を、従来装置における排出スクレーパ無しで、外周縁方向に誘導する機能を有している。従って、粉粒体は排出スクレーパに当接することなく定量落下供給されるため、粉粒体の不必要な壊れをも防止することができる。   Moreover, the force which pushes out the granular material in the outer peripheral direction (arrow F2 direction) on the lower surface 5a of the horizontal flange 5 is the outer peripheral portion of the annular portion (flange portion) of the lower surface 5a of the horizontal flange 5 from the inner peripheral portion. However, the radial linear projections 7 cause a certain resistance force (resistance force against the direction of arrow A) to act on the powder particles located on the outer peripheral side of the horizontal flange 5. The radial linear projections 7 have a function of reliably extruding powder particles located near the outer periphery of the horizontal flange 5 outward (in the direction of arrow F2). Thus, the radial linear protrusion 7 has a function of guiding the powder particles in the direction of the outer peripheral edge without the discharge scraper in the conventional apparatus. Therefore, since the powder particles are supplied in a fixed amount without contacting the discharge scraper, unnecessary breakage of the powder particles can be prevented.

次に、上記水平テーブル8の外周縁8aの位置と上記内筒4との関係を説明する。
図8に示すように、粉粒体の安息角θ、材料排出間隔t、該間隔tから安息角θにより粉粒体が流出する距離K(内筒4下端に対応する水平回転テーブル8上の位置4bから安息角θにて流出した粉粒体の外縁(位置4c)までの距離K=t/tanθ)とすると、上記内筒4の下端の位置4bから水平テーブル8の外周縁8aまでの距離Lは、
L=(t/tanθ)×2・・・・・・(1)
とする。
Next, the relationship between the position of the outer peripheral edge 8a of the horizontal table 8 and the inner cylinder 4 will be described.
As shown in FIG. 8, the angle of repose θ of the granular material, the material discharge interval t, and the distance K from which the granular material flows out from the interval t by the angle of repose θ (on the horizontal rotary table 8 corresponding to the lower end of the inner cylinder 4) Assuming that the distance K = t / tan θ from the position 4b to the outer edge (position 4c) of the granular material flowing out at the angle of repose θ is from the position 4b at the lower end of the inner cylinder 4 to the outer peripheral edge 8a of the horizontal table 8. The distance L is
L = (t / tan θ) × 2 (1)
And

即ち、上記内筒4の上記下端位置4bから上記水平テーブル8の外周縁8aまでの距離Lは、材料排出間隔tから安息角θにより粉粒体が流出した外縁(位置4c)までの距離Kの2倍とする。   That is, the distance L from the lower end position 4b of the inner cylinder 4 to the outer peripheral edge 8a of the horizontal table 8 is the distance K from the material discharge interval t to the outer edge (position 4c) from which the granular material has flowed out at the angle of repose θ. 2 times.

このように構成すると、安息角θによって距離Kだけ水平回転テーブル8上に流出した粉粒体は、上記水平回転テーブル8の回転により、徐々に水平回転テーブル8の外周縁方向(矢印A’方向)に押し出され、距離L(K×2)に達する位置まで円滑に押し出されるため、上記水平回転テーブル8の外周縁8aから均等に落下して行き、上記環状間隔S、上記円筒空間P1に定量的に落下供給される。尚、上記水平回転テーブル8の外周縁8aまでの距離Lが上記距離(K×2)より小さいと、上記外周縁8aから排出される粉粒体の量に変動が生じ易く、また、上記距離Lが上記距離(K×2)より大きいと、上記外周縁8aから排出される粉粒体が途切れるおそれがある。よって、上記内筒4の下端位置4bと上記水平回転テーブル8の外周縁8aまでの距離Lは上記式(1)を満たすことが、粉粒体の定量供給の観点からして好ましい。   With this configuration, the granular material that has flowed out onto the horizontal rotary table 8 by a distance K depending on the angle of repose θ gradually moves in the direction of the outer periphery of the horizontal rotary table 8 (in the direction of arrow A ′) due to the rotation of the horizontal rotary table 8. ) And is smoothly pushed out to the position where the distance L (K × 2) is reached, so that it falls evenly from the outer peripheral edge 8a of the horizontal rotary table 8 and is fixed to the annular space S and the cylindrical space P1. Fall supplied. If the distance L to the outer peripheral edge 8a of the horizontal rotary table 8 is smaller than the distance (K × 2), the amount of powder discharged from the outer peripheral edge 8a is likely to vary, and the distance When L is larger than the distance (K × 2), there is a possibility that the granular material discharged from the outer peripheral edge 8a is interrupted. Therefore, the distance L from the lower end position 4b of the inner cylinder 4 to the outer peripheral edge 8a of the horizontal rotary table 8 preferably satisfies the above formula (1) from the viewpoint of quantitative supply of the granular material.

