JP2012225580A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2012225580A
JP2012225580A JP2011093822A JP2011093822A JP2012225580A JP 2012225580 A JP2012225580 A JP 2012225580A JP 2011093822 A JP2011093822 A JP 2011093822A JP 2011093822 A JP2011093822 A JP 2011093822A JP 2012225580 A JP2012225580 A JP 2012225580A
Authority
JP
Japan
Prior art keywords
hot water
water
temperature
heat exchanger
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011093822A
Other languages
Japanese (ja)
Other versions
JP5333507B2 (en
Inventor
Mamoru Hamada
守 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011093822A priority Critical patent/JP5333507B2/en
Publication of JP2012225580A publication Critical patent/JP2012225580A/en
Application granted granted Critical
Publication of JP5333507B2 publication Critical patent/JP5333507B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To perform a high-speed and efficient defrost operation while controlling water shortage in a hot water tank.SOLUTION: The heat pump water heater includes a refrigerant cycle circuit and a hot water supply circuit. The refrigerant cycle circuit is formed by connecting a compressor 1, a user side heat exchanger 3, an expansion valve 4, and a heat source side heat exchanger 5 in this order by a refrigerant pipe 13. The hot water supply circuit is composed of the hot water tank 6, a first water pipe 21 of which one end is connected to a water inlet of the user side heat exchanger 3, a water pump 7 installed in the first water pipe 21, a second water pipe 22 to connect a water outlet of the user side heat exchanger 3 and an upper part of the hot water tank 6, a first three-way valve 8 installed at the other end of the first water pipe 21, a lower pipe 20 to connect the first three-way valve 8 and a lower part of the hot water tank 6, and an upper pipe 19 to connect the first three-way valve 8 and the upper part of the hot water tank 6. In the defrost operation of the heat source side heat exchanger 5 by reversing the refrigerant flow in the refrigerant cycle circuit, the first three-way valve 8 is controlled to adjust the temperature of water flowing into the user side heat exchanger 3.

Description

本発明は、ヒートポンプ給湯装置に関する。   The present invention relates to a heat pump water heater.

従来、空気調和機、ヒートポンプ給湯装置などのヒートポンプ装置は、圧縮機、利用側熱交換器、膨張手段、熱源側熱交換器からなる冷凍サイクルで構成され、その冷凍サイクル内に冷媒が充填されている。圧縮機で圧縮された冷媒は、高温高圧のガス冷媒となり、利用側熱交換器(凝縮器)に送り込まれる。利用側熱交換器に流れ込んだ冷媒は、水に熱を放出することで液化する。一方、水は利用側熱交換器において加温されることで高温のお湯が生成される。   Conventionally, a heat pump device such as an air conditioner or a heat pump water heater is composed of a refrigeration cycle including a compressor, a use side heat exchanger, an expansion means, and a heat source side heat exchanger, and the refrigeration cycle is filled with a refrigerant. Yes. The refrigerant compressed by the compressor becomes a high-temperature and high-pressure gas refrigerant and is sent to the use side heat exchanger (condenser). The refrigerant flowing into the use side heat exchanger is liquefied by releasing heat into water. On the other hand, hot water is produced | generated by heating water in a utilization side heat exchanger.

液化した冷媒は、膨張手段で減圧されて気液二相状態となり、熱源側熱交換器(蒸発器)にて周囲空気から熱を吸収することでガス化した後に圧縮機へ戻る。このとき、熱源側熱交換器の周囲空気温度が低く、冷媒の蒸発温度が0℃より低くなる場合は、熱源側熱交換器のフィン表面に霜が発生する。霜が発生すると、風量低下及び熱抵抗の増大により、給湯能力が低下するため、定期的に霜を取り除く除霜運転が必要となる。   The liquefied refrigerant is depressurized by the expansion means to be in a gas-liquid two-phase state, gasified by absorbing heat from ambient air in the heat source side heat exchanger (evaporator), and then returned to the compressor. At this time, when the ambient air temperature of the heat source side heat exchanger is low and the evaporation temperature of the refrigerant is lower than 0 ° C., frost is generated on the fin surface of the heat source side heat exchanger. When frost is generated, the hot water supply capacity is reduced due to a decrease in the air volume and an increase in thermal resistance, and therefore a defrosting operation that periodically removes frost is required.

除霜運転としては、冷媒の流れる向きを逆にし、貯湯タンク内の温水を熱源として除霜を行うリバース除霜が知られている。リバース除霜は、冷媒の流れを逆にすることで、利用側熱交換器を蒸発器、熱源側熱交換器を凝縮器として熱源側熱交換器の霜を溶かすものである。このとき、水の流れ方向は変わらないため、蒸発器として作用する利用側熱交換器には、貯湯タンクの下部から冷たい水が入り、利用側熱交換器において更に冷やされて貯湯タンクの上部に戻ることになる。この場合、低温の水を熱源とするため、除霜時間が長くなるといった問題がある他、利用側熱交換器で冷やされた水がタンク上部に戻ることになるため、タンク上部に蓄えられている給湯用の高温の湯が冷やされて、給湯できないといった問題が発生する。   As the defrosting operation, reverse defrosting is known in which the direction in which the refrigerant flows is reversed and defrosting is performed using hot water in the hot water storage tank as a heat source. In reverse defrosting, the refrigerant flow is reversed to melt the frost of the heat source side heat exchanger using the use side heat exchanger as an evaporator and the heat source side heat exchanger as a condenser. At this time, since the direction of water flow does not change, cold water enters the utilization side heat exchanger acting as an evaporator from the lower part of the hot water storage tank, and is further cooled in the utilization side heat exchanger to the upper part of the hot water storage tank. Will return. In this case, since low-temperature water is used as a heat source, there is a problem that the defrosting time becomes long, and water cooled by the use side heat exchanger returns to the upper part of the tank, so that it is stored in the upper part of the tank. There is a problem that hot water for hot water supply is cooled and cannot be supplied.

そこで、ヒートポンプ給湯装置において、リバース除霜時に冷媒の流れだけでなく、水の流れも逆にして、蒸発器として作用する利用側熱交換器に高温の湯を入れ、そこで冷やされた水を貯湯タンク下部に戻すヒートポンプ給湯装置が知られている(例えば特許文献1参照)。この装置では、高温の湯を熱源とするため、除霜時間が短縮される。また、利用側熱交換器で冷やされた水が貯湯タンク下部に戻されるので、貯湯タンク上部の高温のお湯が冷やされることを回避することができる。   Therefore, in the heat pump hot water supply device, not only the refrigerant flow during reverse defrosting but also the water flow is reversed, hot water is put into the use side heat exchanger acting as an evaporator, and the cooled water is stored in the hot water A heat pump hot water supply device that returns to the bottom of the tank is known (see, for example, Patent Document 1). In this apparatus, since hot water is used as a heat source, the defrosting time is shortened. Moreover, since the water cooled by the utilization side heat exchanger is returned to the lower part of the hot water storage tank, it is possible to avoid the hot water in the upper part of the hot water storage tank being cooled.

特開昭58−214759号公報JP 58-214759 A

しかしながら、上記従来の装置のように、リバース除霜時に水の流れを逆にすると、貯湯タンクの上部に貯湯されている高温のお湯が熱源として使用される。このため、お湯の使用度合によっては、貯湯タンク内に存在する給湯に必要な高温のお湯の量が減少し、給湯したいときにできないといった湯切れ問題が発生してしまうおそれがある。   However, when the flow of water is reversed during reverse defrosting as in the above-described conventional device, hot hot water stored in the upper part of the hot water storage tank is used as a heat source. For this reason, depending on the usage of hot water, the amount of hot water required for hot water supply in the hot water storage tank is reduced, and there is a possibility that the problem of running out of hot water, which cannot be performed when hot water supply is desired, may occur.

本発明は、上述のような課題を解決するためになされたもので、貯湯タンク内の湯切れを抑制しつつ高速で高効率な除霜運転を行うことのできるヒートポンプ給湯装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a heat pump hot water supply apparatus capable of performing a high-efficiency and high-efficiency defrosting operation while suppressing hot water in a hot water storage tank. Objective.

