JP2012231201A - 半導体集積回路およびその動作方法 - Google Patents

半導体集積回路およびその動作方法 Download PDF

Info

Publication number
JP2012231201A
JP2012231201A JP2011096670A JP2011096670A JP2012231201A JP 2012231201 A JP2012231201 A JP 2012231201A JP 2011096670 A JP2011096670 A JP 2011096670A JP 2011096670 A JP2011096670 A JP 2011096670A JP 2012231201 A JP2012231201 A JP 2012231201A
Authority
JP
Japan
Prior art keywords
dram
sram
built
storage area
datagram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011096670A
Other languages
English (en)
Inventor
Tokai Morino
東海 森野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2011096670A priority Critical patent/JP2012231201A/ja
Publication of JP2012231201A publication Critical patent/JP2012231201A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

【課題】DVB−HシステムのMPE−FECフレームのデコーディングのための内蔵SRAMのサイズを小さくする。
【解決手段】集積回路3は、TSIF31、RSデコーダ32、内蔵SRAM33、DRAMインターフェース34、中央処理ユニット35を具備する。TSIF31はDVB−HシステムのMPE−FECフレームを含んだTSパケットを受信して、IPデータグラムを含んだMPEセクションとパリティーデータを含んだMPE−FECセクションを抽出して、MPEセクションとMPE−FECセクションの第1テーブルと消去ビットマップテーブルの第2テーブルがDRAM4に生成される。内蔵SRAM33には、DRAMのバースト転送によってDRAMの第1と第2のテーブルの一部の格納データが格納される。RSデコーダ32が内蔵SRAM33をアクセスして、一部の格納データを使用してリード・ソロモン・デコーディングを実行する。
【選択図】図1

