JP2012226848A - Electrode-membrane-frame assembly of polymer electrolyte fuel cell and method for producing the same - Google Patents

Electrode-membrane-frame assembly of polymer electrolyte fuel cell and method for producing the same Download PDF

Info

Publication number
JP2012226848A
JP2012226848A JP2011090777A JP2011090777A JP2012226848A JP 2012226848 A JP2012226848 A JP 2012226848A JP 2011090777 A JP2011090777 A JP 2011090777A JP 2011090777 A JP2011090777 A JP 2011090777A JP 2012226848 A JP2012226848 A JP 2012226848A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
frame member
membrane
electrode
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011090777A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Iseri
充博 井芹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011090777A priority Critical patent/JP2012226848A/en
Publication of JP2012226848A publication Critical patent/JP2012226848A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a cross leak phenomenon in the peripheral part of a polymer electrolyte membrane and to improve performance of a polymer electrolyte fuel cell, in an electrode-membrane-frame assembly of the fuel cell.SOLUTION: Components for an electrode-membrane-frame assembly formed by closely contacting an electrolyte membrane, a first frame member arranged in a peripheral part of the electrolyte membrane, and second and third frame members with a same thickness that are alternately overlapped in a comb shape on the opposite side of the first frame member with respect to the electrolyte membrane across the peripheral edge face of the electrolyte membrane, in which the electrolyte membrane is not exposed to the outside, are provided.

Description

本発明は、固体高分子電解質型燃料電池に関し、特に燃料電池の電極―膜―枠接合体の構造およびその製造方法に関するものである。   The present invention relates to a solid polymer electrolyte fuel cell, and more particularly, to a structure of an electrode-membrane-frame assembly of a fuel cell and a manufacturing method thereof.

固体高分子電解質型燃料電池のもっとも代表的なものは、周縁部にガスをシールするためのガスケットを配置した枠体で支持された高分子電解質膜と、この電解質膜の一方の面にアノードが接合されかつ電解質膜の他方の面にカソードが接合されて構成される電解質膜―電極接合体(これを「MEA」と言う)と、MEAを挟むアノード側導電性セパレータ板および、カソード側導電性セパレータから構成され、アノードおよびカソードにそれぞれ燃料ガスおよび酸化剤ガスを供給するガス供給部が、セパレータの内のMEAと当接する中央部の周縁に形成されている。   The most typical solid polymer electrolyte fuel cell is a polymer electrolyte membrane supported by a frame having a gasket for sealing gas at the periphery, and an anode on one surface of the electrolyte membrane. An electrolyte membrane-electrode assembly (referred to as “MEA”) formed by joining and a cathode to the other surface of the electrolyte membrane, an anode side conductive separator plate sandwiching the MEA, and cathode side conductivity A gas supply part that is constituted by a separator and supplies fuel gas and oxidant gas to the anode and the cathode, respectively, is formed at the periphery of the central part that contacts the MEA in the separator.

このような従来の固体高分子電解質型燃料電池の構造としては、例えば、特許文献1に開示されている。図14に同文献における電極―膜−枠接合体の部分模式図を示す。   Such a structure of a conventional solid polymer electrolyte fuel cell is disclosed in, for example, Patent Document 1. FIG. 14 shows a partial schematic view of the electrode-membrane-frame assembly in the same document.

特許文献1の電極―膜−枠接合体は、高分子電解質膜117の周縁部117aにおけるカソード面側に枠体118が配置され、その端面部は凸形状部118aと凹形状部118bが交互にくし歯形状に形成され、また、アノード面側に枠体119が配置され、その端面部は凸形状部119aと凹形状部119bが交互にくし歯形状に形成されている。   In the electrode-membrane-frame assembly of Patent Document 1, the frame body 118 is disposed on the cathode surface side of the peripheral edge portion 117a of the polymer electrolyte membrane 117, and the end surface portion is alternately formed with the convex shape portions 118a and the concave shape portions 118b. It is formed in a comb-tooth shape, and a frame body 119 is disposed on the anode surface side, and a convex-shaped portion 119a and a concave-shaped portion 119b are alternately formed in a comb-tooth shape on the end surface portion.

このときカソード面側枠体の凸部118aにおける高分子電解質膜117を境に対応する、アノード面側の枠体形状は、凹形状119bになっており、また、カソード面側枠体の凹部118bにおける高分子電解質膜117を境に対応する、アノード面側の枠体形状は、凸形状119aになっている。   At this time, the shape of the frame on the anode surface side corresponding to the boundary of the polymer electrolyte membrane 117 in the convex portion 118a of the cathode surface side frame body is a concave shape 119b, and the concave portion 118b of the cathode surface side frame body. The shape of the frame on the anode surface side corresponding to the boundary of the polymer electrolyte membrane 117 is a convex shape 119a.

図15は、特許文献1の電極―膜−枠接合体において、枠体くし歯部分の凹形状となっている部分に、弾性体を設置した状態の模式図を示し、図16は、図15におけるA−A線断面図を示す。高分子電解質膜117が、アノード、カソードおよび枠体にて覆われておらず、膜自身が外部に露出している部分を、弾性体にて覆いかぶせた状態であり、このような電解質膜―電極接合体(MEA)が使用されている。   FIG. 15 is a schematic diagram showing a state in which an elastic body is installed in a concave portion of a frame comb-tooth portion in the electrode-membrane-frame assembly of Patent Document 1, and FIG. AA line sectional drawing in is shown. The polymer electrolyte membrane 117 is not covered with the anode, the cathode and the frame body, and the portion where the membrane itself is exposed to the outside is covered with an elastic body. An electrode assembly (MEA) is used.

国際公開第2009/047908号International Publication No. 2009/047908

しかしながら、上述のような従来の電解質膜―電極接合体(MEA)においては、アノード面側およびカソード面側の両方とも、枠体の端面は、くし歯形状になっているため、1)金型構造が複雑になってしまうこと、2)カソード面側枠体の凸形状とアノード面側凹形状が対応しなければならず、高精度の金型加工が必要とされることなどの問題が生じることになる。   However, in the conventional electrolyte membrane-electrode assembly (MEA) as described above, the end surfaces of the frame body have a comb-tooth shape on both the anode surface side and the cathode surface side. The structure becomes complicated. 2) The convex shape of the cathode surface side frame must correspond to the concave shape on the anode surface side, and problems such as the need for highly accurate mold processing arise. It will be.

