JP2012225660A - Method for manufacturing phase type diffraction grating for x-ray talbot interferometer - Google Patents

Method for manufacturing phase type diffraction grating for x-ray talbot interferometer Download PDF

Info

Publication number
JP2012225660A
JP2012225660A JP2011090609A JP2011090609A JP2012225660A JP 2012225660 A JP2012225660 A JP 2012225660A JP 2011090609 A JP2011090609 A JP 2011090609A JP 2011090609 A JP2011090609 A JP 2011090609A JP 2012225660 A JP2012225660 A JP 2012225660A
Authority
JP
Japan
Prior art keywords
diffraction grating
groove
ray
resin
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011090609A
Other languages
Japanese (ja)
Other versions
JP5656726B2 (en
Inventor
Yoshitomo Nakagawa
良知 中川
Yoshiharu Shirakawabe
喜春 白川部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2011090609A priority Critical patent/JP5656726B2/en
Publication of JP2012225660A publication Critical patent/JP2012225660A/en
Application granted granted Critical
Publication of JP5656726B2 publication Critical patent/JP5656726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of easily and highly accurately manufacturing a phase type diffraction grating for an x-ray Talbot interferometer without requiring an exposure mask.SOLUTION: The method for manufacturing a phase type diffraction grating 10 for an x-ray Talbot interferometer, which is configured by forming a plurality of ridge parts 10b and interposing a resin part 12 between adjacent ridge parts 10b, includes: a mold formation step for cutting groove parts on a mold base material 50 by a single-crystal diamond cutter 200 so that the width of each groove is 4 μm or less; a resin formation step for applying pressure immersion of heated mold to a coating surface of a substrate obtained by applying uncured resin to a surface on which a seed layer is formed, and thereafter cooling the uncured resin to temperature at which the uncured resin is cured, separating the mold from the substrate to form the resin part having a projected part and a groove part; and a formation step of a ridge part of a diffraction grating for forming the ridge parts by electroforming a metal of thickness capable of changing, by π/2, phase of an x-ray to be applied when the groove part obtains an image by an x-ray interferometer to the groove part of the resin part.

Description

本発明は、位相型のX線タルボ干渉計用回折格子の製造方法に関する。   The present invention relates to a method of manufacturing a diffraction grating for a phase type X-ray Talbot interferometer.

回折格子を用い、空間的に可干渉な光源からの光を透過させると、回折格子から特定の距離において、回折格子の自己像を形成するタルボ効果が知られている。近年、このタルボ効果を用い、透過X線の位相シフトを検出するX線タルボ干渉計が開発されている。タルボ効果を利用し、X線の位相シフトにより得られる画像は、従来の透過X線の吸収の大小によって得られる画像に比べ、特に原子番号の小さな物質でコントラストが高いという利点がある。
このようなX線タルボ干渉計100として、図1に示すように、第1の回折格子10および第2の回折格子20と、X線画像検出器30とを備えた構成が知られている(特許文献1参照)。第1の回折格子10および第2の回折格子20は、図2に示すように、金属板の一方向に所定間隔で溝10a、20aを形成し、溝からX線を透過させる一方、隣接する溝の間の畝部10bではX線の位相をπ/2だけシフトして透過させ、畝部20bでX線を遮蔽(吸収)するようになっている。回折格子の材料としては、通常、X線吸収能の高い金(Au)を用いている。
When a diffraction grating is used and light from a spatially coherent light source is transmitted, a Talbot effect that forms a self-image of the diffraction grating at a specific distance from the diffraction grating is known. In recent years, an X-ray Talbot interferometer that detects the phase shift of transmitted X-rays using this Talbot effect has been developed. The image obtained by utilizing the Talbot effect and the phase shift of the X-ray has an advantage that the contrast is particularly high with a substance having a small atomic number, compared with the image obtained by the conventional absorption X-ray absorption.
As such an X-ray Talbot interferometer 100, as shown in FIG. 1, a configuration including a first diffraction grating 10, a second diffraction grating 20, and an X-ray image detector 30 is known ( Patent Document 1). As shown in FIG. 2, the first diffraction grating 10 and the second diffraction grating 20 form grooves 10 a and 20 a at a predetermined interval in one direction of a metal plate, and transmit X-rays from the grooves, but are adjacent to each other. In the flange portion 10b between the grooves, the phase of the X-ray is shifted by π / 2, and the X-ray is shielded (absorbed) by the flange portion 20b. As a material for the diffraction grating, gold (Au) having a high X-ray absorption ability is usually used.

このX線タルボ干渉計において、X線源から試料を介して第1の回折格子にX線を照射すると、溝部10aを透過したX線と畝部10bを透過回折したX線とが互いに干渉する。そして、第1の回折格子10のタルボ距離d/2λ(dは回折格子の周期、λはX線の波長)の整数倍の位置には、第1の回折格子10の自己像が現れる(タルボ効果)。この自己像には試料4による歪みが生じ、この歪みは試料の情報を持っている。第2の回折格子20は第1の回折格子10の自己像が現れる位置に配置される。そして第2の回折格子20を透過するX線の分布には、第1の回折格子の自己像が重なってモアレ縞が生じている。従って、このX線の分布をX線画像検出器で検出して、画像解析を行って試料4の像を得る。画像コントラストを向上させるには、第2の回折格子20の溝部20aのX線透過率が高く、畝部20bのX線透過率が低いと良い。そのため、第2の回折格子20は第1の回折格子10より厚い振幅型回折格子であることが好ましい。 In this X-ray Talbot interferometer, when the first diffraction grating is irradiated with X-rays from the X-ray source through the sample, the X-rays transmitted through the groove 10a and the X-rays transmitted and diffracted through the flange 10b interfere with each other. . Then, a self-image of the first diffraction grating 10 appears at a position that is an integral multiple of the Talbot distance d 2 / 2λ (d is the period of the diffraction grating, and λ is the wavelength of the X-ray) of the first diffraction grating 10 ( Talbot effect). This self-image is distorted by the sample 4, and this distortion has sample information. The second diffraction grating 20 is disposed at a position where the self-image of the first diffraction grating 10 appears. In the distribution of X-rays transmitted through the second diffraction grating 20, the moire fringes are generated by overlapping the self-images of the first diffraction grating. Therefore, this X-ray distribution is detected by an X-ray image detector, and image analysis is performed to obtain an image of the sample 4. In order to improve the image contrast, it is preferable that the X-ray transmittance of the groove portion 20a of the second diffraction grating 20 is high and the X-ray transmittance of the flange portion 20b is low. Therefore, the second diffraction grating 20 is preferably an amplitude type diffraction grating thicker than the first diffraction grating 10.

ここで、タルボ効果を生じさせるため、回折格子の畝部(X線吸収部)をX線の可干渉性を確保した周期にする必要がある。そのため畝部の周期を10μm以下程度としなければならない。さらに、位相型回折格子においては、位相シフト量がπ/2になるときに自己像のコントラストが最も高くなることから、これを実現するには、畝部の厚さ(溝の深さ)を1〜10μm程度とする必要があり、微細な加工や製造技術が要求される。
一方、振幅型回折格子として機能するためには、回折格子の溝部20aのX線透過率が高く、畝部20bのX線透過率が低いと良い。このため、金を用いても溝の深さを10〜100μm程度に深掘りすることが要求される。従って、回折格子の(溝の深さ)/(溝の幅)で表されるアスペクト比が非常に大きくなり、回折格子の製造が困難となる。
Here, in order to generate the Talbot effect, it is necessary to make the buttocks (X-ray absorption part) of the diffraction grating have a period that ensures the coherence of X-rays. Therefore, the period of the buttocks must be about 10 μm or less. Further, in the case of the phase type diffraction grating, the contrast of the self-image becomes the highest when the phase shift amount is π / 2. Therefore, in order to realize this, the thickness of the collar portion (groove depth) is set. It needs to be about 1 to 10 μm, and fine processing and manufacturing techniques are required.
On the other hand, in order to function as an amplitude type diffraction grating, it is preferable that the X-ray transmittance of the groove portion 20a of the diffraction grating is high and the X-ray transmittance of the flange portion 20b is low. For this reason, even if it uses gold | metal | money, it is requested | required to dig the depth of a groove | channel to about 10-100 micrometers. Therefore, the aspect ratio represented by (groove depth) / (groove width) of the diffraction grating becomes very large, making it difficult to manufacture the diffraction grating.