Description

本発明は、DVB−Hシステムの受信機能を搭載した半導体集積回路およびその動作方法に関し、特に、MPE−FECフレームのデコーディングのための内蔵SRAMのサイズを小さくするのに有効な技術に関するものである。
携帯可能の受信機や移動体テレビのための標準規格の一つとしてDVB−H(Digital Video Broadcasting - Handheld)システムが知られている。DVB−Hシステムは、地上デジタルテレビの規格であるDVB−T(Digital Video Broadcasting - Terrestrial)システムをベースに制定され、低消費電力で動作して、手に持ちながら放送プログラムを視聴したいと言う携帯端末への期待を満足するものとして期待されている。
DVB−Hシステムは、時分割多重化によって、小型携帯端末の電力消費を低減する。また、DVB−Hシステムにおける放送データとしてのIPデータグラム(Internet Protocol datagram)は、バースト又はクラスタと呼ばれる短い時間スロットの期間内に送信機から受信機に転送される。
下記特許文献1には、DVB−Hシステムにおいて、IPデータグラムがリード・ソロモン(Reed Solomon)データによって符号化されることによって、MPE−FEC(Multiprotocol Encapsulation-Forward Error Correction)フレームが生成されることが記載されている。すなわち、MPE−FECフレームは、IPデータグラムを搬送するMPEセクションと、リード・ソロモン符号化によって生成されパリティーを搬送するMPE−FECセクションとからなる。IPデータグラムは、ヘッダを含み、データが転送されるネットワーク端末に関するアドレス情報を含んだパケットである。更に、IPデータグラムのパケットがMPEセクションまたはMPE−FECセクションのペイロードに含まれ、またMPEセクションまたはMPE−FECセクションが物理層を介して転送されるDVB−Hシステムにおける転送単位であるTS(Transport Stream)のペイロードに含まれる。IPデータグラムにセクションヘッダと巡回冗長チェック(CRC:Cyclic Redundant Check)の32ビットが追加されて、IPデータグラムがMPEセクションとして再構成される。リード・ソロモン符号化により生成されたパリティーデータにセクションヘッダと巡回冗長チェック(CRC)の32ビットが追加されて、パリティーデータがMPE−FECセクションとして再構成される。セクションヘッダはMPE−FEC処理とタイムスライシング(time slicing)に必要な情報を含み、各セクションの前部に位置して、巡回冗長チェック(CRC)の32ビットは各セクションの後部に位置する。これらのセクションはTSパケットのペイロードに搬送され、物理層を介して転送される。
DVB−Hシステムの受信機のMPE−FECデコーダは放送サービス情報(PSI/SI)を受信して、MPEセクションのIPデータグラムとMPE−FECセクションのパリティーデータとを内部バッファのデータ領域とパリティー領域に別々に格納してリード・ソロモン(Reed Solomon)デコーディングを実行することにより元の放送データを復元する。MPE−FECデコーダはTSパケットから抽出されたセクションデータのヘッダ情報からテーブル識別子(ID)をチェックすることによって、セクションデータがIPデータグラムを含むMPEセクションであるかまたはIPデータグラムのパリティーデータを含んだMPE−FECセクションであるかを決定する。もし、受信されたセクションデータがMPEセクションである場合には、MPE−FECデコーダは対応するMPEセクションのIPデータグラムの内部バッファのデータ領域へのフレームバッファリングを実行する。もし、受信されたセクションデータがMPE−FECセクションである場合には、MPE−FECデコーダは対応するMPE−FECセクションのパリティーデータの内部バッファのパリティー領域へのフレームバッファリングを実行する。
MPE−FECデコーダはMPE−FECセクションのヘッダ情報からリアルタイムパラメータをチェックすることによって、現在受信されたMPE−FECセクションがMPE−FECフレームの最終のMPE−FECセクションであるかを決定する。もし、受信されたMPE−FECセクションが最終のMPE−FECセクションでない場合には、MPE−FECデコーダはMPE−FECフレームのMPEセクションまたはMPE−FECセクションの受信を継続してフレームバッファリングを実行する。もし、受信されたMPE−FECセクションが最終のMPE−FECセクションである場合には、MPE−FECデコーダは内部バッファに格納されたパリティーデータを使用して、IPデータグラムのエラー訂正のためにリード・ソロモン(Reed Solomon)デコーディングを実行する。MPE−FECデコーダはエラー訂正されたIPデータグラムを上位層に出力して、IPデータグラムが放送データとしてユーザー端末を介して表示される。
MPE−FECデコーダは、バッファと、RSデコーダと、コントローラとを含んでいる。バッファは、受信したTSパケットから抽出したPMEセクションのIPデータグラムと受信したTSパケットから抽出したPME−FECセクションのパリティーデータを一時的に格納する。RSデコーダはパリティーデータを使用して、IPデータグラムのエラー訂正を実行する。コントローラは物理層を介して送信機から送信されたPSI/IS情報を解析して、MPE−FEC処理を適用するか否かと、抽出したIPデータグラムとパリティーデータとをバッファに格納するためにMPEセクションとMPE−FECセクションとからIPデータグラムとパリティーデータとを抽出するか否かと、RSデコーダを使用してIPデータグラムのリード・ソロモン(Reed Solomon)デコーディングを実行するか否かなどのMPE−FECデコーダの装置の全般的な動作を制御する。
下記特許文献2には、DVB−Hシステムの送信機のMPE−FECフレームの構成が記載されている。1個のMPEフレームは、IPデータグラムとして構成されたアプリケーションデータを搬送するMPEセクションのセットと、それに続くFEC訂正(RS−Reed Solomon)バイトを搬送するMPE−FECセクションのオプショナルセットとを含んでいる。送信機では、MPE−FECフレームは、255列と最大1024行のエントリーのマトリックスによって構成され、各エントリーは1バイトである。DVB−Hの規格は、MPE−FECフレームの行の数として256、512、768または1024を許可している。また、255列では、最初の191列はアプリケーションデータのために予約されて、最後の64列はRSデータバイトのために使用される。
送信機では、アプリケーションデータバイトは媒体を介する送信のために準備されてMPE−FECフレームの列方向に最大で191列に格納される。列内部の位置のアドレスは連続的であって、列はアドレスの不連続無しに列は1個ずつ、増加する。一度アプリケーションデータがバッファに書き込まれると、FEC訂正バイトが行方向に計算され(191個のアプリケーションデータバイトは64個のRSデータバイトを生じる)、RSデータバイトはMPE−FECフレームに列方向に書き込まれて、これは各列で実行される。MPE−FECフレームの最後の列がこのようにエンコードされると、MPE−FECフレームが完成する。
一度RSエンコーディングが完了すると、IPデータグラムは列方向に読み出され(以前にそれらがMPE−FECフレームに書き込まれたのと同一の順番で)、MPEセクション(更にはTSパケット)へのエンキャプシュレーションの後に転送される。RSデータ列は同様に、一度に一列で、列方向に読み出され(それらはエンコーディングの間に行方向に書き込まれたものである)、MPEセクション(更には、TSパケット)へのエンキャプシュレーションの後に転送される。RSデータを行方向で計算してそれらを列の順番で転送する方式は、バーチャルインターリービィングと呼ばれる。
DVB−H転送では、典型的には、MPEフレームを含む全てのTSパケットは、固有のPID(パケット識別番号)とともに、バーストと呼ばれるクラスタにおいて転送される。各プログラムに対して、バーストは予測可能な反復レートで離間している。送信機では連続した送信を達成するために、異なったプログラムからの複数のバーストはインターリーブされる。各バーストに含まれる圧縮データ量は、次のバーストからのペイロードの到達以前に復号音声・映像プログラムを生成するのに十分なものである。
MPE−FECフレームにおいて、191個のアプリケーションデータの列の全てが書き込まれることは必要でも必須でもなく、MPE−FECフレームはそれより少ない数のデータ列を占有して、残りをゼロ値バイトによって詰められる(パッドされる)ことができる。エンコーディングの後に、パッドされたバイトは転送に際して無視され、元来の入力IPデータグラムのみがMPEセクションに送信される。ゼロ・バディングが使用されているか否かに無関係に、MPE−FECフレームの全ての行のエンコーディングの後に、送信機はMPE−FECフレームのRSデータの最後(一番右)の列を無効にすることによって64個のRS列より少ないRSデータを転送することを決定することができる。すなわち、無効化された列は、媒体を介して転送されることはない。
DVB−H受信機において、MPE−FECバッファメモリは、MPEセクションとMPE−FECセクションとのコンテンツによって列方向に書き込まれる。例えば、第1FECデコーダがTSパケットのデコードに失敗してTSパケット中にエラーが存在する場合には、不完全なTSパケットに起因した消失データは「消去(イレージャー)」としてマーキングされる。MPE−FECバッファメモリの内部に全てのデータが受信されて格納されると、RSデコーディングの処理が開始される。RSデコーディングの間には、各行が191個のアプリケーションデータバイト(パディングバイトを含め)と64個のRSデータバイト(無効バイトを含め)とにより構成されたデータが行方向にバーチャルデインターリービングによって読み出される。無効が推測される場合には、RSバイト位置において「消去」がRSデコーダに示されて、RSデコーダは「消去(既知の不良)」と「不正確(未知の不良)」との全てのバイトのエラー訂正を試みる。全ての行がデコードされると、受信機のMPE処理により全ての「消去」がRSデコーダによって訂正されたものと推定されて、受信機のMPE−FECフレームは送信の直前の送信機のMPE−FECフレームと同一であると期待される。
この下記特許文献2には、ビット・マップの各ビットがMPE−FECフレーム中の列のバイトの個々のブロックに対応するブロック方式イレーズマーキングビット・マップが提案されている。ビットが“1”にセットされると、このビットは対応するデータブロックは「消去」の1バイトを少なくとも有していることをマークする。データが受信され受信バッファに書き込まれると、「消去」の存在または不在に依存して、このビットマップは受信機によって更新される。アプリケーションプロセッサは、バーストのRSテーコーディングが完了する以前であっても、このビットマップを使用して、アプリケーションデータの良好なブロック(対応するビットが“0”にセットされ「消去」のないブロック)を読み出すことが可能となり、MPE−FECフレームの各列は1個のブロックとして取り扱われることができる。
下記特許文献3には、DVB−H受信機において、RSデコーダとデインターリーバーとは、送信データの損傷を回復するためにMPE−FEC処理ユニットに必要とされることが記載されている。デインターリーバーのMPE−FEC RAMは、最大で1024行と255列のデータバイトのサイズを有する全てのMPEデータフレームを格納する。RSデコーダは、この受信されたデータを一行一行、エラー訂正を実行する。受信されたIPデータグラムから生成されエラーの可能性のある場所をマークする「消去」の情報を使用して、「消去」の場所を使用できない訂正モードと比較して、RSデコーダはエラー訂正能力を2倍にすることができる。
受信されたIPデータグラムはトランスポートストリームパケットデマルチプレクサ(TS demux)によってMPE−FEC RAMに一列一列と書き込まれた後に、受信された各IPデータグラムに対して巡回冗長チェック(CRC)が計算され、各データグラムの最後のCRCバイトと比較される。もし、CRCが一致する場合には、このIPデータグラムの全てのデータバイトはエラーを含まないものである。CRCの不一致はこのIPデータグラムの少なくとも1バイトまたはそれ以上が破壊されていることを示し、その結果、このデータグラムの全てのバイトはエラーの可能性のある場所を示す「消去」としてマークされる。この「消去」の場所の情報は、データグラムが受信された順番でカラム方向に格納される。
全てのMPEフレームが格納された後にデータがMPE−FEC RAMから一行一行読み出されて各行の各バイトの消去情報とともにRSデコーダに供給され、RSデコーダは64バイトのエラーまで訂正可能である。RSデコーダの出力はMPE−FEC RAMに一行一行、書き戻されて、訂正されたIPデータグラムは後処理のためにMPE−FEC RAMから一列一列読み出されて出力される。1ビットによってMPE−FECフレームRAMの各データバイトの消去を示すとするならば、消去位置情報を格納するためのメモリの容量は、255×1024=255Kビットと大きなサイズとなる。
下記特許文献4には、チューナがデータストリームを受信して、ベースバンド受信機がデータストリームをMPEG−2トランスポートストリームに変換してMPE−FECフレームのバイトを抽出してそれらを内蔵メモリに格納するDVB−Hシステムが、第1の関連技術として記載されている。MPE−FECフレームの全てのバイトが受信されると、ベースバンド受信機が対応するシンドロームを計算して、このシンドロームを使用してエラーの位置とエラーの値とを計算するか、またはCRCチェックを使用してエラー情報(例えば、エラーの位置)を発見して消去情報からエラーの値を計算する。エラーの値はエラー訂正のために内蔵メモリのMPE−FECフレームに加えられ、その結果のIPデータグラムは更なる処理のためにホストサブシステムに転送される。全てのMPE−FECフレームが内蔵メモリ中に格納されなければならないので、255バイト×1024MPE−FECフレームを格納するために2Mビットメモリが必要とされる。このメモリはオンチップであるので、大きなサイズはダイサイズの増加と歩留まりの低下等の問題を生じる。
この問題を解消するために、下記特許文献4には、内蔵メモリを具備せず、その代わりにMPE−FECフレームを、例えばDRAM等の外部メモリに格納するDVB−Hシステムが、第2の関連技術として記載されている。チューナがデータストリームを受信して、ベースバンド受信機がデータストリームをMPEG−2トランスポートストリームに変換してMPE−FECフレームのデータバイトを抽出してそれらを外部メモリに格納する。一度、全てのデータバイトが受信されると、MPE−FECフレームの各コードワードが抽出されRSデコーディングのためにベースバンド受信機に転送される。エラー訂正されたコードワードはホストサブシステムに戻されなければならないので、ベースバンド受信機とホストサブシステムとの間には双方向バスが存在する。バスを介して全てのMPE−FECフレームを転送することは、非常に重いトラフィックとなる。しかし、この方法は、RSデコーディング処理の全ての段階がDRAMのシングルバイトアクセスのみが可能なインターリーブシーケンスで実行されなければならないので、DRAMの各アクセスに必要とされる大きなオーバーヘッドによってDRAMの帯域幅の非常に不十分な利用となると言う大きな欠点を生じるものである。このオーバーヘッドは、実際のデータ転送サイクルが生じる以前に、コマンドとローアドレスとカラムアドレスとを指定する以前の複数のクロックサイクルである。バーストDRAMアクセスは、シングルバイトアクセスよりもオーバーヘッドが非常に小さいので、好適である。
この問題を解消するために、下記特許文献4には、最大のデータ格納容量が64Kバイトの内蔵メモリを使用するDVB−Hシステムが、実施の形態として記載されている。この64Kバイトの内蔵メモリは、第1の関連技術として記載された2Mビットメモリの略1/4のサイズである。これは、64Kバイトの内蔵メモリがMPE−FECフレームの全てを格納するのとは反対にMPE−FECフレームのシンドロームを格納するためにのみ使用されるためである。