また、アノード、カソード面側枠体の凹部分119b,118bでは、高分子電解質膜117が露出している状態であるので、図15に示すように、次工程で弾性体120,121をアノード面側枠体凹部119bとカソード面側枠体凹部118bに形成しなければならない。弾性体120,121は、枠体118の厚みよりも厚くする必要があるため、3)電解質膜―電極接合体(MEA)全体の厚みが厚くなってしまうことになる。更に、組み立て工程においては、セパレータにて枠体を挟み込むが、図16に示すように、カソード側弾性体120とアノード側弾性体121のオーバーラップ部Rが強く挟み込まれるため、4)高分子電解質膜に局所的な荷重が作用し、膜破損の原因となってしまうことにもなる。   Further, since the polymer electrolyte membrane 117 is exposed in the concave portions 119b and 118b of the anode / cathode side frame, the elastic bodies 120 and 121 are attached to the anode surface in the next step as shown in FIG. It must be formed in the side frame recess 119b and the cathode surface side frame recess 118b. Since the elastic bodies 120 and 121 need to be thicker than the thickness of the frame body 118, 3) the entire thickness of the electrolyte membrane-electrode assembly (MEA) is increased. Further, in the assembly process, the frame is sandwiched between the separators, but as shown in FIG. 16, the overlap portion R between the cathode-side elastic body 120 and the anode-side elastic body 121 is strongly sandwiched. 4) Polymer electrolyte A local load acts on the film, which may cause damage to the film.

また、オーバーラップR部は、アノード側およびカソード側のくし歯のピッチや形状精度に左右されるため、R部寸法のばらつきが発生しやすくもなる。アノード側弾性体121とアノード側枠体凹部の接合部、カソード側弾性体120とカソード側枠体凹部の接合部は、高分子電解質膜に垂直のため、セパレータにて挟み込んだとき、容易に破損しやすく、また、接合距離は枠体の厚み分しかないので、5)クロスリークが発生しやすい傾向となってしまう。   In addition, since the overlap R portion depends on the pitch and shape accuracy of the comb teeth on the anode side and the cathode side, variations in the R portion dimension are likely to occur. Since the junction between the anode side elastic body 121 and the anode side frame recess and the junction between the cathode side elastic body 120 and the cathode side frame recess are perpendicular to the polymer electrolyte membrane, they are easily damaged when sandwiched between separators. In addition, since the joining distance is only the thickness of the frame body, 5) the cross leak tends to occur.

クロスリークとは、枠体の内縁と電極との間に生じる僅かな隙間を、電池内に供給されたガスの一部が通ってアノード側又はカソード側の一方から他方へガスが漏れてしまう現象を意味する。燃料電池における発電効率を向上させるためには、このようなクロスリークを低減させる必要がある。   Cross leak is a phenomenon that gas leaks from one side of the anode side or cathode side to the other through a small gap generated between the inner edge of the frame and the electrode through a part of the gas supplied into the battery. Means. In order to improve the power generation efficiency in the fuel cell, it is necessary to reduce such cross leak.

本発明は、上記従来の課題を解決するもので、電極の周辺部に枠体を射出成型により形成するという工法において、第2の枠部材と第3の枠部材を第1の枠部材と一体的に接合し、その間に挟まれた状態の電解質膜の周縁部を、より密着させた状態で保持することができ、電極膜のめくれが無く、電極膜が外部に露出していない、第2の枠部材と第3の枠部材の厚みが同じ電極―膜―枠接合体の部品を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and in a method of forming a frame body by injection molding around the electrode, the second frame member and the third frame member are integrated with the first frame member. The electrolyte membrane in a state of being joined and sandwiched between them can be held in a more closely contacted state, the electrode membrane is not turned over, and the electrode membrane is not exposed to the outside. It is an object of the present invention to provide an electrode-membrane-frame assembly part having the same thickness of the frame member and the third frame member.

上記目的を達成するために本発明においては、電解質膜と、電解質膜の周縁部に配置された状態の第1枠部材と、電解質膜に対して第1の枠部材と反対側に、電解質膜の端面を境に、くし歯形状に交互に重なり合った、同じ厚さの第2の枠部材と第3の枠部材を密着させた、電解質膜が外部に露出していない電極―膜―枠接合体の部品を提供する。   In order to achieve the above object, in the present invention, an electrolyte membrane, a first frame member arranged at a peripheral portion of the electrolyte membrane, and an electrolyte membrane on a side opposite to the first frame member with respect to the electrolyte membrane An electrode-membrane-frame junction where the electrolyte membrane is not exposed to the outside, in which the second and third frame members of the same thickness, which are alternately overlapped in a comb-tooth shape, with the end face of the electrode as the border Provide body parts.

以上のように、電解質膜と、電解質膜の周縁部に配置された状態の第1枠部材と、電解質膜に対して第1の枠部材と反対側に、電解質膜の端面を境に、くし歯形状に交互に重なり合った、同じ厚さの第2の枠部材と第3の枠部材を密着させた、電解質膜が外部に露出していない電極―膜―枠接合体を使用することにより、電解質膜の周縁部がめくれることなく、電極周辺部との気密性を向上させることができるため、クロスリークを低減させる事ができる。   As described above, the electrolyte membrane, the first frame member arranged at the periphery of the electrolyte membrane, and the comb on the opposite side of the electrolyte membrane from the first frame member with the end face of the electrolyte membrane as a boundary. By using an electrode-membrane-frame assembly in which the electrolyte film is not exposed to the outside, in which the second frame member and the third frame member having the same thickness, which are alternately overlapped with the tooth shape, are adhered to each other, Since the airtightness with the electrode peripheral part can be improved without turning up the peripheral part of the electrolyte membrane, cross leak can be reduced.

また、電解質膜が外部に露出していないため、電解質膜を損傷させるような問題は発生しない。さらに、第3の枠部材は、第2の枠部材にて充填されていない部分を射出成形するため、第2の枠部材と同じ厚みにて成形できる。また、第2の枠部材と第3の枠部材の接合部分はくし歯形状になっているが、第1の枠部材の端面部は直線形状でよいため、簡単な金型構造となる。   Further, since the electrolyte membrane is not exposed to the outside, a problem that damages the electrolyte membrane does not occur. Further, the third frame member can be molded with the same thickness as the second frame member because the portion not filled with the second frame member is injection-molded. Moreover, although the joint part of the 2nd frame member and the 3rd frame member is comb-tooth shape, since the end surface part of a 1st frame member may be linear shape, it becomes a simple metal mold | die structure.