また、上記水平フランジ5の外周縁5bの位置は、上記水平回転テーブル8の上記距離Kの位置(図8中位置4c)より手前側か又は位置4cに等しい位置とすることが好ましい。即ち、水平フランジ5の長さ(放射状線状突起7の長さ)は、距離Kと略同一とするか距離Kより短い距離とすることが好ましい([水平フランジ5の長さ]≦距離K)。このように構成することにより、上記水平回転テーブル8の外周縁近傍に位置する粉粒体の自然落下を抑制して、定量供給制御を円滑に行うことができる。この水平フランジ5は、内筒4から外方向に流出した粉粒体が内筒4の下端部から上方にせり上がるのを抑制し、粉粒体を円滑に水平回転テーブル8の外周方向に誘導する機能をも有している。   Further, the position of the outer peripheral edge 5b of the horizontal flange 5 is preferably set to a position closer to or closer to the position 4c than the position of the distance K of the horizontal rotary table 8 (position 4c in FIG. 8). That is, the length of the horizontal flange 5 (the length of the radial linear protrusion 7) is preferably substantially the same as the distance K or shorter than the distance K ([length of the horizontal flange 5] ≦ distance K). ). By comprising in this way, the fixed supply control can be performed smoothly, suppressing the natural fall of the granular material located in the outer periphery vicinity of the said horizontal turntable 8. FIG. The horizontal flange 5 prevents the powder particles flowing out from the inner cylinder 4 from rising upward from the lower end portion of the inner cylinder 4, and smoothly guides the powder particles in the outer peripheral direction of the horizontal rotary table 8. It also has a function to

また、上記材料排出間隔tは、固定であり、粉粒体の供給能力によって変化させる。例えば、材料排出間隔tは例えば、20mm、25mm、30mm、35mm等とする。勿論、上記間隔tが大きい方が粉粒体の供給能力が高くなる。   The material discharge interval t is fixed and is changed according to the supply capacity of the granular material. For example, the material discharge interval t is, for example, 20 mm, 25 mm, 30 mm, 35 mm, or the like. Of course, the larger the interval t, the higher the powder supply capability.

次に、上記投入ホッパー3の機能について説明する(図1参照)。上記投入ホッパー3は、その下端の直径、即ち、上記内筒4の口径(直径H)が、上記ホッパー3内において粉粒体のブリッジが発生しないための最小の口径としており、上記ホッパー3のテーパ面3’により上記水平回転テーブル8に作用する粉粒体の圧力(直圧)を減少させる機能を有している。   Next, the function of the charging hopper 3 will be described (see FIG. 1). The diameter of the lower end of the charging hopper 3, that is, the diameter (diameter H) of the inner cylinder 4 is set to a minimum diameter so that no bridging of powder particles occurs in the hopper 3. The taper surface 3 ′ has a function of reducing the pressure (direct pressure) of the granular material acting on the horizontal rotary table 8.

尚、粉粒体の性質によっては(例えば、流動性の高い粉粒体等)、上記投入ホッパー3内における粉粒体のブリッジを防止するために、上記投入ホッパー3と上記内筒4との接続部に円錐状のコーン16を中心軸線上に設けることができる。   Depending on the properties of the granular material (for example, a granular material having high fluidity), in order to prevent the bridging of the granular material in the charging hopper 3, the charging hopper 3 and the inner cylinder 4 A conical cone 16 can be provided on the central axis in the connecting portion.

本発明に係る水平回転テーブルを用いた粉粒体供給装置は上述のように構成されるものであるから、以下その動作を説明する。   Since the granular material supply apparatus using the horizontal rotary table according to the present invention is configured as described above, its operation will be described below.

ここで、本実施形態においては、工業用に利用される原石を約5mm〜10mmに破砕した粒状物を定量供給する場合を説明する。   Here, in this embodiment, the case where the granular material which crushed the rough used for industry to about 5 mm-10 mm is supplied quantitatively is demonstrated.