本発明に係るヒートポンプ給湯装置は、冷媒を圧縮する圧縮機と、圧縮機で圧縮された冷媒によって水を加熱するための利用側熱交換器と、膨張弁と、熱源側熱交換器とがこの順に冷媒流路で接続された冷凍サイクル回路と、貯湯タンクと、一端が利用側熱交換器の水の入口に接続された第1の水配管と、第1の水配管の途中に設けられた水ポンプと、利用側熱交換器の水の出口と貯湯タンクの上部とを接続する第2の水配管と、第1の水配管の他端に配設された混合弁と、混合弁と貯湯タンクの下部とを接続する下部配管と、混合弁と貯湯タンクにおける下部配管との接続部よりも上部とを接続する上部配管と、を有する給湯水回路と、冷凍サイクル回路および給湯水回路を制御する制御手段と、を備え、混合弁は、下部配管を流れる水量と上部配管を流れる水量との比率を調整可能に構成され、制御手段は、冷凍サイクル回路を流れる冷媒を逆流させて熱源側熱交換器の除霜を行う除霜運転時に、混合弁を制御して利用側熱交換器に流れ込む水の温度を調整するものである。   A heat pump hot water supply apparatus according to the present invention includes a compressor that compresses a refrigerant, a use side heat exchanger for heating water by the refrigerant compressed by the compressor, an expansion valve, and a heat source side heat exchanger. A refrigeration cycle circuit, a hot water storage tank, a first water pipe whose one end is connected to the water inlet of the use side heat exchanger, and a first water pipe are provided in this order. A water pump, a second water pipe connecting the water outlet of the use side heat exchanger and the upper part of the hot water storage tank, a mixing valve disposed at the other end of the first water pipe, the mixing valve and the hot water storage A hot water supply circuit having a lower pipe that connects the lower part of the tank and an upper pipe that connects the upper part of the connection between the mixing valve and the lower pipe in the hot water storage tank, and controls the refrigeration cycle circuit and the hot water supply circuit And a mixing valve, the amount of water flowing through the lower pipe The control means is configured to be able to adjust the ratio with the amount of water flowing through the upper pipe, and the control means controls the mixing valve during the defrosting operation in which the refrigerant flowing through the refrigeration cycle circuit is reversely flowed to defrost the heat source side heat exchanger. The temperature of the water flowing into the use side heat exchanger is adjusted.

本発明のヒートポンプ給湯装置によれば、貯湯タンク内の湯切れを抑制しつつ高速で高効率な除霜運転を行うことのできるヒートポンプ給湯装置を提供することができる。   ADVANTAGE OF THE INVENTION According to the heat pump hot water supply apparatus of this invention, the heat pump hot water supply apparatus which can perform a high-speed and highly efficient defrost operation can be provided, suppressing the hot water shortage in a hot water storage tank.

本発明の実施の形態1におけるヒートポンプ給湯装置の概略構成を示す図である。It is a figure which shows schematic structure of the heat pump hot-water supply apparatus in Embodiment 1 of this invention. 沸き上げ運転時のタンクユニット200の水の流れを説明するための図である。It is a figure for demonstrating the flow of the water of the tank unit 200 at the time of boiling operation. 利用側熱交換器3における加熱能力の時間変化を示す図である。It is a figure which shows the time change of the heating capability in the utilization side heat exchanger. 除霜運転時の冷媒および水の流れを説明するための図である。It is a figure for demonstrating the flow of the refrigerant | coolant and water at the time of a defrost operation. 除霜運転時の水の流れの一例を説明するための図である。It is a figure for demonstrating an example of the flow of water at the time of a defrost operation. 本実施の形態1のヒートポンプ給湯装置が除霜運転を実行するルーチンのフローチャートである。It is a flowchart of the routine in which the heat pump hot-water supply apparatus of this Embodiment 1 performs a defrost operation. 本実施の形態1のヒートポンプ給湯装置の変形例を示す図である。It is a figure which shows the modification of the heat pump hot-water supply apparatus of this Embodiment 1. 本実施の形態1のヒートポンプ給湯装置の変形例を示す図である。It is a figure which shows the modification of the heat pump hot-water supply apparatus of this Embodiment 1. 本実施の形態1のヒートポンプ給湯装置の変形例を示す図である。It is a figure which shows the modification of the heat pump hot-water supply apparatus of this Embodiment 1. 本発明の実施の形態2におけるヒートポンプ給湯装置の概略構成を示す図である。It is a figure which shows schematic structure of the heat pump hot-water supply apparatus in Embodiment 2 of this invention. 本実施の形態2のヒートポンプ給湯装置が除霜運転を実行するルーチンのフローチャートである。It is a flowchart of the routine in which the heat pump hot-water supply apparatus of this Embodiment 2 performs a defrost operation. 本発明の実施の形態3におけるヒートポンプ給湯装置の概略構成を示す図である。It is a figure which shows schematic structure of the heat pump hot-water supply apparatus in Embodiment 3 of this invention. 本実施の形態3のヒートポンプ給湯装置が除霜運転を実行するルーチンのフローチャートである。It is a flowchart of the routine in which the heat pump hot-water supply apparatus of this Embodiment 3 performs a defrost operation.

以下、図面を参照して本発明の実施の形態について説明する。尚、この実施の形態により本発明が限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. In addition, this invention is not limited by this embodiment.

実施の形態1.
[実施の形態1の構成]
図1は、本発明の実施の形態1におけるヒートポンプ給湯装置の概略構成を示す図である。図1に示すとおり、本実施形態のヒートポンプ給湯装置は、ヒートポンプユニット100とタンクユニット200とを備えている。ヒートポンプユニット100内には、圧縮機1、四方弁2、利用側熱交換器3、膨張弁4および熱源側熱交換器5が搭載され、これらが冷媒配管13によって環状に接続されることにより冷凍サイクル回路が形成されている。四方弁2は、図1に示すように冷媒配管13における圧縮機1の前後に介在するように配置され、連通させるポートの切り替えを行うことにより、冷媒配管13を流通する冷媒の流れ方向を切り替え可能に構成されている。
Embodiment 1 FIG.
[Configuration of Embodiment 1]
FIG. 1 is a diagram showing a schematic configuration of a heat pump hot water supply apparatus according to Embodiment 1 of the present invention. As shown in FIG. 1, the heat pump water heater of this embodiment includes a heat pump unit 100 and a tank unit 200. In the heat pump unit 100, a compressor 1, a four-way valve 2, a use side heat exchanger 3, an expansion valve 4 and a heat source side heat exchanger 5 are mounted. A cycle circuit is formed. As shown in FIG. 1, the four-way valve 2 is disposed so as to intervene before and after the compressor 1 in the refrigerant pipe 13, and the flow direction of the refrigerant flowing through the refrigerant pipe 13 is switched by switching the ports to be communicated. It is configured to be possible.

タンクユニット200内には、負荷側媒体である水(給湯水)を利用側熱交換器3に送る水ポンプ7と、利用側熱交換器3で加熱されることによって生成された高温水を貯留する貯湯タンク6と、が搭載されている。水ポンプ7は、制御部によってそのポンプ回転数を制御することにより、運転・停止の切り替えや流量調整が可能に構成されている。水ポンプは第1の水配管21の途中に配設されており、当該第1の水配管21の一端は利用側熱交換器3の水の入口に接続されている。利用側熱交換器3の水の出口と貯湯タンク6の上部とは、第2の水配管22で接続されている。第1の水配管21の他端は第1の三方弁8に接続されている。貯湯タンク6の上部および下部は、それぞれ上部配管19および下部配管20を介して三方弁8に接続されている。更に、貯湯タンク6の下部と第2の水配管22における利用側熱交換器3の下流側とは、第3の水配管24で接続され、その接続部には第2の三方弁9が配設されている。第3の水配管24の途中には、第1の温度検出手段10が配設されている。また、貯湯タンク6の下部に市水(0℃よりも高い)を供給する配管12の途中には、第2の温度検出手段11が配設されている。   In the tank unit 200, a water pump 7 that sends water (hot water) that is a load-side medium to the use-side heat exchanger 3 and high-temperature water that is generated by being heated by the use-side heat exchanger 3 are stored. A hot water storage tank 6 is mounted. The water pump 7 is configured such that operation / stop switching and flow rate adjustment are possible by controlling the number of rotations of the pump by the control unit. The water pump is disposed in the middle of the first water pipe 21, and one end of the first water pipe 21 is connected to the water inlet of the use side heat exchanger 3. The water outlet of the use side heat exchanger 3 and the upper part of the hot water storage tank 6 are connected by a second water pipe 22. The other end of the first water pipe 21 is connected to the first three-way valve 8. The upper and lower parts of the hot water storage tank 6 are connected to the three-way valve 8 via an upper pipe 19 and a lower pipe 20, respectively. Furthermore, the lower part of the hot water storage tank 6 and the downstream side of the use side heat exchanger 3 in the second water pipe 22 are connected by a third water pipe 24, and the second three-way valve 9 is arranged at the connection part. It is installed. In the middle of the third water pipe 24, the first temperature detecting means 10 is disposed. A second temperature detecting means 11 is disposed in the middle of the pipe 12 for supplying city water (higher than 0 ° C.) to the lower part of the hot water storage tank 6.

