JP2012226897A - Method for cutting gas diffusion layer base material - Google Patents

Method for cutting gas diffusion layer base material Download PDF

Info

Publication number
JP2012226897A
JP2012226897A JP2011091902A JP2011091902A JP2012226897A JP 2012226897 A JP2012226897 A JP 2012226897A JP 2011091902 A JP2011091902 A JP 2011091902A JP 2011091902 A JP2011091902 A JP 2011091902A JP 2012226897 A JP2012226897 A JP 2012226897A
Authority
JP
Japan
Prior art keywords
gas diffusion
diffusion layer
cutting
base material
cutting blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011091902A
Other languages
Japanese (ja)
Inventor
Kenichi Tokuda
健一 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011091902A priority Critical patent/JP2012226897A/en
Publication of JP2012226897A publication Critical patent/JP2012226897A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To suppress generation of free fibers in cutting a gas diffusion layer base material formed of carbon fibers, when a gas diffusion layer used in a solid polymer electrolyte fuel cell is formed.SOLUTION: A cutting blade 10 with a tip having a cross sectional shape of a curve profile is adopted as a cutting blade which is used in cutting a gas diffusion layer base material 20 formed of carbon fibers to prepare a gas diffusion layer, and the cutting blade 10 with the tip having the curve profile which is a substantially arcuate form having a radius of 0.3-0.5 μm is used for cutting the gas diffusion layer base material 20.

Description

本発明は、固体高分子電解質型燃料電池に用いられるガス拡散層を作製するためのガス拡散層基材の裁断方法に関する。   The present invention relates to a gas diffusion layer base material cutting method for producing a gas diffusion layer used in a solid polymer electrolyte fuel cell.

燃料電池は、燃料ガスとしての水素と酸化ガスとしての酸素との電気化学反応によって発電する装置である。なお、以下では、燃料ガスや酸化ガスを、特に区別することなく単に「反応ガス」あるいは「ガス」と呼ぶ場合もある。燃料電池は、通常、燃料電池セルを、セパレータを介して複数個積層して構成される。1つの燃料電池セルは、プロトン(H+)伝導性を有する固体高分子電解質膜(以下、単に「電解質膜」とも呼ぶ)の両面に触媒電極層(以下、単に「触媒層」とも呼ぶ)およびガス拡散層(GDL:Gas Diffusion Layer)を接合した構造体により構成される場合が多い。なお、この構造体は、膜電極接合体(MEA:Membrane Electrode Assembly)、あるいは、膜電極ガス拡散層接合体(MEGA:Membrane Electrode & Gas Diffusion Layer Assembly)と呼ばれる。 A fuel cell is a device that generates electricity by an electrochemical reaction between hydrogen as a fuel gas and oxygen as an oxidizing gas. Hereinafter, the fuel gas and the oxidizing gas may be simply referred to as “reaction gas” or “gas” without particular distinction. A fuel cell is usually configured by stacking a plurality of fuel cells via a separator. One fuel cell includes a catalyst electrode layer (hereinafter also simply referred to as “catalyst layer”) on both sides of a solid polymer electrolyte membrane having proton (H + ) conductivity (hereinafter also simply referred to as “electrolyte membrane”) and In many cases, a gas diffusion layer (GDL: Gas Diffusion Layer) is used in the structure. This structure is called a membrane electrode assembly (MEA) or a membrane electrode gas diffusion layer assembly (MEGA).

ガス拡散層は、通常、カーボンペーパーやカーボンクロスなどのカーボン繊維で形成されたガス拡散層基材に切断刃(裁断刃)の先端を差し込んで切断(裁断)することにより作製される(例えば、特許文献1参照)。   The gas diffusion layer is usually produced by inserting the tip of a cutting blade (cutting blade) into a gas diffusion layer substrate formed of carbon fibers such as carbon paper and carbon cloth and cutting (cutting) (for example, Patent Document 1).