まず、上記粉粒体rを上記投入ホッパー3内に、当該粉粒体rが略上記投入ホッパー3の略上端に至るまで投入する(図1参照)。すると、上記粉粒体rは、上記投入ホッパー3から上記内筒4内を介して、水平回転テーブル8の上面8bに至り、材料排出間隔tを介して上記内筒4下端位置4bから外周縁方向に流出し、安息角θの傾斜面r1を上記内筒4下端における上記水平回転テーブル8上面8bの全周に亘って形成する(図7、図8参照)。   First, the granular material r is charged into the charging hopper 3 until the granular material r reaches substantially the upper end of the charging hopper 3 (see FIG. 1). Then, the granular material r reaches the upper surface 8b of the horizontal rotary table 8 from the charging hopper 3 through the inside of the inner cylinder 4, and from the lower end position 4b of the inner cylinder 4 through the material discharge interval t to the outer peripheral edge. The inclined surface r1 having the angle of repose θ is formed over the entire circumference of the upper surface 8b of the horizontal rotary table 8 at the lower end of the inner cylinder 4 (see FIGS. 7 and 8).

この状態において、上記電動機12を駆動して、上記水平回転テーブル8を矢印A方向に一定速度(一定角速度)にて回転する。   In this state, the electric motor 12 is driven to rotate the horizontal rotary table 8 in the direction of arrow A at a constant speed (constant angular speed).

すると、上記水平回転テーブル8の上面8bに位置している粉粒体の荷重、及び、上記粉粒体rと上記水平回転テーブル8上面8bとの摩擦力により、上記材料排出間隔tにおける粉粒体rに対し、回転方向に沿う矢印F1方向及び回転方向に直交する外向半径方向に押出す力である矢印F2方向の力が作用し、結果として上記粉粒体は徐々に水平回転テーブル8の外周縁8aの方向(矢印A’方向)に均等に押し出されて行き、粉粒体が上記水平回転テーブル8の外周縁8aに達し、該粉粒体の傾斜面r2(図8参照)が全周に亘り形成された段階で、当該粉粒体は上記水平回転テーブル8の外周端8aの略全周又は全周から環状間隔Sを介して下方に落下していく(図8矢印G参照)。   Then, the powder particles in the material discharge interval t are caused by the load of the powder particles positioned on the upper surface 8b of the horizontal rotating table 8 and the frictional force between the powder particles r and the upper surface 8b of the horizontal rotating table 8. The force in the direction of the arrow F1 along the rotation direction and the force in the direction of the arrow F2 that is pushed in the outward radial direction orthogonal to the rotation direction acts on the body r. The powder particles are uniformly pushed in the direction of the outer peripheral edge 8a (the direction of the arrow A ′), and the granular material reaches the outer peripheral edge 8a of the horizontal rotary table 8, and the inclined surface r2 (see FIG. 8) of the granular material is completely removed. At the stage of being formed over the circumference, the granular material falls downward from the substantially entire circumference or the entire circumference of the outer peripheral end 8a of the horizontal rotary table 8 via the annular interval S (see arrow G in FIG. 8). .

このとき、上記内筒4内部では、内筒4内周面4aに粉粒体rが接触しているが、上記粉粒体は上記内筒4内周面4aに存在する6箇所の縦方向線状突起6が接触してこれらの縦方向線状突起6から均等に圧力(抵抗)を受けるため、上記内周面4aと上記粉粒体rとの摩擦力が大となり、上記内筒4内の粉粒体rが上記水平回転テーブル8と一体的に回転する供回り現象が効果的に防止され、上記粉粒体rの上記材料排出間隔tからの外周縁方向への押し出しが円滑に行われる。   At this time, in the inner cylinder 4, the granular material r is in contact with the inner peripheral surface 4 a of the inner cylinder 4, but the granular material has six longitudinal directions existing on the inner peripheral surface 4 a of the inner cylinder 4. Since the linear projections 6 come into contact with each other and receive pressure (resistance) from these longitudinal linear projections 6, the frictional force between the inner peripheral surface 4 a and the granular material r becomes large, and the inner cylinder 4 A rotating phenomenon in which the inner granular material r rotates integrally with the horizontal rotary table 8 is effectively prevented, and the extruding of the granular material r from the material discharge interval t toward the outer peripheral edge is smoothly performed. Done.