[実施の形態1の動作]
次に、本実施の形態1のヒートポンプ給湯装置での運転動作について説明する。
[Operation of Embodiment 1]
Next, the operation | movement operation | movement with the heat pump hot-water supply apparatus of this Embodiment 1 is demonstrated.

(沸き上げ運転動作)
先ず、本実施の形態1のヒートポンプ式給湯装置の沸き上げ運転動作について説明する。沸き上げ運転とは、ヒートポンプユニット100とタンクユニット200とを動作させ、貯湯タンク6の下部から水ポンプ7で低温水を流出させて貯湯タンク6に送水し、利用側熱交換器3で冷媒と熱交換することにより沸き上げて高温水とし、この高温水を貯湯タンク6の上部に戻す運転動作である。
(Boiling operation)
First, the heating operation of the heat pump type hot water supply apparatus according to the first embodiment will be described. In the boiling operation, the heat pump unit 100 and the tank unit 200 are operated, low-temperature water is discharged from the lower part of the hot water storage tank 6 by the water pump 7 and sent to the hot water storage tank 6, and the refrigerant on the use side heat exchanger 3 In this operation, the water is boiled to high temperature water by heat exchange, and the high temperature water is returned to the upper part of the hot water storage tank 6.

図1に示すように、ヒートポンプユニット100では、圧縮機1で圧縮された冷媒は、高温高圧のガス冷媒となり、四方弁2を通り利用側熱交換器3に送り込まれる。利用側熱交換器3に流れ込んだ冷媒は、水に熱を放出することにより液化する。液化した冷媒は膨張弁4に流れ込む。液状態の冷媒は膨張弁4で減圧されて気液二相状態となり、熱源側熱交換器5に送り込まれ、空気から熱を吸収することでガス化し、圧縮機1へ戻される。   As shown in FIG. 1, in the heat pump unit 100, the refrigerant compressed by the compressor 1 becomes a high-temperature and high-pressure gas refrigerant, and is sent to the use side heat exchanger 3 through the four-way valve 2. The refrigerant flowing into the use side heat exchanger 3 is liquefied by releasing heat into water. The liquefied refrigerant flows into the expansion valve 4. The liquid refrigerant is decompressed by the expansion valve 4 to be in a gas-liquid two-phase state, sent to the heat source side heat exchanger 5, gasified by absorbing heat from the air, and returned to the compressor 1.

図2は、沸き上げ運転時のタンクユニット200の水の流れを説明するための図である。図2に示すように、タンクユニット200では、水ポンプ7により第1の水配管21を通って貯湯タンク6の下部から利用側熱交換器3に送り込まれた水は、利用側熱交換器3で冷媒から熱をもらい高温のお湯となり、第2の水配管22を通って貯湯タンク6の上部に戻る。このような構成とすることで、貯湯タンク6の上部には高温のお湯、下部には低温の水といったように温度成層が生成され、給湯時に貯湯タンク6上部から高温のお湯を取り出せるようにしている。   FIG. 2 is a view for explaining the flow of water in the tank unit 200 during the boiling operation. As shown in FIG. 2, in the tank unit 200, the water sent from the lower part of the hot water storage tank 6 to the use side heat exchanger 3 through the first water pipe 21 by the water pump 7 is used on the use side heat exchanger 3. Then, heat is received from the refrigerant to become hot hot water, and returns to the upper part of the hot water storage tank 6 through the second water pipe 22. With this configuration, temperature stratification is generated, such as hot water in the upper part of the hot water tank 6 and cold water in the lower part, so that hot water can be taken out from the upper part of the hot water tank 6 when hot water is supplied. Yes.

(除霜運転動作)
次に、本実施の形態1のヒートポンプ給湯装置の除霜運転動作について説明する。除霜運転とは、熱源側熱交換器5に付着した霜を、圧縮機1から吐出された冷媒の熱で溶かすための運転動作である。熱源側熱交換器5での冷媒の蒸発温度が0℃以下の場合、空気中に存在している水分が熱源側熱交換器5に付着し、霜となって堆積する。その堆積量は時間とともに増加する。図3は、利用側熱交換器3における加熱能力の時間変化を示す図である。この図に示すとおり、熱源側熱交換器5の一部であるフィンに付着した霜によって熱抵抗、通風抵抗が増加すると、図3に示すように、利用側熱交換器3における加熱能力が時間とともに低下する。このため、熱源側熱交換器5に霜が付着している場合には、沸き上げ運転を一時中断して定期的に除霜運転を行い熱源側熱交換器5の霜を除去する必要がある。
(Defrosting operation)
Next, a defrosting operation operation of the heat pump hot water supply apparatus according to the first embodiment will be described. The defrosting operation is an operation for melting the frost adhering to the heat source side heat exchanger 5 with the heat of the refrigerant discharged from the compressor 1. When the evaporating temperature of the refrigerant in the heat source side heat exchanger 5 is 0 ° C. or less, moisture present in the air adheres to the heat source side heat exchanger 5 and accumulates as frost. The amount of deposition increases with time. FIG. 3 is a diagram illustrating a change over time in the heating capacity in the use side heat exchanger 3. As shown in this figure, when the heat resistance and the ventilation resistance increase due to frost adhering to the fins that are a part of the heat source side heat exchanger 5, as shown in FIG. Decreases with. For this reason, when frost has adhered to the heat source side heat exchanger 5, it is necessary to temporarily interrupt the boiling operation and periodically perform the defrosting operation to remove the frost from the heat source side heat exchanger 5. .

図4は、除霜運転時の冷媒および水の流れを説明するための図である。この図に示すとおり、除霜運転を行う場合には、四方弁2を切り替えることにより冷媒が逆流されて、熱源側熱交換器5に高温高圧の冷媒が導入される。これにより、熱源側熱交換器5を凝縮器として作用させて除霜を行うことができる。   FIG. 4 is a diagram for explaining the flow of refrigerant and water during the defrosting operation. As shown in this figure, when the defrosting operation is performed, the refrigerant flows backward by switching the four-way valve 2, and the high-temperature and high-pressure refrigerant is introduced into the heat source side heat exchanger 5. Thereby, the heat source side heat exchanger 5 can be operated as a condenser to perform defrosting.

また、除霜運転中は、利用側熱交換器3には低温低圧の冷媒が流れ、蒸発器として作用し、除霜に必要な熱を水から吸熱する。この際、除霜に十分な熱量をもった湯を貯湯タンク6から利用側熱交換器3に流入させるため、第1の三方弁8で上部配管19から来る貯湯タンク6上部の高温の湯と下部配管20から来る貯湯タンク6下部の低温の水とを混合することとしている。   Further, during the defrosting operation, a low-temperature and low-pressure refrigerant flows through the use side heat exchanger 3 and acts as an evaporator to absorb heat necessary for defrosting from water. At this time, hot water having a sufficient amount of heat for defrosting is allowed to flow from the hot water storage tank 6 into the use side heat exchanger 3, so that the hot water in the upper part of the hot water storage tank 6 coming from the upper pipe 19 by the first three-way valve 8 The low temperature water in the lower part of the hot water storage tank 6 coming from the lower pipe 20 is mixed.