特開2008−258097号公報JP 2008-258097 A 特開2005−149803号公報JP 2005-149803 A 特開2010−161039号公報JP 2010-161039 A

しかしながら、上記方法によりガス拡散層を作製した場合、作製したガス拡散層の裁断面に突起上の繊維(以下、「遊離繊維」と呼ぶ)が発生する場合がある。この遊離繊維が発生したガス拡散層を用いて作製したMEAでは、触媒電極層や電解質膜に遊離繊維が突き刺さって微小短絡が発生することにより、リーク電流が発生する場合がある。このリーク電流は遊離繊維の突き刺さりが深いほど大きくなる傾向にある。そのため、リーク電流が大きいMEAを用いた燃料電池セルは、リーク電流が小さいMEAを用いた燃料電池セルに比べて、発電性能の低下を招く。また、発電中においてガスのクロスオーバーがより早く増加する傾向にあり、リーク電流が0.4mA/cm2以上では、燃料電池の耐用年数として十分な長さを確保することができないこともわかっている。 However, when a gas diffusion layer is produced by the above method, fibers on the protrusions (hereinafter referred to as “free fibers”) may be generated in the cut surface of the produced gas diffusion layer. In the MEA produced using the gas diffusion layer in which the free fibers are generated, a leak current may be generated due to the occurrence of a micro short circuit due to the free fibers sticking into the catalyst electrode layer or the electrolyte membrane. This leakage current tends to increase as the piercing of free fibers becomes deeper. Therefore, the fuel cell using the MEA having a large leakage current causes a decrease in power generation performance as compared with the fuel cell using the MEA having a small leakage current. In addition, gas crossover tends to increase more quickly during power generation, and it has been found that if the leakage current is 0.4 mA / cm 2 or more, it is not possible to secure a sufficient length for the useful life of the fuel cell. Yes.

そこで、本発明は、カーボン繊維で形成されたガス拡散層基材を裁断してガス拡散層を作製する際に、遊離繊維の発生を抑制することが可能な技術を提供することを目的とする。   Then, this invention aims at providing the technique which can suppress generation | occurrence | production of a free fiber when cutting the gas diffusion layer base material formed with the carbon fiber, and producing a gas diffusion layer. .

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]
カーボン繊維で形成されたガス拡散層基材を裁断してガス拡散層を作製するための裁断方法であって、
先端の断面形状が曲線形状の裁断刃を用いて、前記ガス拡散層基材を裁断する、裁断方法。
適用例1の裁断方法によれば、裁断面のカーボン繊維の引っ掛かりを抑制することができるので、裁断面から突起したカーボン繊維(遊離繊維)の発生を抑制することが可能である。
[Application Example 1]
A cutting method for producing a gas diffusion layer by cutting a gas diffusion layer substrate formed of carbon fibers,
The cutting method of cutting the said gas diffusion layer base material using the cutting blade whose cross-sectional shape of a front-end | tip is a curve shape.
According to the cutting method of Application Example 1, it is possible to suppress catching of carbon fibers having a cut surface, and thus it is possible to suppress the generation of carbon fibers (free fibers) protruding from the cut surface.

[適用例2]
適用例1記載の裁断方法であって、
前記裁断刃の曲線形状は半径が0.3μm〜0.5μmの略円弧状である、裁断方法。
この場合には、遊離繊維の発生の抑制の効果が高い。
[Application Example 2]
A cutting method described in Application Example 1,
A cutting method in which the curved shape of the cutting blade is a substantially arc shape with a radius of 0.3 μm to 0.5 μm.
In this case, the effect of suppressing the generation of free fibers is high.

なお、本発明は、種々の形態で実現することが可能であり、例えば、ガス拡散層を作製するための裁断方法だけでなく、この裁断方法を含む膜電極接合体の製造方法、この膜電極接合体の製造方法を含む燃料電池の製造方法等の種々の形態で実現することが可能である。   The present invention can be realized in various forms. For example, not only a cutting method for producing a gas diffusion layer, but also a method for manufacturing a membrane electrode assembly including this cutting method, and this membrane electrode It can be realized in various forms such as a manufacturing method of a fuel cell including a manufacturing method of a joined body.

第1実施形態としてのガス拡散層基材の裁断方法を示す説明図である。It is explanatory drawing which shows the cutting method of the gas diffusion layer base material as 1st Embodiment. 第2実施形態としてのガス拡散層基材の裁断方法を示す説明図である。It is explanatory drawing which shows the cutting method of the gas diffusion layer base material as 2nd Embodiment. 実施形態の裁断方法による実施例のガス拡散層を用いた膜電極接合体と比較例の裁断方法によるガス拡散層を用いた膜電極接合体のリーク電流について比較して示す表である。It is a table | surface which compares and shows about the leakage current of the membrane electrode assembly using the gas diffusion layer of the Example by the cutting method of embodiment, and the membrane electrode assembly using the gas diffusion layer by the cutting method of a comparative example. 実施形態の裁断方法によるガス拡散層の裁断面および比較例の裁断方法によるガス拡散層の裁断面を示す説明図である。It is explanatory drawing which shows the cutting surface of the gas diffusion layer by the cutting method of embodiment, and the cutting surface of the gas diffusion layer by the cutting method of a comparative example.