このようなことから、露光マスクを使ったリソグラフィーによって樹脂に深い溝を形成し、この溝に電鋳法によって畝部を形成させ、X線タルボ干渉計用の回折格子を製造する技術が開示されている(特許文献2参照)。
この技術においては、回折格子を製造するベースとなる基板に感光性樹脂を塗布し、露光マスクを使用してパターン露光する。これにより、基板から櫛歯状に突出する突出部を形成する。そして、この突出部を液状の合成樹脂に浸漬し、樹脂が硬化する直前に突出部を引き上げると、突出部に相当する部分に溝が形成された溝形成体を製造する。その後、溝の部分に電鋳法で金メッキを施し、樹脂部材の間に畝部形成して回折格子を製造することができる。このようにして、回折格子を大量生産することが可能となる。
For this reason, a technique for manufacturing a diffraction grating for an X-ray Talbot interferometer by forming a deep groove in a resin by lithography using an exposure mask and forming a flange in the groove by electroforming is disclosed. (See Patent Document 2).
In this technique, a photosensitive resin is applied to a substrate serving as a base for manufacturing a diffraction grating, and pattern exposure is performed using an exposure mask. Thereby, the protrusion part which protrudes in a comb-tooth shape from a board | substrate is formed. And if this protrusion part is immersed in a liquid synthetic resin and a protrusion part is pulled up just before resin hardens | cures, the groove | channel formation body by which the groove | channel was formed in the part corresponded to a protrusion part will be manufactured. Thereafter, the diffraction grating can be manufactured by performing gold plating on the groove portion by electroforming and forming a flange portion between the resin members. In this way, diffraction gratings can be mass-produced.

国際公開第2004/58070号International Publication No. 2004/58070 特開2006−259264号公報(図5、図6、図8)Japanese Patent Laying-Open No. 2006-259264 (FIGS. 5, 6, and 8)

しかしながら、特許文献2記載の技術の場合、櫛歯状の突出部をマスクによりレジスト形成するため、回折格子毎にマスクを用意しなければならず、X線源の種類や運転条件が変わった場合も格子間距離が変化するのでマスクを変更しなければならないという問題がある。例えば、X線源にX線管球を使った位相イメージングは球面波であるため、位相格子と振幅(吸収)格子とでは格子パターンの周期が異なる。さらに、測定試料に応じてX線管球の管電圧の最適値が変わり、それに伴ってタルボ効果が生じる自己像の位置、すなわち格子間距離も変わるので、マスクの変更が必要となる。   However, in the case of the technique described in Patent Document 2, since the comb-shaped protrusions are resist-formed with a mask, a mask must be prepared for each diffraction grating, and the type and operating conditions of the X-ray source have changed. However, since the interstitial distance changes, there is a problem that the mask must be changed. For example, since phase imaging using an X-ray tube as an X-ray source is a spherical wave, the phase of the grating pattern differs between the phase grating and the amplitude (absorption) grating. Furthermore, the optimum value of the tube voltage of the X-ray tube changes according to the measurement sample, and the position of the self-image where the Talbot effect occurs, that is, the interstitial distance also changes accordingly. Therefore, the mask needs to be changed.

従って、本発明の目的は、露光マスクを必要とせず、位相型回折格子を容易かつ高精度で製造することができるX線タルボ干渉計用位相型回折格子の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for manufacturing a phase type diffraction grating for an X-ray Talbot interferometer, which does not require an exposure mask and can manufacture a phase type diffraction grating easily and with high accuracy.

本発明は所定幅の金属又は合金製の畝部が一方向に一定の周期で複数形成され、隣接する畝部の間に樹脂部が介装されたX線タルボ干渉計用位相型回折格子の製造方法であって、モールド母材に単結晶ダイヤモンド製の刃具で一方向に一定の周期で複数の溝部を切削加工し、前記溝部が前記X線タルボ干渉計で画像を得るときに照射するX線の位相をπ/2変化させる畝部の厚さより深く、前記溝部と隣り合う前記溝部の間に形成される突出部の幅が前記溝部の幅と略同じで前記溝の幅が4μm以下であるモールド形成工程と、シード層が成膜された面に未硬化樹脂が塗布された基板の前記塗布面に、前記モールドを加熱した状態で加圧浸漬し、その後前記未硬化樹脂が硬化する温度に冷却して前記モールドを前記基板から離して、突出部と溝部を有する樹脂部を形成する樹脂形成工程と、前記樹脂部の前記溝部に、前記溝部が前記X線干渉計で画像を得るときに照射するX線の位相をπ/2変化させる厚さの金属を電鋳して前記畝部を形成する回折格子の畝部形成工程とを有することを特徴とするX線タルボ干渉計用位相型回折格子の製造方法である。   The present invention relates to a phase diffraction grating for an X-ray Talbot interferometer, in which a plurality of flanges made of metal or alloy having a predetermined width are formed in one direction at a constant period, and a resin part is interposed between adjacent flanges. A manufacturing method, wherein a plurality of grooves are cut at a constant cycle in one direction with a single crystal diamond blade on a mold base material, and the grooves are irradiated when an image is obtained with the X-ray Talbot interferometer. Deeper than the thickness of the flange portion that changes the phase of the line by π / 2, the width of the protrusion formed between the groove portions adjacent to the groove portion is substantially the same as the width of the groove portion, and the width of the groove is 4 μm or less. A mold forming step, and a temperature at which the uncured resin is cured after being pressure-immersed in a heated state on the coated surface of the substrate on which the uncured resin is coated on the surface on which the seed layer is formed The mold is separated from the substrate by cooling to a protrusion and a groove. A resin forming step of forming a resin portion having a portion, and a thickness of changing the phase of X-rays irradiated to the groove portion of the resin portion when the groove portion obtains an image with the X-ray interferometer by π / 2 A method of manufacturing a phase diffraction grating for an X-ray Talbot interferometer, comprising: a diffraction grating flange forming step of forming a flange by electroforming metal.

このような構成とすると、切削によるシャープな形状の溝を持つモールドから複製して樹脂部を形成し、この樹脂部の溝部に電鋳を行って金属または合金製の畝部を形成することができる。つまり、フォトリソグラフィに比べてモールドの溝の形状がシャープであると共に、露光マスクを必要としないので、位相型回折格子を大量生産することができ、かつ高精度で製造することができる。   With such a configuration, a resin part is formed by duplicating from a mold having a sharply shaped groove by cutting, and a metal or alloy flange is formed by electroforming the groove part of the resin part. it can. That is, the shape of the mold groove is sharper than that of photolithography, and an exposure mask is not required. Therefore, the phase-type diffraction grating can be mass-produced and manufactured with high accuracy.

また前記モールド母材のビッカース硬度がHv100〜300で平均粒径0.1μm以下の結晶もしくはアモルファスの材料から成り、かつその切削加工面の平坦度が0.2μm以下とするとよい。
このようにすると、金属膜の組織が微細となり、切削時にモールドの溝部の側壁がシャープに切削される。その結果として精密な樹脂形成工程を行うことができる。
The mold base material may be made of a crystal or amorphous material having a Vickers hardness of Hv 100 to 300 and an average particle size of 0.1 μm or less, and the flatness of the cut surface is preferably 0.2 μm or less.
If it does in this way, the structure | tissue of a metal film will become fine and the side wall of the groove part of a mold will be sharply cut at the time of cutting. As a result, a precise resin forming process can be performed.

