JP2012230344A - Method for manufacturing optical fiber assembly - Google Patents

Method for manufacturing optical fiber assembly Download PDF

Info

Publication number
JP2012230344A
JP2012230344A JP2011171429A JP2011171429A JP2012230344A JP 2012230344 A JP2012230344 A JP 2012230344A JP 2011171429 A JP2011171429 A JP 2011171429A JP 2011171429 A JP2011171429 A JP 2011171429A JP 2012230344 A JP2012230344 A JP 2012230344A
Authority
JP
Japan
Prior art keywords
optical fiber
fiber assembly
cross
mold
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011171429A
Other languages
Japanese (ja)
Inventor
Osamu Shinji
修 新治
Tatsuya Ueda
達也 植田
Tsuyoshi Saito
堅 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2011171429A priority Critical patent/JP2012230344A/en
Publication of JP2012230344A publication Critical patent/JP2012230344A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an optical fiber assembly which is suitable for manufacturing an optical fiber assembly with a cross sectional area of 1 cmor more, and can suppress generation of air bubbles inside of the optical fiber assembly.SOLUTION: The method for manufacturing the optical fiber assembly 1 includes: filling the inside of a molding die with optical fibers in which clad 4 formed of a thermoplastic resin is arranged in the periphery of cores 3 formed of at least a thermoplastic resin, in a plurality of bundle forms; and then joining the clad of the plurality of the optical fibers to each other by heating the molding die.

Description

本発明は光ファイバスコープなどに用いられる、熱可塑性樹脂からなる光ファイバ集合
体の製造方法に関する。
The present invention relates to a method for manufacturing an optical fiber assembly made of a thermoplastic resin used in an optical fiber scope or the like.

クラッド内に複数のコアが平行に離散して配置された光ファイバ集合体は公知である。
光ファイバ集合体は、端部で捉えた観察対象のイメージをコアを通してもう一方の端部に
伝送するための部材であり、1コア毎に1画素のイメージを伝送することができる。光フ
ァイバ集合体の代表的な用途としては、撮像素子用のイメージ伝達用部材が挙げられる。
例えば、各種装置の内部や体内の患部を観察するための光ファイバスコープや、ごく短い
光ファイバ集合体の両端を主面とするファイバプレートが知られている。
An optical fiber assembly in which a plurality of cores are discretely arranged in parallel in a clad is known.
The optical fiber aggregate is a member for transmitting an image to be observed captured at one end to the other end through a core, and can transmit an image of one pixel for each core. A typical application of the optical fiber assembly is an image transmission member for an image sensor.
For example, an optical fiber scope for observing the inside of various devices and an affected part in the body, and a fiber plate having main surfaces at both ends of a very short optical fiber assembly are known.

なかでも、熱可塑性樹脂製の光ファイバ集合体は、ガラス製の光ファイバ集合体と比べ柔軟性に優れる。かかる熱可塑性樹脂製の光ファイバ集合体の製造方法としては、例えば、海島型複合繊維用口金を用いて2種類の樹脂を紡糸する方法が知られている(特許文献1、2参照)。かかる方法で得られる海島型複合繊維は、通常コアを数本〜数十本程度有しており、断面積10−2mm以下である。また、ポリスチレンなどからなる1本のコアの周囲を、アクリル樹脂などからなるクラッドで覆った光ファイバ(単芯光ファイバ)を複数束ねて末端を加熱し溶融一体化しながら線引きする方法が知られている(特許文献3参照)。かかる方法で得られる光ファイバ集合体は、通常コアを数千〜2万本程度有しており、断面積0.1〜1mm程度である。 Among these, an optical fiber assembly made of a thermoplastic resin is excellent in flexibility as compared with an optical fiber assembly made of glass. As a method for producing such an optical fiber assembly made of a thermoplastic resin, for example, a method of spinning two kinds of resins using a sea-island type composite fiber die is known (see Patent Documents 1 and 2). The sea-island type composite fiber obtained by such a method usually has several to several tens of cores and has a cross-sectional area of 10 −2 mm 2 or less. Also, a method is known in which a plurality of optical fibers (single-core optical fibers) covered with a clad made of acrylic resin or the like are bundled around a single core made of polystyrene or the like, and the ends are heated and melted and integrated. (See Patent Document 3). The optical fiber aggregate obtained by such a method usually has about several thousand to 20,000 cores and has a cross-sectional area of about 0.1 to 1 mm 2 .

特開平7−118913号公報JP-A-7-118913 特開2005−256253号公報JP 2005-256253 A 特開2000−28833号公報JP 2000-28833 A

近年、観察面積を広げるべく、断面積の大きな光ファイバ集合体が求められている。たとえば、指紋認証用のCCDに用いるファイバプレートでは、通常1cm以上の断面積を有する光ファイバ集合体が求められる。しかしながら、断面積の大きな熱可塑性樹脂製の光ファイバ集合体を得ることはこれまで困難であった。たとえば、特許文献1または2に記載された方法で、断面積を大きくした熱可塑性樹脂製の光ファイバ集合体を製造しようとすると、該光ファイバ集合体の中心部と周辺部とを均一に冷却することが難しく、製造中に光ファイバ集合体が変形しやすいため、実用に耐える光ファイバ集合体を得難い。 In recent years, an optical fiber assembly having a large cross-sectional area has been demanded in order to expand the observation area. For example, a fiber plate used for a CCD for fingerprint authentication usually requires an optical fiber assembly having a cross-sectional area of 1 cm 2 or more. However, it has been difficult to obtain an optical fiber assembly made of a thermoplastic resin having a large cross-sectional area. For example, when an optical fiber assembly made of a thermoplastic resin having a large cross-sectional area is manufactured by the method described in Patent Document 1 or 2, the central portion and the peripheral portion of the optical fiber assembly are uniformly cooled. It is difficult to do this, and the optical fiber assembly is easily deformed during manufacturing, so that it is difficult to obtain an optical fiber assembly that can withstand practical use.

また特許文献3の方法を用いて断面積の大きな光ファイバ集合体を製造しようとすると
、光ファイバ同士の溶融による密着が不十分となり、光ファイバ集合体の内部に気泡が発
生する。かかる気泡の存在は光ファイバ集合体が伝送するイメージの欠落原因となる。
Further, when an optical fiber assembly having a large cross-sectional area is to be manufactured using the method of Patent Document 3, adhesion due to melting of the optical fibers becomes insufficient, and bubbles are generated inside the optical fiber assembly. The presence of such bubbles causes missing images transmitted by the optical fiber assembly.