利用側熱交換器3に流入した混合湯は、利用側熱交換器3で低温の水となり、第2の水配管22、第2の三方弁9、第3の水配管24を通って貯湯タンク6の下部に戻される。このように、冷水の戻し口を貯湯タンク6の下部にすることで、温度成層を壊すことなくタンク内に水を戻すことが可能となり、貯湯タンク6上部の高温のお湯と下部の低温のお湯の混合が低減されるといった効果がある。   The hot water flowing into the use side heat exchanger 3 becomes low-temperature water in the use side heat exchanger 3, passes through the second water pipe 22, the second three-way valve 9, and the third water pipe 24 to store the hot water. 6 is returned to the bottom. Thus, by setting the return port of the cold water to the lower part of the hot water storage tank 6, it becomes possible to return water into the tank without breaking the temperature stratification, and the hot water at the upper part of the hot water storage tank 6 and the hot water at the lower part of the hot water storage tank 6. There is an effect that the mixing of is reduced.

図5は、除霜運転時の水の流れの一例を説明するための図である。この図に示すとおり、貯湯タンク6の下部に戻る水の温度が中温であって、貯湯タンク6の下部に供給される水(市水)の温度よりも高い場合には、図5に示すように貯湯タンク6内の温度成層を乱してしまい、貯湯タンク6の上部の高温の湯と下部の低温の水とが混合され、給湯に使用できる高温の湯量が減少してしまう。   Drawing 5 is a figure for explaining an example of the flow of water at the time of defrosting operation. As shown in this figure, when the temperature of the water returning to the lower part of the hot water storage tank 6 is intermediate and higher than the temperature of the water (city water) supplied to the lower part of the hot water storage tank 6, as shown in FIG. Therefore, the temperature stratification in the hot water storage tank 6 is disturbed, the hot water in the upper part of the hot water storage tank 6 and the cold water in the lower part are mixed, and the amount of hot water that can be used for hot water supply decreases.

また、貯湯タンク6の下部に戻る水の温度が、タンク下部に供給される水(市水)の温度よりも高いということは、除霜に必要な熱量を得るために高温の湯を多量に使用してしまうということになり、給湯に使用できる高温の湯量が減少してしまう。つまり、貯湯タンク6の下部に戻る水の温度はなるべく低くなるように、利用側熱交換器3に流す湯の温度を低くして、高温の湯の使用量を減らしたほうがよい。   Moreover, the temperature of the water returning to the lower part of the hot water storage tank 6 is higher than the temperature of the water (city water) supplied to the lower part of the tank, which means that a large amount of hot water is required to obtain the amount of heat necessary for defrosting. This means that the amount of hot water that can be used for hot water supply is reduced. That is, it is better to reduce the amount of hot water used by lowering the temperature of hot water flowing to the use side heat exchanger 3 so that the temperature of the water returning to the lower part of the hot water storage tank 6 is as low as possible.

但し、利用側熱交換器3に流す湯の温度を低くし過ぎると、除霜運転が長くなるといった問題がある。また、利用側熱交換器3で加熱される熱量Qhは、水の流量Vw(l/s)、水の比熱C(kJ/kg)、利用側熱交換器3に流入する水の温度をTin、流出する湯の温度をToutとすると、以下の式で表される。
Qh=Vw×C×(Tout-Tin) ・・・(1)
However, if the temperature of the hot water flowing through the use side heat exchanger 3 is too low, there is a problem that the defrosting operation becomes long. Further, the amount of heat Qh heated by the use side heat exchanger 3 is defined by the flow rate of water Vw (l / s), the specific heat C of water (kJ / kg), and the temperature of water flowing into the use side heat exchanger 3 as Tin. When the temperature of the flowing hot water is Tout, it is expressed by the following equation.
Qh = Vw × C × (Tout-Tin) (1)

上式(1)からも分かるとおり、貯湯タンク6の下部に戻る水の温度が、貯湯タンク6の上部に給水される水(市水)の温度よりも低くなる場合は、除霜運転終了後の加熱運転時に利用側熱交換器3で所定の温度まで加熱する際の加熱量が増えてしまうということになり、消費電力量が増大してしまう。   As can be seen from the above equation (1), when the temperature of the water returning to the lower part of the hot water storage tank 6 is lower than the temperature of the water (city water) supplied to the upper part of the hot water storage tank 6, During the heating operation, the heating amount when heating to the predetermined temperature by the use side heat exchanger 3 is increased, and the power consumption is increased.

そこで、本実施の形態のヒートポンプでは、第2の温度検出手段11を市水を供給する配管に設け、第3の水配管24に設けた第1の温度検出手段10の温度が第2の温度検出手段11の検出値と同じになるように、第1の三方弁8における高温のお湯と低温の水の混合量を決定する。このように、貯湯タンク6に戻る水の温度を調整することで、タンク内部の湯を有効に利用することができ、且つ除霜するために必要な熱を十分にもった熱源とすることができる。   Therefore, in the heat pump of the present embodiment, the second temperature detection means 11 is provided in a pipe for supplying city water, and the temperature of the first temperature detection means 10 provided in the third water pipe 24 is the second temperature. The amount of hot and cold water mixed in the first three-way valve 8 is determined so as to be the same as the detection value of the detection means 11. Thus, by adjusting the temperature of the water returning to the hot water storage tank 6, the hot water inside the tank can be used effectively, and a heat source having sufficient heat for defrosting can be provided. it can.

次に、フローチャートを参照して各アクチュエータの動作について具体的に説明する。図6は、本実施の形態1のヒートポンプ給湯装置が除霜運転を実行するルーチンのフローチャートである。尚、図6に示すルーチンは、熱源側熱交換器5への着霜により加熱能力が低下したことを判定した場合に実行される。   Next, the operation of each actuator will be specifically described with reference to a flowchart. FIG. 6 is a flowchart of a routine in which the heat pump water heater of the first embodiment performs a defrosting operation. The routine shown in FIG. 6 is executed when it is determined that the heating capacity has decreased due to frost formation on the heat source side heat exchanger 5.

図6に示すルーチンでは、先ずステップS1において、圧縮機1を停止させるか、圧縮機周波数を任意の周波数まで低下させる。ただし、四方弁2が切り替え可能であれば、圧縮機周波数はそのままでもよい。   In the routine shown in FIG. 6, first, in step S1, the compressor 1 is stopped or the compressor frequency is lowered to an arbitrary frequency. However, if the four-way valve 2 can be switched, the compressor frequency may be left as it is.

次のステップS2では、四方弁2を切り替えて冷媒の流れを逆にし、膨張弁4を全開にする。このように、膨張弁部の抵抗を減らし、冷媒流量を増やすことで、除霜時間をより短縮することも可能となる。   In the next step S2, the four-way valve 2 is switched to reverse the refrigerant flow, and the expansion valve 4 is fully opened. As described above, the defrosting time can be further shortened by reducing the resistance of the expansion valve portion and increasing the flow rate of the refrigerant.

次のステップS3では、圧縮機周波数を予め決められた除霜運転時の圧縮機周波数にする。また、次のステップS4では、第1の温度検出手段10の検出値Tw1と、第2の温度検出手段11の検出値Tw2とを比較する。その結果、Tw1=Tw2の場合には、次のステップS6に移行し、除霜運転の終了を判定する。一方、上記ステップS4においてTw1≠Tw2の場合には、次のステップS5に移行し、第1の三方弁8の調整を行う。ここでは、具体的には、例えば、Tw1>Tw2の場合には、第1の三方弁8を貯湯タンク6の下部からの低温の水の量が多くなるように調整し、Tw1<Tw2の場合には、第1の三方弁8を貯湯タンク6の上部からの高温の湯の量が多くなるように調整する。   In the next step S3, the compressor frequency is set to a predetermined compressor frequency during the defrosting operation. In the next step S4, the detection value Tw1 of the first temperature detection means 10 is compared with the detection value Tw2 of the second temperature detection means 11. As a result, when Tw1 = Tw2, the process proceeds to the next step S6 to determine the end of the defrosting operation. On the other hand, if Tw1 ≠ Tw2 in step S4, the process proceeds to the next step S5, and the first three-way valve 8 is adjusted. Here, specifically, for example, when Tw1> Tw2, the first three-way valve 8 is adjusted so that the amount of low-temperature water from the lower part of the hot water storage tank 6 is increased, and when Tw1 <Tw2 The first three-way valve 8 is adjusted so that the amount of hot water from the upper part of the hot water storage tank 6 is increased.