前記畝部は金を主成分とし、前記畝部の厚みが1.5〜3.0μmであるとよい。
このようにすると、位相型回折格子としたときに位相シフト量がπ/2になるX線のエネルギーの範囲が15〜35KeVとなる。
The said collar part has gold as a main component, and it is good in the thickness of the said collar part being 1.5-3.0 micrometers.
In this way, when the phase diffraction grating is used, the X-ray energy range in which the phase shift amount is π / 2 is 15 to 35 KeV.

前記畝部はNi又はCuを主成分とし、前記畝部の厚みが3.0〜6.0μmであるとよい。
このようにすると、回折格子のコストを低減することができる。又、位相型回折格子としたときに位相シフト量がπ/2になるX線のエネルギーの範囲が15〜35KeVとなる。
The collar part is mainly composed of Ni or Cu, and the collar part preferably has a thickness of 3.0 to 6.0 μm.
In this way, the cost of the diffraction grating can be reduced. Further, when the phase diffraction grating is used, the X-ray energy range in which the phase shift amount is π / 2 is 15 to 35 KeV.

前記シード層がニッケルあるいはクロムまたはチタンの蒸着膜であることが好ましい。
このようにすると、前記基板と前記シード層が確実に密着して、前記溝部の底から確実に銅や金の電鋳を行うことができる。
The seed layer is preferably a deposited film of nickel, chromium, or titanium.
In this way, the substrate and the seed layer are securely adhered, and copper or gold can be reliably electroformed from the bottom of the groove.

本発明によれば、露光マスクを必要とせず、X線タルボ干渉計用位相型回折格子を容易かつ高精度で製造することができる。   According to the present invention, an exposure mask is not required, and a phase diffraction grating for an X-ray Talbot interferometer can be manufactured easily and with high accuracy.

X線タルボ干渉計の概略構成を示す図である。It is a figure which shows schematic structure of an X-ray Talbot interferometer. 第1の回折格子および第2の回折格子のx方向に沿う断面図である。It is sectional drawing in alignment with the x direction of a 1st diffraction grating and a 2nd diffraction grating. X線タルボ干渉計用位相型回折格子の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the phase type diffraction grating for X-ray Talbot interferometers. 図3に続く工程図である。FIG. 4 is a process diagram following FIG. 3. X線タルボ干渉計用回折格子の構成を示す斜視図である。It is a perspective view which shows the structure of the diffraction grating for X-ray Talbot interferometers. 単結晶ダイヤモンド切削刃具を取り付けた工具本体を示す斜視図である。It is a perspective view which shows the tool main body which attached the single crystal diamond cutting blade. 単結晶ダイヤモンド切削刃具を示す斜視図である。It is a perspective view which shows a single crystal diamond cutting tool. 単結晶ダイヤモンド切削刃具を用い、モールドの溝部を形成する方法を示す図である。It is a figure which shows the method of forming the groove part of a mold using a single crystal diamond cutting blade.

以下、本発明の実施形態について説明する。図1は、本発明によって製造された位相型の回折格子10を用いたX線タルボ干渉計100の概略構成を示す図である。X線タルボ干渉計100は、X線源2と、第1の回折格子10および第2の回折格子20と、X線画像検出器30とを備えている。第1の回折格子10および第2の回折格子20はz方向に所定距離だけ離間して平行に配置され、第1の回折格子10にz方向に沿って対向してX線源2が配置されている。又、第2の回折格子20にz方向に沿って対向してX線画像検出器30が配置されている。そして、観察対象となる試料4がz方向に沿って第1の回折格子10とX線源2の間に配置されている。
第1の回折格子10および第2の回折格子20は、その平面に平行な一方向(図1ではy方向)に沿って延びつつ、互いに一定の周期で離間する複数の溝部10a、20aが形成され(図2の溝部の断面図参照)、溝部10a、20aからX線を透過させる一方、隣接する溝部10aの間の短冊状の畝部10bでX線の位相をπ/2だけシフトして透過させ、畝部20bでX線を遮蔽(吸収)するようになっている。各溝部10a、20a及び畝部10b、20bは、図1のY方向に延びている。回折格子の材料としては、X線吸収能の高い金を用いると好ましい。なお、この実施形態では、畝部10bの幅(間隔)と溝部10aの幅(間隔)が等しく、畝部20bの幅(間隔)と溝部20aの幅(間隔)が等しい。
Hereinafter, embodiments of the present invention will be described. FIG. 1 is a diagram showing a schematic configuration of an X-ray Talbot interferometer 100 using a phase type diffraction grating 10 manufactured according to the present invention. The X-ray Talbot interferometer 100 includes an X-ray source 2, a first diffraction grating 10 and a second diffraction grating 20, and an X-ray image detector 30. The first diffraction grating 10 and the second diffraction grating 20 are arranged parallel to each other by a predetermined distance in the z direction, and the X-ray source 2 is arranged facing the first diffraction grating 10 along the z direction. ing. Further, an X-ray image detector 30 is disposed so as to face the second diffraction grating 20 along the z direction. A sample 4 to be observed is arranged between the first diffraction grating 10 and the X-ray source 2 along the z direction.
The first diffraction grating 10 and the second diffraction grating 20 are formed with a plurality of grooves 10a and 20a that extend along one direction (y direction in FIG. 1) parallel to the plane and are spaced apart from each other at a constant period. (See the cross-sectional view of the groove portion in FIG. 2), while transmitting X-rays from the groove portions 10a and 20a, the phase of the X-ray is shifted by π / 2 at the strip-shaped flange portion 10b between the adjacent groove portions 10a. The X-rays are shielded (absorbed) by the collar 20b. Each groove part 10a, 20a and collar part 10b, 20b are extended in the Y direction of FIG. As a material for the diffraction grating, gold having high X-ray absorption ability is preferably used. In this embodiment, the width (interval) of the flange portion 10b and the width (interval) of the groove portion 10a are equal, and the width (interval) of the flange portion 20b and the width (interval) of the groove portion 20a are equal.

X線タルボ干渉計100において、X線源2から試料4を介して第1の回折格子10にX線を照射すると、溝部10aを透過したX線と畝部10bを透過回折したX線とが互いに干渉する。そして、タルボ距離だけ離れた位置で第1の回折格子の自己像が形成される。つまり、第1の回折格子10は、照射X線に位相変調を与える位相型回折格子を構成する。ここで、タルボ効果を生じさせるため、第1の回折格子10の畝部の周期d(図2(a)参照)を、X線源2から照射されるX線の可干渉性を確保するよう調整する必要がある。
又、第1の回折格子10の後方(自己像の位置)に配置された第2の回折格子20は、第1の回折格子10により回折されたX線を回折して画像コントラストを形成し、第2の回折格子20の後方のX線画像検出器30で回折X線を検出する。画像コントラストを向上させるには、第2の回折格子20の溝部20aのX線透過率が高く、畝部20bのX線透過率が低いと良い。そのため、第2の回折格子20は第1の回折格子10より厚い振幅型回折格子であることが好ましい。
In the X-ray Talbot interferometer 100, when the first diffraction grating 10 is irradiated with X-rays from the X-ray source 2 through the sample 4, X-rays transmitted through the groove 10a and X-rays transmitted and diffracted through the flange 10b are generated. Interfere with each other. Then, a self-image of the first diffraction grating is formed at a position separated by the Talbot distance. That is, the first diffraction grating 10 constitutes a phase type diffraction grating that applies phase modulation to irradiated X-rays. Here, in order to generate the Talbot effect, the period d (see FIG. 2A) of the flange portion of the first diffraction grating 10 is ensured to ensure the coherence of the X-rays irradiated from the X-ray source 2. It needs to be adjusted.
The second diffraction grating 20 disposed behind the first diffraction grating 10 (the position of the self-image) diffracts the X-rays diffracted by the first diffraction grating 10 to form an image contrast. The X-ray image detector 30 behind the second diffraction grating 20 detects the diffracted X-rays. In order to improve the image contrast, it is preferable that the X-ray transmittance of the groove portion 20a of the second diffraction grating 20 is high and the X-ray transmittance of the flange portion 20b is low. Therefore, the second diffraction grating 20 is preferably an amplitude type diffraction grating thicker than the first diffraction grating 10.