また、上記材料排出間隔tから外方向に押し出された粉粒体rは、徐々にその全体が外周縁方向(矢印A’向)に押し出され、上記水平フランジ5の下面5aの領域にも位置するようになり、上記水平フランジ5の外周縁5bから上記水平回転テーブル8の外周縁8aに至る傾斜面r3を全周に亘り形成するようになる(図8参照)。   Further, the granular material r pushed outward from the material discharge interval t is gradually pushed out in the direction of the outer peripheral edge (in the direction of arrow A ′), and is also located in the region of the lower surface 5 a of the horizontal flange 5. Thus, an inclined surface r3 extending from the outer peripheral edge 5b of the horizontal flange 5 to the outer peripheral edge 8a of the horizontal rotary table 8 is formed over the entire periphery (see FIG. 8).

このとき、上記水平フランジ5の下面5aの粉粒体は上記水平フランジ5の下面5aに接触しているが、上記下面5aに接触している粉粒体r及びその近傍の粉粒体rは上記下面5aに存在する12個の放射状線状突起7から均等に圧力(抵抗)を受け、上記下面5aと上記粉粒体rとの摩擦力は大となる。一方、上記水平フランジ5の下面5a下方において、上記水平回転テーブル8の上面8bに接触している粉粒体r及びその近傍の粉粒体rは上記水平回転テーブル8との摩擦力により矢印F1方向の力を受けるため、上記水平フランジ5の下方に位置する粉粒体rは、回転方向に対し斜め外周方向(矢印A’方向)に移動しながら、徐々に水平回転テーブル8の外周方向に押し出されて行き、上記外周縁8aからの落下供給(定量供給)が円滑に行われる。   At this time, the granular material on the lower surface 5a of the horizontal flange 5 is in contact with the lower surface 5a of the horizontal flange 5, but the granular material r in contact with the lower surface 5a and the granular material r in the vicinity thereof are: Pressure (resistance) is equally received from the twelve radial linear projections 7 present on the lower surface 5a, and the frictional force between the lower surface 5a and the granular material r becomes large. On the other hand, below the lower surface 5 a of the horizontal flange 5, the granular material r in contact with the upper surface 8 b of the horizontal rotary table 8 and the granular material r in the vicinity thereof are caused by the frictional force with the horizontal rotary table 8 to indicate the arrow F <b> 1. In order to receive the force in the direction, the granular material r located below the horizontal flange 5 gradually moves in the outer peripheral direction of the horizontal rotary table 8 while moving in an oblique outer peripheral direction (arrow A ′ direction) with respect to the rotational direction. It is pushed out and the drop supply (quantitative supply) from the outer peripheral edge 8a is smoothly performed.

また、粉粒体rを上記材料排出間隔tから外向半径方向(矢印F2方向)に押し出す力は、上記水平フランジ5の内周側より外周縁5bに行くに従って減少していくが、上記放射状線状突起7は上記水平フランジ5の外周縁5b近傍の粉粒体にも圧力(抵抗)を均等に与えるため、上記水平フランジ5の外周縁5b寄りの粉粒体に対して、外向半径方向(矢印F2方向)に押し出す力を効果的に与える機能をも有している。よって、上記水平フランジ5の外周縁5b近傍の粉粒体rも外方向(矢印A’方向)に円滑に押し出されて行き、上記外周縁8aの全周から円滑に定量的に落下していく(図8矢印G方向)。   Further, the force pushing the granular material r in the outward radial direction (in the direction of the arrow F2) from the material discharge interval t decreases from the inner peripheral side of the horizontal flange 5 toward the outer peripheral edge 5b. Since the protrusions 7 uniformly apply pressure (resistance) to the powder particles in the vicinity of the outer peripheral edge 5b of the horizontal flange 5, the outward projection in the outward radial direction (with respect to the powder particles near the outer peripheral edge 5b of the horizontal flange 5) It also has a function of effectively giving a force of pushing in the direction of arrow F2. Therefore, the granular material r in the vicinity of the outer peripheral edge 5b of the horizontal flange 5 is also smoothly pushed out in the outward direction (arrow A ′ direction), and falls smoothly and quantitatively from the entire circumference of the outer peripheral edge 8a. (FIG. 8 arrow G direction).

このように、上記水平回転テーブル8の回転に従って、上記内筒4内の粉粒体rは上記材料排出間隔tから上記水平回転テーブル8の外周方向に徐々に押し出され、上記水平テーブル8の外周縁8aの全周から下方に定量的に落下供給される(図8矢印G参照)。   Thus, according to the rotation of the horizontal rotary table 8, the granular material r in the inner cylinder 4 is gradually pushed out from the material discharge interval t toward the outer periphery of the horizontal rotary table 8. Quantitatively drops and is supplied downward from the entire circumference of the peripheral edge 8a (see arrow G in FIG. 8).