上記ステップS5の処理が終了すると、次に、上述したステップS6に移行する。ステップS6では、除霜終了か否かが判定され、未だ除霜終了でない場合には、再度ステップS4に戻り、Tw1とTw2との比較を行う。この動作を除霜運転終了まで行う。尚、図6に示すルーチンではTw1=Tw2となるようにしたが、Tw1=Tw2+αとし、貯湯タンク6に戻る温度が市水温度よりも高めの温度としてもよい。   When the process of step S5 is completed, the process proceeds to step S6 described above. In step S6, it is determined whether or not the defrosting is finished. If the defrosting is not finished yet, the process returns to step S4 again to compare Tw1 and Tw2. This operation is performed until the defrosting operation is completed. In the routine shown in FIG. 6, Tw1 = Tw2 is set. However, Tw1 = Tw2 + α, and the temperature returning to the hot water storage tank 6 may be higher than the city water temperature.

以上のように、除霜運転時に利用側熱交換器3へ供給するお湯の温度を調整することにより、貯湯タンク6内の高温の湯量減少を抑制し給湯時の湯切れ防止や、加熱運転時に戻った時のお湯の再加熱を回避できる。また、前述したように除霜に必要な熱をお湯から有効に取り出すことで、高速で高効率な除霜運転が可能となる。   As described above, by adjusting the temperature of the hot water supplied to the use-side heat exchanger 3 during the defrosting operation, it is possible to suppress a decrease in the amount of hot water in the hot water storage tank 6 to prevent the hot water from running out during hot water supply, and during the heating operation. Reheating of hot water when returning is avoided. Further, as described above, it is possible to perform defrosting operation at high speed and high efficiency by effectively removing heat necessary for defrosting from hot water.

また、除霜運転時には、蒸発器として作用する利用側熱交換器3の冷媒飽和温度が0℃以下となり、利用側熱交換器内部の水が凍ってしまうという不具合が発生する場合があるが、本発明のように利用側熱交換器3から出て貯湯タンク6に戻る水温を市水温度(0℃よりも高い)、あるいは、貯湯タンク6の下部の温度になるように調整しているので、水が凍って、水流路が塞がったり、水流路が破裂したりといった不具合を回避できるといった効果もある。   In addition, during the defrosting operation, the refrigerant saturation temperature of the use side heat exchanger 3 acting as an evaporator becomes 0 ° C. or less, and there may be a problem that water inside the use side heat exchanger freezes. As in the present invention, the temperature of the water coming out of the use side heat exchanger 3 and returning to the hot water storage tank 6 is adjusted to be the city water temperature (higher than 0 ° C.) or the temperature at the lower part of the hot water storage tank 6. There is also an effect that it is possible to avoid problems such as freezing of the water, blocking of the water flow path, and rupture of the water flow path.

ところで、上述した実施の形態1のヒートポンプ給湯装置では、除霜運転時に膨張弁4を全開に開弁することとしたが、例えば以下に示す構成によって対応することとしてもよい。図7は、本実施の形態1のヒートポンプ給湯装置の変形例を示す図である。この図に示すように、膨張弁4をバイパスするバイパス回路41と、バイパス回路41の途中に配設された開閉弁42と、を備え、沸き上げ運転時は開閉弁42を閉に制御し、除霜運転時は、開閉弁42を開に制御することとしてもよい。   By the way, in the heat pump hot-water supply apparatus of Embodiment 1 mentioned above, although the expansion valve 4 was opened fully at the time of a defrost operation, it is good also as respond | corresponding, for example with the structure shown below. FIG. 7 is a diagram illustrating a modification of the heat pump hot water supply apparatus according to the first embodiment. As shown in this figure, a bypass circuit 41 that bypasses the expansion valve 4 and an on-off valve 42 disposed in the middle of the bypass circuit 41 are provided, and the on-off valve 42 is controlled to be closed during the heating operation, During the defrosting operation, the on-off valve 42 may be controlled to open.

また、上述した実施の形態1のヒートポンプ給湯装置では、貯湯タンク6の下部に市水を供給する配管12の途中に設けられた第2の温度検出手段11の検出値Tw2と第1の温度検出手段10の検出値Tw1とを比較することとしているが、比較する温度はこれに限られない。図8は、本実施の形態1のヒートポンプ給湯装置の変形例を示す図である。この図に示すように、第2の温度検出手段11の代わりに、第3の温度検出手段14を貯湯タンク6の下部の水温が検知できるように設け、第3の水配管24に設けた第1の温度検出手段10の検出値Tw1が第3の温度検出手段14の検出値と同じになるように、第1の三方弁8の開度を決定してもよい。   In the heat pump hot water supply apparatus of the first embodiment described above, the detection value Tw2 of the second temperature detection means 11 provided in the middle of the pipe 12 for supplying city water to the lower part of the hot water storage tank 6 and the first temperature detection. Although the detection value Tw1 of the means 10 is compared, the temperature to be compared is not limited to this. FIG. 8 is a diagram illustrating a modification of the heat pump hot water supply apparatus according to the first embodiment. As shown in this figure, instead of the second temperature detection means 11, a third temperature detection means 14 is provided so that the water temperature at the lower part of the hot water storage tank 6 can be detected, and a third water pipe 24 is provided with a third temperature detection means 14. The opening degree of the first three-way valve 8 may be determined so that the detection value Tw1 of the first temperature detection means 10 is the same as the detection value of the third temperature detection means 14.

また、上述した実施の形態1のヒートポンプ給湯装置では、第1の三方弁8が上部配管19に接続されているが、貯湯タンク6内の中温水を取り出すように貯湯タンク6の中部に接続された中部配管23に接続してもよい。図9は、本実施の形態1のヒートポンプ給湯装置の変形例を示す図である。この図に示すように、貯湯タンク6中央部の中温水を減らすことで、より温度成層が生成しやすくなり、貯湯タンク6の上部の高温のお湯と下部の低温のお湯の混合が低減されるといった効果もある。   In the heat pump hot water supply apparatus of the first embodiment described above, the first three-way valve 8 is connected to the upper pipe 19, but is connected to the middle part of the hot water storage tank 6 so as to take out the warm water in the hot water storage tank 6. Alternatively, it may be connected to the middle pipe 23. FIG. 9 is a diagram illustrating a modification of the heat pump hot water supply apparatus according to the first embodiment. As shown in this figure, by reducing the middle temperature water in the central portion of the hot water storage tank 6, it becomes easier to generate temperature stratification, and mixing of hot hot water at the upper part of the hot water storage tank 6 and lower temperature hot water at the lower part is reduced. There is also an effect.

実施の形態2.
次に、図10および図11を参照して、本発明の実施の形態2について説明する。図10は、本発明の実施の形態2におけるヒートポンプ給湯装置の概略構成を示す図である。図10に示すとおり、本実施形態のヒートポンプ給湯装置は、冷媒配管13における利用側熱交換器3の前後に、第4の温度検出手段15と第5の温度検出手段16とがそれぞれ配設されている点を除き、図1に示すヒートポンプ給湯装置と同様に構成されている。第4の温度検出手段15では、除霜運転時に利用側熱交換器3に入る冷媒の温度を検出し、第5の温度検出手段15では、除霜運転時に利用側熱交換器3から出る冷媒の温度を検出する。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to FIG. 10 and FIG. FIG. 10 is a diagram illustrating a schematic configuration of the heat pump hot water supply apparatus according to Embodiment 2 of the present invention. As shown in FIG. 10, in the heat pump hot water supply apparatus of the present embodiment, the fourth temperature detection means 15 and the fifth temperature detection means 16 are respectively arranged before and after the use side heat exchanger 3 in the refrigerant pipe 13. Except for this point, the heat pump hot water supply apparatus shown in FIG. The fourth temperature detection means 15 detects the temperature of the refrigerant entering the use side heat exchanger 3 during the defrosting operation, and the fifth temperature detection means 15 detects the refrigerant coming out of the use side heat exchanger 3 during the defrosting operation. Detect the temperature.