ここで、第1の回折格子10の前方に試料4が配置され、照射X線は試料4内部において僅かに異なる光路を通過するため、このときの位相差によって自己像には試料4による歪みが生じる。そして自己像の位置に第2の回折格子20を配置すると、タルボ干渉像(画像コントラスト)にモアレ縞が生じ、X線画像検出器30で検出される。生成されたモアレ縞が試料4によって受ける変調量は、試料4により照射X線が曲げられた角度に比例するため、モアレ縞を解析することで試料4とその内部構造を測定することができる。
なお、モアレ縞の解析法の一つである縞走査法では、第1の回折格子10および第2の回折格子20をX方向に相対的にずらすことで、モアレ縞の位相が変化することに着目している。すなわちモアレ縞の位相を変化させて複数のタルボ干渉像を得た後、これを処理して合成することにより、位相像(試料4とその内部構造)を得ることができる。
又、試料4を回転させて多数の投影方向から像を取得し、これらを合成して試料4の断層像(CT像)を得ることも可能である。
Here, since the sample 4 is arranged in front of the first diffraction grating 10 and the irradiated X-rays pass through slightly different optical paths inside the sample 4, the self-image is distorted by the sample 4 due to the phase difference at this time. Arise. When the second diffraction grating 20 is arranged at the position of the self-image, moire fringes are generated in the Talbot interference image (image contrast) and detected by the X-ray image detector 30. Since the amount of modulation that the generated moire fringes receive by the sample 4 is proportional to the angle at which the irradiated X-rays are bent by the sample 4, the sample 4 and its internal structure can be measured by analyzing the moire fringes.
In the fringe scanning method, which is one of the moire fringe analysis methods, the phase of the moire fringe changes by relatively shifting the first diffraction grating 10 and the second diffraction grating 20 in the X direction. Pay attention. That is, a phase image (sample 4 and its internal structure) can be obtained by changing the phase of moire fringes to obtain a plurality of Talbot interference images and then processing and synthesizing them.
It is also possible to obtain a tomographic image (CT image) of the sample 4 by rotating the sample 4 to acquire images from a number of projection directions and combining them.

なお、本発明のX線タルボ干渉計100は、X線源2と試料4との間にマルチスリットを配置したタルボ・ロー干渉計も含む。マルチスリットを用いない場合、X線源2としては微小焦点X線源を用いる必要があるが、タルボ・ロー干渉計の場合は通常X線源を用いることができる。   The X-ray Talbot interferometer 100 of the present invention also includes a Talbot-Lau interferometer in which a multi slit is disposed between the X-ray source 2 and the sample 4. When a multi-slit is not used, it is necessary to use a microfocus X-ray source as the X-ray source 2, but in the case of a Talbot-Lau interferometer, an X-ray source can usually be used.

ところでX線は波長が短いので、可干渉性を確保するためには、第1の回折格子10および第2の回折格子20の畝部の周期を10μm以下程度としなければならない。さらに、位相型回折格子においては、位相シフト量がπ/2になるときに自己像のコントラストが最も高くなることから、これを実現するには、畝部の厚さ(溝の深さ)を1〜10μm程度とする必要があり、微細な加工や製造技術が要求される。例えば、各回折格子の畝部を金で形成する場合、畝部の厚さを1〜3μm程度、銅で形成する場合、畝部の厚さを3〜10μm程度とする必要がある。
一方、振幅型回折格子として機能するためには、回折格子の溝部のX線透過率を高くし、畝部のX線透過率を低くする必要がある。このため、金を用いても畝部の厚さ(溝の深さ)を10〜100μm程度に深くすることが要求される。従って、回折格子の(溝の深さ)/(溝の幅)で表されるアスペクト比が3以上(場合によっては10以上)と非常に大きくなる。
By the way, since the wavelength of X-rays is short, in order to ensure coherence, the period of the collar portion of the first diffraction grating 10 and the second diffraction grating 20 must be about 10 μm or less. Further, in the case of the phase type diffraction grating, the contrast of the self-image becomes the highest when the phase shift amount is π / 2. Therefore, in order to realize this, the thickness of the collar portion (groove depth) is set. It needs to be about 1 to 10 μm, and fine processing and manufacturing techniques are required. For example, when the collar part of each diffraction grating is formed of gold, the thickness of the collar part needs to be about 1 to 3 μm, and when it is formed of copper, the thickness of the collar part needs to be about 3 to 10 μm.
On the other hand, in order to function as an amplitude type diffraction grating, it is necessary to increase the X-ray transmittance of the groove portion of the diffraction grating and decrease the X-ray transmittance of the collar portion. For this reason, even if it uses gold | metal | money, it is requested | required that the thickness (depth of a groove | channel) of a collar part should be deepened to about 10-100 micrometers. Therefore, the aspect ratio represented by (groove depth) / (groove width) of the diffraction grating is very large as 3 or more (in some cases, 10 or more).

このようなことから、畝部を微細に形成すると共に、その側壁の形状をシャープに(溝の側壁の凹凸や側壁と底面の切削隅部の曲率半径を微細に形成する必要がある。そして、本発明者らは、例えば、硬度が高く精密な溝加工が可能な単結晶ダイヤモンド切削刃具を用いて金属膜を切削することで、微細で側壁の形状がシャープな溝部を形成できることを見出した。
そして、このようにシャープな形状の溝を持つモールドを鋳型として樹脂部を形成し、この樹脂部を鋳型とする電鋳によって、畝部を形成することができる。つまり、露光マスクを必要とせず、位相型回折格子を大量生産することができ、かつ高精度で製造することができる。なお、位相型回折格子は、回折格子の(溝の深さ)/(溝の幅)で表されるアスペクト比が電鋳材料が金の場合0.5から2程度であるので、上記溝を有するモールドを鋳型としても、寸法精度の高い樹脂型(ひいては畝部)を形成することができる。
For this reason, it is necessary to form the flange portion finely and sharpen the shape of the side wall thereof (the unevenness of the side wall of the groove and the radius of curvature of the cutting corners of the side wall and the bottom surface must be finely formed. The present inventors have found that, for example, by cutting a metal film using a single crystal diamond cutting tool having high hardness and capable of precise groove processing, a fine groove portion having a sharp side wall shape can be formed.
Then, a resin part can be formed by using a mold having such a sharp groove as a mold, and a collar part can be formed by electroforming using this resin part as a mold. That is, an exposure mask is not required, the phase type diffraction grating can be mass-produced, and can be manufactured with high accuracy. The phase-type diffraction grating has an aspect ratio expressed by (groove depth) / (groove width) of the diffraction grating of about 0.5 to 2 when the electroformed material is gold. Even if the mold having the mold is used as a mold, it is possible to form a resin mold (and thus a flange portion) with high dimensional accuracy.