燃料電池におけるスタック構造図Stack structure diagram of fuel cell 本発明における単セルのMEAの端面近傍における模式図Schematic diagram in the vicinity of the end face of the single cell MEA in the present invention. 本発明における高分子電解質膜の周縁部に第1の枠部材を配置した模式図The schematic diagram which has arrange | positioned the 1st frame member in the peripheral part of the polymer electrolyte membrane in this invention 本発明における高分子電解質膜の周縁部に第2の枠部材を配置した模式図The schematic diagram which has arrange | positioned the 2nd frame member in the peripheral part of the polymer electrolyte membrane in this invention 本発明における高分子電解質膜の周縁部に第2の枠部材を配置した平面図The top view which has arrange | positioned the 2nd frame member in the peripheral part of the polymer electrolyte membrane in this invention 本発明における高分子電解質膜の周縁部に第3の枠部材を配置した模式図The schematic diagram which has arrange | positioned the 3rd frame member in the peripheral part of the polymer electrolyte membrane in this invention 本発明における第2の枠部材の上面に第3の枠部材を形成した断面図Sectional drawing which formed the 3rd frame member in the upper surface of the 2nd frame member in this invention 本発明における第2の枠部材の上面に第3の枠部材を形成した模式図The schematic diagram which formed the 3rd frame member in the upper surface of the 2nd frame member in this invention 本発明における第2と第3の枠部材の接合面を斜面形状にした模式図The schematic diagram which made the joint surface of the 2nd and 3rd frame member in this invention the slope shape 本発明における第2の枠部材の接合面を斜面形状にした模式図The schematic diagram which made the joining surface of the 2nd frame member in this invention the slope shape 本発明におけるアノード電極と第1の枠部材の隙間が無い状態の模式図The schematic diagram of the state without the clearance gap between the anode electrode and 1st frame member in this invention 本発明におけるカソード電極と第2の枠部材の隙間が無い状態の模式図Schematic diagram of a state without a gap between the cathode electrode and the second frame member in the present invention 本発明における枠部材にエラストマーを使用した場合の模式図Schematic diagram when elastomer is used for frame member in the present invention 従来の電極―膜−枠接合体(弾性体部材無し)の部分模式図Partial schematic diagram of conventional electrode-membrane-frame assembly (without elastic member) 従来の電極―膜−枠接合体(弾性体部材有り)の部分模式図Partial schematic diagram of conventional electrode-membrane-frame assembly (with elastic member) 従来の電極―膜−枠接合体のA−A線模式断面図AA line schematic cross-sectional view of a conventional electrode-membrane-frame assembly

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

1.燃料電池および燃料電池スタックの構造:
燃料電池は、固体高分子電解質型燃料電池(PEFC)であって、水素を含有する燃料ガスと、空気など酸素を含有する酸化剤ガスとを電気的に反応させることで、電力、熱、および水を同時に発生させるものである。
1. Fuel cell and fuel cell stack structure:
The fuel cell is a solid polymer electrolyte fuel cell (PEFC), and electrically reacts a fuel gas containing hydrogen with an oxidant gas containing oxygen such as air, thereby generating electric power, heat, and Water is generated at the same time.

燃料電池はアノードおよびカソードの一対の極を備える燃料電池セル(単セル)が複数個直列に接続された積層構造を有するスタックにて構成されている。   A fuel cell is configured by a stack having a stacked structure in which a plurality of fuel cells (single cells) having a pair of anode and cathode electrodes are connected in series.

図1に燃料電池スタックを示す。燃料電池が備えるスタックは、基本単位構成である単セル(単電池モジュール)205を複数個積層し、集電板203、絶縁板202、端板201で両側から所定の荷重で締結され構成されている。それぞれの集電板203には電流取り出し端子部203aが設けられており、発電時にここから電流、すなわち電池が取り出される。それぞれの絶縁板202は、集電板203と端板201の間を絶縁するとともに、図示しないガスや冷却水の導入口、排出口が設けられている場合もある。それぞれの端板201は複数枚積層された単セル205と集電板203、絶縁板202を図示しない加圧手段によって所定の荷重で締結し保持している。   FIG. 1 shows a fuel cell stack. A stack provided in a fuel cell is formed by stacking a plurality of single cells (single cell modules) 205 which are basic unit configurations, and are fastened with a predetermined load from both sides by a current collector plate 203, an insulating plate 202, and an end plate 201. Yes. Each current collecting plate 203 is provided with a current extraction terminal portion 203a from which a current, that is, a battery is extracted during power generation. Each of the insulating plates 202 insulates between the current collector plate 203 and the end plate 201, and may be provided with a gas or cooling water inlet / outlet (not shown). Each end plate 201 fastens and holds a single cell 205, a current collecting plate 203, and an insulating plate 202, which are stacked, with a predetermined load by a pressing means (not shown).

図1に示すように、単セル205はMEA207を一対のセパレータ206、208で挟むようにして構成されている。MEA207は水素イオンを選択的に輸送する高分子電解質膜のアノード面側に触媒層(アノード側触媒層)を形成し、カソード面側にも、触媒層(カソード側触媒層)を形成し、これらの触媒層の外面に、燃料ガスあるいは酸化剤ガスの通気性と、電子伝導性を併せ持つガス拡散層を配置して構成されたものである。   As shown in FIG. 1, the single cell 205 is configured such that the MEA 207 is sandwiched between a pair of separators 206 and 208. The MEA 207 forms a catalyst layer (anode side catalyst layer) on the anode surface side of the polymer electrolyte membrane that selectively transports hydrogen ions, and also forms a catalyst layer (cathode side catalyst layer) on the cathode surface side. The gas diffusion layer having both the gas permeability of the fuel gas or the oxidant gas and the electron conductivity is arranged on the outer surface of the catalyst layer.