上記水平回転テーブル8の外周縁8aから下方に落下した粉粒体は、上記円筒状空間P1,P2を通って下方の排出ホッパー1cに至り、当該排出ホッパー1c下端の排出口1c’から定量的に排出される。   The granular material dropped downward from the outer peripheral edge 8a of the horizontal rotary table 8 reaches the lower discharge hopper 1c through the cylindrical spaces P1 and P2, and quantitatively from the discharge port 1c 'at the lower end of the discharge hopper 1c. To be discharged.

また、上記テーパ板15,15上に落下した粉粒体rは、これらのテーパ板15,15に沿って下降して行き、上記円筒状空間P1,P2を通って同様に上記排出ホッパー1cに至り、当該排出ホッパー1cの上記排出口1c’から定量的に排出される。   The granular material r that has fallen on the taper plates 15 and 15 descends along the taper plates 15 and 15 and similarly passes through the cylindrical spaces P1 and P2 to the discharge hopper 1c. Finally, it is quantitatively discharged from the discharge port 1c ′ of the discharge hopper 1c.

尚、本実施形態の粉粒体よりも粉径の小さい流動性の高い粉粒体(例えば粒径が約1mm)の場合は、上記投入ホッパー3にコーン16を設置し、上記投入ホッパー3内における粉粒体rのブリッジを防止することができる。   In the case of a highly granular powder having a smaller particle diameter than that of the powder of the present embodiment (for example, the particle diameter is about 1 mm), a cone 16 is installed in the charging hopper 3 and the inside of the charging hopper 3 Can prevent bridging of the granular material r.

尚、図1中17は投入ホッパー3におけるフランジ、18は排出ホッパー1cにおけるフランジであり、各々プラントにおける粉粒体投入口、粉粒体排出口にボルト、ナットにて接続される。また、図1中、9aは上記直立回転軸9のカバーであり、ボルトB3は上記カバー9aを上記上部機枠10に固定するものである。   In FIG. 1, 17 is a flange in the charging hopper 3, and 18 is a flange in the discharging hopper 1c, which are connected to the powder inlet and the powder outlet in the plant by bolts and nuts, respectively. In FIG. 1, 9 a is a cover for the upright rotating shaft 9, and a bolt B <b> 3 fixes the cover 9 a to the upper machine casing 10.

以上のように本発明によれば、従来の供給装置における排出スクレーパ或いは攪拌翼等を用いることなく、平板状の表面を有する水平回転テーブル8の略全周域又は全周域から粉粒体を定量的に落下供給することができるので、例えば、金属製の排出スクレーパ等と接触を避ける必要のある粉粒体材料を円滑に定量供給することができるものである。   As described above, according to the present invention, without using a discharge scraper or a stirring blade or the like in a conventional supply device, the granular material is removed from substantially the entire circumferential area or the entire circumferential area of the horizontal rotary table 8 having a flat surface. Since it is possible to drop and supply quantitatively, for example, it is possible to smoothly and quantitatively supply a granular material that needs to avoid contact with a metal discharge scraper or the like.

このように、本発明は、粉粒体の流出経路に排出スクレーパ、攪拌翼等の粉粒体が当接(衝突)するような部材が存在しないため、例えば硬度の高い粉粒体と上記スクレーパとの接触により、金属製のスクレーパが傷ついて金属粉が粉粒体原料に混入するというような事態は発生せず、粉粒体材料の純度を維持した状態での定量供給を実現し得る。   As described above, the present invention does not include a member that makes contact with (impacts) the granular material, such as a discharge scraper and a stirring blade, in the outflow path of the granular material. The metal scraper is damaged by the contact with the metal powder, and the situation that the metal powder is mixed into the powder raw material does not occur, and the quantitative supply in a state in which the purity of the powder material is maintained can be realized.

また、水平フランジ5の下面に位置する粉粒体は、放射状線状突起7との接触摩擦により水平回転テーブル8との供回りが効果的に防止されるため、排出スクレーパ等を用いることなく円滑に粉粒体を外周縁方向に押し出して、定量的に供給することができる。   In addition, since the powder particles located on the lower surface of the horizontal flange 5 are effectively prevented from rotating with the horizontal rotary table 8 due to contact friction with the radial linear projections 7, smoothness can be achieved without using a discharge scraper or the like. It is possible to quantitatively supply the powder body by extruding it in the direction of the outer peripheral edge.