次に、図3、図4を参照し、X線タルボ干渉計用位相型回折格子(第1の回折格子)10の製造方法の一例について説明する。図3(a)において50xはモールド母材で、切削加工を施して回折格子のモールドとする。モールド母材50xは例えば結晶の平均粒径が0.1μm以下で、ビッカース硬度はHv100〜300である。モールド母材50xには、例えばニッケルリン合金を使う。この材料により、バリが出来ないなど精密な切削加工ができる。またモールド母材の溝加工面は、最高点と最低点の差で表される平坦度が0.2μm以下程度に研磨されている。このことにより、溝深さにばらつきのない精密な切削加工ができる。
次に、後述する単結晶ダイヤモンド切削刃具200を用い、モールド母材50xを一方向(図3の紙面に垂直な方向)に沿って一定の周期dで切削して複数の溝部50aを彫り、モールド50を成形する。モールド50は、溝部50aと、隣接する溝部50aの間に畝状の突出部50bを有する(図3(b);モールド成形工程)。溝部50aの深さpは、X線源2からのX線の位相をπ/2変化させる畝の深さより深く切削加工する。また溝部50aと突出部50bの幅は略同じにすると、位相像が鮮明な回折格子を作製できる。溝部50aと突出部50bの幅は、それぞれ4μm以下が好ましい。なぜなら、X線は波長が短く回折角が小さいため、有効な干渉を得るには、線源格子間距離を大きくし、回折格子の周期を小さくし、X線のエネルギーを低くして波長を長くする必要がある。溝部50aと突出部50bの幅をそれぞれ4μm以下(すなわち周期dを8μm以下に)とすると、実用的な線源格子間距離(3m以内)で実用的なX線のエネルギー(10〜40keV)で有効な干渉像を得られる。
Next, an example of a method for manufacturing the X-ray Talbot interferometer phase diffraction grating (first diffraction grating) 10 will be described with reference to FIGS. In FIG. 3A, reference numeral 50x denotes a mold base material, which is cut to form a diffraction grating mold. For example, the mold base material 50x has an average crystal grain size of 0.1 μm or less and a Vickers hardness of Hv 100 to 300. For the mold base material 50x, for example, a nickel phosphorus alloy is used. This material enables precise cutting such as no burrs. Further, the groove processing surface of the mold base material is polished so that the flatness expressed by the difference between the highest point and the lowest point is about 0.2 μm or less. This enables precise cutting with no variation in groove depth.
Next, using a single crystal diamond cutting tool 200 described later, the mold base material 50x is cut along one direction (a direction perpendicular to the paper surface of FIG. 3) with a constant period d to engrave a plurality of groove portions 50a, and mold 50 is formed. The mold 50 has a groove-shaped protrusion 50b between the groove 50a and the adjacent groove 50a (FIG. 3B; mold forming step). The depth p of the groove 50a is cut deeper than the depth of the ridge that changes the phase of the X-ray from the X-ray source 2 by π / 2. Further, if the widths of the groove 50a and the protrusion 50b are substantially the same, a diffraction grating with a clear phase image can be produced. The width of each of the groove 50a and the protrusion 50b is preferably 4 μm or less. Because X-rays have a short wavelength and a small diffraction angle, to obtain effective interference, the distance between the source gratings is increased, the period of the diffraction grating is decreased, the energy of the X-rays is decreased, and the wavelength is increased. There is a need to. Assuming that the width of the groove 50a and the protrusion 50b is 4 μm or less (that is, the period d is 8 μm or less), a practical X-ray energy (10 to 40 keV) is obtained with a practical source lattice distance (within 3 m). An effective interference image can be obtained.

一方基板62には、液状の未硬化樹脂12xが塗布されている(図3(c))。基板62は回折格子の基板になるもので、X線透過率を高くするため、例えば炭素、ケイ素及びアルミニウムの群から選ばれる少なくとも1つを主成分とする材料からなることが好ましい。基板22の組成の具体例としては、例えば、アモルファスカーボン若しくはシリコンのウェーハ、又は窒化シリコン若しくは炭化シリコンのメンブレンなどが挙げられる。なお基板62の表面は、後に述べる電鋳をおこなうために厚さ0.1μm程度のニッケルあるいはクロムまたはチタンのシード層62aが成膜されている。基板52として上記材料を用いることでX線透過率を高くすることができ、良好な回折特性が得られる。未硬化樹脂12xは、例えばエポキシ系ネガレジストであるSU−8(マイクロケム社)を使う。そして主速1000から6000rpm程度の速度で基板62上に未硬化樹脂12xがスピンコートされる。またシード層62aの厚さおよび材質は上記のようにすることにより、基板62とシード層62aが確実に密着して、後述する畝部形成工程で銅や金の電鋳を溝部の底から確実に行うことができる。   On the other hand, a liquid uncured resin 12x is applied to the substrate 62 (FIG. 3C). The substrate 62 is a substrate for a diffraction grating, and is preferably made of a material mainly containing at least one selected from the group of carbon, silicon, and aluminum, for example, in order to increase the X-ray transmittance. Specific examples of the composition of the substrate 22 include an amorphous carbon or silicon wafer, or a silicon nitride or silicon carbide membrane. On the surface of the substrate 62, a nickel, chromium, or titanium seed layer 62a having a thickness of about 0.1 μm is formed for electroforming described later. By using the above-mentioned material as the substrate 52, the X-ray transmittance can be increased, and good diffraction characteristics can be obtained. As the uncured resin 12x, for example, SU-8 (Microchem), which is an epoxy negative resist, is used. Then, the uncured resin 12x is spin-coated on the substrate 62 at a main speed of about 1000 to 6000 rpm. Further, the thickness and material of the seed layer 62a are as described above, so that the substrate 62 and the seed layer 62a are in close contact with each other, and the electroforming of copper or gold is reliably performed from the bottom of the groove portion in the flange forming step described later. Can be done.

次に未硬化樹脂12xのガラス転位温度以上に加熱に加熱した状態で、溝部50aの切削加工した側を下向きにしたモールド50を、未硬化樹脂12xに上から加圧浸漬する(図3(d);浸漬工程)。この際、溝部50a内に未硬化樹脂12xを完全に含浸させる。未硬化樹脂12xがSU−8の場合、ガラス転位温度は50℃程度であり、例えばガラス転位温度以上の90℃で10分程度に加熱する。その後にガラス転位温度以下である室温近くに冷却すると、未硬化樹脂12xは硬化して樹脂部12となる。未硬化樹脂12xが硬化した後にモールド50を基板62から離すと、樹脂部12はモールド50の溝部50aが転写されて、突出部12bを形成する。またモールド50の突出部50bが転写されて溝部12aを形成する。(図4(e);樹脂型形成工程)。そして突出部12bと溝部12aはそれぞれ4μm以下で略同じ幅となる。なお次の工程で電鋳を確実に行うために、モールド50の表面に反応性イオンエッチングを施して、溝部12xの底に残った樹脂部12を完全に除去して、シード層62aを露出させる。なお反応性イオンエッチングを行った後でも溝部12aの深さは、X線源2からのX線の位相をπ/2変化させる畝の厚さ以上の深さになるように、モールド50の溝部50aは切削加工されている。   Next, in a state heated to a temperature higher than the glass transition temperature of the uncured resin 12x, the mold 50 with the cut side of the groove 50a facing downward is immersed in the uncured resin 12x from above (FIG. 3D). ); Immersion step). At this time, the uncured resin 12x is completely impregnated in the groove 50a. When the uncured resin 12x is SU-8, the glass transition temperature is about 50 ° C., for example, it is heated at 90 ° C. above the glass transition temperature for about 10 minutes. Thereafter, when it is cooled to near room temperature, which is not higher than the glass transition temperature, the uncured resin 12x is cured to become the resin portion 12. When the mold 50 is separated from the substrate 62 after the uncured resin 12x is cured, the groove portion 50a of the mold 50 is transferred to the resin portion 12 to form the protruding portion 12b. Further, the protruding portion 50b of the mold 50 is transferred to form the groove portion 12a. (FIG. 4 (e); resin mold forming step). And the protrusion part 12b and the groove part 12a become substantially the same width | variety below 4 micrometers. In order to reliably perform electroforming in the next step, reactive ion etching is performed on the surface of the mold 50 to completely remove the resin portion 12 remaining on the bottom of the groove portion 12x, thereby exposing the seed layer 62a. . Even after reactive ion etching, the groove portion 12a has a depth equal to or greater than the thickness of the ridge that changes the phase of X-rays from the X-ray source 2 by π / 2. 50a is cut.