本発明の実施の形態及び実施例を以下の順序で説明する。
A.第1実施形態:
B.第2実施形態:
C.実施例:
D.変形例:
Embodiments and examples of the present invention will be described in the following order.
A. First embodiment:
B. Second embodiment:
C. Example:
D. Variations:

A.第1実施形態:
図1は、第1実施形態としてのガス拡散層基材の裁断方法を示す説明図である。本実施形態の裁断方法は、図1(A)に示すように、カーボンペーパーやカーボンクロス等のカーボン繊維で形成されたガス拡散層基材20を、裁断刃10を用いて押し切る裁断方法である。具体的には、裁断刃10として、図1(B)に示すように、先端(刃先)の断面形状として半径が0.3μm〜0.5μmの略円弧形状を有するものを用い、裁断刃10の中心線(一点鎖線で示す)がガス拡散層基材20の面に対して垂直となるようにし、図1(A)に示すように押し切るものである。なお、先端の断面形状を半径が0.3μm〜0.5μmの曲線形状とするには、裁断刃の刃先を研ぐ際に、砥石の面に対して裁断刃の中心線が垂直となるように当てて研げばよい。
A. First embodiment:
FIG. 1 is an explanatory diagram illustrating a gas diffusion layer substrate cutting method according to the first embodiment. The cutting method of the present embodiment is a cutting method in which a gas diffusion layer base material 20 formed of carbon fibers such as carbon paper or carbon cloth is pushed using a cutting blade 10 as shown in FIG. . Specifically, as the cutting blade 10, as shown in FIG. 1B, a cutting blade 10 having a substantially arc shape with a radius of 0.3 μm to 0.5 μm is used as the cross-sectional shape of the tip (blade edge). The center line (indicated by the alternate long and short dash line) is perpendicular to the surface of the gas diffusion layer substrate 20, and is pushed out as shown in FIG. In order to make the cross-sectional shape of the tip a curved shape with a radius of 0.3 μm to 0.5 μm, when the edge of the cutting blade is sharpened, the center line of the cutting blade is perpendicular to the surface of the grindstone Just hit and sharpen.

B.第2実施形態:
図2は、第2実施形態としてのガス拡散層基材の裁断方法を示す説明図である。本実施形態の裁断方法は、図2に示すように、ガス拡散層基材20を、裁断刃10Aを用いて引き切る裁断方法である。具体的には、裁断刃10Aとして、第1実施形態で用いた裁断刃10と同様に、先端(刃先)の断面形状として半径が0.3μm〜0.5μmの略円弧状を有するものを用い、裁断刃10Aの中心線(一点鎖線で示す)がガス拡散層基材20の面に対して垂直となるようにして、図2に示すように引き切るものである。
B. Second embodiment:
FIG. 2 is an explanatory view showing a gas diffusion layer base material cutting method according to the second embodiment. The cutting method of the present embodiment is a cutting method of cutting the gas diffusion layer base material 20 using a cutting blade 10A as shown in FIG. Specifically, as the cutting blade 10A, the one having a substantially arc shape with a radius of 0.3 μm to 0.5 μm is used as the cross-sectional shape of the tip (blade edge), like the cutting blade 10 used in the first embodiment. The center line (indicated by the alternate long and short dash line) of the cutting blade 10A is perpendicular to the surface of the gas diffusion layer substrate 20, and is cut as shown in FIG.