しかして、本発明の目的は、例えば断面積1cm以上の光ファイバ集合体の製造に好
適な、内部の気泡の発生を抑制できる光ファイバ集合体の製造方法を提供することである。
Therefore, an object of the present invention is to provide a method for manufacturing an optical fiber assembly that is suitable for manufacturing an optical fiber assembly having a cross-sectional area of 1 cm 2 or more and that can suppress the generation of internal bubbles.

本発明によれば、上記の目的は、少なくとも1つの熱可塑性樹脂からなるコアの周囲に
熱可塑性樹脂からなるクラッドが配置されてなる光ファイバを成形型内に複数束状に充填
したのち、前記成形型を加熱することにより前記複数の光ファイバのクラッドを互いに接
合することを特徴とする光ファイバ集合体の製造方法を提供することにより達成される。
本発明の製造方法において、前記成形型が、成形型内に複数束状に充填された前記光ファ
イバを押圧するための押圧部材を有することが好ましい。また前記成形型の加熱は減圧下
で行うことが好ましい。
According to the present invention, the above object is achieved by filling the optical fiber in which a clad made of a thermoplastic resin is disposed around a core made of at least one thermoplastic resin into a mold in a bundle. This is achieved by providing a method of manufacturing an optical fiber assembly, wherein the clad of the plurality of optical fibers is bonded to each other by heating a mold.
In the manufacturing method of the present invention, it is preferable that the mold has a pressing member for pressing the optical fiber filled in a plurality of bundles in the mold. The heating of the mold is preferably performed under reduced pressure.

本発明によれば、例えば断面積1cm以上の光ファイバ集合体の製造においても、光
ファイバ集合体内部の気泡の発生を抑制できる。かかる光ファイバ集合体は大きな観察面積に対しても欠落が少ないイメージを伝送できる。
According to the present invention, for example, in the production of an optical fiber assembly having a cross-sectional area of 1 cm 2 or more, generation of bubbles inside the optical fiber assembly can be suppressed. Such an optical fiber assembly can transmit an image with few missing portions even for a large observation area.

本発明の製造方法において得られる光ファイバ集合体の例およびその断面拡大図である。It is an example of the optical fiber aggregate obtained in the manufacturing method of the present invention, and its cross-sectional enlarged view. 実施例2において成形型内に光ファイバを充填する工程を示す概略図である。FIG. 6 is a schematic view showing a process of filling an optical fiber into a mold in Example 2. 実施例2で得られた光ファイバ集合体の断面の拡大写真である。4 is an enlarged photograph of a cross section of the optical fiber assembly obtained in Example 2. FIG. 実施例3で得られた光ファイバ集合体の断面の拡大写真である。4 is an enlarged photograph of a cross section of the optical fiber assembly obtained in Example 3. FIG.

[光ファイバの製造方法]
本発明で用いる光ファイバは、少なくとも1つの熱可塑性樹脂からなるコアの周囲に、
他の熱可塑性樹脂からなるクラッドが配置されてなる。
[Optical fiber manufacturing method]
The optical fiber used in the present invention is around the core made of at least one thermoplastic resin,
A clad made of another thermoplastic resin is arranged.

本発明の製造方法では、光ファイバを成形型内に複数束状に充填する。かかる複数の光ファイバの断面形状および断面積は、画素の均一性の観点から、それぞれ同一であることが極めて望ましい。また、光ファイバの長さについてもそれぞれ同一であることが極めて望ましい。
本発明で用いる光ファイバの長手方向の延伸倍率は好ましくは2〜20,000倍、より好ましくは10〜10,000倍である。本発明の製造方法では成形型を加熱することによって複数の光ファイバが軟化し、熱的な緩和に伴い長手方向に延伸された光ファイバが収縮し、それに伴って光ファイバのクラッドが接合される。
本発明で用いる光ファイバの長さは100〜2,000mmの範囲が好ましく、200〜1,000mmの範囲がより好ましい。100mmより小さいと生産性が悪くなる恐れがある。2,000mmより大きいと取り扱いが難しくなる場合がある。
In the manufacturing method of the present invention, optical fibers are filled in a plurality of bundles in a mold. It is highly desirable that the cross-sectional shapes and cross-sectional areas of the plurality of optical fibers are the same from the viewpoint of pixel uniformity. Also, it is highly desirable that the lengths of the optical fibers are the same.
The draw ratio in the longitudinal direction of the optical fiber used in the present invention is preferably 2 to 20,000 times, more preferably 10 to 10,000 times. In the manufacturing method of the present invention, a plurality of optical fibers are softened by heating the mold, and the optical fiber stretched in the longitudinal direction is contracted along with thermal relaxation, and the optical fiber cladding is joined accordingly. .
The length of the optical fiber used in the present invention is preferably in the range of 100 to 2,000 mm, more preferably in the range of 200 to 1,000 mm. If it is smaller than 100 mm, the productivity may be deteriorated. If it is larger than 2,000 mm, handling may be difficult.

本発明で用いる光ファイバの太さは、100〜3,000μmの範囲が好ましく、200〜2,000μmの範囲が特に好ましい。100μmより小さいと、生産性が悪くなる恐れがある。3,000μmより大きいと、撮像素子用のイメージ伝達用部材として用いた場合に解像度が不足する恐れや、光ファイバ同士の境目が目立ちやすくなる恐れがある。   The thickness of the optical fiber used in the present invention is preferably in the range of 100 to 3,000 μm, particularly preferably in the range of 200 to 2,000 μm. If it is smaller than 100 μm, the productivity may be deteriorated. If it is larger than 3,000 μm, the resolution may be insufficient when used as an image transmission member for an image sensor, or the boundary between optical fibers may be noticeable.