図10に示すヒートポンプ給湯装置では、上述した温度検出手段を加えることで、更に信頼性を向上させたヒートポンプ装置とすることが可能である。すなわち、除霜運転中において利用側熱交換器3に導入された冷媒が蒸発しきれずに、液冷媒を含んだ二相状態で圧縮機1に戻って液圧縮するという問題が発生する場合がある。そこで、図10に示す第4の温度検出手段15の検出値Tw4と第5の温度検出手段16の検出値Tw5とを比較し、Tw5<Tw4である場合は、蒸発しきれていないと判断し、圧縮機周波数を低下させ、冷媒流量を減らすこととする。   In the heat pump hot water supply apparatus shown in FIG. 10, it is possible to provide a heat pump apparatus with further improved reliability by adding the above-described temperature detection means. That is, during the defrosting operation, the refrigerant introduced into the use-side heat exchanger 3 may not evaporate, and there may be a problem that the refrigerant is returned to the compressor 1 and liquid-compressed in a two-phase state containing liquid refrigerant. . Therefore, the detection value Tw4 of the fourth temperature detection means 15 shown in FIG. 10 is compared with the detection value Tw5 of the fifth temperature detection means 16, and if Tw5 <Tw4, it is determined that the evaporation has not been completed. The compressor frequency is lowered and the refrigerant flow rate is reduced.

次に、フローチャートを参照して本実施の形態2の具体的処理について説明する。図11は、本実施の形態2のヒートポンプ給湯装置が除霜運転を実行するルーチンのフローチャートである。尚、図11に示すルーチンにおいて、ステップS1からステップS5までは、上述した図6に示すルーチンと同様であるため、説明を省略する。   Next, specific processing according to the second embodiment will be described with reference to a flowchart. FIG. 11 is a flowchart of a routine in which the heat pump water heater of the second embodiment executes a defrosting operation. In the routine shown in FIG. 11, steps S1 to S5 are the same as the routine shown in FIG.

ステップS6では、Tw5とTw4とを比較する。その結果、Tw5<Tw4の場合には、冷媒が蒸発しきれておらず圧縮機1に液冷媒が流入している(液バックしている)と判定し、次のステップS7で圧縮機周波数を予め決められた量だけ低下させる。その後、ステップS8において除霜終了かどうか判定を行い、まだ除霜終了ではない場合は、ステップS4から再度同じ動作を繰りかえす。   In step S6, Tw5 and Tw4 are compared. As a result, when Tw5 <Tw4, it is determined that the refrigerant has not completely evaporated and the liquid refrigerant is flowing into the compressor 1 (liquid backed), and the compressor frequency is set in the next step S7. Decrease by a predetermined amount. Thereafter, in step S8, it is determined whether or not the defrosting is finished. If the defrosting is not finished yet, the same operation is repeated from step S4.

このように、圧縮機1に戻る冷媒が常にガス状態となるように冷媒流量を調整することで、液圧縮を回避しヒートポンプ給湯装置の信頼性を向上させることが可能となる。また、液圧縮による消費電力増大も回避できる。   In this way, by adjusting the refrigerant flow rate so that the refrigerant returning to the compressor 1 is always in a gas state, it is possible to avoid liquid compression and improve the reliability of the heat pump water heater. Further, an increase in power consumption due to liquid compression can be avoided.

実施の形態3.
次に、図12および図13を参照して、本発明の実施の形態3について説明する。図12は、本発明の実施の形態3におけるヒートポンプ給湯装置の概略構成を示す図である。図12に示すとおり、本実施形態のヒートポンプ給湯装置は、第4の水配管25を貯湯タンク6の下部に接続せずに排水する構造とした点を除き、図1に示すヒートポンプ給湯装置と同様に構成されている。
Embodiment 3 FIG.
Next, Embodiment 3 of the present invention will be described with reference to FIG. 12 and FIG. FIG. 12 is a diagram showing a schematic configuration of a heat pump hot water supply apparatus according to Embodiment 3 of the present invention. As shown in FIG. 12, the heat pump water heater of this embodiment is the same as the heat pump water heater shown in FIG. 1 except that the fourth water pipe 25 is drained without being connected to the lower part of the hot water storage tank 6. It is configured.

本実施の形態3では、貯湯タンク6に戻す水温を気にする必要はなく、第4の水配管25に設けた第2の温度検出手段11が極力低くなるようにする。但し、実施の形態1でも述べたように、利用側熱交換器3の凍結を回避するために第1の温度検出手段10の温度が0℃となるように、第1の三方弁8を調整することとする。   In the third embodiment, there is no need to worry about the water temperature returned to the hot water storage tank 6, and the second temperature detection means 11 provided in the fourth water pipe 25 is made as low as possible. However, as described in the first embodiment, the first three-way valve 8 is adjusted so that the temperature of the first temperature detecting means 10 becomes 0 ° C. in order to avoid freezing of the use side heat exchanger 3. I decided to.

次に、フローチャートを参照して本実施の形態3の具体的処理について説明する。図13は、本実施の形態3のヒートポンプ給湯装置が除霜運転を実行するルーチンのフローチャートである。尚、図13に示すルーチンにおいて、ステップS1からステップS3までは、上述した図6に示すルーチンと同様であるため、説明を省略する。   Next, specific processing of the third embodiment will be described with reference to a flowchart. FIG. 13 is a flowchart of a routine in which the heat pump water heater of the third embodiment performs a defrosting operation. In the routine shown in FIG. 13, steps S1 to S3 are the same as the routine shown in FIG.

ステップS4では、第1の温度検出手段10の検出値Tw1が0℃に等しいか否かを判定する。その結果、Tw1≠0℃の場合には、次のステップS5に移行し、第1の三方弁8の調整を行う。ここでは、具体的には、Tw1>0℃の場合には、第1の三方弁8を貯湯タンク6の下部からの低温の水の量が多くなるように調整し、Tw1<0℃の場合には、第1の三方弁8を貯湯タンク6上部からの高温の湯の量が多くなるように調整する。   In step S4, it is determined whether or not the detected value Tw1 of the first temperature detecting means 10 is equal to 0 ° C. As a result, when Tw1 ≠ 0 ° C., the process proceeds to the next step S5, and the first three-way valve 8 is adjusted. Specifically, when Tw1> 0 ° C., the first three-way valve 8 is adjusted so that the amount of low-temperature water from the lower part of the hot water storage tank 6 is increased, and when Tw1 <0 ° C. The first three-way valve 8 is adjusted so that the amount of hot water from the hot water storage tank 6 is increased.

ステップS4においてTw1≠0℃の場合、またはステップS5において第1の三方弁8の開度を調整した後は、次のステップS6に移行する。ステップS6では、除霜終了か否かが判定され、未だ除霜終了でない場合には、再度ステップS4に戻り、Tw1が0℃に等しいか否かの判定を行う。この動作を除霜運転終了まで行う。尚、図13に示すルーチンではTw1=0℃となるようにしたが、Tw1=0℃+αとし、Tw1の温度が0℃よりも高めの温度としてもよい。   When Tw1 ≠ 0 ° C. in Step S4, or after adjusting the opening degree of the first three-way valve 8 in Step S5, the process proceeds to the next Step S6. In step S6, it is determined whether or not the defrosting is completed. If the defrosting is not yet completed, the process returns to step S4 again to determine whether or not Tw1 is equal to 0 ° C. This operation is performed until the defrosting operation is completed. In the routine shown in FIG. 13, Tw1 = 0 ° C., but Tw1 = 0 ° C. + α, and the temperature of Tw1 may be higher than 0 ° C.