C.実施例:
図3は、実施形態の裁断方法による実施例のガス拡散層を用いた膜電極接合体と比較例の裁断方法によるガス拡散層を用いた膜電極接合体のリーク電流について比較して示す表である。また、図4は、実施形態の裁断方法によるガス拡散層の裁断面および比較例の裁断方法によるガス拡散層の裁断面を示す説明図である。実施例1は第1実施形態の裁断方法によるガス拡散層を用いた例であり、実施例2は第2実施形態の裁断方法によるガス拡散層を用いた例である。また比較例1は、第1実施形態とは異なる先端形状の裁断刃を用いて、第1実施形態と同様に押し切りした場合のガス拡散層を用いた例である。比較例2は、第2実施形態とは異なる先端形状(刃先形状)の裁断刃を用いて、第2実施形態と同様に引き切りした場合のガス拡散層を用いた例である。
C. Example:
FIG. 3 is a table comparing the leakage currents of the membrane electrode assembly using the gas diffusion layer of the example according to the cutting method of the embodiment and the membrane electrode assembly using the gas diffusion layer according to the cutting method of the comparative example. is there. Moreover, FIG. 4 is explanatory drawing which shows the cutting surface of the gas diffusion layer by the cutting method of embodiment, and the cutting surface of the gas diffusion layer by the cutting method of a comparative example. Example 1 is an example using the gas diffusion layer by the cutting method of the first embodiment, and Example 2 is an example using the gas diffusion layer by the cutting method of the second embodiment. Moreover, the comparative example 1 is an example using the gas diffusion layer at the time of pushing out similarly to 1st Embodiment using the cutting blade of the front-end | tip shape different from 1st Embodiment. Comparative Example 2 is an example in which a gas diffusion layer is used in the same manner as in the second embodiment, using a cutting blade having a tip shape (blade shape) different from that in the second embodiment.

<実施例1>
実施例1は、まず、第1実施形態の裁断方法を用いて、ガス拡散層基材を裁断してガス拡散層を作製した。そして、固体高分子電解質膜の両面に触媒電極層が接合された触媒被覆膜(CCM:Catalyst Coated Membrane)を用意し、用意したCCMの両面に作製したガス拡散層を接合させて実施例1の膜電極接合体(MEA:Membrane Electrode Assembly)を作製した。CCMは、例えば、電解質膜の一方の面にカソード側の触媒層用ペーストを塗布し、他方の面にアノード側の触媒層用ペーストを塗布することによって作製したものを用いることができる。触媒層用ペーストは、触媒担持カーボンおよび触媒混合電解質を混合することにより作製される。電解質膜としては、Dupon社製のNafion NR211を用いた。触媒混合電解質としては、Dupon社製のNafion DE2020を用いた。カソード側の触媒担持カーボンとしては、田中貴金属工業社製のTEC35E51を用い、アノード側の触媒担持カーボンとしては、田中貴金属工業社製のTEC10E30Eを用いた。
<Example 1>
In Example 1, first, the gas diffusion layer substrate was cut using the cutting method of the first embodiment to produce a gas diffusion layer. A catalyst coated membrane (CCM: Catalyst Coated Membrane) in which a catalyst electrode layer is bonded to both surfaces of a solid polymer electrolyte membrane is prepared, and gas diffusion layers prepared on both surfaces of the prepared CCM are bonded to each other. A membrane electrode assembly (MEA) was prepared. As the CCM, for example, a material prepared by applying a cathode-side catalyst layer paste on one surface of an electrolyte membrane and applying an anode-side catalyst layer paste on the other surface can be used. The catalyst layer paste is produced by mixing the catalyst-supporting carbon and the catalyst mixed electrolyte. As the electrolyte membrane, Nafion NR211 manufactured by Dupont was used. As a catalyst mixed electrolyte, Nafion DE2020 manufactured by Dupont was used. TEC35E51 manufactured by Tanaka Kikinzoku Kogyo Co., Ltd. was used as the catalyst-supporting carbon on the cathode side, and TEC10E30E manufactured by Tanaka Kikinzoku Kogyo Co., Ltd. was used as the catalyst-carrying carbon on the anode side.

<実施例2>
実施例2は、まず、第2実施形態の裁断方法を用いて、ガス拡散層基材を裁断してガス拡散層を作製した。そして、実施例1と同じCCMを用意し、用意したCCMの両面に作製したガス拡散層を接合させて実施例2のMEAを作製した。
<Example 2>
In Example 2, first, the gas diffusion layer base material was cut using the cutting method of the second embodiment to produce a gas diffusion layer. Then, the same CCM as in Example 1 was prepared, and the gas diffusion layers prepared on both sides of the prepared CCM were joined together to manufacture the MEA of Example 2.