セパレータ206、208は、ガス不透過性の導電性材料であればよく、例えば樹脂含浸カーボン材料を所定の形状に切削したもの、カーボン粉末と樹脂材料の混合物を成形したものが一般的に用いられる。セパレータ206、208におけるMEA207と接触する部分には凹状の溝部が形成されており、この溝部がガス拡散層と接することで、電極面に燃料ガスあるいは酸化剤ガスを供給し、余剰ガスを運び去るためのガス流路が形成されている。   The separators 206 and 208 may be any gas-impermeable conductive material. For example, a material obtained by cutting a resin-impregnated carbon material into a predetermined shape or a mixture of carbon powder and a resin material is generally used. . A concave groove is formed in a portion of the separators 206 and 208 that contacts the MEA 207. When the groove contacts the gas diffusion layer, fuel gas or oxidant gas is supplied to the electrode surface, and excess gas is carried away. A gas flow path is formed.

2.電解質膜―電極接合体(MEA)の構造:
図2に単セルのMEAの端面近傍における模式図を示す。
2. Structure of electrolyte membrane-electrode assembly (MEA):
FIG. 2 shows a schematic diagram in the vicinity of the end face of the single-cell MEA.

単セルは、高分子電解質膜213の片方の面にアノード電極211が接合され、高分子電解質膜213の他方の面にカソード電極210が接合されて形成される電極部212と、この電極部の周縁部に配置され、かつアノード電極211とカソード電極210にそれぞれ燃料ガス及び酸化剤ガスを供給するガス供給部を有する枠体部218とにより構成される電極―膜―枠接合体(MEA)と、MEAをアノード側及びカソード側から挟む一対のセパレータとを備える。この単セルを複数個積層して組み立てることで高分子電解質型燃料電池が形成される。   The unit cell includes an electrode part 212 formed by joining the anode electrode 211 to one surface of the polymer electrolyte membrane 213 and joining the cathode electrode 210 to the other surface of the polymer electrolyte membrane 213, An electrode-membrane-frame assembly (MEA) formed by a frame body portion 218 disposed on the peripheral edge and having a gas supply portion for supplying fuel gas and oxidant gas to the anode electrode 211 and the cathode electrode 210, respectively. And a pair of separators sandwiching the MEA from the anode side and the cathode side. A polymer electrolyte fuel cell is formed by assembling a plurality of single cells.

図2に示すように、枠体部218は、平面的に枠形状を有する第1の枠部材215と、同じく枠形状を有する第2の枠部材216、第3の枠部材214とが射出成形により一体的に接合されることにより形成されている。更に、第1の枠部材215と第2の枠部材216、第3の枠部材214との間には、電極部212の高分子電解質膜213における周縁部が挟まれるように配置された状態で、3つの部材によって密接に接合されて保持されている。また、第2の枠部材216と第3の枠部材214における境界部の接合面は、射出成形時に高分子電解質膜213を押さえこむため、くし歯形状217となっている。   As shown in FIG. 2, the frame body portion 218 includes a first frame member 215 having a frame shape in a plan view, and a second frame member 216 and a third frame member 214 having the same frame shape, which are injection-molded. It is formed by integrally joining. Further, the first frame member 215, the second frame member 216, and the third frame member 214 are disposed so that the peripheral edge portion of the polymer electrolyte membrane 213 of the electrode portion 212 is sandwiched between them. The three members are closely joined and held. In addition, the joint surface at the boundary between the second frame member 216 and the third frame member 214 has a comb-tooth shape 217 in order to hold down the polymer electrolyte membrane 213 during injection molding.

3.電解質膜―電極接合体(MEA)の形成方法:
上述の構成を有するMEAを射出成形により形成する方法について、図3〜5に示す説明図を用いて説明する。
3. Method for forming electrolyte membrane-electrode assembly (MEA):
A method for forming the MEA having the above-described configuration by injection molding will be described with reference to explanatory diagrams shown in FIGS.

図3は第1の枠部材215の上に高分子電解質膜213を載せた状態の断面図を示す。   FIG. 3 shows a cross-sectional view of a state in which the polymer electrolyte membrane 213 is placed on the first frame member 215.

まず、高分子電解質膜213の周縁部を保持するような第1の枠部材215を、予め射出成形にて形成しておく。図4に次工程における、第2の枠部材を形成した状態を示す。この工程では、第1の枠部材215を射出成形の金型に挿入し、その上に、高分子電解質膜213の片方の面にアノード電極211、他方の面にカソード電極210が接合されている電極部を配置する。その後、金型に高分子電極質膜と電極部を配置した後、高分子電解質に対して第1の枠部材と反対側に、射出成形により樹脂を流動させ、第2の枠部材216を形成する。   First, a first frame member 215 that holds the periphery of the polymer electrolyte membrane 213 is formed in advance by injection molding. FIG. 4 shows a state in which the second frame member is formed in the next step. In this step, the first frame member 215 is inserted into an injection mold, and the anode electrode 211 is joined to one surface of the polymer electrolyte membrane 213 and the cathode electrode 210 is joined to the other surface. An electrode part is arranged. Then, after arranging the polymer electrode membrane and the electrode part in the mold, the resin is flowed by injection molding on the side opposite to the first frame member with respect to the polymer electrolyte to form the second frame member 216. To do.

樹脂を高分子膜の上面部より注入すると、樹脂の注入圧により膜を損傷させる可能性があるため、図4に示されている矢印における膜の端面部の横方向より注入するようにする。また、第2の枠部材216における高分子電解質膜の周縁端面上面部は、膜の端面部を境にくし歯形状となっている。図4の模式図の上面矢視図を図5に示す。   If the resin is injected from the upper surface portion of the polymer film, the film may be damaged by the injection pressure of the resin. Therefore, the resin is injected from the lateral direction of the end surface portion of the film in the arrow shown in FIG. Further, the upper surface portion of the peripheral end surface of the polymer electrolyte membrane in the second frame member 216 has a comb-tooth shape with the end surface portion of the membrane as a boundary. FIG. 5 shows a top view of the schematic diagram of FIG.

高分子電解質膜の端面部219は、所定の間隔で交互に配置されたくし歯形状の金型膜押さえ部(枠体部218)によって押さえられ、また、金型で押さえられていない部分(第2の枠部材のくし歯形状境界部217)に樹脂が流動し、第2の枠部材が形成される。高分子膜の端面部を狭ピッチのくし歯形状の金型で押さえ、その間に樹脂を流動させるため、膜の周縁部が浮き上がったり、めくり上がったりすることなく、第2の枠材が形成される。   The end surface portions 219 of the polymer electrolyte membrane are pressed by comb-shaped mold film pressing portions (frame body portions 218) alternately arranged at predetermined intervals, and are not pressed by the mold (second portion). The resin flows into the comb-shaped boundary portion 217) of the frame member to form the second frame member. Since the end face of the polymer film is pressed with a narrow pitch comb-shaped mold and the resin flows in the meantime, the second frame material is formed without the peripheral edge of the film rising or turning up. .