以上のように、除霜運転時に利用側熱交換器3へ供給するお湯の温度を調整することにより、貯湯タンク6の高温の湯量減少を抑制し給湯時の湯切れ防止となる。また、冷水を排水することで、貯湯タンク6の下部にある水の温度低下を抑制することが可能となり、加熱運転に戻った時のお湯の再加熱を回避することができる。また、前述したように除霜に必要な熱をお湯から有効に取り出すことで、高速で高効率な除霜運転が可能となる。   As described above, by adjusting the temperature of hot water supplied to the use-side heat exchanger 3 during the defrosting operation, it is possible to suppress a decrease in the amount of hot water in the hot water storage tank 6 and prevent hot water from running out during hot water supply. Further, by draining the cold water, it becomes possible to suppress the temperature drop of the water in the lower part of the hot water storage tank 6, and the reheating of the hot water when returning to the heating operation can be avoided. Further, as described above, it is possible to perform defrosting operation at high speed and high efficiency by effectively removing heat necessary for defrosting from hot water.

1 圧縮機
2 四方弁
3 利用側熱交換器
4 膨張弁
5 熱源側熱交換器
6 貯湯タンク
7 水ポンプ
8 第1の三方弁(混合弁)
9 第2の三方弁(流路切替手段、第2の流路切替手段)
10 第1の温度検出手段
11 第2の温度検出手段
12 配管
13 冷媒配管
14 第3の温度検出手段
15 第4の温度検出手段
16 第5の温度検出手段
19 上部配管
20 下部配管
21 第1の水配管
22 第2の水配管
24 第3の水配管
25 第4の水配管
41 バイパス回路(バイパス管)
42 開閉弁
100 ヒートポンプユニット
200 タンクユニット
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Use side heat exchanger 4 Expansion valve 5 Heat source side heat exchanger 6 Hot water storage tank 7 Water pump 8 First three-way valve (mixing valve)
9 Second three-way valve (flow path switching means, second flow path switching means)
10 first temperature detection means 11 second temperature detection means 12 pipe 13 refrigerant pipe 14 third temperature detection means 15 fourth temperature detection means 16 fifth temperature detection means 19 upper pipe 20 lower pipe 21 first Water pipe 22 Second water pipe 24 Third water pipe 25 Fourth water pipe 41 Bypass circuit (bypass pipe)
42 On-off valve 100 Heat pump unit 200 Tank unit

Claims (9)

冷媒を圧縮する圧縮機と、前記圧縮機で圧縮された冷媒によって水を加熱するための利用側熱交換器と、膨張弁と、熱源側熱交換器とがこの順に冷媒流路で接続された冷凍サイクル回路と、
貯湯タンクと、一端が前記利用側熱交換器の水の入口に接続された第1の水配管と、前記第1の水配管の途中に設けられた水ポンプと、前記利用側熱交換器の水の出口と前記貯湯タンクの上部とを接続する第2の水配管と、前記第1の水配管の他端に配設された混合弁と、前記混合弁と前記貯湯タンクの下部とを接続する下部配管と、前記混合弁と前記貯湯タンクにおける前記下部配管との接続部よりも上部とを接続する上部配管と、を有する給湯水回路と、
前記冷凍サイクル回路および前記給湯水回路を制御する制御手段と、を備え、
前記混合弁は、前記下部配管を流れる水量と前記上部配管を流れる水量との比率を調整可能に構成され、
前記制御手段は、前記冷凍サイクル回路を流れる冷媒を逆流させて前記熱源側熱交換器の除霜を行う除霜運転時に、前記混合弁を制御して前記利用側熱交換器に流れ込む水の温度を調整するヒートポンプ給湯装置。
A compressor for compressing the refrigerant, a use side heat exchanger for heating water with the refrigerant compressed by the compressor, an expansion valve, and a heat source side heat exchanger are connected in this order by the refrigerant flow path. A refrigeration cycle circuit;
A hot water storage tank, a first water pipe having one end connected to the water inlet of the use side heat exchanger, a water pump provided in the middle of the first water pipe, and the use side heat exchanger A second water pipe connecting a water outlet and an upper part of the hot water storage tank, a mixing valve disposed at the other end of the first water pipe, and connecting the mixing valve and the lower part of the hot water storage tank A hot water supply circuit having a lower pipe, and an upper pipe connecting the upper part of the mixing valve and the lower pipe in the hot water storage tank.
Control means for controlling the refrigeration cycle circuit and the hot water supply circuit,
The mixing valve is configured to be able to adjust the ratio of the amount of water flowing through the lower pipe and the amount of water flowing through the upper pipe,
The control means controls the mixing valve to control the temperature of the water flowing into the use side heat exchanger during the defrosting operation in which the refrigerant flowing through the refrigeration cycle circuit is caused to flow backward to defrost the heat source side heat exchanger. Adjust heat pump water heater.
第2の水配管の途中から分岐して前記貯湯タンクの下部へと接続された第3の水配管と、
前記第2の水配管と前記第3の水配管との分岐点に設けられた流路切替手段と、を更に備え、
前記流路切替手段は、前記利用側熱交換器の水の出口を、前記貯湯タンクの上部に連通させる状態と前記貯湯タンクの下部に連通させる状態とに切り替え可能であり、
前記制御手段は、前記除霜運転時に、前記利用側熱交換器の水の出口を前記貯湯タンクの下部に連通させる状態に前記流路切替手段を切り替える請求項1記載のヒートポンプ給湯装置。
A third water pipe branched from the middle of the second water pipe and connected to the lower part of the hot water storage tank;
A flow path switching means provided at a branch point between the second water pipe and the third water pipe,
The flow path switching means can be switched between a state in which the water outlet of the use side heat exchanger is communicated with the upper part of the hot water storage tank and a state in which the outlet of the hot water storage tank is communicated with
2. The heat pump hot water supply apparatus according to claim 1, wherein the control means switches the flow path switching means to a state in which an outlet of water of the use side heat exchanger communicates with a lower portion of the hot water storage tank during the defrosting operation.
前記第3の水配管から前記貯湯タンクの下部へ循環される循環水の温度を検知するための第1の温度検知手段と、
前記貯湯タンクの下部へ市水を供給する市水供給手段と、
市水の温度を検知する第2の温度検知手段と、を更に備え、
前記制御手段は、前記循環水の温度が前記市水の温度と等しくなるように、前記混合弁の開度を制御する請求項2記載のヒートポンプ給湯装置。
First temperature detecting means for detecting the temperature of circulating water circulated from the third water pipe to the lower part of the hot water storage tank;
City water supply means for supplying city water to the lower part of the hot water storage tank;
A second temperature detecting means for detecting the temperature of the city water,
The heat pump hot water supply apparatus according to claim 2, wherein the control means controls the opening of the mixing valve so that the temperature of the circulating water becomes equal to the temperature of the city water.
前記第3の水配管から前記貯湯タンクの下部へ循環される循環水の温度を検知するための第1の温度検知手段と、
前記貯湯タンクの下部に貯留されている下部貯留水の温度を検知する第3の温度検知手段と、を更に備え、
前記制御手段は、前記循環水の温度が前記下部貯留水の温度と等しくなるように、前記混合弁の開度を制御する請求項2記載のヒートポンプ給湯装置。
First temperature detecting means for detecting the temperature of circulating water circulated from the third water pipe to the lower part of the hot water storage tank;
A third temperature detecting means for detecting the temperature of the lower stored water stored in the lower part of the hot water storage tank;
The heat pump hot water supply apparatus according to claim 2, wherein the control means controls the opening of the mixing valve so that the temperature of the circulating water becomes equal to the temperature of the lower reservoir water.
前記制御手段は、前記除霜運転時に、前記膨張弁を全開に開弁する請求項1乃至4の何れか1項記載のヒートポンプ給湯装置。   The heat pump hot water supply apparatus according to any one of claims 1 to 4, wherein the control means opens the expansion valve fully open during the defrosting operation. 前記冷媒流路から前記膨張弁をバイパスするバイパス管と、
前記バイパス管を開閉する開閉弁と、を更に備え、
前記制御手段は、前記除霜運転時に、前記開閉弁を開弁する請求項1乃至4の何れか1項記載のヒートポンプ給湯装置。
A bypass pipe for bypassing the expansion valve from the refrigerant flow path;
An on-off valve for opening and closing the bypass pipe,
The heat pump hot water supply apparatus according to any one of claims 1 to 4, wherein the control means opens the on-off valve during the defrosting operation.
前記第3の水配管から前記貯湯タンクの下部へ循環される循環水の温度を検知するための第1の温度検知手段を更に備え、
前記制御手段は、前記除霜運転時に、前記循環水の温度が0℃以上となるように前記三方弁を制御する請求項1乃至6の何れか1項記載のヒートポンプ給湯装置。
A first temperature detecting means for detecting the temperature of circulating water circulated from the third water pipe to the lower part of the hot water storage tank;
The heat pump hot water supply apparatus according to any one of claims 1 to 6, wherein the control means controls the three-way valve so that a temperature of the circulating water becomes 0 ° C or higher during the defrosting operation.
前記利用側熱交換器の冷媒の入口の冷媒温度を検知する第4の温度検知手段と、
前記利用側熱交換器の冷媒の出口の冷媒温度を検知する第5の温度検知手段と、
を更に備え、
前記制御手段は、前記除霜運転時に、前記第4の温度検知手段によって検知される冷媒温度が前記第5の温度検知手段によって検知される冷媒温度よりも高い場合に、前記圧縮機の回転数を低下させる請求項1乃至7の何れか1項記載のヒートポンプ給湯装置。
A fourth temperature detecting means for detecting a refrigerant temperature at an inlet of the refrigerant of the use side heat exchanger;
Fifth temperature detecting means for detecting the refrigerant temperature at the refrigerant outlet of the use side heat exchanger;
Further comprising
In the defrosting operation, when the refrigerant temperature detected by the fourth temperature detection unit is higher than the refrigerant temperature detected by the fifth temperature detection unit, the control unit rotates the compressor. The heat pump hot-water supply apparatus of any one of Claims 1 thru | or 7 which reduces this.
第2の水配管の途中から分岐して外部へと連通する第4の水配管と、
前記第2の水配管と前記第4の水配管との分岐点に設けられた第2の流路切替手段と、を更に備え、
前記第2の流路切替手段は、前記利用側熱交換器の水の出口を、前記貯湯タンクの上部に連通させる状態と前記第4の水配管を介して外部へ連通させる状態と、に切り替え可能であり、
前記制御手段は、前記除霜運転時に、前記利用側熱交換器の水の出口を外部へ連通させる状態に前記第2の流路切替手段を切り替える請求項1記載のヒートポンプ給湯装置。
A fourth water pipe that branches off from the middle of the second water pipe and communicates with the outside;
A second flow path switching means provided at a branch point between the second water pipe and the fourth water pipe;
The second flow path switching means switches between a state in which the water outlet of the use side heat exchanger communicates with an upper portion of the hot water storage tank and a state in which the water outlet communicates with the outside through the fourth water pipe. Is possible,
The heat pump hot water supply apparatus according to claim 1, wherein the control means switches the second flow path switching means to a state in which an outlet of water of the use side heat exchanger is communicated to the outside during the defrosting operation.
JP2011093822A 2011-04-20 2011-04-20 Heat pump water heater Active JP5333507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011093822A JP5333507B2 (en) 2011-04-20 2011-04-20 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011093822A JP5333507B2 (en) 2011-04-20 2011-04-20 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2012225580A true JP2012225580A (en) 2012-11-15
JP5333507B2 JP5333507B2 (en) 2013-11-06