最初に、データストリームはチューナによって受信されて、このデータストリームは更にベースバンド受信機に供給されて、そこでMPEG−2トランスポートストリームに変換されて、埋め込まれたMPE−FECフレームが抽出され、MPE−FECフレームの最初の191列のアプリケーションテーブルだけが、外部DRAMの外部メモリに転送される。アプリケーションテーブルがIPデータグラムを搬送するのに対して、最後の64列のRSデータテーブルはFECコードのパリティーバイトを転送する。RSデータテーブルによって搬送されるパリティーデータはシンドローム計算にのみに使用され、シンドローム計算が実行された後にベースバンド受信機でパリティーデータは破棄されることができる。
尚、下記特許文献1に対応する日本特許出願は特表2009−504075号公報であり、下記特許文献2と下記特許文献3と下記特許文献4とに対応する日本特許出願は確認されていない。
米国特許出願公開 US2008/0008155A1 明細書 米国特許出願公開 US2007/0220406A1 明細書 米国特許出願公開 US2008/0298394A1 明細書 米国特許出願公開 US2008/0178051A1 明細書
本発明者等は本発明に先立って、上述したDVB−Hシステムの受信機能を搭載した半導体集積回路の開発に従事した。
この開発では、半導体集積回路のコスト低減が必要とされ、そのためには半導体集積回路の半導体チップの低減、特にMPE−FECフレームのデコーディングのための内蔵メモリのサイズの低減が要求された。
上記特許文献4に記載されたDVB−Hシステムは、内蔵メモリのサイズを従来の2Mビットメモリの略1/4のサイズである64Kバイトに低減するものである。
一方、システムLSI等の半導体集積回路の揮発性の内蔵メモリには、内蔵DRAMと内蔵SRAMとがある。内蔵DRAMはメモリセルサイズが比較的小さいが、ロジックとDRAMとをシングルチップに搭載するための半導体製造プロセスが複雑で半導体集積回路のコストが高くなる。それに対して、内蔵SRAMはロジックとSRAMとをシングルチップに搭載するための半導体製造プロセスが比較的単純であるが、1個のSRAMセルは6素子を必要とするのでメモリセルサイズが大きいので、64Kバイトのような大きなメモリサイズの内蔵SRAMを半導体集積回路に集積化すると、半導体集積回路のコストが高くなると言う問題が本発明に先立った本発明者等による検討により明らかとされた。
本発明は、以上のような本発明に先立った本発明者等による検討の結果、なされたものである。
従って、本発明の目的とするところは、DVB−Hシステムの受信機能を搭載した半導体集積回路において、MPE−FECフレームのデコーディングのための内蔵SRAMのサイズを小さくすることにある。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
本願において開示される発明のうちの代表的なものについて簡単に説明すれば下記のとおりである。
すなわち、本発明の代表的な実施の形態は、トランスポートストリームインターフェース(31)と、RSデコーダ(32)と、内蔵SRAM(33)と、DRAMインターフェース(34)と、中央処理ユニット(35)とを具備する半導体集積回路(3)である。
前記トランスポートストリームインターフェースはDVB−HシステムのMPE−FECフレームを含んだTSパケットを受信することによって、前記TSパケットのセクションヘッダ情報からIPデータグラムを含んだMPEセクションと前記IPデータグラムのパリティーデータを含んだMPE−FECセクションとを抽出する。
前記DRAMインターフェースには、DRAM(4)が接続可能とされる(図1参照)。
前記中央処理ユニットまたは前記トランスポートストリームインターフェースは、前記MPEセクションと前記MPE−FECセクションとからなる第1テーブルを前記DRAMに生成する(図2参照)。
前記トランスポートストリームインターフェースは前記IPデータグラムの巡回冗長チェック(CRC)を検査することによって前記IPデータグラムのエラーの有無をチェックして、エラーが存在する場合には1バイトの前記IPデータグラムを1ビットの消去ビットにより「消去」としてマークする。
前記中央処理ユニットまたは前記トランスポートストリームインターフェースは、1ビットによって前記1バイトの前記IPデータグラムの「消去」の有無を示す消去ビットマップテーブルとしての第2テーブルを前記DRAMに生成する(図2参照)。
前記内蔵SRAM(33)には、前記DRAMのバースト転送によって、前記DRAMの前記第1テーブルの前記MPEセクションと前記MPE−FECセクションとの一部の格納データと、前記DRAMの前記第2テーブルの前記消去ビットマップテーブルの一部の格納データとが転送され格納される(図4参照)。
前記RSデコーダが前記内蔵SRAMをアクセスすることによって、前記内蔵SRAMに格納された前記DRAMの前記第1テーブルの前記一部の格納データと前記DRAMの前記第2テーブルの前記一部の格納データとを使用して前記RSデコーダがリード・ソロモン・デコーディングを実行可能とされたことを特徴とするものである(図3)。
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記の通りである。
すなわち、本発明によれば、DVB−Hシステムの受信機能を搭載した半導体集積回路において、MPE−FECフレームのデコーディングのための内蔵SRAMのサイズを小さくすることができる。
図1は、本発明の実施の形態1によるDVB−Hシステムの受信機の構成を示す図である。 図2は、図1に示した本発明の実施の形態1によるDVB−Hシステムの受信機の動作を説明するための図である。 図3は、図1に示した本発明の実施の形態1による受信機のための半導体集積回路3に含まれるRSデコーダ32と内蔵SRAM33の構成を示す図である。 図4は、図2に示したDRAM4の内部に生成される第1テーブルTable 1の格納データと第2テーブルTable 2の格納データとが内蔵SRAM33に格納される様子を示す図である。 図5は、図2に示したDRAM4の内部に生成される第1テーブルTable 1の格納データと第2テーブルTable 2の格納データが内蔵SRAM33に転送され、内蔵SRAM33の格納データがRSデコーダ32によってRSデコーディングが実行される様子を示す図である。 図6は、本発明の実施の形態2によるDVB−Hシステムの受信機のための半導体集積回路3に含まれる内蔵SRAM33の構成を示す図である。 図7は、DVB−Hシステムの受信機のために図6に示す本発明の実施の形態2による内蔵SRAM33を含んだ半導体集積回路3の動作を説明する図である。 図8は、本発明の実施の形態3によるDVB−Hシステムの受信機のための半導体集積回路3に含まれるダイレクトメモリアクセスコントローラ(DMAC)321のリクエスト間隔制御部3211の構成を示す図である。 図9は、DVB−Hシステムの受信機のための本発明の実施の形態4による半導体集積回路3のRSデコーダ32の構成を示す図である。 図10は、図9に示した下DVB−Hシステムの受信機のための本発明の実施の形態4による半導体集積回路3のRSデコーダ32の動作を示す図である。
1.実施の形態の概要
まず、本願において開示される発明の代表的な実施の形態について概要を説明する。代表的な実施の形態についての概要説明で括弧を付して参照する図面の参照符号は、それが付された構成要素の概念に含まれるものを例示するに過ぎない。
〔1〕本発明の代表的な実施の形態は、トランスポートストリームインターフェース(31)と、RSデコーダ(32)と、内蔵SRAM(33)と、DRAMインターフェース(34)と、中央処理ユニット(35)とを具備する半導体集積回路(3)である。
前記トランスポートストリームインターフェースはDVB−HシステムのMPE−FECフレームを含んだTSパケットを受信することによって、前記TSパケットのセクションヘッダ情報からIPデータグラムを含んだMPEセクションと前記IPデータグラムのパリティーデータを含んだMPE−FECセクションとを抽出可能とされる。
前記DRAMインターフェースには、DRAM(4)が接続可能とされる(図1参照)。
前記中央処理ユニットまたは前記トランスポートストリームインターフェースは、前記IPデータグラムを含んだ前記MPEセクションと前記IPデータグラムの前記パリティーデータを含んだ前記MPE−FECセクションとからなる第1テーブルを前記DRAMに生成可能とされる(図2参照)。
前記トランスポートストリームインターフェースは前記IPデータグラムの巡回冗長チェック(CRC)を検査することによって前記IPデータグラムのエラーの有無をチェックして、エラーが存在する場合には1バイトの前記IPデータグラムを1ビットの消去ビットにより「消去」としてマーク可能とされる。
前記中央処理ユニットまたは前記トランスポートストリームインターフェースは、1ビットによって前記1バイトの前記IPデータグラムの「消去」の有無を示す消去ビットマップテーブルとしての第2テーブルを前記DRAMに生成可能とされる(図2参照)。
前記内蔵SRAM(33)には、前記DRAMのバースト転送によって、前記DRAMの前記第1テーブルの前記MPEセクションと前記MPE−FECセクションとの一部の格納データと、前記DRAMの前記第2テーブルの前記消去ビットマップテーブルの一部の格納データとが転送され格納可能とされる(図4参照)。
前記RSデコーダが前記内蔵SRAMをアクセスすることによって、前記内蔵SRAMに格納された前記DRAMの前記第1テーブルの前記一部の格納データと前記DRAMの前記第2テーブルの前記一部の格納データとを使用して前記RSデコーダがリード・ソロモン・デコーディングを実行可能とされたことを特徴とするものである(図3)。
前記実施の形態によれば、DVB−Hシステムの受信機能を搭載した半導体集積回路において、MPE−FECフレームのデコーディングのための内蔵SRAMのサイズを小さくすることができる。
好適な実施の形態では、前記内蔵SRAMは、前記DRAMの前記第1テーブルの前記一部の格納データと前記DRAMの前記第2テーブルの前記一部の格納データとをそれぞれ格納可能な第1格納領域(331)と第2格納領域(332)とを有する。
前記内蔵SRAMの前記第1格納領域と前記第2格納領域との各メモリ・サイズは、前記DRAMの一回の前記バースト転送によって転送されるデータサイズに基づいて決定されたものであることを特徴とするものである。
他の好適な実施の形態では、前記内蔵SRAMの前記第1格納領域と前記第2格納領域との前記各メモリ・サイズは、16バイトまたは32バイトの整数倍に決定されたものであることを特徴とするものである。
更に他の好適な実施の形態では、前記RSデコーダが前記リード・ソロモン・デコーディングを実行することによって、前記内蔵SRAMの前記第1格納領域に格納された前記第1テーブルの前記一部の格納データのエラー訂正が実行可能とされる。
前記内蔵SRAMの前記第1格納領域に格納された前記第1テーブルの前記一部の格納データのIPデータグラムのうち前記エラー訂正の実行によってエラー訂正されたIPデータグラムが、前記DRAMインターフェースを介して、前記DRAMの前記第1テーブルの該当するアドレスに上書き可能とされることを特徴とするものである。
より好適な実施の形態では、前記RSデコーダは、前記DRAMインターフェースを介して前記DRAMをアクセス可能なダイレクトメモリアクセスコントローラ(321)を含む。
前記ダイレクトメモリアクセスコントローラが前記DRAMをアクセスすることによって、前記ダイレクトメモリアクセスコントローラが前記DRAMの前記第1テーブルの前記一部の格納データと前記DRAMの前記第2テーブルの前記一部の格納データとをそれぞれ前記内蔵SRAMの前記第1格納領域と前記第2格納領域とに転送して格納可能とされることを特徴とするものである(図3参照)。
他のより好適な実施の形態では、前記ダイレクトメモリアクセスコントローラは、前記DRAMインターフェースを介して、前記内蔵SRAMの前記第1格納領域に格納された前記エラー訂正されたIPデータグラムを前記DRAMの前記第1テーブルの該当するアドレスに上書き可能とされたことを特徴とするものである。
更に他のより好適な実施の形態では、前記内蔵SRAMは、前記DRAMの前記第1テーブルの前記一部の格納データと前記DRAMの前記第2テーブルの前記一部の格納データとをそれぞれ格納可能な第3格納領域(333)と第4格納領域(334)とを更に有する。
前記内蔵SRAMの前記第3格納領域と前記第4格納領域との各メモリ・サイズは、16バイトまたは32バイトの整数倍に決定されたものである。
前記内蔵SRAMは、前記第1格納領域と前記第2格納領域とからなる第1バッファと前記第3格納領域と前記第4格納領域とからなる第2バッファとのダブルバッファによって構成される。
前記ダブルバッファによって構成された前記内蔵SRAMの前記第1バッファと前記第2バッファの一方で前記RSデコーダによる前記リード・ソロモン・デコーディングが実行される間に、前記内蔵SRAMの前記第1バッファと前記第2バッファの他方でリード処理またはライト処理が実行可能とされたことを特徴とするものである(図6、図7参照)。
別のより好適な実施の形態では、前記中央処理ユニットまたは前記トランスポートストリームインターフェースは受信した前記MPEセクションのセクションヘッダ情報からデルタ・テー(Delta_T)の情報を抽出して、前記デルタ・テーの情報を前記DRAMに格納可能とされる。
前記デルタ・テーの情報は、前記DVB−Hシステムにおいて次に転送されるバーストの開始時間を示すものである。
前記DRAMに格納された前記デルタ・テーの情報に応答して、前記中央処理ユニットは前記トランスポートストリームインターフェースの入力に出力が接続されたフロントエンドモジュール(2)の電源を現時点での受信バーストの期間と次の受信バーストの期間の間のインターバル期間に遮断可能とされたことを特徴とするものである(図6、図7参照)。
更に別のより好適な実施の形態では、前記ダイレクトメモリアクセスコントローラは、前記デルタ・テーの情報に基づいて前記DRAMの前記バースト転送の間隔を決定する間隔制御部(3211)を含むことを特徴とするものである(図8参照)。
具体的な実施の形態による半導体集積回路は、ビデオデコーダ(36)と、オーディオデコーダ(37)とを更に具備する。
前記エラー訂正の後に前記DRAMに格納されたIPデータグラムのヘッダ情報が当該IPデータグラムの情報がビデオ情報であることを示す場合には、前記中央処理ユニットまたは前記トランスポートストリームインターフェースは前記ビデオ情報としての前記IPデータグラムの情報を前記DRAMから前記ビデオデコーダに転送して、前記ビデオデコーダは前記ビデオ情報としての前記IPデータグラムのビデオデコーディングを実行してビデオ信号を生成可能とされる。
前記エラー訂正の後に前記DRAMに格納されたIPデータグラムのヘッダ情報が当該IPデータグラムの情報がオーディオ情報であることを示す場合には、前記中央処理ユニットまたは前記トランスポートストリームインターフェースは前記オーディオ情報としての前記IPデータグラムの情報を前記DRAMから前記オーディオデコーダに転送して、前記オーディオデコーダは前記オーディオ情報としての前記IPデータグラムのオーディオデコーディングを実行してオーディオ信号を生成可能とされたことを特徴とするものである(図1参照)。
他の具体的な実施の形態では、前記RSテコーダは、前記DRAMの前記バースト転送によって前記内蔵SRAMに格納されるデータに基づいて複数のシンドロームの中間値を生成して前記内蔵SRAM(327)に格納可能とされる。
前記RSテコーダは、前記DRAMから前記内蔵SRAMへの次のバースト転送に応答して、前記複数のシンドロームの前記中間値の値を更新可能とされたことを特徴とするものである(図8参照)。
最も具体的な実施の形態では、前記半導体集積回路(3)の半導体チップと前記DRAM(4)の半導体チップとは、単一の封止パッケージに内蔵されたことを特徴とするものである。