このくし歯のピッチは、1.0mm〜3.0mmが適切である。ピッチが1.0mm未満の場合、くし歯の凹部の間に樹脂が流動しにくく、充填不良が発生してしまい、また、第2の枠部材と第3の枠部材の接合部長さが長くなり、ガス漏れの要因となってしまう。一方、ピッチが3.0より大きい場合、金型の押さえでも電解質膜のしわが解消できず、膜めくれの要因となってしまう。ピッチを1.0mmから3.0mmの範囲で調整する必要があり、膜の厚みや強度により決定する。   An appropriate pitch of the comb teeth is 1.0 mm to 3.0 mm. When the pitch is less than 1.0 mm, the resin does not flow easily between the concave portions of the comb teeth, causing poor filling, and the joint length between the second frame member and the third frame member becomes long. This will cause gas leakage. On the other hand, when the pitch is larger than 3.0, the wrinkles of the electrolyte membrane cannot be eliminated even by pressing the mold, which causes the film to turn up. It is necessary to adjust the pitch in the range of 1.0 mm to 3.0 mm, which is determined by the thickness and strength of the film.

膜の厚さが薄く強度が弱い場合は、膜が射出成形にてめくれやすいため、ピッチを細かくする必要がある。また、膜の端面から金型押さえの単面までの距離は0.5mm〜2.0mmくらいが適切であり、膜の端面から第2の枠部材の端面までの距離も0.5mm〜2.0mmくらいが適切であり、膜の端面外形寸法のばらつきや、膜の金型への配置のズレばらつきにより決定する必要がある。ばらつきが大きいほど、膜端面から金型押さえの端面までの距離や第2枠部材の端面までの距離を大きくする必要がある。   When the thickness of the film is thin and the strength is weak, it is necessary to make the pitch fine because the film is easily turned by injection molding. Further, the distance from the end face of the film to the single face of the mold holder is suitably about 0.5 mm to 2.0 mm, and the distance from the end face of the film to the end face of the second frame member is also 0.5 mm to 2 mm. A value of about 0 mm is appropriate and needs to be determined based on variations in the outer dimensions of the end face of the film and variations in the arrangement of the film on the mold. The greater the variation, the greater the distance from the film end face to the end face of the mold holder and the end face of the second frame member.

図6に次工程の模式図を示す。高分子電解質膜213の上面に、第2の枠部材と同じ厚みで、第2の枠部材の上面から樹脂を流動させ、第3の枠部材214を形成する。このとき、第2の枠部材の先端くし歯形状にて、高分子膜の周縁上面部を覆いかぶせているので、第3の枠部材を形成するとき、膜のめくれが発生しない。   FIG. 6 shows a schematic diagram of the next step. A third frame member 214 is formed on the upper surface of the polymer electrolyte membrane 213 by flowing resin from the upper surface of the second frame member with the same thickness as the second frame member. At this time, since the top surface of the peripheral edge of the polymer film is covered with the comb shape of the tip of the second frame member, the film is not turned over when the third frame member is formed.

アノード側に酸素を含む酸化剤ガス、カソード側に水素を含む燃料ガスを供給し、燃料電池として発電を行う場合、ガスの圧力にて高分子膜が変形し、発電効率を低下させてしまう。本発明においては、第2の枠部材の端面部と第3の枠部材の端面部は、くし歯形状にて接合しており、第2の枠部材と第3の枠部材の接触面積が大きく、強固に接合されている状態となっているため、枠体の強度が強く、高分子膜の変形を少なくすることができる。また、枠体の強度が強いため、組み立て時におけるハンドリング性も向上する。   When an oxidant gas containing oxygen is supplied to the anode side and a fuel gas containing hydrogen is supplied to the cathode side to generate power as a fuel cell, the polymer film is deformed by the pressure of the gas and power generation efficiency is reduced. In the present invention, the end surface portion of the second frame member and the end surface portion of the third frame member are joined in a comb shape, and the contact area between the second frame member and the third frame member is large. Since it is in a state of being firmly joined, the strength of the frame body is strong, and deformation of the polymer film can be reduced. In addition, since the strength of the frame is strong, handling properties during assembly are also improved.

(その他の実施の形態)
図7は、本発明のその他の実施の形態に係る電極−膜−枠接合体の断面図を示し、図8にその斜視図(模式図)を示す。
(Other embodiments)
FIG. 7 shows a cross-sectional view of an electrode-membrane-frame assembly according to another embodiment of the present invention, and FIG. 8 shows a perspective view (schematic diagram) thereof.

上述の実施の形態においては、第2の枠材部と第3の枠材部の厚みを同一にして、総厚みを薄くするようにしているが、図7に示すように、第2の枠部材216の上面に第3の枠部材214を覆いかぶせる方法もあり得る。   In the above-described embodiment, the second frame member and the third frame member have the same thickness so as to reduce the total thickness. However, as shown in FIG. There may be a method in which the upper surface of the member 216 is covered with the third frame member 214.

第3の枠部材の射出成形時に、第2の枠部材と第3の枠部材におけるくし歯形状部を覆いかぶせるため、くし歯形状部境界部と第3の枠部材が溶融状態で接合するため、第2の枠部材と第3の枠部材の接合強度が向上する。燃料電池として使用する場合、電極―膜―枠接合体(MEA)に荷重をかけた状態で積層するため、第2の枠部材と第3の枠部材の境界部と、その上面を覆っている第3の枠部材がさらに密着するので、気密性も向上し、クロスリークの可能性もさらに低下する。   To comb the comb-shaped portions of the second frame member and the third frame member at the time of injection molding of the third frame member, so that the comb-tooth shaped portion boundary portion and the third frame member are joined in a molten state. The bonding strength between the second frame member and the third frame member is improved. When used as a fuel cell, the electrode-membrane-frame assembly (MEA) is laminated with a load applied, and therefore covers the boundary between the second frame member and the third frame member and the upper surface thereof. Since the third frame member further adheres, the airtightness is improved and the possibility of cross leak is further reduced.