次に、樹脂部12およびシード層62aを含む基板62全体を電気めっき浴に浸漬し、シード層62aをカソードとして溝部12a内に電鋳を行って畝部10bを形成する(図4(f);畝部形成工程)。畝部10bの厚さは、照射するX線の位相をπ/2変化させる厚さにされる。なお溝部12aの深さは、畝部10bの厚さより深いので、畝部10bが溝部12aからあふれ出ることはない。畝部10bを純金の電鋳で行うる場合、電気めっき浴としては、電鋳時に樹脂部12を侵食しない非シアン系の電気金めっき建浴液が好ましい。金を主成分とする畝部10bの場合、畝部10の厚みは1.5〜3.0μmであるとよい。このようにすると、位相型回折格子としたときに位相シフト量がπ/2になるX線のエネルギーの範囲が15〜35KeVで鮮明な干渉像が得られる。   Next, the entire substrate 62 including the resin portion 12 and the seed layer 62a is immersed in an electroplating bath, and electrocasting is performed in the groove portion 12a using the seed layer 62a as a cathode to form the flange portion 10b (FIG. 4F). ; Buttocks formation process). The thickness of the collar portion 10b is set to a thickness that changes the phase of the X-ray to be irradiated by π / 2. In addition, since the depth of the groove part 12a is deeper than the thickness of the collar part 10b, the collar part 10b does not overflow from the groove part 12a. When the collar portion 10b is electroplated with pure gold, the electroplating bath is preferably a non-cyan electrogold plating bath solution that does not erode the resin portion 12 during electroforming. In the case of the collar part 10b which has gold as a main component, the thickness of the collar part 10 is good in it being 1.5-3.0 micrometers. In this way, a clear interference image can be obtained when the X-ray energy range where the phase shift amount is π / 2 when the phase diffraction grating is used is 15 to 35 KeV.

畝部10bをNi又はCuを主成分とする金属又は合金から構成すると、回折格子のコストを低減することができる。
銅を主成分とする畝部10bの場合、畝部10の厚みは3〜6μmであるとよい。このようにすると、位相型回折格子としたときに位相シフト量がπ/2になるX線のエネルギーの範囲が15〜35KeVで鮮明な干渉像が得られる。
図5は、X線タルボ干渉計用位相型回折格子10の構成を示す。X線タルボ干渉計用位相型回折格子10は、樹脂部12が一定寸法の周期と深さの溝部12aを一方向に複数形成している。そして溝部12aの中にX線の位相シフトはπ/2になる厚さで畝部10bが介装された構造となっていて、畝部10bが位相型回折格子として機能する。
If the collar part 10b is comprised from the metal or alloy which has Ni or Cu as a main component, the cost of a diffraction grating can be reduced.
In the case of the collar part 10b which has copper as a main component, the thickness of the collar part 10 is good in it being 3-6 micrometers. In this way, a clear interference image can be obtained when the X-ray energy range where the phase shift amount is π / 2 when the phase diffraction grating is used is 15 to 35 KeV.
FIG. 5 shows the configuration of the phase diffraction grating 10 for X-ray Talbot interferometer. In the phase diffraction grating 10 for X-ray Talbot interferometer, the resin portion 12 is formed with a plurality of groove portions 12a having a constant period and depth in one direction. The groove portion 12a has a structure in which the flange portion 10b is interposed with a thickness of π / 2 in the X-ray phase shift, and the flange portion 10b functions as a phase type diffraction grating.

ここで、畝部10bを電鋳するための鋳型となるモールド50は、切削によって形成される溝部50aを鋳型とするが、後述するように、切削加工機として分解能がnmレベルの超精密ナノ加工機を用い、単結晶ダイヤモンド切削刃具で切削することで、モールドの溝部50aの側壁の凹凸、及び溝部の側壁と底面との切削隅部の曲率半径がそれぞれ0.1μm以下となる(図3(b)参照)。従って、溝部50aを鋳型として形成される樹脂部12の側壁も同様な寸法精度となり、ひいては畝部10bの側壁にこの寸法精度が反映されるので、寸法精度のよい畝部10bが得られる。
又、樹脂部12は畝部10bを保持し、X線吸収部10bが倒れたり変形するのを防止する。
Here, the mold 50 serving as a mold for electroforming the flange portion 10b uses a groove 50a formed by cutting as a mold, but as will be described later, as a cutting machine, an ultra-precision nano-processing with a resolution of nm level. By using a machine and cutting with a single crystal diamond cutting tool, the concave and convex portions of the side wall of the groove portion 50a of the mold and the curvature radius of the cutting corner portion between the side wall and the bottom surface of the groove portion are each 0.1 μm or less (FIG. b)). Accordingly, the side wall of the resin portion 12 formed using the groove 50a as a mold also has the same dimensional accuracy, and the dimensional accuracy is reflected on the side wall of the heel portion 10b, so that the ridge portion 10b with high dimensional accuracy is obtained.
The resin portion 12 holds the flange portion 10b and prevents the X-ray absorbing portion 10b from falling or deforming.

次に、図6〜図8を参照し、金属膜を切削してモールドの溝部を形成するのに好適な、単結晶ダイヤモンドからなる切れ刃を有する切削工具について説明する。単結晶ダイヤモンドは硬度が高く、精密な溝加工が可能である。
図6は、単結晶ダイヤモンド切削刃具200を取り付けた工具本体(バイト)400を示す。単結晶ダイヤモンド切削刃具200は、略台形の台金300の先端に取り付けられて工具本体400を構成し、台金300の先端から単結晶ダイヤモンド切削刃具200の切れ刃(図6参照)が突出している。工具本体400は、図示しない切削加工機のホルダに固定され、後述するように、単結晶ダイヤモンド切削刃具200により被切削物に溝を彫ることができるようになっている。
Next, a cutting tool having a cutting edge made of single crystal diamond, which is suitable for forming a groove portion of a mold by cutting a metal film, will be described with reference to FIGS. Single crystal diamond has a high hardness and enables precise groove processing.
FIG. 6 shows a tool body (bite) 400 to which a single crystal diamond cutting blade 200 is attached. The single crystal diamond cutting tool 200 is attached to the tip of a substantially trapezoidal base metal 300 to form a tool body 400, and the cutting edge (see FIG. 6) of the single crystal diamond cutting tool 200 protrudes from the tip of the base metal 300. Yes. The tool body 400 is fixed to a holder of a cutting machine (not shown), and a single crystal diamond cutting tool 200 can carve a groove in a workpiece as will be described later.

図7に示すように、単結晶ダイヤモンド切削刃具200は、すくい面201と、すくい面201にそれぞれ隣接する側面となる2つの第1逃げ面203、204と、すくい面201に隣接し、被削物500の切削面に対向する前逃げ面205と、すくい面201と前逃げ面205との境界部に形成される前切れ刃210と、すくい面201と第一逃げ面203、204との境界部に形成される2つの第1切れ刃213、214とを備えている。前逃げ面205及びすくい面201の形状は限定されず、平面であってもよく、曲面であってもよい。すくい面201は所定のすくい角0度又はすくい角がわずかに正方向に傾いていて、切削くずをすくい取るようになっている。
第一逃げ面203、204または前逃げ面205は、集束イオンビーム(FIB)のエッチングにより形成されている。FIBのエッチングは、複雑な形状の加工ができると共に、結晶面を選ばずに加工ができるという利点がある。従って、ダイヤモンドの一番固い結晶面である(111)面をも容易に加工ができる。これに対し、例えば砥石による研磨では、ダイヤモンドの(111)面の研磨ができない。
前切れ刃210の幅Wを4μm以下とすると、微小な溝部を彫ることができるので好ましい。
As shown in FIG. 7, the single crystal diamond cutting tool 200 includes a rake face 201, two first flank surfaces 203 and 204 which are side faces adjacent to the rake face 201, and the rake face 201, respectively. The front flank 205 facing the cutting surface of the object 500, the front cutting edge 210 formed at the boundary between the rake face 201 and the front flank 205, and the boundary between the rake face 201 and the first flank faces 203 and 204 And two first cutting edges 213 and 214 formed in the section. The shapes of the front flank 205 and the rake face 201 are not limited, and may be flat or curved. The rake face 201 has a predetermined rake angle of 0 degrees or a rake angle slightly inclined in the positive direction so as to scoop cutting waste.
The first flank surfaces 203 and 204 or the front flank surface 205 are formed by etching of a focused ion beam (FIB). The FIB etching has an advantage that it can be processed in a complicated shape and can be processed without selecting a crystal plane. Therefore, the (111) plane which is the hardest crystal plane of diamond can be easily processed. On the other hand, for example, polishing with a grindstone cannot polish the (111) face of diamond.
If the width W 3 of the cutting edge 210 and 4μm or less, it is possible to carve the small groove portion preferably.