本発明に用いる光ファイバが備えるコアとクラッドとしては、コアとクラッドとの界面で全反射を生じるよう、コアの屈折率がクラッドの屈折率より大きくなるように熱可塑性樹脂を選択する。コアとクラッドの屈折率の差は0.001〜0.2の範囲であることが好ましく、0.003〜0.1の範囲であることがより好ましい。コアとクラッドの屈折率の差が0.001より小さいと、全反射が起きるために必要な光の入射角度範囲が狭くなる傾向となる。一方、0.2より大きいと、入手性、価格などの観点から不利となる場合がある。   As the core and the clad included in the optical fiber used in the present invention, a thermoplastic resin is selected so that the refractive index of the core is larger than the refractive index of the clad so that total reflection occurs at the interface between the core and the clad. The difference in refractive index between the core and the clad is preferably in the range of 0.001 to 0.2, and more preferably in the range of 0.003 to 0.1. If the difference in refractive index between the core and the cladding is less than 0.001, the incident angle range of light necessary for total reflection tends to be narrow. On the other hand, if it is larger than 0.2, it may be disadvantageous from the viewpoints of availability and price.

コアに用いる材料は、伝送する光の波長帯域において透明性が高い熱可塑性樹脂から選
択され、透明性が高く成形が容易である観点から、アクリル系樹脂、スチレン系樹脂、ポ
リカーボネート系樹脂が好ましく、アクリル系樹脂、スチレン系樹脂がより好ましい。
The material used for the core is selected from thermoplastic resins having high transparency in the wavelength band of light to be transmitted. From the viewpoint of being highly transparent and easy to mold, acrylic resins, styrene resins, and polycarbonate resins are preferable. An acrylic resin and a styrene resin are more preferable.

クラッドに用いる材料は、伝送する光の波長帯域についてコアに用いる材料よりも屈折
率が低く、透明性が高い熱可塑性樹脂から選択され、透明性が高く成形が容易である観点
から、アクリル系樹脂、スチレン系樹脂、ポリカーボネート系樹脂、フッ素系アクリル樹脂が好ましく、アクリル系樹脂、フッ素系アクリル樹脂がより好ましい。
The material used for the clad is selected from thermoplastic resins having a lower refractive index than the material used for the core in the wavelength band of light to be transmitted and high transparency. From the viewpoint of being highly transparent and easy to mold, acrylic resin Styrenic resin, polycarbonate resin, and fluorine acrylic resin are preferable, and acrylic resin and fluorine acrylic resin are more preferable.

本発明の製造方法においては、上記してきた光ファイバの代わりに、複数のコアの周囲にクラッドが配置された光ファイバ集合体を用いても良い。かかる光ファイバ集合体は従来知られている方法で製造できる。例えば、複数のコアの周囲にクラッドが配置された光ファイバ集合体を本発明の製造方法で用いる場合、該光ファイバ集合体は特許文献1および2に記載された海島型複合繊維用口金を用いて紡糸する方法や、特許文献3に記載された単芯光ファイバを複数束ねて末端を加熱溶融し溶融一体化しながら線引きする方法で製造できる。また、本発明の製造方法で得られた光ファイバ集合体を用いることもできる。これらの中でも、特許文献3に記載された方法や、本発明の製造方法を用いることが好ましい。なお、特許文献3に記載された方法によれば、光ファイバ集合体の内部に気泡が発生する場合があるが、本発明の製造方法に供することでかかる気泡を除去できる。   In the manufacturing method of the present invention, an optical fiber assembly in which clads are arranged around a plurality of cores may be used instead of the above-described optical fiber. Such an optical fiber assembly can be manufactured by a conventionally known method. For example, when an optical fiber assembly in which clads are arranged around a plurality of cores is used in the manufacturing method of the present invention, the optical fiber assembly uses the sea-island type composite fiber die described in Patent Documents 1 and 2. And a method of drawing a wire while bundling a plurality of single-core optical fibers described in Patent Document 3 and heating and melting the ends. Moreover, the optical fiber aggregate obtained by the manufacturing method of the present invention can also be used. Among these, it is preferable to use the method described in Patent Document 3 and the production method of the present invention. In addition, according to the method described in Patent Document 3, bubbles may be generated inside the optical fiber assembly, but such bubbles can be removed by using the manufacturing method of the present invention.

特許文献3に記載された方法で単芯光ファイバから複数のコアを有する光ファイバ集合体を製造する場合、原料として用いる単芯光ファイバの長さは同一であることが極めて望ましく、100〜2,000mmの範囲が好ましく、200〜1,000mmの範囲がより好ましい。100mmより短いと生産性が悪くなる恐れがある。2,000mmより長いと取り扱いが難しくなる場合がある。用いる単芯光ファイバの数は100〜10,000本の範囲であることが好ましく、200〜5,000本の範囲であることがより好ましい。   When an optical fiber assembly having a plurality of cores is manufactured from a single-core optical fiber by the method described in Patent Document 3, it is highly desirable that the lengths of the single-core optical fibers used as raw materials are the same, 100 to 2 The range of 1,000 mm is preferable, and the range of 200 to 1,000 mm is more preferable. If it is shorter than 100 mm, productivity may be deteriorated. If it is longer than 2,000 mm, handling may be difficult. The number of single-core optical fibers used is preferably in the range of 100 to 10,000, and more preferably in the range of 200 to 5,000.

本発明の製造方法において、複数の光ファイバを成形型に束状に充填して加熱する際、光ファイバ間に隙間があると、該隙間を埋めるように光ファイバが変形する。かかる隙間が大きい場合、光ファイバの変形では隙間を完全に埋めることができず、光ファイバ集合体内に気泡が発生したり、コアの変形が起こったりする。かかる観点から、光ファイバの断面形状は、円形または辺の数が3以上の正多角形であることが望ましく、円形、正三角形、正四角形または正六角形であることがより望ましい。特に光ファイバ集合体を用いる場合、充填密度を一層高め、光ファイバ集合体の間の隙間を少なくする観点から、正三角形、正四角形または正六角形であることがさらに望ましい。   In the manufacturing method of the present invention, when a plurality of optical fibers are filled in a mold in a bundle and heated, if there is a gap between the optical fibers, the optical fiber is deformed so as to fill the gap. When such a gap is large, the deformation of the optical fiber cannot completely fill the gap, and bubbles are generated in the optical fiber assembly or the core is deformed. From this viewpoint, the cross-sectional shape of the optical fiber is preferably a circle or a regular polygon having three or more sides, and more preferably a circle, a regular triangle, a regular square, or a regular hexagon. In particular, when an optical fiber assembly is used, it is more preferable that the shape is a regular triangle, a regular square, or a regular hexagon from the viewpoint of further increasing the packing density and reducing the gap between the optical fiber assemblies.