また、図9に示すように、枠部材の厚みを厚くせずに、第2の枠部材と第3の枠部材の接合強度や気密性を向上させる方法も有り得る。   Also, as shown in FIG. 9, there may be a method of improving the bonding strength and airtightness of the second frame member and the third frame member without increasing the thickness of the frame member.

第2の枠部材と第3の枠部材の平面からの接合状態は、くし歯形状であるが、断面図における接合面は、図9に示すような垂直面ではなく、斜面形状とすることで向上させることができる。図10に第2の枠部材を射出成形した状態を示す。第2の枠部材のくし歯先端部における断面形状は、斜面や段差形状になるように形成する。その後、第3の枠部材を第2の枠部材と同一の厚みで形成することで、第2の枠部材における第3の枠部材と接する先端部を垂直形状にする場合より、斜面や段差形状にする形態の方が、接触面積が大きくなり接合強度や気密性が向上する。   The bonding state from the plane of the second frame member and the third frame member is a comb-tooth shape, but the bonding surface in the cross-sectional view is not a vertical surface as shown in FIG. Can be improved. FIG. 10 shows a state where the second frame member is injection-molded. The cross-sectional shape at the comb tooth tip of the second frame member is formed to be a slope or a step shape. After that, the third frame member is formed with the same thickness as the second frame member, so that the tip portion of the second frame member that contacts the third frame member has a vertical shape, as compared with the case where the tip is in a vertical shape. In the embodiment, the contact area is increased and the bonding strength and airtightness are improved.

(その他の実施の形態2)
上記のような電極―膜―枠接合体(MEA)の構成でも、十分にクロスリークを低減させることができるが、さらなる良好な方法として、その他の実施の形態2の断面図を図11に示し、図12にはその斜視図(模式図)を示す。
(Other embodiment 2)
Even with the configuration of the electrode-membrane-frame assembly (MEA) as described above, cross-leakage can be sufficiently reduced. As a better method, a cross-sectional view of other embodiment 2 is shown in FIG. FIG. 12 shows a perspective view (schematic diagram).

アノード電極211と第1の枠部材215との間と、カソード電極210と第3の枠部材214の間に隙間が設定されているため、その隙間を無くす方法である。   Since gaps are set between the anode electrode 211 and the first frame member 215 and between the cathode electrode 210 and the third frame member 214, the gap is eliminated.

図11にアノード電極側、図12にアノード電極側とカソード電極側の隙間を無くした状態の模式図を示す。   FIG. 11 is a schematic diagram showing a state in which the gap between the anode electrode side and the cathode electrode side is eliminated, and FIG.

カソード電極側に図11に示すように、高分子電解質膜に対して第1の枠部材215の反対側に第2の枠部材216aを射出成形にて形成するが、その工程と同時に、アノード電極211と第1の枠部材215の間にも樹脂216bを流動させ、アノード電極と第1の枠部材の隙間を埋めてしまう。この第2の枠部材において、アノード電極側とカソード電極側の成形を、別々の工程で形成することも可能であるが、同時に成形することにより工程数を削減することができる。   As shown in FIG. 11 on the cathode electrode side, a second frame member 216a is formed by injection molding on the opposite side of the first frame member 215 with respect to the polymer electrolyte membrane. The resin 216b is caused to flow also between 211 and the first frame member 215, filling the gap between the anode electrode and the first frame member. In this second frame member, the anode electrode side and the cathode electrode side can be formed in separate steps, but the number of steps can be reduced by forming them simultaneously.

その後、図12に示すように、カソード電極210と第2の枠部材216aの間に樹脂を流動させ、高分子膜を覆いかぶせるように第3の枠部材214を形成する。この方法により、高分子膜が完全に枠部材に覆われ、露出部分が無くなるため、さらにクロスリークを低減させることができる。   Thereafter, as shown in FIG. 12, the resin is caused to flow between the cathode electrode 210 and the second frame member 216a, and the third frame member 214 is formed so as to cover the polymer film. By this method, the polymer film is completely covered with the frame member, and the exposed portion is eliminated, so that the cross leak can be further reduced.

(その他の実施の形態3)
図13はその他の実施の形態3に係る、第2の枠部材、第3の枠部材、第4の枠部材に弾性体(エラストマーなど)のシール機能を持った材料を使用した場合の模式図を示す。
(Other embodiment 3)
FIG. 13 is a schematic diagram in the case where a material having a sealing function of an elastic body (elastomer or the like) is used for the second frame member, the third frame member, and the fourth frame member according to the third embodiment. Indicates.

製作する工程として、第1の枠部材215の上に、アノード電極211とカソード電極210が接合された高分子電解質膜213をのせる。次に、エラストマーなどの弾性機能を持つ第1のシール部材220を、アノード電極端面と密着し、また、高分子電解質膜213の上面もしくは第1の枠部材215の上面に、突起形状221が形成できるように射出成形する。   As a manufacturing process, the polymer electrolyte membrane 213 in which the anode electrode 211 and the cathode electrode 210 are joined is placed on the first frame member 215. Next, the first sealing member 220 having an elastic function such as an elastomer is brought into close contact with the end face of the anode electrode, and the protrusion shape 221 is formed on the upper surface of the polymer electrolyte membrane 213 or the upper surface of the first frame member 215. Injection molding as possible.

エラストマーはゴム状の弾性機能を持った熱可塑性樹脂で、射出成形が可能であるため、さまざまな形を形成するには適切な材料である。次に、第2の枠部材222を高分子電解質膜213がめくれ上がらないように、くし歯形状に形成する。このとき、第1のシール部材220と第2の枠部材222の間には、高分子電解質膜213、若しくは、第1の枠部材215が存在しているため、第2の枠部材222の材質を第1のシール部材220の材質と同じにすることにより、同時に射出成形することができ、成形工程を削減することが可能となる。   An elastomer is a thermoplastic resin having a rubber-like elastic function and can be injection-molded. Therefore, an elastomer is a suitable material for forming various shapes. Next, the second frame member 222 is formed in a comb shape so that the polymer electrolyte membrane 213 does not turn up. At this time, since the polymer electrolyte membrane 213 or the first frame member 215 exists between the first seal member 220 and the second frame member 222, the material of the second frame member 222 By making the same as the material of the first seal member 220, it is possible to perform injection molding at the same time and to reduce the molding process.