Family

ID=47275943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011093822A Active JP5333507B2 (en) 2011-04-20 2011-04-20 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP5333507B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126317A (en) * 2012-12-27 2014-07-07 Mitsubishi Electric Corp Heat pump cold/hot water system
CN104501403A (en) * 2013-07-09 2015-04-08 广东美的暖通设备有限公司 Control system and method of water heater
JP2015098981A (en) * 2013-11-19 2015-05-28 三菱電機株式会社 Heat pump type water heater
JP2016070565A (en) * 2014-09-29 2016-05-09 リンナイ株式会社 Heat pump heat source device
CN105571183A (en) * 2016-02-24 2016-05-11 珠海格力电器股份有限公司 Air conditioner system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228258A (en) * 2001-02-06 2002-08-14 Toshiba Kyaria Kk Heat pump water heater
JP2004037011A (en) * 2002-07-04 2004-02-05 Toshiba Electric Appliance Co Ltd Heat pump water heater
JP2009068825A (en) * 2007-08-21 2009-04-02 Toshiba Electric Appliance Co Ltd Water heater
JP2009127938A (en) * 2007-11-22 2009-06-11 Hitachi Appliances Inc Heat pump water heater
JP2009210195A (en) * 2008-03-04 2009-09-17 Toshiba Electric Appliance Co Ltd Water heater
JP2010085004A (en) * 2008-09-30 2010-04-15 Tokyo Electric Power Co Inc:The Heat pump water heater and method for defrosting the heat pump water heater
JP2010144938A (en) * 2008-12-16 2010-07-01 Mitsubishi Electric Corp Heat pump water heater and method for operating the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228258A (en) * 2001-02-06 2002-08-14 Toshiba Kyaria Kk Heat pump water heater
JP2004037011A (en) * 2002-07-04 2004-02-05 Toshiba Electric Appliance Co Ltd Heat pump water heater
JP2009068825A (en) * 2007-08-21 2009-04-02 Toshiba Electric Appliance Co Ltd Water heater
JP2009127938A (en) * 2007-11-22 2009-06-11 Hitachi Appliances Inc Heat pump water heater
JP2009210195A (en) * 2008-03-04 2009-09-17 Toshiba Electric Appliance Co Ltd Water heater
JP2010085004A (en) * 2008-09-30 2010-04-15 Tokyo Electric Power Co Inc:The Heat pump water heater and method for defrosting the heat pump water heater
JP2010144938A (en) * 2008-12-16 2010-07-01 Mitsubishi Electric Corp Heat pump water heater and method for operating the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126317A (en) * 2012-12-27 2014-07-07 Mitsubishi Electric Corp Heat pump cold/hot water system
CN104501403A (en) * 2013-07-09 2015-04-08 广东美的暖通设备有限公司 Control system and method of water heater
CN104501403B (en) * 2013-07-09 2018-05-08 广东美的暖通设备有限公司 Hot water machine control system and hot water machine control method
JP2015098981A (en) * 2013-11-19 2015-05-28 三菱電機株式会社 Heat pump type water heater
JP2016070565A (en) * 2014-09-29 2016-05-09 リンナイ株式会社 Heat pump heat source device
CN105571183A (en) * 2016-02-24 2016-05-11 珠海格力电器股份有限公司 Air conditioner system

Also Published As

Publication number Publication date
JP5333507B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
CN108332285B (en) Air conditioner system
CN203323456U (en) Heat pump device
JP5327308B2 (en) Hot water supply air conditioning system
JP5984965B2 (en) Air conditioning and hot water supply complex system
WO2011092802A1 (en) Heat pump device and refrigerant bypass method
JP5809872B2 (en) Heating device
CN104422215B (en) The Defrost method of air-conditioning system and air-conditioning system
EP2530411B1 (en) Refrigeration cycle equipment
CN104061705A (en) Two-stage compression air conditioner system and control method thereof
JP5333507B2 (en) Heat pump water heater
CN108224840A (en) A kind of heat pump air conditioning system and control method
JPWO2010109689A1 (en) Heat pump water heater
WO2016059837A1 (en) Heat pump heating apparatus
KR20130115123A (en) Heating system
JP2012167869A (en) Air conditioner
JP2012163219A (en) Heat pump system
KR101142914B1 (en) Hot water and cool water product system using 2-steps heat pump cycles
JP2008134045A (en) Heat pump system
JP2013083439A (en) Hot water supply air conditioning system
JP2014081180A (en) Heat pump apparatus
JP2017026171A (en) Air conditioner
JP2012132573A (en) Heat pump system
CN207963223U (en) A kind of heat pump air conditioning system
CN108375255B (en) Air conditioner system
JP4479836B2 (en) Hot water system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R150 Certificate of patent or registration of utility model

Ref document number: 5333507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250