[成形型]
本発明の製造方法で用いる成形型は、得られる光ファイバ集合体の断面形状に相似した断面形状の筒状の内壁を有する。該筒状の内壁の断面形状としては、例えば円形、辺の数が3以上の多角形(例えば四角形、六角形など)が挙げられる。本発明の製造方法では、複数の光ファイバをかかる内壁に囲まれるように束状に充填する。なお、光ファイバの端部と対向する筒状の内壁の端部(一端または両端)は、開口していても閉口していてもよい。
[Molding mold]
The mold used in the manufacturing method of the present invention has a cylindrical inner wall having a cross-sectional shape similar to that of the obtained optical fiber assembly. Examples of the cross-sectional shape of the cylindrical inner wall include a circle and a polygon having three or more sides (for example, a square, a hexagon, etc.). In the manufacturing method of the present invention, a plurality of optical fibers are filled in a bundle shape so as to be surrounded by the inner wall. In addition, the edge part (one end or both ends) of the cylindrical inner wall facing the edge part of an optical fiber may be opened or closed.

成形型の材料としては、成形型を加熱することで成形型内に束状に充填した複数の光フ
ァイバのクラッドを互いに接合する工程(以下「加熱工程」と称する)で変形、破損しないものであればよく、アルミニウムやステンレスなどの金属が挙げられる。成形型の厚さは加熱工程で変形、破損しない範囲であればよく、例えば1〜10mmの範囲であることが好ましい。成形型の前記筒状の内壁の長手方向の長さは光ファイバの長さに対し1.0〜1.2倍の範囲であることが好ましく、通常は同じ長さである。
The material of the mold is one that does not deform or break in the process of joining the clads of a plurality of optical fibers filled in a bundle in the mold by heating the mold (hereinafter referred to as “heating process”). Any metal such as aluminum or stainless steel may be used. The thickness of the mold may be in a range that does not deform or break in the heating process, and is preferably in the range of 1 to 10 mm, for example. The length in the longitudinal direction of the cylindrical inner wall of the mold is preferably in the range of 1.0 to 1.2 times the length of the optical fiber, and is usually the same length.

また成形型の内部に光ファイバを充填する作業が容易になる観点から、成形型の一部が
着脱可能な構成となっていることが好ましい。
Further, from the viewpoint of facilitating the work of filling the optical fiber into the mold, it is preferable that a part of the mold is detachable.

[押圧部材]
成形型は押圧部材を備えていてもよい。押圧部材は成形型の筒状の内壁に沿って移動できる構造となっており、充填した光ファイバを押圧するための部材であり、他の部材と組み合わせて成形型として機能する。かかる他の部材は、筒状の内壁の一端または両端が開口していればよい。押圧部材は、他の部材の筒状の内壁に沿って移動するため、覆うべき開口部の断面積を超えない範囲で近い外形面積を有することが好ましい。好ましくは覆うべき開口部の95〜99%、より好ましくは96〜98%の外形面積を有する。押圧部材は、加熱工程において、複数の束状の光ファイバに生じる温度むらに起因する光ファイバ集合体の変形を抑制することができる。押圧部材によって、光ファイバの加熱による収縮に合わせて該光ファイバを成形型の内壁の長さ方向に沿って縮めることができ、得られる光ファイバ集合体の末端の長さを揃えることができる。
[Pressing member]
The mold may include a pressing member. The pressing member has a structure that can move along the cylindrical inner wall of the molding die, is a member for pressing the filled optical fiber, and functions as a molding die in combination with other members. Such other members only have to be open at one or both ends of the cylindrical inner wall. Since the pressing member moves along the cylindrical inner wall of the other member, it is preferable that the pressing member has a close outer area within a range not exceeding the cross-sectional area of the opening to be covered. Preferably, it has an outer area of 95 to 99%, more preferably 96 to 98% of the opening to be covered. The pressing member can suppress deformation of the optical fiber assembly due to temperature unevenness generated in the plurality of bundled optical fibers in the heating step. By the pressing member, the optical fiber can be contracted along the length direction of the inner wall of the molding die in accordance with the contraction due to heating of the optical fiber, and the end length of the obtained optical fiber assembly can be made uniform.

[光ファイバの充填方法]
本発明の製造方法では複数の光ファイバを束状に充填する。またかかる複数の光ファイバは最密充填することが好ましい。
[Fiber filling method]
In the manufacturing method of the present invention, a plurality of optical fibers are filled in a bundle. In addition, it is preferable that the plurality of optical fibers be closely packed.

光ファイバは充填前に表面を洗浄し、異物を除去することが好ましい。かかる異物の除去には、光ファイバの材料を劣化させない洗浄剤を用いることが好ましく、かかる洗浄剤としては水、エタノール、2−プロパノールなどが挙げられる。   It is preferable to clean the surface of the optical fiber before filling to remove foreign substances. In order to remove such foreign substances, it is preferable to use a cleaning agent that does not deteriorate the material of the optical fiber. Examples of such cleaning agents include water, ethanol, and 2-propanol.

光ファイバの総断面積と成形型の内部の断面積との好ましい比率は、通常0.75:1.00〜0.99:1.00の範囲である。   A preferred ratio between the total cross-sectional area of the optical fiber and the cross-sectional area inside the mold is usually in the range of 0.75: 1.00 to 0.99: 1.00.

[加熱方法]
加熱温度は、光ファイバが可塑性を示し、成形型が変形しない範囲の温度であればよい。光ファイバを構成するクラッドの材料のガラス転移点温度をTg(℃)としたとき、好ましくはTg〜Tg+100(℃)の範囲であり、より好ましくはTg+20〜Tg+80(℃)の範囲である。光ファイバを構成するクラッドが2層以上ある場合は、最外層のクラッドの材料のガラス転移点温度をTg(℃)とする。また、加熱温度はコアのガラス転移点温度以上であることが好ましい。
加熱は、光ファイバ同士の隙間に存在する空気や加熱時に光ファイバから生じた水分などの揮発分を除去し、気泡の発生を抑制する観点から、減圧下で行うことが好ましい。減圧度は2,000Pa以下であることが好ましく、1,000Pa以下の減圧下であることがより好ましい。
[Heating method]
The heating temperature may be a temperature within a range where the optical fiber exhibits plasticity and the mold does not deform. When the glass transition temperature of the clad material constituting the optical fiber is Tg (° C.), it is preferably in the range of Tg to Tg + 100 (° C.), more preferably in the range of Tg + 20 to Tg + 80 (° C.). When there are two or more clads constituting the optical fiber, the glass transition temperature of the outermost clad material is defined as Tg (° C.). The heating temperature is preferably equal to or higher than the glass transition temperature of the core.
Heating is preferably performed under reduced pressure from the viewpoint of removing volatile components such as air present in the gaps between the optical fibers and moisture generated from the optical fibers during heating and suppressing the generation of bubbles. The degree of vacuum is preferably 2,000 Pa or less, more preferably 1,000 Pa or less.