〔2〕本発明の別の観点の代表的な実施の形態は、トランスポートストリームインターフェース(31)と、RSデコーダ(32)と、内蔵SRAM(33)と、DRAMインターフェース(34)と、中央処理ユニット(35)とを具備する半導体集積回路(3)の動作方法である。
前記トランスポートストリームインターフェースはDVB−HシステムのMPE−FECフレームを含んだTSパケットを受信することによって、前記TSパケットのセクションヘッダ情報からIPデータグラムを含んだMPEセクションと前記IPデータグラムのパリティーデータを含んだMPE−FECセクションとを抽出する。
前記DRAMインターフェースには、DRAM(4)が接続可能とされる(図1参照)。
前記中央処理ユニットまたは前記トランスポートストリームインターフェースは、前記IPデータグラムを含んだ前記MPEセクションと前記IPデータグラムの前記パリティーデータを含んだ前記MPE−FECセクションとからなる第1テーブルを前記DRAMに生成する(図2参照)。
前記トランスポートストリームインターフェースは前記IPデータグラムの巡回冗長チェック(CRC)を検査することによって前記IPデータグラムのエラーの有無をチェックして、エラーが存在する場合には1バイトの前記IPデータグラムを1ビットの消去ビットにより「消去」としてマークする。
前記中央処理ユニットまたは前記トランスポートストリームインターフェースは、1ビットによって前記1バイトの前記IPデータグラムの「消去」の有無を示す消去ビットマップテーブルとしての第2テーブルを前記DRAMに生成する(図2参照)。
前記内蔵SRAM(33)には、前記DRAMのバースト転送によって、前記DRAMの前記第1テーブルの前記MPEセクションと前記MPE−FECセクションとの一部の格納データと、前記DRAMの前記第2テーブルの前記消去ビットマップテーブルの一部の格納データとが転送され格納される(図4参照)。
前記RSデコーダが前記内蔵SRAMをアクセスすることによって、前記内蔵SRAMに格納された前記DRAMの前記第1テーブルの前記一部の格納データと前記DRAMの前記第2テーブルの前記一部の格納データとを使用して前記RSデコーダがリード・ソロモン・デコーディングを実行することを特徴とするものである(図3)。
前記実施の形態によれば、DVB−Hシステムの受信機能を搭載した半導体集積回路において、MPE−FECフレームのデコーディングのための内蔵SRAMのサイズを小さくすることができる。
2.実施の形態の詳細
次に、実施の形態について更に詳述する。尚、発明を実施するための最良の形態を説明するための全図において、前記の図と同一の機能を有する部品には同一の符号を付して、その繰り返しの説明は省略する。
[実施の形態1]
《DVB−Hシステムの受信機の構成》
図1は、本発明の実施の形態1によるDVB−Hシステムの受信機の構成を示す図である。
図1に示すように、DVB−Hシステムの受信機は、受信アンテナ1と、フロントエンドモジュール2と、バックエンドSoC(System On Chip)として構成された半導体集積回路3と、DRAM(ダイナミックランダムアクセスメモリ)4と、LCD等の表示装置5と、スピーカー6によって構成される。
DVB−Hシステムの送信機(図示せず)から送信される放送プログラムを含んだRF周波数信号は、アンテナ1によって受信される。フロントエンドモジュール2は、上記特許文献1に記載のように、RF復調器とFFT(Fast Fourier Transformer)とシンボルデマッピング器とビットデインターリーバーとタイムスライシング処理部とによって構成される。従って、フロントエンドモジュール2の出力から、所定のバースト期間毎にMPE−FECフレームを含んだTSパケットが生成され、半導体集積回路3に供給される。
≪半導体集積回路の構成≫
図1に示したように、DVB−Hシステムの受信機のためのバックエンドSoCとして構成された半導体集積回路3は、トランスポートストリームインターフェース(TSIF)31と、リード・ソロモン(Reed Solomon)デコーディングを実行するRSデコーダ32と、メモリ・サイズが8Kバイトの内蔵SRAM33と、DRAMインターフェース(DRAMIF)34と、中央処理ユニット(CPU)35と、ビデオデコーダ36と、オーディオデコーダ37によって構成されている。
トランスポートストリームインターフェース(TSIF)31は、フロントエンドモジュール2の出力から供給されるTSパケットを受信して、受信したTSパケットのセクションヘッダ情報からIPデータグラムを含んだMPEセクションとIPデータグラムのパリティーデータを含んだMPE−FECセクションとを抽出する。中央処理ユニット(CPU)35またはトランスポートストリームインターフェース(TSIF)31は、セクションヘッダ情報に従って、IPデータグラムを含んだMPEセクションとIPデータグラムのパリティーデータを含んだMPE−FECセクションとからなる第1テーブルを外部のDRAM4に生成する。
更に、トランスポートストリームインターフェース(TSIF)31は、受信されたIPデータグラムの巡回冗長チェック(CRC)を計算して、各データグラムの最後のCRCバイトと比較することによって、エラーの有無をチェックする。エラーが存在する場合には、1ビットによって1バイトのIPデータグラムが「消去」としてマークされる。この場合には、セクションに含まれる全てのデータが「消去」としてマークされる。この「消去」の情報を使用して、「消去」の場所を使用できない訂正モードと比較して、エラー訂正能力を2倍にできる。すなわち、「消去」の場所を使用できない場合には、MPE−FECセクションの64バイトのパリティーによって32バイトまでのエラー訂正しか可能でないのに対して、「消去」の場所を使用できる場合には、MPE−FECセクションの64バイトのパリティーにより64バイトまでのエラー訂正が可能となる。すなわち、中央処理ユニット(CPU)35またはトランスポートストリームインターフェース(TSIF)31は、1ビットによって1バイトのIPデータグラムの「消去」の有無を示す消去ビットマップテーブルとしての第2テーブルを外部のDRAM4に生成する。
また、MPE−FECセクションが全て伝送されない場合には、中央処理ユニット(CPU)35またはトランスポートストリームインターフェース(TSIF)31によって、伝送されないMPE−FECフレームのRSデータは無効化(パンクチャ)される。
また更に、中央処理ユニット(CPU)35またはトランスポートストリームインターフェース(TSIF)31は、受信したMPEセクションのセクションヘッダ情報からデルタ・テー(Delta-T)の情報を抽出して外部のDRAM4に格納する。このデルタ・テー(Delta-T)の情報はDVB−Hシステムにおいて次に転送されるバーストの開始時間を示すものであり、バースト又はクラスタと呼ばれる短い時間スロットの期間内に放送データのIPデータグラムが送信機から受信機に転送される。すなわち、現時点での受信バーストの期間と次の受信バーストの期間の間のインターバル期間にフロントエンドモジュール2の電源を遮断することによって、小型携帯端末の電力消費を低減することが可能となる。
《DRAMのバースト転送による内蔵SRAMへのデータ格納》
図示しないダイレクトメモリアクセスコントローラ(DMAC)又は中央処理ユニット(CPU)35を使用して、DRAM4に生成されたIPデータグラムを含んだMPEセクションとIPデータグラムのパリティーデータを含んだMPE−FECセクションのペイロードとからなる第1テーブルのデータと1ビットによって1バイトのIPデータグラムの「消去」の有無を示した消去ビットマップテーブルとしての第2テーブルのデータとが8Kバイトの内蔵SRAM33に転送される。その際に、第2テーブルのデータに関してDRAM4の128ロウ分×255カラムとの分の128×255ビット=32,640ビット(=4,080バイト)の消去ビットのデータがDRAM4の最初の一連のバースト転送によって内蔵SRAM33の2番目の4Kバイトの格納領域に格納され、DRAM4の次の一連のバースト転送によって第1テーブルのデータに関してDRAM4の16ロウ×255カラムとの分の16×255バイト(=4,080バイト)の格納データが内蔵SRAM33の最初の4Kバイトの格納領域に格納される。第1テーブルのデータと第2テーブルのデータはDRAM4では列方向に連続アドレスで格納されているので、DRAMへのアクセスは16バイト毎のバースト転送が可能である。従って、DRAM4の1バイト単位のランダムアクセスに比較して、DRAM4への16バイト毎のバースト転送は格段に効率的となる。また、DRAM4へのバースト転送のデータサイズを16バイトから32バイトに増加することによって、バースト転送を更に効率的とすることが可能となる。ただし、このように32バイト単位のバースト転送を実行するためには、内蔵SRAM33は8Kバイトの2倍の16Kバイト必要となることは、当業者は容易に理解できるものである。
《RSデコーディングのための内蔵SRAMの高速ランダムアクセス》
リード・ソロモン(RS)デコーディングを実行するRSデコーダ32は、内蔵SRAM33の最初の4Kバイトの格納データと内蔵SRAM33の2番目の4Kバイトの格納データとを使用する。すなわち、RSデコーダ32は、内蔵SRAM33の高速ランダムアクセスによる読み出し動作を実行することによって、内蔵SRAM33の最初の4Kバイトの格納領域に格納されたIPデータグラムのMPEセクションと内蔵SRAM33の2番目の4Kバイトの格納領域に格納された消去ビットのMPE−FECセクションを読み出してRSデコーディングを実行する。
《RSデコーディングによるエラー訂正とDRAMの上書き》
RSデコーダ32によるRSデコーディングによりエラー訂正された内蔵SRAM33のアドレスのIPデータグラムは、図示されないダイレクトメモリアクセスコントローラ(DMAC)とDRAMインターフェース(DRAMIF)34を介して、DRAM4の第1テーブルの該当する位置に上書きされる。一方、RSデコーダ32によるRSデコーディングによりエラー訂正されなかった内蔵SRAM33のアドレスのIPデータグラムのDRAM4への上書きが省略されて、半導体集積回路3の消費電力とDRAM4の消費電力とが削減される。
このようにして、DRAM4の次の一連のバースト転送と最初の一連のバースト転送によって内蔵SRAM33の最初の4Kバイトの格納領域と内蔵SRAM33の2番目の4Kバイトの格納領域にそれぞれ格納されたIPデータグラムのMPEセクションと消去ビットのMPE−FECセクションとを使用したRSデコーディングの実行が完了すると、DRAM4の更に次の一連のバースト転送が開始される。DRAM4の更に次の一連のバースト転送によって、第1テーブルのデータに関してDRAM4の次の16ロウと255カラムの分の4,080バイトの格納データが、内蔵SRAM33の最初の4Kバイトの格納領域に格納される。また第2テーブルのデータは最初に128ロウ分転送されているので、第1テーブルのデータを8回転送する毎に1回転送すれば良い。DRAM4のこのバースト転送によって内蔵SRAM33に格納されたデータに関しても、RSデコーダ32は、内蔵SRAM33の高速ランダムアクセスによる読み出し動作を実行することによって、内蔵SRAM33の最初の4Kバイトの格納領域に格納された次のIPデータグラムのMPEセクションと内蔵SRAM33の2番目の4Kバイトの格納領域に格納された次の消去ビットのMPE−FECセクションを読み出してRSデコーディングを実行する。
上記のような動作を図1に示した本発明の実施の形態1によるDVB−Hシステムの受信機のための半導体集積回路3が反復して、DRAM4に生成された第1テーブルのIPデータグラムを含んだ最初のMPEセクションとIPデータグラムのパリティーデータを含んだ最初のMPE−FECセクションとDRAM4に生成された第2テーブルの消去ビットとを使用したRSデコーディングが完了する。
その結果、DRAM4には、エラー訂正されたMPEセクションのIPデータグラムが格納される。IPデータグラムのヘッダ情報がこのIPデータグラムの情報がビデオ情報であることを示した場合には、ダイレクトメモリアクセスコントローラ(DMAC)又は中央処理ユニット(CPU)35を使用してビデオ情報であるIPデータグラムの情報はDRAM4からビデオデコーダ36に転送される。ビデオデコーダ36ではIPデータグラムのビデオデコーディングが実行されて、ビデオデコーダ36から生成されるビデオ信号は表示装置5に供給される。IPデータグラムのヘッダ情報がこのIPデータグラムの情報がオーディオ情報であることを示した場合には、ダイレクトメモリアクセスコントローラ(DMAC)又は中央処理ユニット(CPU)35を使用してオーディオ情報であるIPデータグラムの情報はDRAM4からオーディオデコーダ37に転送される。オーディオデコーダ37ではIPデータグラムのオーディオデコーディングが実行されて、オーディオデコーダ37から生成されるオーディオ信号はスピーカー6に供給される。
≪DVB−Hシステムの受信機の動作≫
図2は、図1に示した本発明の実施の形態1によるDVB−Hシステムの受信機の動作を説明するための図である。
図2には、図1に示した本発明の実施の形態1によるDVB−Hシステムの受信機のフロントエンドモジュール2の出力から供給されるTSパケットTS−Packetが示され、更にTSパケットTS−Packetからトランスポートストリームインターフェース(TSIF)31によって抽出されるセクションSectionが示されている。
図2に示すようにセクションSectionは、IPデータグラムIP Datagramを含んだMPEセクションとIPデータグラムのパリティーデータRS Parityを含んだMPE−FECセクションを含み、各セクションは先頭のセクションヘッダ情報SecHと最終のCRCバイトCRC32とを含んでいる。
図2には、図1に示した本発明の実施の形態1によるDVB−Hシステムの受信機のDRAM4の内部に生成される第1テーブルTable 1と第2テーブルTable 2とが示されている。
DRAM4の第1テーブルTable 1は255カラムと最大で1024ロウのエントリーのマトリックスによって構成され、各エントリーは1バイトである。すなわち、第1テーブルTable 1はMPE−FECフレームの1024ロウと255カラムとの分の1024×255バイト=261,129バイトの全てデータを格納するために、2Mビットの記憶容量に設定されている。DRAM4の第1テーブルTable 1の左側の191個のカラムにMPEセクションに含まれたIPデータグラムが列方向に格納され、DRAM4の第1テーブルTable 1の右側の64個のカラムにMPE−FECセクションに含まれたIPデータグラムのパリティーデータが列方向に格納される。
DRAM4の第1テーブルTable 1は255カラムと最大で1024ロウのエントリーのマトリックスによって構成され、各エントリーは1バイトである。すなわち、第1テーブルTable 1はMPE−FECフレームの1024ロウと255カラムとの分の1024×255バイト=261,129バイトの全てデータを格納するために、2Mビットの記憶容量に設定されている。DRAM4の第1テーブルTable 1の左側の191個のカラムにMPEセクションに含まれたIPデータグラムが列方向に順番に格納され、DRAM4の第1テーブルTable 1の右側の64個のカラムにMPE−FECセクションに含まれたIPデータグラムのパリティーデータが列方向に順番に格納される。
DRAM4の第2テーブルTable 2は255カラムと最大で1024ロウのエントリーのマトリックスによって構成されて、各エントリーは1ビットであり、列方向に順番に格納される。すなわち、第2テーブルTable 2はDRAM4の第1テーブルTable 1のマトリックスの各1バイトのエントリーの「消去」の有無を1ビットで示す消去ビットマップテーブルを格納するために、1024×255ビット=256Kビットの記憶容量に設定されている。
≪RSデコーダと内蔵SRAM≫
図3は、図1に示した本発明の実施の形態1による受信機のための半導体集積回路3に含まれるRSデコーダ32と内蔵SRAM33の構成を示す図である。