次に、カソード電極210および第2の枠部材222と密着するように第2のシール部材224を、高分子電解質膜213の上面部に突起形状224を形成するように成形する。高分子電解質膜213の周縁部213aは、第2の枠部材222のくし歯における凸形状部にて第1の枠部材と密着されているため、第2のシール部材を射出成形するとき、膜めくれは発生しにくい。   Next, the second seal member 224 is shaped so as to form a projection shape 224 on the upper surface portion of the polymer electrolyte membrane 213 so as to be in close contact with the cathode electrode 210 and the second frame member 222. Since the peripheral edge portion 213a of the polymer electrolyte membrane 213 is in close contact with the first frame member at the convex portion of the comb teeth of the second frame member 222, when the second seal member is injection molded, the membrane Turn-over is unlikely to occur.

このとき、第2の枠部材222において、膜の端面部を押さえている、くし歯形状凸部の上面を、金型で部分的に押さえながら第2のシール部材223を射出成形することにより、膜めくれの問題がさらに解消される。金型を部分的に凸形状にし、第2の枠部材に若干の押さえ跡が付く程度に押さえつける。第2の枠部材の表面からの押さえつけ量(金型における突起高さ)は、PP材などのかたい樹脂では、0.01〜0.02mm程度、エラストマーなどの弾性体においては0.05〜0.1mm程度が適切である。   At this time, in the second frame member 222, the second seal member 223 is injection-molded while partially pressing the upper surface of the comb-shaped convex portion holding the end surface portion of the film with a mold, The problem of film turning is further eliminated. The mold is partially convex and pressed to such an extent that a slight press mark is attached to the second frame member. The pressing amount (projection height in the mold) from the surface of the second frame member is about 0.01 to 0.02 mm for a hard resin such as PP material, and 0.05 to 0 for an elastic body such as an elastomer. About 1 mm is appropriate.

このような電極―膜―枠接合体を形成することにより、電解質膜のアノード側、およびカソード側に対してそれぞれ、弾性体の突起におけるリップ形状が形成される。この電極―膜―枠接合体をアノード側およびカソード側から、セパレータで挟み込むことにより、リップ形状221と224の頂点部がセパレータに強く押し付けられることにより、その部分がガスに対するシール機構となり、カソード電極210およびアノード電極211から発生するガスを、外部に漏れることを防止することができる。   By forming such an electrode-membrane-frame assembly, lip shapes on the protrusions of the elastic body are formed on the anode side and the cathode side of the electrolyte membrane, respectively. By sandwiching the electrode-membrane-frame assembly from the anode side and the cathode side with the separator, the apexes of the lip shapes 221 and 224 are strongly pressed against the separator, so that the portion becomes a sealing mechanism against the gas, and the cathode electrode The gas generated from 210 and the anode electrode 211 can be prevented from leaking outside.

本発明における工法を用いれば、家庭用コジェネシステム燃料電池や自動車用燃料電池、携帯電話などの基地局用電源の燃料電池などに適用可能である。   If the construction method in the present invention is used, it can be applied to a cogeneration system fuel cell for home use, a fuel cell for automobiles, a fuel cell for a power source for base stations such as a mobile phone and the like.

210 カソード電極
211 アノード電極
212 電極部
117,213 高分子電解質膜
214 第3の枠部材
215 第1の枠部材
216,216a,222 第2の枠部材
217 くし歯形状(第2の枠部材のくし歯形状境界部)
218 枠体部
210 Cathode electrode 211 Anode electrode 212 Electrode portion 117, 213 Polymer electrolyte membrane 214 Third frame member 215 First frame member 216, 216a, 222 Second frame member 217 Comb shape (comb of second frame member) (Tooth shape boundary)
218 Frame part

Claims (8)