[任意工程]
本発明の製造方法で得られた光ファイバ集合体を延伸して多数のコアを備えた光ファイバを製造し、かかる光ファイバをさらに本発明の製造方法によって光ファイバ集合体とすることで、コア数が多い光ファイバ集合体を容易に得られる。同様に複数回の同様の工程を繰り返してもよい。
[Optional process]
The optical fiber assembly obtained by the manufacturing method of the present invention is stretched to manufacture an optical fiber having a large number of cores, and the optical fiber is further formed into an optical fiber assembly by the manufacturing method of the present invention. A large number of optical fiber assemblies can be easily obtained. Similarly, the same process may be repeated a plurality of times.

[光ファイバ集合体]
図1に、本発明の製造方法において得られる光ファイバ集合体の例およびその断面拡大図を示す。光ファイバ集合体1には、断面拡大図に示すように、複数のコア3の周囲に熱可塑性樹脂からなるクラッド4が配置されている。かかる光ファイバ集合体は、コアの中心間距離が1〜200μmであることが好ましい。コアの中心間距離が1μmより小さいと、光の伝送性能が低下する場合がある。200μmより大きいと、用途によっては解像度が不十分となる場合がある。
[Optical fiber assembly]
FIG. 1 shows an example of an optical fiber assembly obtained by the manufacturing method of the present invention and an enlarged cross-sectional view thereof. In the optical fiber assembly 1, as shown in the enlarged cross-sectional view, a clad 4 made of a thermoplastic resin is disposed around a plurality of cores 3. Such an optical fiber assembly preferably has a center-to-center distance of 1 to 200 μm. If the distance between the centers of the cores is smaller than 1 μm, the light transmission performance may be degraded. If it is larger than 200 μm, the resolution may be insufficient depending on the application.

1つのコアの長手方向と垂直な方向の断面の断面積は、好ましくは0.7〜30,000μmである。0.7μmより小さいと光の伝送性能が低下する場合がある。30,000μmより大きいと、用途によっては解像度が不十分となる場合がある。例えば該断面が円形である場合、直径は1〜200μmであることが好ましく、2〜100μmであることがより好ましい。 The cross-sectional area of the cross section in the direction perpendicular to the longitudinal direction of one core is preferably 0.7 to 30,000 μm 2 . If it is smaller than 0.7 μm 2 , the light transmission performance may deteriorate. If it is larger than 30,000 μm 2 , the resolution may be insufficient depending on the application. For example, when the cross section is circular, the diameter is preferably 1 to 200 μm, and more preferably 2 to 100 μm.

また、コアの数は10,000〜10,000,000であることが好ましく、20,000〜5,000,000であることがより好ましい。10,000より小さいと、用途によっては解像度が不十分となる場合がある。10,000,000より大きいと、光ファイバを束ねる作業が困難になる場合がある。   The number of cores is preferably 10,000 to 10,000,000, and more preferably 20,000 to 5,000,000. If it is less than 10,000, the resolution may be insufficient depending on the application. If it is greater than 10,000,000, it may be difficult to bundle the optical fibers.

本発明で得られる光ファイバ集合体の断面積は、通常、1〜200cmの範囲であり
、好ましくは2〜100cmの範囲である。
The cross-sectional area of the optical fiber assembly obtained in the present invention is usually in the range of 1 to 200 cm 2 , preferably in the range of 2 to 100 cm 2 .

光ファイバ集合体の長さは切断によって適宜調整できる。光ファイバスコープなどに用
いる場合は100〜5,000mmであることが好ましい。シートとして使用する場合、
光ファイバ集合体の長さは0.5〜5mmであることが好ましい。
The length of the optical fiber assembly can be appropriately adjusted by cutting. When used for an optical fiber scope or the like, it is preferably 100 to 5,000 mm. When used as a sheet,
The length of the optical fiber assembly is preferably 0.5 to 5 mm.

以下、実施例によって本発明を具体的に説明するが、本発明はこれらの実施例に限定さ
れない。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.

(実施例1)
内径70mm、長さ500mm、厚さ5mmの円筒状アクリル樹脂および直径70mm
、長さ500mmの円柱状ポリスチレン樹脂からなる光ファイバ製造用棒状体の一端を赤
外線ヒータにより加熱し、軟化した樹脂を引き取り機に導いて2,800倍に延伸したの
ち、長さ50cmに切断し、光ファイバを得た。得られた光ファイバは、コア材がポリス
チレンであり、クラッド材がポリメチルメタクリレートであり、直径1.5mmの円形の
断面からなる。
次に、成形型の一部となる厚さ5mm、内径80mm、長さ50cmの円筒状のステンレス製パイプの内側に前記光ファイバを2,500本挿入し、断面が蜂の巣状に並ぶよう、最密充填した。
その後、成形型の一部である押圧部材となる厚さ5mm、直径80mmのステンレス製
円盤2枚を前記光ファイバの両端面に接するように前記ステンレス製パイプの両端へ挿入
し、金属製バネにより各押圧部材を250kgの加重で押圧した。
かかる押圧を続けながら前記光ファイバが充填された成形型を真空オーブンへ入れ、5
00Paの減圧下にて150℃で4時間加熱した後、大気圧下で室温に冷却し、得られた
2,500のコアを有する直径80mm、長さ44cmの光ファイバ集合体を成形型より
取り出した。
この光ファイバ集合体の断面を拡大観察したところ、気泡はなく、断面全体が有効なコアで占められていた。
Example 1
Cylindrical acrylic resin with an inner diameter of 70 mm, a length of 500 mm, and a thickness of 5 mm and a diameter of 70 mm
One end of an optical fiber manufacturing rod made of a cylindrical polystyrene resin having a length of 500 mm is heated by an infrared heater, the softened resin is guided to a take-up machine and stretched by 2,800 times, and then cut to a length of 50 cm. I got an optical fiber. In the obtained optical fiber, the core material is polystyrene, the clad material is polymethylmethacrylate, and has a circular cross section with a diameter of 1.5 mm.
Next, 2,500 optical fibers are inserted inside a cylindrical stainless steel pipe having a thickness of 5 mm, an inner diameter of 80 mm, and a length of 50 cm, which is a part of the mold, so that the cross section is aligned in a honeycomb shape. Close packed.
Thereafter, two stainless steel discs having a thickness of 5 mm and a diameter of 80 mm, which are part of the mold, are inserted into both ends of the stainless steel pipe so as to be in contact with both end faces of the optical fiber, and are moved by metal springs Each pressing member was pressed with a load of 250 kg.
While continuing such pressing, the mold filled with the optical fiber is put into a vacuum oven, 5
After heating at 150 ° C. under reduced pressure of 00 Pa for 4 hours and then cooling to room temperature under atmospheric pressure, the resulting optical fiber assembly having a diameter of 80 mm and a length of 44 cm having 2,500 cores is taken out from the mold. It was.
When the cross section of this optical fiber aggregate was enlarged and observed, there were no bubbles and the entire cross section was occupied by an effective core.