図3に示すように、RSデコーダ32は、モジュールコントロールユニット320と、ダイレクトメモリアクセスコントローラ(DMAC)321と、シンドローム生成部322と、シンドロームバッファ323と、誤り位置・訂正値計算部324と、エラー訂正部325と、SRAMインターフェース部326とによって構成されている。
RSデコーダ32のモジュールコントロールユニット320は、RSデコーダ32を構成するダイレクトメモリアクセスコントローラ(DMAC)321とシンドローム生成部322とシンドロームバッファ323と誤り位置・訂正値計算部324とエラー訂正部325とSRAMインターフェース部326との各動作を制御する。
RSデコーダ32のダイレクトメモリアクセスコントローラ(DMAC)321はバス38とDRAMインターフェース(DRAMIF)34とを介してDRAM4内部に生成された第1テーブルTable 1と第2テーブルTable 2をアクセスして、RSデコーダ32のシンドローム生成部322はSRAMインターフェース部326を介して内蔵SRAM33をアクセスする。それにより、内蔵SRAM33の最初の4Kバイトの格納領域331にDRAM4の第1テーブルTable 1の16ロウ×255カラムと分の16×255バイト(=4Kバイト)の格納データが格納され、内蔵SRAM33の2番目の4Kバイトの格納領域(Erasure Bitmap Table Buffer)332にDRAM4の第2テーブルTable 2のDRAM4の128ロウ分×255カラムとの分の128×255ビット=32,640ビット(=4Kバイト)の消去ビットが格納される。
また内蔵SRAM33の最初の4Kバイトの格納領域331は、DRAM4の第1テーブルTable 1の左側の191個のカラムに格納されたMPEセクションに含まれたIPデータグラムを格納する第1バッファ領域(IP Data Table Buffer)3311と、DRAM4の第1テーブルTable 1の右側の64個のカラムに格納されたMPE−FECセクションに含まれたIPデータグラムのパリティーデータを格納する第2バッファ領域(Parity Table Buffer)3312とを含んでいる。
シンドローム生成部322は、SRAMインターフェース部326を介して内蔵SRAM33をアクセスする。それによって、内蔵SRAM33の最初の4Kバイトの格納領域331の第1バッファ領域3311と第2バッファ領域3312にそれぞれ格納されたMPEセクションのIPデータグラムとMPE−FECセクションのパリティーデータと内蔵SRAM33の2番目の4Kバイトの格納領域332中に格納された消去ビットが、シンドローム生成部322に供給される。従って、シンドローム生成部322はDRAM4の第1テーブルTable 1の第1番目のロウから第16番目のロウまで1個のロウずつ、255バイトの格納データに関してシンドロームを形成して、形成されたシンドロームはシンドロームバッファ323中に格納される。
誤り位置・訂正値計算部324はシンドロームバッファ323に格納されたシンドロームを読み出して、このシンドロームから誤り位置多項式とエラー評価多項式とを使用して誤り位置・訂正値を計算してエラー訂正部325に供給する。エラー訂正部325は誤り位置・訂正値計算部324から供給される誤り位置・訂正値に応答して、内蔵SRAM33においてエラー検出されたIPデータグラムのエラー訂正を実行する。このようにエラー訂正が実行された内蔵SRAM33のアドレスのIPデータグラムは、ダイレクトメモリアクセスコントローラ(DMAC)321とDRAMインターフェース(DRAMIF)34を介して、DRAM4の第1テーブルTable 1の該当する位置に上書きされる。
≪DRAMの格納データの内蔵SRAMへの格納≫
図4は、図2に示したDRAM4の内部に生成される第1テーブルTable 1の格納データと第2テーブルTable 2の格納データとが内蔵SRAM33に格納される様子を示す図である。
図4に示したように、DRAM4の第1テーブルTable 1の16ロウと255カラムと分の16×255バイト(=4Kバイト)の格納データが内蔵SRAM33の最初の4Kバイトの格納領域331に格納されて、DRAM4の第2テーブルTable 2の128ロウ分と255カラムとの分の128×255ビット=32,640ビット(=4Kバイト)の消去ビットが内蔵SRAM33の2番目の4Kバイトの格納領域332に格納される。
例えば、DRAM4の1回のバースト転送のデータサイズが16バイトとすれば、DRAM4の255回のバースト転送によってDRAM4の第1テーブルTable 1の16ロウ×255カラム分の16×255バイト(=4Kバイト)の格納データが内蔵SRAM33の最初の4Kバイトの格納領域331に格納されることが可能であり、DRAM4の255回のバースト転送によってDRAM4の第2テーブルTable 2の128ロウ分と255カラムの分の128×255ビット=32,640ビット(=4Kバイト)の消去ビットが内蔵SRAM33の2番目の4Kバイトの格納領域332に格納されることが可能である。
また内蔵SRAM33を16Kバイトとした場合には、バースト転送のデータサイズを32バイトにすることができ、DRAM4の255回のバースト転送によってDRAM4の第1テーブルTable1の32ロウ×255カラム分の32×255バイト(=8Kバイト)の格納データが内蔵SRAM33の最初の8Kバイトの格納領域331に格納されることが可能であり、DRAM4の255回のバースト転送によってDRAM4の第2テーブルTable2の256ロウ分×255カラム分の256×255ビット=65,280ビット(=8Kバイト)の消去ビットが内蔵SRAM33の2番目の8Kバイトの格納領域332に格納されることが可能である。
≪RSデコーディング≫
図5は、図2に示したDRAM4の内部に生成される第1テーブルTable 1の格納データと第2テーブルTable 2の格納データが内蔵SRAM33に転送され、内蔵SRAM33の格納データがRSデコーダ32によってRSデコーディングが実行される様子を示す図である。
図5に示すように、RSデコーダ32によるRSデコーディングが開始されると、ステップ50ではRSデコーダ32のモジュールコントロールユニット320はダイレクトメモリアクセスコントローラ321を起動する。従って、ダイレクトメモリアクセスコントローラ321は、図4に示したように、DRAM4の第2テーブルTable 2のDRAM4の128ロウ分と255カラムとの分の128×255ビット=32,640ビット(=4Kバイト)の消去ビットマップを内蔵SRAM33の2番目の4Kバイトの格納領域332に転送する。
ステップ51では、RSデコーダ32のモジュールコントロールユニット320は更にダイレクトメモリアクセスコントローラ321を起動する。従って、ダイレクトメモリアクセスコントローラ321は、図4に示したようにDRAM4の第1テーブルTable 1の16ロウと255カラムとの分の16×255バイト(=4Kバイト)の格納データを内蔵SRAM33の最初の4Kバイトの格納領域331に転送する。
ステップ52では、RSデコーダ32のシンドローム生成部322は、SRAMインターフェース部326を介して内蔵SRAM33をアクセスすることによって、DRAM4の第1テーブルTable 1の第1番目のロウから第16番目のロウまでの1つのロウ分の255バイトの格納データに関してシンドロームを形成して、形成されたシンドロームをシンドロームバッファ323中に格納する。
ステップ53では、RSデコーダ32の誤り位置・訂正値計算部324はシンドロームバッファ323に格納されたシンドロームを読み出して、このシンドロームから誤り位置多項式とエラー評価多項式とを使用して誤り位置・訂正値を計算する。
ステップ54では、RSデコーダ32のエラー訂正部325は、誤り位置・訂正値計算部324によって計算された誤り位置・訂正値を使用して、内蔵SRAM33においてエラー検出されたIPデータグラムのエラー訂正を実行する。
ステップ55では、DRAM4の第1テーブルTable 1の第1番目から第16番目のロウまでの16個分のロウの格納データのエラー訂正処理が完了したか否かがモジュールコントロールユニット320によって判定される。判定結果がNoの場合にはステップ52で更にもう1個のロウの255バイトの格納データに関してシンドロームが形成され、判定結果がYesの場合にはステップ56に移行される。
ステップ56では、RSデコーダ32のモジュールコントロールユニット320は更にダイレクトメモリアクセスコントローラ321を起動する。その結果、ダイレクトメモリアクセスコントローラ321は内蔵SRAM33に格納された16個分のロウの格納データに関して、エラー訂正されたアドレスのIPデータグラムをDRAM4の第1テーブルの該当する位置に上書きする。
ステップ56の後のステップ57では、DRAM4の第1テーブルTable 1の第1番目から第1024番目のロウまでの格納データのエラー訂正処理が完了したか否かがモジュールコントロールユニット320によって判定される。判定結果がYesの場合にはRSデコーダ32によるRSデコーディングの処理は終了して、判定結果がNoの場合にはステップ58に移行される。
ステップ58では、内蔵SRAM33の2番目の4Kバイトの格納領域332に格納されたDRAM4の第2テーブルTable 2のDRAM4の128ロウ分の消去ビットを使用したエラー訂正処理が完了したか否かがモジュールコントロールユニット320によって判定される。ステップ58の判定結果がNoの場合にはステップ51に戻り、DRAM4の第1テーブルTable 1のその次の分の16ロウと255カラムとの16×255バイト(=4Kバイト)の格納データが内蔵SRAM33の最初の4Kバイトの格納領域331に転送される。一方、ステップ58の判定結果がYesの場合にはステップ50に戻り、DRAM4の第2テーブルTable 2のDRAM4のその次の分の128ロウと255カラムの128×255ビット=32,640ビット(=4Kバイト)の消去ビットマップが内蔵SRAM33の2番目の4Kバイトの格納領域332に転送される。
[実施の形態2]
図6は、本発明の実施の形態2によるDVB−Hシステムの受信機のための半導体集積回路3に含まれる内蔵SRAM33の構成を示す図である。
図6に示す本発明の実施の形態2による内蔵SRAM33が図3の本発明の実施の形態1による内蔵SRAM33と相違するのは、下記の点である。
すなわち、図6に示す本発明の実施の形態2による内蔵SRAM33は、図3の本発明の実施の形態1による内蔵SRAM33が含んでいる内蔵SRAM33の最初の4Kバイトの格納領域331と2番目の4Kバイトの格納領域332を含むとともに、図3の内蔵SRAM33が含んでいなかった3番目の4Kバイトの格納領域333と4番目の4Kバイトの格納領域334とを含んでいる。
図6の3番目の4Kバイトの格納領域333は、DRAM4の第1テーブルTable 1の左側の191個のカラムに格納されたMPEセクションに含まれたIPデータグラムを格納する第3バッファ領域3331とDRAM4の第1テーブルTable 1の右側の64個のカラムに格納されたMPE−FECセクションに含まれたIPデータグラムのパリティーデータを格納する第4バッファ領域3332とを含んでいる。内蔵SRAM33の4番目の4Kバイトの格納領域334には、DRAM4の第2テーブルTable 2のDRAM4の128ロウ分と255カラムとの分の128×255ビット=32,640ビット(=4Kバイト)の消去ビットが格納される。
従って、DRAM4の1回のバースト転送のデータサイズが16バイトとすれば、DRAM4の255回のバースト転送によってDRAM4の第1テーブルTable 1の16ロウと255カラムと分の16×255バイト(4Kバイト)の格納データが内蔵SRAM33の3番目の4Kバイトの格納領域333に格納されることが可能であり、DRAM4の255回のバースト転送によってDRAM4の第2テーブルTable 2の128ロウ分と255カラムの分の128×255ビット=32,640ビット(=4Kバイト)の消去ビットが内蔵SRAM33の4番目の4Kバイトの格納領域334に格納されることが可能である。
このように図6に示した本発明の実施の形態2による内蔵SRAM33は、最初の4Kバイトの格納領域331と2番目の4Kバイトの格納領域332とからなる第1バッファと、3番目の4Kバイトの格納領域333と4番目の4Kバイトの格納領域334とからなる第2バッファとを含んでいる。
すなわち、図6の内蔵SRAM33がダブルバッファによって構成されているので、内蔵SRAM33の第1バッファと第2バッファの一方でRSデコーディング処理を実行している間に内蔵SRAM33の第1バッファと第2バッファの他方でリード処理もしくはライト処理を実行することが可能である。
従って、図6に示した本発明の実施の形態2によるDVB−Hシステムの受信機のための半導体集積回路3に含まれる内蔵SRAM33を使用することによって、RSデコーダ32によるRSデコーディングでのエラー訂正処理に動作マージンができ、内蔵SRAM33のリード処理とライト処理とにも動作マージンができると言う利点が得られるものである。また、動作マージンの分RSデコーダ32の回路規模を削減して、RSデコーディング処理速度を低減することも可能となる。
図7は、DVB−Hシステムの受信機のために図6に示す本発明の実施の形態2による内蔵SRAM33を含んだ半導体集積回路3の動作を説明する図である。
上述したように、中央処理ユニット(CPU)35またはトランスポートストリームインターフェース(TSIF)31が、受信したMPEセクションのセクションヘッダ情報からデルタ・テー(Delta-T)の情報を抽出して外部のDRAM4に格納する。デルタ・テー(Delta-T)の情報はDVB−Hシステムにおいて次に転送されるバーストの開始時間を示すものであり、バーストと呼ばれる短い時間スロットの期間に放送データのIPデータグラムが送信機から受信機に転送される。また現時点での受信バーストの期間と次の受信バーストの期間の間のインターバル期間に他の放送プログラムの受信が可能である一方、このインターバル期間に中央処理ユニット(CPU)35はフロントエンドモジュール2の電源を遮断することによって、小型携帯端末の電力消費を低減することが可能となる。
一方、このデルタ・テー(Delta-T)よりも短い所定の時間T2で、図5のステップ51におけるDRAM4の第1テーブルTable 1の16ロウと255カラムとの分の4Kバイトの格納データの内蔵SRAM33の最初の4Kバイトの格納領域331への転送処理(リード処理)と、図5のステップ54におけるIPデータグラムのエラー訂正処理と、図5のステップ56におけるエラー訂正後のIPデータグラムの内蔵SRAM33からDRAM4への上書き処理(ライト処理)を完了する必要がある。
図3の内蔵SRAM33がシングルバッファにより構成されているので、内蔵SRAM33のリード処理とエラー訂正処理とライト処理は所定の時間T2でシーケンシャルに実行される必要がある。それに対して、図6の内蔵SRAM33がダブルバッファによって構成されているので、所定の時間T2で、内蔵SRAM33のリード処理もしくはライト処理とエラー訂正処理とは並列に実行することが可能となる。
このように、図6に示した本発明の実施の形態2によるDVB−Hシステムの受信機のための半導体集積回路3に含まれるダブルバッファによって構成された内蔵SRAM33を使用することによって、RSデコーダ32によるRSデコーディングでのエラー訂正処理に動作マージンができ、内蔵SRAM33のリード処理とライト処理とにも動作マージンができるものである。
[実施の形態3]
図8は、本発明の実施の形態3によるDVB−Hシステムの受信機のための半導体集積回路3に含まれるダイレクトメモリアクセスコントローラ(DMAC)321のリクエスト間隔制御部3211の構成を示す図である。
図8に示す本発明の実施の形態3によるリクエスト間隔制御部3211は、カウンタ32111とリクエストしきい値レジスタ32112と加算器32113とリクエスト間隔レジスタ32114と比較器32115とAND回路32116とによって構成されている。
カウンタ32111とリクエストしきい値レジスタ32112にはDRAM4の第1テーブルTable 1の1024ロウの分の処理終了を示す処理終了信号が供給されて、リクエストしきい値レジスタ32112にはダイレクトメモリアクセスコントローラ(DMAC)321による1回のバースト転送のデータ転送終了を示す転送終了信号が供給される。