また、上記内筒4内における縦方向線状突起6により粉粒体の供回り現象を防止しつつ、放射状線状突起7より水平フランジ5下面5aに位置する粉粒体の供回り現象をも防止することができるため、排出スクレーパ等を用いることなく水平回転テーブルの全周域から粉粒体の定量排出を実現することができるものである。   Further, while preventing the granular material from rotating due to the longitudinal linear protrusions 6 in the inner cylinder 4, the rotating phenomenon of the granular material positioned on the lower surface 5a of the horizontal flange 5 from the radial linear protrusions 7 is also achieved. Therefore, it is possible to realize the quantitative discharge of the powder and granular material from the entire circumference of the horizontal rotary table without using a discharge scraper or the like.

また、投入ホッパー3にコーン16を設けることにより、水平回転テーブル8に対する粉粒体の圧力を減少させることができ、当該コーン16により粉体圧による供給量の変動を抑制することができる。   Further, by providing the cone 16 in the charging hopper 3, the pressure of the granular material against the horizontal rotary table 8 can be reduced, and the supply amount fluctuation due to the powder pressure can be suppressed by the cone 16.

尚、上記縦方向線状突起6、放射状線状突起7の数は、上記実施形態に限定されず、内筒4の口径サイズにより変化させることができるのは勿論である。   Of course, the number of the longitudinal linear protrusions 6 and the radial linear protrusions 7 is not limited to the above embodiment, and can be changed depending on the aperture size of the inner cylinder 4.

本発明は、排出スクレーパ或いは攪拌翼等を用いることなく水平回転テーブルによって粉粒体の定量供給を実現できるため、例えば、スクレーパ等の部材との接触が好ましくないような各種の粉粒体原料の定量供給を支障なく実現することができる。   Since the present invention can realize a quantitative supply of powder by a horizontal rotary table without using a discharge scraper or a stirring blade, for example, various kinds of powder raw materials that are not preferable to contact with a member such as a scraper. A constant supply can be realized without hindrance.

1 ケーシング
1a’ 内周面
2a 円形開口部(開口部)
3 投入ホッパー
4 内筒
4a 内周面
4b 位置
4c 位置(外縁)
5 水平フランジ
5a 下面
6 縦方向線状突起
7 放射状線状突起
8 水平回転テーブル
8a 外周縁
9 直立回転軸
10 水平機枠(機枠)
12 電動機
13 円筒状カバー
14 上部円筒機枠
C 中心軸線
K 距離
L 距離
r 粉粒体
S 環状間隔
t 材料排出間隔
θ 安息角
DESCRIPTION OF SYMBOLS 1 Casing 1a 'Inner peripheral surface 2a Circular opening part (opening part)
3 Feeding hopper 4 Inner cylinder 4a Inner peripheral surface 4b Position 4c Position (outer edge)
DESCRIPTION OF SYMBOLS 5 Horizontal flange 5a Lower surface 6 Longitudinal linear protrusion 7 Radial linear protrusion 8 Horizontal rotary table 8a Outer periphery 9 Upright rotating shaft 10 Horizontal machine frame (machine frame)
12 Motor 13 Cylindrical cover 14 Upper cylindrical machine frame C Center axis K Distance L Distance r Granules S Annular interval t Material discharge interval θ Repose angle

Claims (5)