(実施例2)
実施例1で得られた光ファイバ集合体の一端を赤外線ヒータにより加熱し、軟化した樹
脂を引き取り機に導いて2,800倍に延伸し、50cmの長さに切断して直径1.5m
mの光ファイバ集合体を得た。各コアの中心間距離は30μmであった。
次に得られた光ファイバ集合体を用いて、かかる光ファイバ集合体がさらに複数一体化してなる光ファイバ集合体を製造した。
図2は、成形型内に光ファイバを充填する工程を示す概略図である。図2のように内壁の断面が一辺25mmのコの字型で、厚み10mm、長さ50cmのステンレス製の雨樋状部材6の内部に、前記直径1.5mmの光ファイバ集合体(図2の5)をそれぞれの長さ方向を一致させて、300本、俵積みで最密充填した。次に、幅25mm、長さ50cm、厚さ10mmのステンレス製の蓋状部材7を雨樋状部材6の長手方向の開口部を覆うように配置した。
その後、前記雨樋状部材6と前記蓋状部材7とをボルトにより結合した。
さらに一辺が25mm×25mmの厚さ10mmのステンレス板製部材からなる押圧部
材を前記雨樋状部材6と蓋状部材7とが形成する両端の開口部にはめ込み、前記押圧部材
を、前記最密充填した300本の光ファイバ集合体の端面に接するように配置した。金属バネにより前記押圧部材を50kgの荷重で押圧した。
かかる押圧を続けながら真空オーブン内で500Paの減圧下において150℃で4時間加熱した後、大気圧下で室温に冷却し、得られた75万のコアを有する一辺25mmの正方形の断面形状を持つ、長さ42cmの光ファイバ集合体を成形型より取り出した。
この光ファイバ集合体の断面を拡大観察したところ、光ファイバ中心間距離は30μmであった。
また切断面には気泡はなかった。
得られた光ファイバ集合体の断面の拡大写真を図3に示す。
(Example 2)
One end of the optical fiber assembly obtained in Example 1 was heated by an infrared heater, the softened resin was guided to a take-up machine, stretched 2,800 times, cut into a length of 50 cm, and a diameter of 1.5 m.
m optical fiber assemblies were obtained. The distance between the centers of each core was 30 μm.
Next, using the obtained optical fiber assembly, an optical fiber assembly in which a plurality of such optical fiber assemblies were further integrated was manufactured.
FIG. 2 is a schematic view showing a process of filling an optical fiber in a mold. As shown in FIG. 2, a 1.5 mm diameter optical fiber assembly (FIG. 2) is formed inside a stainless steel gutter-like member 6 having a U-shaped cross section with an inner wall of 25 mm on a side, a thickness of 10 mm, and a length of 50 cm. No. 5) was packed in close-packed manner by stacking 300 pieces in the same length direction. Next, a stainless lid member 7 having a width of 25 mm, a length of 50 cm, and a thickness of 10 mm was arranged so as to cover the opening in the longitudinal direction of the gutter-like member 6.
Thereafter, the gutter-like member 6 and the lid-like member 7 were joined together by bolts.
Further, a pressing member made of a stainless steel plate member having a side of 25 mm × 25 mm and a thickness of 10 mm is fitted into the openings at both ends formed by the rain gutter-like member 6 and the lid-like member 7, and the pressing member is inserted into the closest packing. It arrange | positioned so that the end surface of the filled 300 optical fiber aggregate | assembly might be contact | connected. The pressing member was pressed with a load of 50 kg by a metal spring.
While continuing such pressing, after heating for 4 hours at 150 ° C. under a reduced pressure of 500 Pa in a vacuum oven, it is cooled to room temperature under atmospheric pressure, and has a square cross-sectional shape of 25 mm on a side having 750,000 cores obtained. An optical fiber assembly having a length of 42 cm was taken out of the mold.
When the cross section of this optical fiber aggregate was enlarged and observed, the distance between the centers of the optical fibers was 30 μm.
There were no bubbles on the cut surface.
An enlarged photograph of the cross section of the obtained optical fiber assembly is shown in FIG.