加算器32113の一方の入力端子と他方の入力端子とはそれぞれリクエスト間隔レジスタ32114の出力端子とリクエストしきい値レジスタ32112の出力端子に接続され、加算器32113の出力端子はリクエストしきい値レジスタ32112の更新入力端子に接続されている。1回のバースト転送が終了する毎に、リクエストしきい値レジスタ32112の値にリクエスト間隔レジスタ32114の値を加算して、リクエストしきい値レジスタ32112の値を更新するように制御される。カウンタ32111の出力端子とリクエストしきい値レジスタ32112の出力端子とは、それぞれ比較器32115の一方の入力端子と他方の入力端子とに接続されている。比較器32115は、カウンタ32111の値とリクエストしきい値レジスタ32112を比較して、カウンタ32111の値の方が大きければ‘1’を出力して、そうでない場合には‘0’を出力する。AND回路32116の一方の入力端子に比較器32115の出力端子に接続され、AND回路32116の他方の入力端子にはDRAM4をアクセスするためのダイレクトメモリアクセスコントローラ(DMAC)321の内部リクエスト信号が供給される。このようにリクエスト間隔制御部3211を構成することによって、カウンタ32111の値がリクエストしきい値レジスタ32112の値よりも小さい時には、比較器32115は‘0’を出力してAND回路32116の一方の入力が‘0’となるため、ダイレクトメモリアクセスコントローラ(DMAC)321の内部リクエスト信号がマスクされ、DRAM4への実際の転送要求が発生しない。それにより、DRAM4に対するリクエストが連続して発行されることを抑止することが可能となる。従って、バースト伝送されるMPEセクションもしくはMPE−FECセクションの受信直後にDRAM4へのアクセス集中を抑止することができ、他のビデオデコーダ36やオーディオデコーダ37の動作への影響を最小限にして、DVB−Hシステムの受信機のシステムの破綻を引きこす可能性を小さくすることが可能となる。
中央処理ユニット(CPU)35またはトランスポートストリームインターフェース(TSIF)31は、受信したMPEセクションのセクションヘッダ情報からデルタ・テー(Delta-T)の情報に基づいてDRAM4をアクセスするリクエストの間隔を計算して計算されたリクエストの間隔情報を、リクエスト間隔レジスタ32114に格納する。リクエスト間隔レジスタ32114に格納される間隔情報は、バーストアクセスの間隔であり例えば次のように決定することができる。
内蔵SRAM33が図6に示すようにダブルバッファで構成される場合には、DRAM4へのリード処理とライト処理とで1024ロウ分の処理に使用できる時間Ttransは、図7から明らかなように下記のようになる。
Ttrans = (Delta T) - (Burst Time)
また、1024ロウ分を処理するのに必要なリード処理のバースト転送回数Nreadは、下記のようになる。
Nread=255(16ロウのリード)×(1024/16)
+255(128ロウのビットマップのリード)×(1024/128)
=255×64+255×8
=18360(回)
一方、1ロウ当たり最大で64バイトの訂正が可能であるので、1バイト単位でDRAM4に上書きする場合は、ライト処理のバースト転送回数NwriteBは、下記のようになる。
NwriteB=64×1024=65536(回)
しかし、DRAM4へのアクセスは1バイト単位の転送は効率が悪いので、16バイト単位でのバースト転送とすると、ライト処理のバースト転送回数Nwriteは、下記のようになる。
Nwrite=(1024/16)×191
=64×191=12224(回)
これは、エラー訂正後の1024×191バイトのMPEセッションのIPデータグラムをDRAM4に上書きをする動作である。
従って、リクエスト間隔レジスタ344に格納される間隔情報は、次のようになる。
間隔情報=((Delta T)−(Burst Time))/(Nread+Nwrite)
=((Delta T)−(Burst Time))/30584
このようにこの間隔情報の値より小さい値をリクエスト間隔レジスタ32114に格納することによって、DRAM4へのアクセス集中を抑止することが可能となる。
[実施の形態4]
《RSデコーダの構成》
図9は、DVB−Hシステムの受信機のための本発明の実施の形態4による半導体集積回路3のRSデコーダ32の構成を示す図である。
図9に示した本発明の実施の形態4による半導体集積回路3のRSデコーダ32が図3に示した本発明の実施の形態4による半導体集積回路3のRSデコーダ32と相違するのは、下記の点である。
図9に示すように、RSデコーダ32は、16個のシンドロームバッファ323_01〜323_16と、内蔵SRAM327によって構成されている。
更に図3に示した本発明の実施の形態1による半導体集積回路3では内蔵SRAM33のメモリ・サイズが8Kバイトであったのに対して、図9に示した本発明の実施の形態4による半導体集積回路3では内蔵SRAM327は18バイトと大幅に小さなメモリ・サイズとされている。18バイトのうちの16バイトの格納領域にDRAM4の第1テーブルTable 1の16ロウ×1カラム分の16バイトの格納データが格納されて、18バイトのうちの2バイトの格納領域にはDRAM4の第2テーブルTable 2の16ロウ×1カラムとの分の16ビット(=2バイト)の消去ビットが格納される。
例えば、DRAM4の1回のバースト転送のデータサイズが16バイトとすれば、DRAM4の1回目のバースト転送によってDRAM4の第1テーブルTable 1の16ロウ×1カラム分の16バイトの格納データを内蔵SRAM327に格納可能でありDRAM4の2回目のバースト転送によってDRAM4の第2テーブルTable 2の16ロウ×1カラム分の16ビット(=2バイト)の消去ビットを内蔵SRAM327に格納可能である。
シンドローム生成部322が内蔵SRAM327の16バイトの格納領域をアクセスすることによって、この16バイトの格納領域に格納されたMPEセクションのIPデータグラムもしくはMPE−FECセクションのパリティーデータがシンドローム生成部322に供給される。シンドローム生成部322が内蔵SRAM327の2バイトの格納領域をアクセスすることによって、この2バイトの格納領域332中に格納された消去ビットがシンドローム生成部322に供給される。
従って、シンドローム生成部322は第1番目のカラムと第1番目の1ロウの1バイトのIPデータグラムもしくはMPE−FECセクションのパリティーデータと第1番目の1ビットの消去ビットに関して第1番目のカラムと第1番目のロウのシンドローム(中間値)を形成して、形成されたシンドロームの中間値は第1シンドロームバッファ323_01に格納される。
次に、シンドローム生成部322は第1番目のカラムと第2番目の1ロウ分の1バイトのIPデータグラムもしくはMPE−FECセクションのパリティーデータと第2番目の1ビットの消去ビットに関して第1番目のカラムと第2番目のロウのシンドローム(中間値)を形成して、形成されたシンドロームの中間値は第2シンドロームバッファ323_02に格納される。
以下同様にして、シンドローム生成部322は第1番目のカラムと第16番目の1ロウ分の1バイトのIPデータグラムもしくはMPE−FECセクションのパリティーデータと第16番目の1ビットの消去ビットに関して第1番目のカラムと第16番目のロウのシンドローム(中間値)を形成して、形成されたシンドロームの中間値は第16シンドロームバッファ323_01に格納される。
次に、DRAM4からバースト転送によりDRAM4の第1テーブルTable 1の第2番目のカラムの16ロウ分の16バイトの格納データを内蔵SRAM327に格納して、更にDRAM4からのバースト転送によりDRAM4の第2テーブルTable 2の第2番目のカラムの16ロウ分の16ビット(=2バイト)の消去ビットを内蔵SRAM327に格納する。
更に、シンドローム生成部322は第2番目のカラムと第1番目の1ロウ分の第2番目の1バイトのIPデータグラムもしくはMPE−FECセクションのパリティーデータと第1番目の1ビットの消去ビットと既に第1シンドロームバッファ323_01格納された値とを使用して第1番目のロウのシンドローム(中間値)を更新して、第1シンドロームバッファ323_01に格納する。
次に、シンドローム生成部322は第2番目のカラムと第2番目の1ロウ分の第2番目の1バイトのIPデータグラムもしくはMPE−FECセクションのパリティーデータと第2番目の1ビットの消去ビットと既に第2シンドロームバッファ323_02格納された値とを使用して第2番目のロウのシンドローム(中間値)を更新して、第2シンドロームバッファ323_02に格納される。
以下、同様にして、シンドローム生成部322は第2番目のカラムと第16番目の1ロウ分の第2番目の1バイトのIPデータグラムもしくはMPE−FECセクションのパリティーデータと第16番目の1ビットの消去ビットと既に第16シンドロームバッファ323_16格納された値とを使用して第16番目のロウのシンドローム(中間値)を更新して、第16シンドロームバッファ323_16に格納される。
以下同様にして、シンドローム生成部322は255カラム分のIPデータグラムとMPE−FECセクションのデータを処理を実行して、16ロウ分のシンドロームを生成して16個のシンドロームバッファ323_01〜323_16に格納する。
誤り位置・訂正値計算部324は16個のシンドロームバッファ323_01〜323_16に格納されたシンドロームを読み出して、このシンドロームから誤り位置多項式とエラー評価多項式とを使用して誤り位置・訂正値を計算してエラー訂正部325に供給する。エラー訂正部325は誤り位置・訂正値計算部324から供給される誤り位置・訂正値に応答して、誤り位置より誤りデータが格納されたDRAM4のアドレスを計算してモジュールコントロール320に通知する。従って、モジュールコントロール320はダイレクトメモリアクセスコントローラ(DMAC)321を起動するので、DRAM4から誤りデータが含まれたデータを内蔵SRAM327に読み出され、誤り訂正値が内蔵SRAM327に上書きされる。次に再びダイレクトメモリアクセスコントローラ(DMAC)321をモジュールコントロール320が起動するので、DRAMインターフェース(DRAMIF)34を介してDRAM4の第1テーブルTable 1の該当する位置に誤り訂正値が上書きされる。このDRAM4の第1テーブルTable 1での上書き処理は、エラーの個数分反復される。また、その際にはDRAM4に対してバースト転送を実行して、バースト転送されるデータに含まれる複数のエラー訂正データを選択してDRAM4に上書きすることも可能である。
《RSデコーダの動作》
図10は、図9に示した下DVB−Hシステムの受信機のための本発明の実施の形態4による半導体集積回路3のRSデコーダ32の動作を示す図である。
図10に示すように、RSデコーダ32によるRSデコーディングが開始されると、ステップ100〜102では初期条件としてそれぞれ、i=0、j=0、k=0が設定される。
ここで、iはRSデコーダ32によってアクセスされるDRAM4の第1テーブルTable 1のロウと第2テーブルTable 2のロウを示しており(i=0〜1023)、jはRSデコーダ32によってアクセスされるDRAM4の第1テーブルTable 1のカラムと第2テーブルTable 2のカラムを示しており(j=0〜254)、kはDRAM4の第1テーブルTable 1と第2テーブルTable 2とで16ロウを1つの単位で処理する場合での単位内部のロウの位置を示している(k=0〜15)。
ステップ103では、RSデコーダ32のモジュールコントロールユニット320は、ダイレクトメモリアクセスコントローラ321を起動する。従って、ダイレクトメモリアクセスコントローラ321は、DRAM4の第1テーブルTable 1の16バイトの格納データと第2テーブルTable 2の2バイトの消去ビットとを内蔵SRAM327に転送する。
ステップ104では、RSデコーダ32のシンドローム生成部322は、内蔵SRAM327をアクセスする。それによって、内蔵SRAM327の格納データと消去ビットに関してシンドローム(中間値)が形成され、シンドロームはシンドロームバッファ323_01〜323_16に格納される。
ステップ105では、i=i+1とk=k+1とのパラメータ更新が実行される。
ステップ106では、k=15か否かが判定される。ステップ106での判定結果がNoの場合にはステップ104に処理は戻され、ステップ106での判定結果がYesの場合にはステップ107に処理が移行する。ステップ106での判定結果がYesの場合には、ステップ103でリードした16バイト分の格納データのシンドロームの処理が終了したことを意味する。
ステップ107では、j=j+1のパラメータ更新が実行される。
ステップ108では、jが254か否かが判断される。ステップ108での判定結果がNoの場合にはステップ102に処理は戻されて、ステップ108での判定結果がYesの場合にはステップ109に処理が移行する。Yesの場合は、16ロウ分のシンドロームの生成が終了したことを意味する。
ステップ109では、i=0、k=0として、iの値とkの値とをクリアする。
ステップ110では、RSデコーダ32の誤り位置・訂正値計算部324はシンドロームバッファ323_01〜323_16に格納されたiロウ目のシンドロームを読み出して、このシンドロームから誤り位置多項式とエラー評価多項式とを使用して誤り位置・訂正値を計算する。
ステップ111では、エラー訂正部325は誤り位置・訂正値計算部324から供給される誤り位置・訂正値に応答して、誤り位置より誤りデータが格納されたDRAM4のアドレスを計算してモジュールコントロール320に通知する。従って、モジュールコントロール320はダイレクトメモリアクセスコントローラ(DMAC)321を起動して、DRAM4から誤りデータが含まれたデータを内蔵SRAM327に読み出して、誤り訂正値を内蔵SRAM327に上書きする。モジュールコントロール320は再びダイレクトメモリアクセスコントローラ(DMAC)321を起動して、DRAMインターフェース(DRAMIF)34を介して、誤り訂正値をDRAM4の第1テーブルTable 1の該当する位置に上書きする。
ステップ112では、i=i+1、k=k+1のパラメータ更新が実行される。
ステップ113では、k=15か否かが判断される。ステップ113での判定結果がNoの場合にはステップ109に処理は戻され、ステップ113での判定結果がYesの場合にはステップ114に処理が移行する。ステップ113での判定結果がYesの場合には、16ロウ分の誤り訂正処理が終了したことを意味する。
ステップ114では、i=1023か否かが判定される。ステップ114での判定結果がNoの場合にはステップ101に処理は戻されて、ステップ114での判定結果がYesの場合には処理は終了される。
以上、本発明者によってなされた発明を種々の実施の形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
例えば、バックエンドSoCとして構成された半導体集積回路3の半導体チップと、DRAM4の半導体チップとは、SIP(System in Package)またはMCM(Multi Chip Module)と呼ばれる混成集積回路の1個の樹脂封止パッケージに形成されることが可能である。
1…受信アンテナ
2…フロントエンドモジュール
3…半導体集積回路
4…DRAM
5…表示装置
6…スピーカー
31…トランスポートストリームインターフェース(TSIF)
32…RSデコーダ
33…内蔵SRAM
34…DRAMインターフェース(DRAMIF)
35…中央処理ユニット(CPU)
36…ビデオデコーダ
37…オーディオデコーダ
38…バス
320…モジュールコントロールユニット
321…ダイレクトメモリアクセスコントローラ(DMAC)
3211…リクエスト間隔制御部3211
322…シンドローム生成部
323…シンドロームバッファ
324…誤り位置・訂正値計算部
325…エラー訂正部
326…SRAMインターフェース部