以上述べた単結晶ダイヤモンド切削刃具200(工具本体400)を切削加工機に取り付け、図8に示すようにして溝部50aを形成することができる。ここで、切削で形成される溝部の周期や深さは超精密ナノ加工機の分解能に依存しているため、切削加工機として分解能がnmレベルの超精密ナノ加工機を用いることが好ましい。超精密ナノ加工機としては、例えばファナック株式会社製の製品名「FANUC ROBONANO α-0iB 」が市販されている。この超精密ナノ加工機は、リニアモータと同期ビルトインサーボモータを制御することにより、同時5軸を高精度にダイレクト駆動し、直線軸で1nmの分解能を有する。   The single crystal diamond cutting tool 200 (tool body 400) described above can be attached to a cutting machine to form the groove 50a as shown in FIG. Here, since the period and depth of the groove formed by the cutting depend on the resolution of the ultra-precision nano-machining machine, it is preferable to use an ultra-precision nano-machining machine having a resolution of nm level as the cutting machine. As an ultra-precision nano processing machine, for example, a product name “FANUC ROBONANO α-0iB” manufactured by FANUC CORPORATION is commercially available. This ultra-precision nano-machining machine controls a linear motor and a synchronous built-in servo motor to directly drive five simultaneous axes with high accuracy and has a resolution of 1 nm on a linear axis.

このような加工機を用い、図6に示すように単結晶ダイヤモンド切削刃具200により、モールド母材50xの一方向(図8の矢印方向)に沿い、かつ該一方向に垂直な方向に所定幅Wのモールドの突出部を残した引き切り加工を行う。これにより、モールド母材50xが切削されて溝部50aが形成され、隣接する溝部50aの間に畝状の突出部50bを形成することができる。なお、W=Wとするとよい。 Using such a processing machine, a single crystal diamond cutting tool 200 as shown in FIG. 6 has a predetermined width along one direction of the mold base material 50x (in the direction of the arrow in FIG. 8) and perpendicular to the one direction. performing a pull cutting process that left a protruding portion of the mold of W 3. As a result, the mold base material 50x is cut to form the groove 50a, and the flange-shaped protrusion 50b can be formed between the adjacent grooves 50a. Note that W 1 = W 3 is preferable.

ここで、単結晶ダイヤモンド切削刃具200でモールド50に溝部50aを彫るため、レジスト樹脂を用いて形成した微細な溝(スリット)内に電鋳を行って回折格子を製造する従来技術に比べ、溝部50aの側壁の凹凸、及び溝部の側壁と底面との切削隅部の曲率半径がそれぞれ0.1μm以下の良好な加工が可能になり、レジスト樹脂を用いて形成した微細な溝(スリット)内に電鋳を行って回折格子を製造する従来技術に比べ、寸法精度の高い回折格子が得られる。又、レジスト樹脂を用いて回折格子を製造する技術と異なり、露光マスクを必要としない。   Here, in order to carve the groove 50a in the mold 50 with the single crystal diamond cutting tool 200, the groove is compared with the conventional technique in which a diffraction grating is manufactured by electroforming in a fine groove (slit) formed using a resist resin. As a result, it is possible to perform excellent processing in which the concave and convex portions on the side wall 50a and the radius of curvature of the cutting corner portion between the side wall and the bottom surface of the groove portion are 0.1 μm or less, and in the fine groove (slit) formed using the resist resin. Compared with the prior art that manufactures a diffraction grating by electroforming, a diffraction grating with higher dimensional accuracy can be obtained. Unlike the technique of manufacturing a diffraction grating using a resist resin, no exposure mask is required.

又、畝部10bを電鋳するための鋳型となる樹脂部12は、切削によって形成され自身の側壁の凹凸、及び溝部の側壁と底面との切削隅部の曲率半径がそれぞれ0.1μm以下である溝部50aを持つモールド50から複製されるので、畝部10bの側壁の凹凸、及び溝部の側壁と底面との切削隅部の曲率半径もそれぞれ0.1μm以下に低減し、寸法精度のよい畝部10bが得られる。   In addition, the resin portion 12 that is a mold for electroforming the flange portion 10b is formed by cutting, and the unevenness of its own side wall and the curvature radius of the cutting corner portion between the side wall and the bottom surface of the groove portion are each 0.1 μm or less. Since it is replicated from the mold 50 having a certain groove 50a, the unevenness of the side wall of the flange part 10b and the curvature radius of the cutting corner between the side wall and the bottom surface of the groove part are also reduced to 0.1 μm or less respectively, and the Part 10b is obtained.

本発明は上記実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。   It goes without saying that the present invention is not limited to the above-described embodiment, but extends to various modifications and equivalents included in the spirit and scope of the present invention.

10 X線タルボ干渉計用位相型回折格子
10a 溝部
10b X線吸収部(畝部)
12 樹脂部
12x 未硬化樹脂
50 モールド(母材)
50a (モールドの)溝部
50b (モールドの)突出部
200 単結晶ダイヤモンド切削刃具
10 Phase diffraction grating for X-ray Talbot interferometer 10a Groove 10b X-ray absorber (saddle)
12 Resin part 12x Uncured resin 50 Mold (base material)
50a (Mold) groove 50b (Mold) protrusion 200 Single crystal diamond cutting tool

Claims (5)