円筒状のケーシング内に機枠を固定し、該機枠に直立回転軸を設けると共に上記直立回転軸の上部に該直立回転軸を中心軸線とする水平回転テーブルを設け、該水平回転テーブルの外周縁と上記ケーシング内周面との間に材料排出用の環状間隔を形成し、
上記ケーシングの上面に開口部を設けると共に、上記開口部に上記中心軸線を共通とする逆円錐形状の投入ホッパーを接続し、該投入ホッパーの下端に該投入ホッパーと上記中心軸線を共通とする内筒を接続し、
上記内筒の下縁に、外方向に水平に突出し上記中心軸線を共通とする円環状の水平フランジを設け、
上記内筒を上記水平回転テーブルの上方位置に配置して、上記内筒下端部と上記水平回転テーブルとの間に材料排出間隔を形成し、上記内筒内に投入された粉粒体が上記内筒の下端部から上記水平回転テーブル上に一定の安息角を以って流出するように構成し、
上記内筒の内周面に、その内周に沿う均等間隔毎に該内筒中心方向に突出する縦方向線状突起を複数本設けると共に、
上記水平フランジの下面に、円周方向の均等間隔毎に下方向に突出する放射状線状突起を複数本設け、
電動機により上記水平回転テーブルを回転することにより、上記水平回転テーブル上に流出した上記粉粒体を上記水平回転テーブルの外周縁方向に移動させ、上記粉粒体を上記水平回転テーブルの外周縁から上記環状間隔を介して上記ケーシング下方に落下供給するものである水平回転テーブルによる粉粒体供給装置。
A machine frame is fixed in a cylindrical casing, an upright rotating shaft is provided on the machine frame, a horizontal rotating table having the upright rotating shaft as a central axis is provided above the upright rotating shaft, and an outer side of the horizontal rotating table is provided. An annular interval for discharging material is formed between the peripheral edge and the casing inner peripheral surface,
An opening is provided on the upper surface of the casing, an inverted conical charging hopper having the same central axis is connected to the opening, and an inner portion having the same central axis as the charging hopper is connected to the lower end of the charging hopper. Connect the tube,
At the lower edge of the inner cylinder, an annular horizontal flange that projects horizontally outward and shares the central axis is provided.
The inner cylinder is disposed above the horizontal rotary table, a material discharge interval is formed between the lower end portion of the inner cylinder and the horizontal rotary table, and the granular material charged into the inner cylinder is It is configured to flow out from the lower end of the inner cylinder onto the horizontal rotary table with a certain angle of repose,
Provided on the inner peripheral surface of the inner cylinder a plurality of longitudinal linear protrusions protruding in the center direction of the inner cylinder at equal intervals along the inner circumference,
On the lower surface of the horizontal flange, a plurality of radial linear projections projecting downward at equal intervals in the circumferential direction are provided,
By rotating the horizontal rotary table with an electric motor, the powder particles that have flowed out on the horizontal rotary table are moved toward the outer peripheral edge of the horizontal rotary table, and the powder particles are moved from the outer peripheral edge of the horizontal rotary table. The granular material supply apparatus by the horizontal rotary table which is what drops and supplies below the said casing via the said cyclic | annular space | interval.
上記水平フランジの下面に位置する上記粉粒体は、上記水平フランジ下面の上記放射状線状突起との接触により、上記放射状線状突起との間で摩擦抵抗を生じ、これにより上記材料排出間隔にある上記粉粒体は、上記水平回転テーブルの回転に基づいて上記水平回転テーブルの外周縁に向かう方向に移動し得るように構成したものであることを特徴とする請求項1記載の水平回転テーブルによる粉粒体供給装置。   The powder particles located on the lower surface of the horizontal flange generate a frictional resistance with the radial linear protrusions by contact with the radial linear protrusions on the lower surface of the horizontal flange, thereby increasing the material discharge interval. 2. The horizontal rotary table according to claim 1, wherein the certain granular material is configured to move in a direction toward an outer peripheral edge of the horizontal rotary table based on rotation of the horizontal rotary table. By powder supply device. 上記内筒の下端に対応する上記水平回転テーブル上の位置(4b)から上記水平回転テーブルの外周縁までの距離(L)は、上記位置(4b)から上記安息角(θ)で流出する上記粉粒体の上記水平回転テーブル上の外縁までの距離(K)の2倍である請求項1又は2記載の水平回転テーブルによる粉粒体供給装置。   The distance (L) from the position (4b) on the horizontal turntable corresponding to the lower end of the inner cylinder to the outer periphery of the horizontal turntable flows out from the position (4b) at the repose angle (θ). The granular material supply apparatus by a horizontal rotating table according to claim 1 or 2, which is twice the distance (K) of the granular material to the outer edge on the horizontal rotating table. 上記放射状線状突起の本数は、上記縦方向線状突起の本数より多くなるように形成したものであることを特徴とする請求項1〜3の何れかに記載の水平回転テーブルによる粉粒体供給装置。   The granular material by the horizontal rotary table according to any one of claims 1 to 3, wherein the number of the radial linear protrusions is formed so as to be larger than the number of the longitudinal linear protrusions. Feeding device. 上記縦方向線状突起の本数は上記放射状線状突起の本数の1/2であり、上記縦方向線状突起は上記放射状線状突起の一つ置きの角度位置に対応して設けられているものである請求項4記載の水平回転テーブルによる粉粒体供給装置。   The number of the longitudinal linear protrusions is ½ of the number of the radial linear protrusions, and the longitudinal linear protrusions are provided corresponding to every other angular position of the radial linear protrusions. The granular material supply apparatus by the horizontal rotary table of Claim 4 which is a thing.
JP2011101111A 2011-04-28 2011-04-28 Powder and particle feeder with horizontal rotating table Active JP5774362B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011101111A JP5774362B2 (en) 2011-04-28 2011-04-28 Powder and particle feeder with horizontal rotating table
KR1020110104685A KR101765342B1 (en) 2011-04-28 2011-10-13 Apparatus for supplying powder material by horizontal rotational table