Claims (20)

  1. トランスポートストリームインターフェースと、RSデコーダと、内蔵SRAMと、DRAMインターフェースと、中央処理ユニットとを具備する半導体集積回路であって、
    前記トランスポートストリームインターフェースはDVB−HシステムのMPE−FECフレームを含んだTSパケットを受信することによって、前記TSパケットのセクションヘッダ情報からIPデータグラムを含んだMPEセクションと前記IPデータグラムのパリティーデータを含んだMPE−FECセクションとを抽出可能とされ、
    前記DRAMインターフェースには、DRAMが接続可能とされ、
    前記中央処理ユニットまたは前記トランスポートストリームインターフェースは、前記IPデータグラムを含んだ前記MPEセクションと前記IPデータグラムの前記パリティーデータを含んだ前記MPE−FECセクションとからなる第1テーブルを前記DRAMに生成可能とされ、
    前記トランスポートストリームインターフェースは前記IPデータグラムの巡回冗長チェックを検査することによって前記IPデータグラムのエラーの有無をチェックして、エラーが存在する場合には1バイトの前記IPデータグラムを1ビットの消去ビットにより「消去」としてマーク可能とされ、
    前記中央処理ユニットまたは前記トランスポートストリームインターフェースは、1ビットによって前記1バイトの前記IPデータグラムの「消去」の有無を示す消去ビットマップテーブルとしての第2テーブルを前記DRAMに生成可能とされ、
    前記内蔵SRAMには、前記DRAMのバースト転送によって、前記DRAMの前記第1テーブルの前記MPEセクションと前記MPE−FECセクションとの一部の格納データと、前記DRAMの前記第2テーブルの前記消去ビットマップテーブルの一部の格納データとが転送され格納可能とされ、
    前記RSデコーダが前記内蔵SRAMをアクセスすることによって、前記内蔵SRAMに格納された前記DRAMの前記第1テーブルの前記一部の格納データと前記DRAMの前記第2テーブルの前記一部の格納データとを使用して前記RSデコーダがリード・ソロモン・デコーディングを実行可能とされた
    ことを特徴とする半導体集積回路。
  2. 請求項1において、
    前記内蔵SRAMは、前記DRAMの前記第1テーブルの前記一部の格納データと前記DRAMの前記第2テーブルの前記一部の格納データとをそれぞれ格納可能な第1格納領域と第2格納領域とを有して、
    前記内蔵SRAMの前記第1格納領域と前記第2格納領域との各メモリ・サイズは、前記DRAMの一回の前記バースト転送によって転送されるデータサイズに基づいて決定されたものである
    ことを特徴とする半導体集積回路。
  3. 請求項2において、
    前記内蔵SRAMの前記第1格納領域と前記第2格納領域との前記各メモリ・サイズは、16バイトまたは32バイトの整数倍に決定されたものである
    ことを特徴とする半導体集積回路。
  4. 請求項3において、
    前記RSデコーダが前記リード・ソロモン・デコーディングを実行することによって、前記内蔵SRAMの前記第1格納領域に格納された前記第1テーブルの前記一部の格納データのエラー訂正が実行可能とされ、
    前記内蔵SRAMの前記第1格納領域に格納された前記第1テーブルの前記一部の格納データのIPデータグラムのうち前記エラー訂正の実行によってエラー訂正されたIPデータグラムが、前記DRAMインターフェースを介して、前記DRAMの前記第1テーブルの該当するアドレスに上書き可能とされる
    ことを特徴とする半導体集積回路。
  5. 請求項4において、
    前記RSデコーダは、前記DRAMインターフェースを介して前記DRAMをアクセス可能なダイレクトメモリアクセスコントローラを含み、
    前記ダイレクトメモリアクセスコントローラが前記DRAMをアクセスすることによって、前記ダイレクトメモリアクセスコントローラが前記DRAMの前記第1テーブルの前記一部の格納データと前記DRAMの前記第2テーブルの前記一部の格納データとをそれぞれ前記内蔵SRAMの前記第1格納領域と前記第2格納領域とに転送して格納可能とされる
    ことを特徴とする半導体集積回路。
  6. 請求項5において、
    前記ダイレクトメモリアクセスコントローラは、前記DRAMインターフェースを介して、前記内蔵SRAMの前記第1格納領域に格納された前記エラー訂正されたIPデータグラムを前記DRAMの前記第1テーブルの該当するアドレスに上書き可能とされた
    ことを特徴とする半導体集積回路。
  7. 請求項6において、
    前記内蔵SRAMは、前記DRAMの前記第1テーブルの前記一部の格納データと前記DRAMの前記第2テーブルの前記一部の格納データとをそれぞれ格納可能な第3格納領域と第4格納領域とを更に有して、
    前記内蔵SRAMの前記第3格納領域と前記第4格納領域との各メモリ・サイズは、前記DRAMの一回の前記バースト転送によって転送されるデータサイズに基づいて決定されたものであり、
    前記内蔵SRAMは、前記第1格納領域と前記第2格納領域とからなる第1バッファと前記第3格納領域と前記第4格納領域とからなる第2バッファとのダブルバッファによって構成され、
    前記ダブルバッファによって構成された前記内蔵SRAMの前記第1バッファと前記第2バッファの一方で前記RSデコーダによる前記リード・ソロモン・デコーディングが実行される間に、前記内蔵SRAMの前記第1バッファと前記第2バッファの他方でリード処理またはライト処理が実行可能とされた
    ことを特徴とする半導体集積回路。
  8. 請求項6において、
    前記中央処理ユニットまたは前記トランスポートストリームインターフェースは受信した前記MPEセクションのセクションヘッダ情報からデルタ・テーの情報を抽出して、前記デルタ・テーの情報を前記DRAMに格納可能とされ、
    前記デルタ・テーの情報は、前記DVB−Hシステムにおいて次に転送されるバーストの開始時間を示すものであり、
    前記DRAMに格納された前記デルタ・テーの情報に応答して、前記中央処理ユニットは前記トランスポートストリームインターフェースの入力に出力が接続されたフロントエンドモジュールの電源を現時点での受信バーストの期間と次の受信バーストの期間の間のインターバル期間に遮断可能とされた
    ことを特徴とする半導体集積回路。
  9. 請求項8において、
    前記ダイレクトメモリアクセスコントローラは、前記デルタ・テーの情報に基づいて前記DRAMの前記バースト転送の間隔を決定する間隔制御部を含む
    ことを特徴とする半導体集積回路
  10. 請求項4乃至請求項9のいずれかにおいて、
    前記半導体集積回路は、ビデオデコーダと、オーディオデコーダとを更に具備して、
    前記エラー訂正の後に前記DRAMに格納されたIPデータグラムのヘッダ情報が当該IPデータグラムの情報がビデオ情報であることを示す場合には、前記中央処理ユニットまたは前記トランスポートストリームインターフェースは前記ビデオ情報としての前記IPデータグラムの情報を前記DRAMから前記ビデオデコーダに転送して、前記ビデオデコーダは前記ビデオ情報としての前記IPデータグラムのビデオデコーディングを実行してビデオ信号を生成可能とされ、
    前記エラー訂正の後に前記DRAMに格納されたIPデータグラムのヘッダ情報が当該IPデータグラムの情報がオーディオ情報であることを示す場合には、前記中央処理ユニットまたは前記トランスポートストリームインターフェースは前記オーディオ情報としての前記IPデータグラムの情報を前記DRAMから前記オーディオデコーダに転送して、前記オーディオデコーダは前記オーディオ情報としての前記IPデータグラムのオーディオデコーディングを実行してオーディオ信号を生成可能とされた
    ことを特徴とする半導体集積回路。
  11. 請求項1において、
    前記RSテコーダは、前記DRAMの前記バースト転送によって前記内蔵SRAMに格納されるデータに基づいて複数のシンドロームの中間値を生成して前記内蔵SRAMに格納可能とされ、
    前記RSテコーダは、前記DRAMから前記内蔵SRAMへの次のバースト転送に応答して、前記複数のシンドロームの前記中間値の値を更新可能とされた
    ことを特徴とする半導体集積回路。
  12. 請求項1乃至請求項9のいずれかにおいて、
    前記半導体集積回路の半導体チップと前記DRAMの半導体チップとは、単一の封止パッケージに内蔵された
    ことを特徴とする半導体集積回路。
  13. トランスポートストリームインターフェースと、RSデコーダと、内蔵SRAMと、DRAMインターフェースと、中央処理ユニットとを具備する半導体集積回路の動作方法であって、
    前記トランスポートストリームインターフェースはDVB−HシステムのMPE−FECフレームを含んだTSパケットを受信することによって、前記TSパケットのセクションヘッダ情報からIPデータグラムを含んだMPEセクションと前記IPデータグラムのパリティーデータを含んだMPE−FECセクションとを抽出して、
    前記DRAMインターフェースには、DRAMが接続可能とされ、
    前記中央処理ユニットまたは前記トランスポートストリームインターフェースは、前記IPデータグラムを含んだ前記MPEセクションと前記IPデータグラムの前記パリティーデータを含んだ前記MPE−FECセクションとからなる第1テーブルを前記DRAMに生成して、
    前記トランスポートストリームインターフェースは前記IPデータグラムの巡回冗長チェックを検査することによって前記IPデータグラムのエラーの有無をチェックして、エラーが存在する場合には1バイトの前記IPデータグラムを1ビットの消去ビットにより「消去」としてマークして、
    前記中央処理ユニットまたは前記トランスポートストリームインターフェースは、1ビットによって前記1バイトの前記IPデータグラムの「消去」の有無を示す消去ビットマップテーブルとしての第2テーブルを前記DRAMに生成して、
    前記内蔵SRAMには、前記DRAMのバースト転送によって、前記DRAMの前記第1テーブルの前記MPEセクションと前記MPE−FECセクションとの一部の格納データと、前記DRAMの前記第2テーブルの前記消去ビットマップテーブルの一部の格納データとが転送され格納して、
    前記RSデコーダが前記内蔵SRAMをアクセスすることによって、前記内蔵SRAMに格納された前記DRAMの前記第1テーブルの前記一部の格納データと前記DRAMの前記第2テーブルの前記一部の格納データとを使用して前記RSデコーダがリード・ソロモン・デコーディングを実行する
    ことを特徴とする半導体集積回路の動作方法。
  14. 請求項13において、
    前記内蔵SRAMは、前記DRAMの前記第1テーブルの前記一部の格納データと前記DRAMの前記第2テーブルの前記一部の格納データとをそれぞれ格納可能な第1格納領域と第2格納領域とを有して、
    前記内蔵SRAMの前記第1格納領域と前記第2格納領域との各メモリ・サイズは、前記DRAMの一回の前記バースト転送によって転送されるデータサイズに基づいて決定されたものである
    ことを特徴とする半導体集積回路の動作方法。
  15. 請求項14において、
    前記内蔵SRAMの前記第1格納領域と前記第2格納領域との前記各メモリ・サイズは、16バイトまたは32バイトの整数倍に決定されたものである
    ことを特徴とする半導体集積回路の動作方法。
  16. 請求項15において、
    前記RSデコーダが前記リード・ソロモン・デコーディングを実行することによって、前記内蔵SRAMの前記第1格納領域に格納された前記第1テーブルの前記一部の格納データのエラー訂正が実行され、
    前記内蔵SRAMの前記第1格納領域に格納された前記第1テーブルの前記一部の格納データのIPデータグラムのうち前記エラー訂正の実行によってエラー訂正されたIPデータグラムが、前記DRAMインターフェースを介して、前記DRAMの前記第1テーブルの該当するアドレスに上書きされる
    ことを特徴とする半導体集積回路の動作方法。
  17. 請求項16において、
    前記RSデコーダは、前記DRAMインターフェースを介して前記DRAMをアクセス可能なダイレクトメモリアクセスコントローラを含み、
    前記ダイレクトメモリアクセスコントローラが前記DRAMをアクセスすることによって、前記ダイレクトメモリアクセスコントローラが前記DRAMの前記第1テーブルの前記一部の格納データと前記DRAMの前記第2テーブルの前記一部の格納データとをそれぞれ前記内蔵SRAMの前記第1格納領域と前記第2格納領域とに転送して格納する
    ことを特徴とする半導体集積回路の動作方法。
  18. 請求項17において、
    前記ダイレクトメモリアクセスコントローラは、前記DRAMインターフェースを介して、前記内蔵SRAMの前記第1格納領域に格納された前記エラー訂正されたIPデータグラムを前記DRAMの前記第1テーブルの該当するアドレスに上書きする
    ことを特徴とする半導体集積回路の動作方法。
  19. 請求項18において、
    前記内蔵SRAMは、前記DRAMの前記第1テーブルの前記一部の格納データと前記DRAMの前記第2テーブルの前記一部の格納データとをそれぞれ格納可能な第3格納領域と第4格納領域とを更に有して、
    前記内蔵SRAMの前記第3格納領域と前記第4格納領域との各メモリ・サイズは、前記DRAMの一回の前記バースト転送によって転送されるデータサイズに基づいて決定されたものであり、
    前記内蔵SRAMは、前記第1格納領域と前記第2格納領域とからなる第1バッファと前記第3格納領域と前記第4格納領域とからなる第2バッファとのダブルバッファによって構成され、
    前記ダブルバッファによって構成された前記内蔵SRAMの前記第1バッファと前記第2バッファの一方で前記RSデコーダによる前記リード・ソロモン・デコーディングが実行される間に、前記内蔵SRAMの前記第1バッファと前記第2バッファの他方でリード処理またはライト処理が実行される
    ことを特徴とする半導体集積回路の動作方法。
  20. 請求項18において、
    前記中央処理ユニットまたは前記トランスポートストリームインターフェースは受信した前記MPEセクションのセクションヘッダ情報からデルタ・テーの情報を抽出して、前記デルタ・テーの情報を前記DRAMに格納して、
    前記デルタ・テーの情報は、前記DVB−Hシステムにおいて次に転送されるバーストの開始時間を示すものであり、
    前記DRAMに格納された前記デルタ・テーの情報に応答して、前記中央処理ユニットは前記トランスポートストリームインターフェースの入力に出力が接続されたフロントエンドモジュールの電源を現時点での受信バーストの期間と次の受信バーストの期間の間のインターバル期間に遮断する
    ことを特徴とする半導体集積回路の動作方法。
JP2011096670A 2011-04-25 2011-04-25 半導体集積回路およびその動作方法 Withdrawn JP2012231201A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011096670A JP2012231201A (ja) 2011-04-25 2011-04-25 半導体集積回路およびその動作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011096670A JP2012231201A (ja) 2011-04-25 2011-04-25 半導体集積回路およびその動作方法