(実施例3)
成形型として厚さ5mm、長さ50cm、1辺が31mmの正六角形の内壁面を有するステンレス製六角形パイプを用い、また押圧部材として厚さ5mm、1辺が31mmの正六角形のステンレス製板2枚を用いた以外は実施例1と同様にして、2500のコアを有する1辺が31mmの正六角形の断面であり長さ44cmの光ファイバ集合体を得た。
この光ファイバ集合体の断面を拡大観察したところ、気泡はなく、断面全体が有効なコアで占められていた。
次いで実施例2と同様にして得られた光ファイバ集合体の一端を赤外線ヒータにより加熱し、軟化した樹脂を引き取り機に導いて2800倍に延伸し、50cmの長さに切断して断面が一辺0.6mmの正六角形である光ファイバ集合体を得た。各コアの中心間距離は30μmであった。
さらに実施例2と同様にして、図2のように内壁の断面が一辺25mmのコの字型で、厚み10mm、長さ50cmのステンレス製の雨樋状部材6の内部に、前記一辺0.6mmの正六角形断面の光ファイバ集合体を300本、それぞれ長さ方向を一致させて、最密充填した。
その後、実施例2と同様にして、75万のコアを有する一辺25mmの正方形の断面形状を持つ、長さ42cmの光ファイバ集合体を成形型より取り出した。
この光ファイバ集合体の断面を拡大観察したところ、気泡はなかった。
得られた光ファイバ集合体の断面の拡大写真を図4に示す。図3と比較したところ、実施例2よりもコアの変形が一層少ないことがわかった。
(Example 3)
A stainless steel hexagonal pipe having a regular hexagonal inner wall with a thickness of 5 mm, a length of 50 cm and a side of 31 mm is used as a molding die, and a regular hexagonal stainless steel plate with a thickness of 5 mm and a side of 31 mm as a pressing member. An optical fiber assembly having a length of 44 cm and a regular hexagonal cross section with a side of 31 mm having 2500 cores was obtained in the same manner as in Example 1 except that two sheets were used.
When the cross section of this optical fiber aggregate was enlarged and observed, there were no bubbles and the entire cross section was occupied by an effective core.
Next, one end of the optical fiber assembly obtained in the same manner as in Example 2 was heated with an infrared heater, the softened resin was guided to a take-up machine, stretched 2800 times, cut to a length of 50 cm, and the cross section was one side An optical fiber assembly having a regular hexagonal shape of 0.6 mm was obtained. The distance between the centers of each core was 30 μm.
Further, in the same manner as in Example 2, as shown in FIG. 2, the inner wall has a U-shaped cross section having a side of 25 mm, a thickness of 10 mm, and a length of 50 cm. 300 optical fiber assemblies each having a regular hexagonal cross section of 6 mm were packed in a close-packed manner so that the length directions thereof were matched.
Thereafter, in the same manner as in Example 2, an optical fiber assembly having a length of 42 cm and a square cross section of 25 mm on one side having 750,000 cores was taken out from the mold.
When the cross section of this optical fiber assembly was enlarged and observed, there were no bubbles.
FIG. 4 shows an enlarged photograph of the cross section of the obtained optical fiber assembly. When compared with FIG. 3, it was found that the deformation of the core was much smaller than in Example 2.

(実施例4)
光ファイバが充填された成形型を熱風オーブン内に入れ、大気圧下で150℃で4時間
加熱した以外は実施例1と同様にして、2,500のコアを有する直径80mm、長さ4
4cmの光ファイバ集合体を得た。
この光ファイバ集合体の断面を拡大観察したところ、3箇所で発泡が見られたが、ほぼ断面全体が有効なコアで占められており、実用上問題ないものであった。
Example 4
The mold filled with the optical fiber was placed in a hot air oven and heated at 150 ° C. under atmospheric pressure for 4 hours in the same manner as in Example 1, with a diameter of 80 mm and a length of 4 having 2,500 cores.
A 4 cm optical fiber assembly was obtained.
When the cross section of this optical fiber aggregate was enlarged and observed, foaming was observed at three locations, but almost the entire cross section was occupied by an effective core, and there was no practical problem.

(比較例1)
実施例1と同様にして光ファイバの製造を行った。これにより、コア材がポリスチレン
で、クラッド材がポリメチルメタクリレートであり、50cmに切断された直径1.5m
mの円形の断面からなる光ファイバを得た。
次に、厚さ5mm、内径80mmのアクリル樹脂製パイプの内側に前記光ファイバを2
500本挿入し、断面が蜂の巣状に並ぶよう、最密充填した。
前記アクリル樹脂製パイプの一端を赤外線ヒータにより加熱し、軟化した樹脂を引き取
り機に導いて80倍に延伸し、50cmの長さに切断して2,500のコアを有する直径10mmの光ファイバ集合体を製造した。
本比較例の光ファイバ集合体の断面を拡大観察したところ、全面にわたって各光ファイ
バの間で気泡が多数観測された。
(Comparative Example 1)
An optical fiber was manufactured in the same manner as in Example 1. Thus, the core material is polystyrene, the clad material is polymethyl methacrylate, and the diameter is 1.5 m cut to 50 cm.
An optical fiber having a circular cross section of m was obtained.
Next, the optical fiber is placed inside an acrylic resin pipe having a thickness of 5 mm and an inner diameter of 80 mm.
500 pieces were inserted and packed closely so that the cross-sections were arranged in a honeycomb shape.
One end of the acrylic resin pipe is heated by an infrared heater, the softened resin is guided to a take-up machine, stretched 80 times, cut to a length of 50 cm, and a 10 mm diameter optical fiber assembly having 2,500 cores The body was manufactured.
When the cross section of the optical fiber aggregate of this comparative example was enlarged and observed, many bubbles were observed between the optical fibers over the entire surface.

1 光ファイバ集合体
2 断面拡大図
3 コア
4 クラッド
5 光ファイバ(または光ファイバ集合体)
6 雨樋状部材
7 蓋状部材
DESCRIPTION OF SYMBOLS 1 Optical fiber assembly 2 Cross-sectional enlarged view 3 Core 4 Clad 5 Optical fiber (or optical fiber assembly)
6 Gutter-like member 7 Lid-like member

Claims (3)

少なくとも1つの熱可塑性樹脂からなるコアの周囲に熱可塑性樹脂からなるクラッドが配置されてなる光ファイバを成形型内に複数束状に充填したのち、前記成形型を加熱することにより前記複数の光ファイバのクラッドを互いに接合することを特徴とする光ファイバ集合体の製造方法。 A plurality of optical fibers in which a clad made of thermoplastic resin is disposed around a core made of at least one thermoplastic resin are filled in a mold in a bundle, and then the plurality of lights are heated by heating the mold. A method for manufacturing an optical fiber assembly, wherein the clads of fibers are bonded to each other. 前記成形型が少なくともファイバ端面を押圧する押圧部材を備えることを特徴とする請求項1に記載の光ファイバ集合体の製造方法。 The method for manufacturing an optical fiber assembly according to claim 1, wherein the molding die includes a pressing member that presses at least a fiber end surface. 前記成形型の加熱を減圧下で行う請求項1または2に記載の光ファイバ集合体の製造方法。 The method for manufacturing an optical fiber assembly according to claim 1 or 2, wherein the mold is heated under reduced pressure.
JP2011171429A 2011-03-02 2011-08-05 Method for manufacturing optical fiber assembly Pending JP2012230344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011171429A JP2012230344A (en) 2011-03-02 2011-08-05 Method for manufacturing optical fiber assembly