<比較例1>
比較例1は、まず、先端の断面形状として半径が0.2μm未満の裁断刃を用いて、第1実施形態と同様の裁断方法で、ガス拡散層基材を裁断してガス拡散層を作製した。そして、実施例1と同じCCMを用意し、用意したCCMの両面に作製したガス拡散層を接合させて比較例1のMEAを作製した。なお、先端の断面形状として半径が0.2μm未満の裁断刃は、通常刃先を研ぐ場合と同様に、すなわち、砥石の面に対する裁断刃の中心線の角度が直角よりも小さくなるように当てて研いだ。
<Comparative Example 1>
In Comparative Example 1, first, a gas diffusion layer is manufactured by cutting the gas diffusion layer base material by the same cutting method as in the first embodiment, using a cutting blade having a radius of less than 0.2 μm as the cross-sectional shape of the tip. did. And the same CCM as Example 1 was prepared, and the gas diffusion layer produced on both surfaces of the prepared CCM was joined, and the MEA of the comparative example 1 was produced. Note that a cutting blade having a radius of less than 0.2 μm as the cross-sectional shape of the tip is applied in the same manner as in the case of normal sharpening, that is, the angle of the center line of the cutting blade with respect to the surface of the grindstone is smaller than a right angle. Sharpened.

<比較例2>
比較例2は、比較例1と同様の裁断刃を用い、第2実施形態と同様の裁断方法で、ガス拡散層基材を裁断してガス拡散層を作製した。そして、実施例1と同じCCMを用意し、用意したCCMの両面に作製したガス拡散層を接合させて比較例2のMEAを作製した。
<Comparative example 2>
In Comparative Example 2, a gas diffusion layer was produced by cutting the gas diffusion layer base material by the same cutting method as in the second embodiment, using the same cutting blade as in Comparative Example 1. And the same CCM as Example 1 was prepared, and the gas diffusion layer produced on both surfaces of the prepared CCM was joined, and the MEA of the comparative example 2 was produced.

比較例1および比較例2で用いたガス拡散層の裁断面は、図4(C)および図4(D)に示すように遊離繊維が飛び出している。このため、これらのガス拡散層を用いたMEAのリーク電流は図3に示すように0.54mA/cm2および0.58mA/cm2となっており、0.4mA/cm2よりも大きく、耐用年数として十分な長さを確保できない。 In the cut surfaces of the gas diffusion layers used in Comparative Example 1 and Comparative Example 2, free fibers protrude as shown in FIGS. 4 (C) and 4 (D). Therefore, the leakage current of the MEA using these gas diffusion layer has a 0.54mA / cm 2 and 0.58mA / cm 2 as shown in FIG. 3, larger than 0.4 mA / cm 2, It is not possible to secure a sufficient length for the service life.

一方、実施例1および実施例2で用いたガス拡散層の裁断面は、図4(A)および図4(B)に示すように遊離繊維が飛び出していない。このため、これらのガス拡散層を用いたMEAのリーク電流は図3に示すように0.1mA/cm2および0.09mA/cm2と小さく、耐用年数の面で有効であることがわかる。従って、上記第1実施形態および第2実施形態の裁断方法によれば、ガス拡散層基材を裁断してガス拡散層を作製する際に、遊離繊維の発生を抑制することが可能であり、耐用年数を確保する点で有効である。 On the other hand, in the cut surfaces of the gas diffusion layers used in Example 1 and Example 2, free fibers do not protrude as shown in FIGS. 4 (A) and 4 (B). Therefore, the leakage current of the MEA using these gas diffusion layer is as small as 0.1 mA / cm 2 and 0.09 mA / cm 2 as shown in FIG. 3, it is found to be effective in terms of service life. Therefore, according to the cutting method of the first embodiment and the second embodiment, it is possible to suppress the generation of free fibers when the gas diffusion layer substrate is cut to produce the gas diffusion layer, It is effective in securing the useful life.

D.変形例:
なお、上記実施例における構成要素の中の、独立クレームでクレームされた要素以外の要素は、付加的な要素であり、適宜省略可能である。また、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能である。
D. Variations:
In addition, elements other than the elements claimed in the independent claims among the constituent elements in the above embodiment are additional elements and can be omitted as appropriate. The present invention is not limited to the above-described examples and embodiments, and can be implemented in various modes without departing from the scope of the invention.

裁断刃の先端の断面形状は、単一の半径を有する曲線形状に限定されるものではなく、0.3μm〜0.5μmの範囲の複数の半径の略円弧形状がなめらかに組み合わされた形状であってもよい。   The cross-sectional shape of the cutting blade tip is not limited to a curved shape having a single radius, but is a shape in which a plurality of radii having a plurality of radii in a range of 0.3 μm to 0.5 μm are smoothly combined. There may be.

裁断刃の先端(刃先)以外の形状については、特に規定するものではなく、平坦な形状であっても、蛤刃のような曲面形状であってもよい。   The shape other than the tip (blade edge) of the cutting blade is not particularly defined, and may be a flat shape or a curved shape such as a scissors blade.