高分子電解質膜の一方の面にアノード電極が配置され、他方の面にカソード電極が配置され、前記高分子電解質膜の周縁部に設けられ、上記アノード電極及び上記カソード電極にそれぞれ燃料ガスおよび酸化剤ガスを供給するガス供給部を有する枠体と、を有する高分子電解質型燃料電池の電極−膜−枠接合体において、
前記高分子電解質膜の周縁部のうち前記高分子電解質膜の上下面は樹脂で覆いかぶされ構成されてなること、
を特徴とする高分子電解質型燃料電池の電極−膜−枠接合体。
An anode electrode is disposed on one surface of the polymer electrolyte membrane, a cathode electrode is disposed on the other surface, and is provided at a peripheral portion of the polymer electrolyte membrane. The anode and the cathode electrode are respectively provided with fuel gas and oxidation. An electrode-membrane-frame assembly of a polymer electrolyte fuel cell having a frame body having a gas supply section for supplying an agent gas,
The upper and lower surfaces of the polymer electrolyte membrane among the peripheral portions of the polymer electrolyte membrane are configured to be covered with a resin,
An electrode-membrane-frame assembly of a polymer electrolyte fuel cell characterized by
前記高分子電解質膜の周縁部のうち、前記高分子電解質膜の第1の面側に第1の枠部材が配置され、第2の面側にはくし歯形状の第2の枠部材が配置される、請求項1記載の高分子電解質型燃料電池の電極−膜−枠接合体。   A first frame member is disposed on the first surface side of the polymer electrolyte membrane, and a comb-shaped second frame member is disposed on the second surface side of the periphery of the polymer electrolyte membrane. The electrode-membrane-frame assembly of a polymer electrolyte fuel cell according to claim 1. 前記高分子電解質膜のうち第2の面側の表面に第3の枠部材が配置され、前記第2の枠部材と前記第3の枠部材とは密接に接合されて保持される、請求項2記載の高分子電解質型燃料電池の電極−膜−枠接合体。   The third frame member is disposed on a surface on the second surface side of the polymer electrolyte membrane, and the second frame member and the third frame member are closely joined and held. 3. An electrode-membrane-frame assembly of a polymer electrolyte fuel cell according to 2. 前記高分子電解質膜のうち第2の面側の表面に第3の枠部材が配置され、前記第3の枠部材は、前記第2の枠部材の上面に覆いかぶせられ構成される、請求項2記載の高分子電解質型燃料電池の電極−膜−枠接合体。   The third frame member is disposed on a second surface side surface of the polymer electrolyte membrane, and the third frame member is configured to be covered with an upper surface of the second frame member. 3. An electrode-membrane-frame assembly of a polymer electrolyte fuel cell according to 2. 前記はくし歯形状の第2の枠部材のうち、凸部は複数段で構成されてなる、請求項2記載の高分子電解質型燃料電池の電極−膜−枠接合体。   3. The electrode-membrane-frame assembly of a polymer electrolyte fuel cell according to claim 2, wherein, of the comb-shaped second frame member, the convex portion is formed of a plurality of steps. 前記高分子電解質膜は、前記アノード電極、前記カソード電極、及び、前記第1〜3の枠部材によって露出されない状態で構成されてなる、請求項3〜5の何れか一項に記載の高分子電解質型燃料電池の電極−膜−枠接合体。   The polymer electrolyte membrane according to any one of claims 3 to 5, wherein the polymer electrolyte membrane is configured not to be exposed by the anode electrode, the cathode electrode, and the first to third frame members. Electrode-membrane-frame assembly of an electrolyte fuel cell. 請求項1〜6に記載の高分子電解質型燃料電池の電極−膜−枠接合体を、一対のセパレータによって挟み、それを複数の単電池モジュールを積層して組み立てられ構成されることを特徴とする高分子電解質型燃料電池。   The electrode-membrane-frame assembly of the polymer electrolyte fuel cell according to claim 1 is sandwiched between a pair of separators, and a plurality of unit cell modules are stacked and assembled. A polymer electrolyte fuel cell. 高分子電解質膜の一方の面にアノード電極が配置され、他方の面にカソード電極が配置され、前記高分子電解質膜の周縁部に設けられた枠体で構成される高分子電解質型燃料電池の電極−膜−枠接合体を製造する方法において、
第1の枠部材の上に前記高分子電解質膜の一部を載置し、前記第1の枠部材と金型とで前記高分子電解質膜の周縁部を固定して、前記第1の枠部材が配置される側とは反対の前記高分子電解質膜の周縁部に第2の枠部材を射出成形し、
前記高分子電解質膜の周縁部と前記第2の枠部材との間に第3の枠部材を射出成形すること、
を特徴とする、高分子電解質型燃料電池の電極−膜−枠接合体の製造方法。
An anode electrode is disposed on one surface of a polymer electrolyte membrane, a cathode electrode is disposed on the other surface, and a polymer electrolyte fuel cell comprising a frame body provided on a peripheral portion of the polymer electrolyte membrane. In a method for producing an electrode-membrane-frame assembly,
A portion of the polymer electrolyte membrane is placed on the first frame member, a peripheral portion of the polymer electrolyte membrane is fixed with the first frame member and a mold, and the first frame A second frame member is injection-molded on the periphery of the polymer electrolyte membrane opposite to the side where the member is disposed;
Injection molding a third frame member between a peripheral portion of the polymer electrolyte membrane and the second frame member;
A method for producing an electrode-membrane-frame assembly of a polymer electrolyte fuel cell, characterized in that:
JP2011090777A 2011-04-15 2011-04-15 Electrode-membrane-frame assembly of polymer electrolyte fuel cell and method for producing the same Withdrawn JP2012226848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011090777A JP2012226848A (en) 2011-04-15 2011-04-15 Electrode-membrane-frame assembly of polymer electrolyte fuel cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011090777A JP2012226848A (en) 2011-04-15 2011-04-15 Electrode-membrane-frame assembly of polymer electrolyte fuel cell and method for producing the same

Publications (1)

Publication Number Publication Date
JP2012226848A true JP2012226848A (en) 2012-11-15

Family

ID=47276832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011090777A Withdrawn JP2012226848A (en) 2011-04-15 2011-04-15 Electrode-membrane-frame assembly of polymer electrolyte fuel cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP2012226848A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5575345B1 (en) * 2013-03-21 2014-08-20 パナソニック株式会社 Single polymer module of polymer electrolyte fuel cell and polymer electrolyte fuel cell
WO2014147926A1 (en) * 2013-03-21 2014-09-25 パナソニック株式会社 Single cell module for solid polymer fuel cells, and solid polymer fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5575345B1 (en) * 2013-03-21 2014-08-20 パナソニック株式会社 Single polymer module of polymer electrolyte fuel cell and polymer electrolyte fuel cell
WO2014147926A1 (en) * 2013-03-21 2014-09-25 パナソニック株式会社 Single cell module for solid polymer fuel cells, and solid polymer fuel cell

Similar Documents

Publication Publication Date Title
KR100901568B1 (en) Manufacturing method for metal seperator of fuel cell
US9034536B2 (en) Fuel cell having voltage monitor terminal with exposed portion
US11038190B2 (en) Membrane electrode assembly, fuel cell comprising assembly of this type and motor vehicle comprising said fuel cell
JP4243648B2 (en) POLYMER ELECTROLYTE FUEL CELL AND METHOD FOR PRODUCING ELECTRODE-MEMBRANE-FRAME ASSEMBLY
JP4488109B2 (en) Fuel cell
JPWO2008001755A1 (en) Solid polymer electrolyte fuel cell
US10044047B2 (en) Electrode-membrane-frame assembly, method for producing the same, and fuel cell
US10476085B2 (en) Separator for fuel cells and method for producing same
US9196911B2 (en) Fuel cell gas diffusion layer integrated gasket
US9680166B2 (en) Integrated gas diffusion layer with sealing function and method of making the same
JP2014132548A (en) Fuel battery
JP2008171613A (en) Fuel cells
US10003098B2 (en) Fuel cell
JP2013145653A (en) Electrolyte membrane/electrode structure with resin frame for fuel cell
JP2012195128A (en) Gasket for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2012226848A (en) Electrode-membrane-frame assembly of polymer electrolyte fuel cell and method for producing the same
US9350034B2 (en) Fuel cell gas diffusion layer integrated gasket
JP6194186B2 (en) Fuel cell
JP2013157095A (en) Fuel cell
KR102159484B1 (en) Separator, and Fuel cell stack comprising the same
JP2016091936A (en) Method for manufacturing resin frame-attached electrolyte membrane-electrode structure for fuel battery
JP6144241B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP6090799B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP2014165040A (en) Structure of electrode-membrane-frame assembly for polymer electrolyte fuel cell and manufacturing method therefor, and polymer electrolyte fuel cell
JP2008010297A (en) Gasket integrated with reinforcing frame body, and its manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701