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011044601 2011-03-02
JP2011044601 2011-03-02
JP2011087467 2011-04-11
JP2011087467 2011-04-11
JP2011171429A JP2012230344A (en) 2011-03-02 2011-08-05 Method for manufacturing optical fiber assembly

Publications (1)

Publication Number Publication Date
JP2012230344A true JP2012230344A (en) 2012-11-22

Family

ID=47431919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011171429A Pending JP2012230344A (en) 2011-03-02 2011-08-05 Method for manufacturing optical fiber assembly

Country Status (1)

Country Link
JP (1) JP2012230344A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014206436A (en) * 2013-04-12 2014-10-30 日立金属株式会社 Manufacturing method for tabular scintillator, tabular scintillator and flat panel detector

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859406A (en) * 1981-10-06 1983-04-08 Agency Of Ind Science & Technol Production for image fiber
JPS61116306U (en) * 1984-12-30 1986-07-23
JPH0312607A (en) * 1989-05-31 1991-01-21 Sci & Technol Inc Method of bundling optical fiber strand
JPH03241304A (en) * 1990-02-20 1991-10-28 Fujikura Ltd Terminal part of multifiber scope and production thereof
JPH04367803A (en) * 1991-01-31 1992-12-21 Galileo Electro Opt Corp Fiber assembly
JPH05203821A (en) * 1992-01-29 1993-08-13 Asahi Glass Co Ltd Optical fiber plate
JPH06174949A (en) * 1992-12-01 1994-06-24 Asahi Chem Ind Co Ltd Plastic fiber optic plate
JPH0875932A (en) * 1994-09-07 1996-03-22 Asahi Chem Ind Co Ltd Production of multi plastic optical fiber formed body
JPH09211438A (en) * 1996-01-29 1997-08-15 Casio Comput Co Ltd Display device
JPH10202679A (en) * 1997-01-22 1998-08-04 Casio Comput Co Ltd Molding of resin
JPH11218614A (en) * 1998-01-29 1999-08-10 Casio Comput Co Ltd Photoconductor and its formation
JP2003302538A (en) * 2002-02-07 2003-10-24 Canon Inc Fiber plate, manufacturing method thereof, radiation imaging apparatus and radiation imaging system
JP3140301U (en) * 2008-01-08 2008-03-21 巨晰光纎股▲分▼有限公司 Non-hexagonal arrangement of optical fibers
JP2009003379A (en) * 2007-06-25 2009-01-08 Asahi Kasei Electronics Co Ltd Plastic fiber optic plate

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859406A (en) * 1981-10-06 1983-04-08 Agency Of Ind Science & Technol Production for image fiber
JPS61116306U (en) * 1984-12-30 1986-07-23
JPH0312607A (en) * 1989-05-31 1991-01-21 Sci & Technol Inc Method of bundling optical fiber strand
JPH03241304A (en) * 1990-02-20 1991-10-28 Fujikura Ltd Terminal part of multifiber scope and production thereof
JPH04367803A (en) * 1991-01-31 1992-12-21 Galileo Electro Opt Corp Fiber assembly
JPH05203821A (en) * 1992-01-29 1993-08-13 Asahi Glass Co Ltd Optical fiber plate
JPH06174949A (en) * 1992-12-01 1994-06-24 Asahi Chem Ind Co Ltd Plastic fiber optic plate
JPH0875932A (en) * 1994-09-07 1996-03-22 Asahi Chem Ind Co Ltd Production of multi plastic optical fiber formed body
JPH09211438A (en) * 1996-01-29 1997-08-15 Casio Comput Co Ltd Display device
JPH10202679A (en) * 1997-01-22 1998-08-04 Casio Comput Co Ltd Molding of resin
JPH11218614A (en) * 1998-01-29 1999-08-10 Casio Comput Co Ltd Photoconductor and its formation
JP2003302538A (en) * 2002-02-07 2003-10-24 Canon Inc Fiber plate, manufacturing method thereof, radiation imaging apparatus and radiation imaging system
JP2009003379A (en) * 2007-06-25 2009-01-08 Asahi Kasei Electronics Co Ltd Plastic fiber optic plate
JP3140301U (en) * 2008-01-08 2008-03-21 巨晰光纎股▲分▼有限公司 Non-hexagonal arrangement of optical fibers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014206436A (en) * 2013-04-12 2014-10-30 日立金属株式会社 Manufacturing method for tabular scintillator, tabular scintillator and flat panel detector

Similar Documents

Publication Publication Date Title
JP2022530426A (en) Anti-resonant hollow core fiber, preform and manufacturing method for it
US9207398B2 (en) Multi-core optical fibers for IR image transmission
JP2010520497A (en) Photonic crystal fiber and method of manufacturing the same
WO2006078638A3 (en) Compact bundles of light guides with sections having reduced interstitial area
JP5383984B2 (en) Plastic fiber optic plate
CN113866874B (en) Polymer optical fiber panel, manufacturing method and large-area polymer optical fiber panel
JP2021527615A (en) Coherent imaging fibers and methods
US20090169160A1 (en) Fiber-Optic Apparatus for Receiving Emitted Radiation of a Diode Laser, and Method for Producing a Fiber-Optic Apparatus of the Type
WO2017038452A1 (en) Transparent screen, transparent screen assembly, method for manufacturing transparent screen, and method for manufacturing transparent screen assembly
CA2551980A1 (en) Method for making micro-lens array
CN102736170B (en) Optical fiber image transmission element with square optical fiber structure
JP2012230344A (en) Method for manufacturing optical fiber assembly
Li et al. An improved method for stripping cladding light in high power fiber lasers
JPS58149007A (en) Multiple fibers
JP2008285377A (en) Joined optical element
US10118853B2 (en) Systems and methods for producing robust chalcogenide optical fibers
US11226449B2 (en) Reinforcement structure
JP2007101924A (en) Plastic optical fiber ribbon, plastic optical fiber, and cord, cable and sheet using same
JP5598488B2 (en) Manufacturing method of fluoride image guide
JP3325935B2 (en) Plastic fiber optic plate
CN110703381B (en) Preparation method of optical fiber panel
JP5614714B2 (en) Rod lens, rod lens manufacturing method, rod lens array, and rod lens array manufacturing method
Hayashi et al. Extruded chalcogenide antiresonant hollow core fiber for mid-IR laser delivery
JP5721938B2 (en) Mode coupling optical fiber and manufacturing method thereof
EP1061385B1 (en) Optical fibre component for image transport

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630