Publications (1)

Publication Number Publication Date
JP2012231201A true JP2012231201A (ja) 2012-11-22

Family

ID=47432433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011096670A Withdrawn JP2012231201A (ja) 2011-04-25 2011-04-25 半導体集積回路およびその動作方法

Country Status (1)

Country Link
JP (1) JP2012231201A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113132294A (zh) * 2019-12-30 2021-07-16 中国移动通信集团四川有限公司 一种数据包的过滤方法、系统及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113132294A (zh) * 2019-12-30 2021-07-16 中国移动通信集团四川有限公司 一种数据包的过滤方法、系统及装置
CN113132294B (zh) * 2019-12-30 2022-05-13 中国移动通信集团四川有限公司 一种数据包的过滤方法、系统及装置

Similar Documents

Publication Publication Date Title
US7610544B2 (en) Erasure generation in a forward-error-correcting communication system
JP5171263B2 (ja) 改良型ipデータグラムの逆カプセル化
US7447980B2 (en) Error detection and correction in data transmission packets
US8290059B2 (en) Method and apparatus for preserving deinterleaving erasure information of block interleaved coded signal
US20090007207A1 (en) Hardware-implemented handling of back-to-back and parallel time slices in a video broadcasting receiver
US20080022345A1 (en) Demodulator and demodulation method
US8255757B2 (en) Apparatus and method for error correction in mobile wireless applications incorporating erasure table data
TWI363519B (en) Method for erasure error correction process and integrated circuit device thereof
US7925962B2 (en) DVB-H system and method for performing forward error correction
JP2012231201A (ja) 半導体集積回路およびその動作方法
WO2006125157A2 (en) Erasure generation in a forward-error-correcting communication system
KR20070081907A (ko) 디지털 비디오 방송 시스템에서 다중 프로토콜 캡슐화순방향 오류 정정 프레임의 복호 방법 및 장치
US20080298468A1 (en) Error tagging for decoder
US8707140B2 (en) Apparatus and method for error correction in mobile wireless applications incorporating correction bypass
US20090003370A1 (en) System and method for improved performance by a dvb-h receiver
KR100734376B1 (ko) 방송 신호 복호 장치
US7840883B2 (en) DVB-H receiver for forward error correction and method thereof
KR20080008849A (ko) 디지털 비디오 방송 시스템에서 방송 데이터 수신 장치 및방법
CN103209046B (zh) Cmmb字节解交织装置及方法
KR20070075825A (ko) 방송 신호 복호 장치
CN106856569A (zh) 解码器、接收装置及其解码方法
KR20080104067A (ko) 데이터 전송 및 데이터 복원 방법

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701