所定幅の金属又は合金製の畝部が一方向に一定の周期で複数形成され、隣接する畝部の間に樹脂部が介装されたX線タルボ干渉計用位相型回折格子の製造方法であって、
モールド母材に単結晶ダイヤモンド製の刃具で一方向に一定の周期で複数の溝部を切削加工し、前記溝部が前記X線タルボ干渉計で画像を得るときに照射するX線の位相をπ/2変化させる前記畝部の厚さより深く、前記溝部と隣り合う前記溝部の間に形成される突出部の幅が前記溝部の幅と略同じで前記溝の幅が4μm以下であるモールド形成工程と、
シード層が成膜された面に未硬化樹脂が塗布された基板の前記塗布面に、前記モールドを加熱した状態で加圧浸漬し、その後前記未硬化樹脂が硬化する温度に冷却して前記モールドを前記基板から離して、突出部と溝部を有する樹脂部を形成する樹脂形成工程と、
前記樹脂部の前記溝部に、前記溝部が前記X線干渉計で画像を得るときに照射するX線の位相をπ/2変化させる厚さの金属を電鋳して前記畝部を形成する回折格子の畝部形成工程と
を有することを特徴とするX線タルボ干渉計用位相型回折格子の製造方法。
A method of manufacturing a phase type diffraction grating for an X-ray Talbot interferometer, in which a plurality of flanges made of metal or an alloy having a predetermined width are formed in one direction at a constant cycle, and a resin part is interposed between adjacent flanges. There,
Cutting a plurality of grooves at a constant cycle in one direction with a single crystal diamond cutting tool on a mold base material, the phase of X-rays irradiated when the grooves obtain an image with the X-ray Talbot interferometer is π / 2. A mold forming step that is deeper than the thickness of the flange portion to be changed, the width of the protruding portion formed between the groove portions adjacent to the groove portion is substantially the same as the width of the groove portion, and the width of the groove is 4 μm or less; ,
The mold is heated and immersed in the heated surface of the substrate on which the uncured resin is coated on the surface on which the seed layer is formed, and then cooled to a temperature at which the uncured resin is cured. Forming a resin part having a protruding part and a groove part apart from the substrate;
Diffraction in which the flange portion is formed by electroforming a metal having a thickness that changes the phase of X-rays irradiated when the groove portion obtains an image with the X-ray interferometer in the groove portion of the resin portion. A method of manufacturing a phase type diffraction grating for an X-ray Talbot interferometer.
前記モールド母材のビッカース硬度がHv100〜300で平均粒径0.1μm以下の結晶もしくはアモルファスの材料から成り、かつその切削加工面の平坦度が0.2μm以下であることを特徴とする、請求項1記載のX線タルボ干渉計用位相型回折格子の製造方法。   The mold base material is made of a crystal or amorphous material having a Vickers hardness of Hv 100 to 300 and an average particle diameter of 0.1 μm or less, and the flatness of the machined surface is 0.2 μm or less. Item 2. A method for producing a phase type diffraction grating for an X-ray Talbot interferometer according to Item 1. 前記畝部は金を主成分とし、前記X線吸収部の厚みが1.5〜3.0μmであることを特徴とする請求項1又は2記載のX線タルボ干渉計用位相型回折格子の製造方法。   3. The phase diffraction grating for an X-ray Talbot interferometer according to claim 1, wherein the flange has gold as a main component, and the thickness of the X-ray absorber is 1.5 to 3.0 μm. Production method. 前記畝部はNi又はCuを主成分とし、前記X線吸収部の厚みが3.0〜6.0μmであることを特徴とする請求項1又は2記載のX線タルボ干渉計用位相型回折格子の製造方法。   The phase type diffraction for an X-ray Talbot interferometer according to claim 1, wherein the flange portion is mainly composed of Ni or Cu, and the thickness of the X-ray absorption portion is 3.0 to 6.0 μm. A method of manufacturing a lattice. 前記シード層がニッケルあるいはクロムまたはチタンの蒸着膜であることを特徴とする請求項1記載のX線タルボ干渉計用位相型回折格子の製造方法。   2. The method of manufacturing a phase diffraction grating for an X-ray Talbot interferometer according to claim 1, wherein the seed layer is a deposited film of nickel, chromium, or titanium.
JP2011090609A 2011-04-15 2011-04-15 Method for manufacturing phase diffraction grating for X-ray Talbot interferometer Active JP5656726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011090609A JP5656726B2 (en) 2011-04-15 2011-04-15 Method for manufacturing phase diffraction grating for X-ray Talbot interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011090609A JP5656726B2 (en) 2011-04-15 2011-04-15 Method for manufacturing phase diffraction grating for X-ray Talbot interferometer

Publications (2)

Publication Number Publication Date
JP2012225660A true JP2012225660A (en) 2012-11-15
JP5656726B2 JP5656726B2 (en) 2015-01-21

Family

ID=47276005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011090609A Active JP5656726B2 (en) 2011-04-15 2011-04-15 Method for manufacturing phase diffraction grating for X-ray Talbot interferometer

Country Status (1)

Country Link
JP (1) JP5656726B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225658A (en) * 2011-04-15 2012-11-15 Seiko Instruments Inc Diffraction grating for x-ray talbot interferometer, method for manufacturing the same, and x-ray talbot interferometer
WO2023019355A1 (en) * 2021-08-17 2023-02-23 Karim Karim S Multi-layer high-aspect ratio x-ray grating and method of manufacture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219494A (en) * 2003-01-10 2004-08-05 Sankyo Seiki Mfg Co Ltd Manufacturing method of optical element
JP2006259264A (en) * 2005-03-17 2006-09-28 New Industry Research Organization Manufacturing method for x-ray phase type diffraction grating and amplitude type diffraction grating used for x-ray talbot interferometer
JP2009037023A (en) * 2007-08-02 2009-02-19 Hyogo Prefecture Manufacturing method of diffraction grating
JP2010109212A (en) * 2008-10-31 2010-05-13 Sony Corp Semiconductor element and its manufacturing method, field-effect transistor and its manufacturing method, and semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219494A (en) * 2003-01-10 2004-08-05 Sankyo Seiki Mfg Co Ltd Manufacturing method of optical element
JP2006259264A (en) * 2005-03-17 2006-09-28 New Industry Research Organization Manufacturing method for x-ray phase type diffraction grating and amplitude type diffraction grating used for x-ray talbot interferometer
JP2009037023A (en) * 2007-08-02 2009-02-19 Hyogo Prefecture Manufacturing method of diffraction grating
JP2010109212A (en) * 2008-10-31 2010-05-13 Sony Corp Semiconductor element and its manufacturing method, field-effect transistor and its manufacturing method, and semiconductor device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014027321; 百生 敦: '「医用画像分野におけるX線位相イメージングの期待」' 応用物理 Vol. 64, No. 4, 20070410, p. 363-368, 社団法人応用物理学会 *
JPN6014046514; Daiji NODA et al.: '"Fabrication of X-ray Grating Using X-ray Lithography Technique for X-ray Phase Imaging"' Journal of Solid Mechanics and Materials Engineering Vol. 3, No. 2, 20090227, p. 416-423, The Japan Society of Mechanical Engineers *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225658A (en) * 2011-04-15 2012-11-15 Seiko Instruments Inc Diffraction grating for x-ray talbot interferometer, method for manufacturing the same, and x-ray talbot interferometer
WO2023019355A1 (en) * 2021-08-17 2023-02-23 Karim Karim S Multi-layer high-aspect ratio x-ray grating and method of manufacture

Also Published As

Publication number Publication date
JP5656726B2 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
US20100246764A1 (en) Source grating for x-rays, imaging apparatus for x-ray phase contrast image and x-ray computed tomography system
US8737561B2 (en) X-ray phase grating and method for producing the same
JP4608679B2 (en) Manufacturing method of phase type diffraction grating and amplitude type diffraction grating used in X-ray Talbot interferometer
US9036773B2 (en) Method for X-ray phase contrast and dark-field imaging using an arrangement of gratings in planar geometry
JP5459659B2 (en) Phase grating used for imaging X-ray phase contrast image, imaging apparatus using the phase grating, and X-ray computed tomography system
US8908274B2 (en) Microstructure manufacturing method and microstructure
US9348067B2 (en) Tilted gratings and method for production of tilted gratings
US9506878B2 (en) Structural body and X-ray talbot interferometer including the structural body
US9360603B2 (en) Method and apparatus for producing a Fresnel zone plate
WO2016084533A1 (en) Master disc for manufacturing microflow channel, transfer product, and method for producing master disc for manufacturing microflow channel
JP5656726B2 (en) Method for manufacturing phase diffraction grating for X-ray Talbot interferometer
JP5714968B2 (en) Diffraction grating for X-ray Talbot interferometer, manufacturing method thereof, and X-ray Talbot interferometer
JP5695959B2 (en) Method for producing single crystal diamond cutting blade
JP2012225659A (en) Diffraction grating for x-ray talbot interferometer, method for manufacturing the same, and x-ray talbot interferometer
JP2020118676A (en) Method for manufacturing horology component
JP2012225966A (en) Diffraction grating for x-ray talbot interferometer, method for manufacturing the same, and x-ray talbot interferometer
JP2015110265A (en) Single crystal diamond cutting blade tool and manufacturing method for diffraction grating for x-ray talbot interferometer
JP2004268331A (en) Mold for molding optical element and method for manufacturing mold
WO2022135906A1 (en) Method for producing high aspect ratio fan-shaped optical components and/or slanted gratings
JP2010099287A (en) Phase grating used for x-ray phase imaging, method of manufacturing the same, imaging apparatus of x-ray phase contrast image using the phase grating, and x-ray computer tomography system
CN105093369A (en) Positive-and-negative phase shift bimetallic zone plate
JP4705606B2 (en) X-ray condenser lens
Jeong et al. Micromachined hetero-core anti-scatter grid for a digital X-ray image sensor
JPH0694898A (en) Manufacture of x-ray frenel lens
JP2009047430A (en) X-ray condenser lens

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130829

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140106

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141125

R150 Certificate of patent or registration of utility model

Ref document number: 5656726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250