10…裁断刃
10A…裁断刃
20…ガス拡散層基材
DESCRIPTION OF SYMBOLS 10 ... Cutting blade 10A ... Cutting blade 20 ... Gas diffusion layer base material

Claims (2)

カーボン繊維で形成されたガス拡散層基材を裁断してガス拡散層を作製するための裁断方法であって、
先端の断面形状が曲線形状の裁断刃を用いて、前記ガス拡散層基材を裁断する、裁断方法。
A cutting method for producing a gas diffusion layer by cutting a gas diffusion layer substrate formed of carbon fibers,
The cutting method of cutting the said gas diffusion layer base material using the cutting blade whose cross-sectional shape of a front-end | tip is a curve shape.
請求項1記載の裁断方法であって、
前記裁断刃の曲線形状は半径が0.3μm〜0.5μmの略円弧状である、裁断方法。
The cutting method according to claim 1,
A cutting method in which the curved shape of the cutting blade is a substantially arc shape with a radius of 0.3 μm to 0.5 μm.
JP2011091902A 2011-04-18 2011-04-18 Method for cutting gas diffusion layer base material Withdrawn JP2012226897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011091902A JP2012226897A (en) 2011-04-18 2011-04-18 Method for cutting gas diffusion layer base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011091902A JP2012226897A (en) 2011-04-18 2011-04-18 Method for cutting gas diffusion layer base material

Publications (1)

Publication Number Publication Date
JP2012226897A true JP2012226897A (en) 2012-11-15

Family

ID=47276869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011091902A Withdrawn JP2012226897A (en) 2011-04-18 2011-04-18 Method for cutting gas diffusion layer base material

Country Status (1)

Country Link
JP (1) JP2012226897A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824310A (en) * 2022-03-15 2022-07-29 昀际科技(上海)有限责任公司 Continuous hydrophobic equipment and method for gas diffusion layer of fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824310A (en) * 2022-03-15 2022-07-29 昀际科技(上海)有限责任公司 Continuous hydrophobic equipment and method for gas diffusion layer of fuel cell
CN114824310B (en) * 2022-03-15 2023-10-03 上海碳际实业集团有限公司 Equipment and method for continuous hydrophobicity of gas diffusion layer of fuel cell

Similar Documents

Publication Publication Date Title
US8026018B2 (en) Electrolyte membrane-electrode assembly and production method thereof
JP5064679B2 (en) Direct methanol fuel cell
WO2009139370A1 (en) Fuel cell and fuel cell layer
JP3778506B2 (en) Electrode for polymer electrolyte fuel cell
JP5137387B2 (en) Method for producing membrane-catalyst layer assembly
US20060257715A1 (en) Direct oxidation fuel cell and manufacturing method therefor
JP5105888B2 (en) Gas diffusion electrode, fuel cell, and method of manufacturing gas diffusion electrode
US9331345B2 (en) Bonded sheet and sheet-member bonding method
JP2009199988A (en) Anode electrode for direct methanol fuel cell and direct methanol type fuel cell using the same
KR101881139B1 (en) Microporous layer used for fuel cell, gas diffusion layer comprising the same and fuel cell comprising the same
JP4553861B2 (en) Fuel cell
KR101101497B1 (en) Producing method for electrodes of fuel cell with high temperature type and membrane electrode assembly produced thereby
US11145873B2 (en) Membrane electrode assembly and fuel cell comprising core-shell catalyst
WO2019189856A1 (en) Membrane electrode assembly, and polymer electrolyte fuel cell
JP2012226897A (en) Method for cutting gas diffusion layer base material
JPWO2011040061A1 (en) Membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell having the same
JP2010182483A (en) Fuel battery cell and fuel battery
JP2019040705A (en) Catalyst layer and electrolyte membrane-electrode assembly for fuel cell, and fuel cell
JP2005222720A (en) Fuel cell
JP2007123196A (en) Solid-polymer fuel cell, catalyst layer thereof, and manufacturing method thereof
JP4234629B2 (en) Polymer electrolyte fuel cell
JP2005353541A (en) Power generation element for liquid fuel cell, manufacturing method thereof and liquid fuel cell
JP2008041488A (en) Membrane-electrode assembly and fuel cell
JP5056141B2 (en) Manufacturing method of membrane electrode assembly
KR101528233B1 (en) Method for producing membrane-electrode assembly and membrane-electrode assembly using the same, and proton exchange membrane fuel cell

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701