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011101111A JP5774362B2 (en) 2011-04-28 2011-04-28 Powder and particle feeder with horizontal rotating table

Publications (2)

Publication Number Publication Date
JP2012232813A true JP2012232813A (en) 2012-11-29
JP5774362B2 JP5774362B2 (en) 2015-09-09

Family

ID=47433548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011101111A Active JP5774362B2 (en) 2011-04-28 2011-04-28 Powder and particle feeder with horizontal rotating table

Country Status (2)

Country Link
JP (1) JP5774362B2 (en)
KR (1) KR101765342B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159307A (en) * 2013-02-19 2014-09-04 Yoshikawa:Kk Granule constant amount feeder
CN105775790A (en) * 2016-04-08 2016-07-20 徐州天龙液压机械有限公司 Quantitative feeder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2213508A (en) * 1938-06-24 1940-09-03 Maurice M Wheldon Feeder for pulverulent material
JPH0742769U (en) * 1993-12-30 1995-08-11 石山 文鎔 Powder feeder
JP2009256026A (en) * 2008-04-15 2009-11-05 Yoshikawa:Kk Powder and grain feeder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4278784B2 (en) 1999-07-26 2009-06-17 株式会社ヨシカワ Disc feeder for powder
JP4039885B2 (en) 2002-05-17 2008-01-30 株式会社ヨシカワ Powder and particle feeder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2213508A (en) * 1938-06-24 1940-09-03 Maurice M Wheldon Feeder for pulverulent material
JPH0742769U (en) * 1993-12-30 1995-08-11 石山 文鎔 Powder feeder
JP2009256026A (en) * 2008-04-15 2009-11-05 Yoshikawa:Kk Powder and grain feeder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159307A (en) * 2013-02-19 2014-09-04 Yoshikawa:Kk Granule constant amount feeder
CN105775790A (en) * 2016-04-08 2016-07-20 徐州天龙液压机械有限公司 Quantitative feeder
CN105775790B (en) * 2016-04-08 2018-09-28 徐州天龙液压机械有限公司 A kind of quantitative feeding device

Also Published As

Publication number Publication date
JP5774362B2 (en) 2015-09-09
KR101765342B1 (en) 2017-08-07
KR20120122863A (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5856037B2 (en) Metering feeder
KR101246503B1 (en) Powder and granular material feeder
US4921086A (en) Device and method for uniformly distributing materials on a circular surface
JPWO2008146593A1 (en) Powder and particle feeder
JP7358598B2 (en) mill
JP4447643B2 (en) Powder and particle feeder
JP5774362B2 (en) Powder and particle feeder with horizontal rotating table
JP2019076874A (en) Powder treatment apparatus
JP5774353B2 (en) Descent guiding device in powder and particle feeder
JP6172577B2 (en) Vertical crusher
WO2015087661A1 (en) Powder supply device
RU2136762C1 (en) Device for charging of shaft furnace
USRE29386E (en) Gravity discharge apparatus
CN208679823U (en) A kind of screening type disk feeder of even feeding
US3010610A (en) Solids flow control device and method
JP2012246111A (en) Fixed quantity feeder device of powder grain body
CN215029435U (en) Colloid powder feeding and grinding integrated device
JP6331700B2 (en) Vertical crusher
KR101387341B1 (en) System for supplying fuel or raw material using rotating chute in blast furnace and method thereof
JP2010126343A (en) Material transfer device in powder and granular material feeder
JP6729610B2 (en) shoot
JP2013103784A (en) Powder massive material contact surface-protecting structure
JP2012006687A (en) Machine for quantitatively discharging powder and granular material
JP2001515137A (en) Sponge iron production equipment
JP2018001037A (en) Vertical type crusher

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150701

R150 Certificate of patent or registration of utility model

Ref document number: 5774362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250