JP2012225282A - Internal combustion engine and egr method of internal combustion engine - Google Patents

Internal combustion engine and egr method of internal combustion engine Download PDF

Info

Publication number
JP2012225282A
JP2012225282A JP2011094663A JP2011094663A JP2012225282A JP 2012225282 A JP2012225282 A JP 2012225282A JP 2011094663 A JP2011094663 A JP 2011094663A JP 2011094663 A JP2011094663 A JP 2011094663A JP 2012225282 A JP2012225282 A JP 2012225282A
Authority
JP
Japan
Prior art keywords
passage
egr
gas
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011094663A
Other languages
Japanese (ja)
Other versions
JP5811577B2 (en
Inventor
Yoshio Sekiyama
惠夫 関山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2011094663A priority Critical patent/JP5811577B2/en
Publication of JP2012225282A publication Critical patent/JP2012225282A/en
Application granted granted Critical
Publication of JP5811577B2 publication Critical patent/JP5811577B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide an internal combustion engine which reserves a mixture gas in a gas storage vessel, the mixture gas being prepared by mixing a part of exhaust gas with fresh air by using a gas compression device, and which temporarily supplies the mixture gas into a cylinder through a stored gas supply passage during a transition operation where the load is rapidly increased, and to provide an EGR (Exhaust Gas Recirculation) method of the internal combustion engine, the internal combustion engine and the EGR method enabling a part of the mixture gas to be prevented from leaking to an exhaust gas passage even when such a problem arises that an EGR valve disposed in an EGR passage is not completely closed.SOLUTION: The internal combustion engine is configured: to connect a stored gas supply passage and an intake passage via a flow passage switching device; to arrange the flow passage switching device disposed downstream from an EGR merging portion that is a merging portion of the EGR passage and the intake passage; and to provide a flow passage switching device that selects the stored gas supply passage or a passage upstream of the intake passage while a passage downstream of the intake passage is kept open.

Description

本発明は、蓄ガス容器に蓄圧された混合ガスを、内燃機関の過渡期にシリンダ内に供給してEGR率を高めることができる内燃機関及び内燃機関のEGR方法に関する。   The present invention relates to an internal combustion engine and an EGR method for an internal combustion engine that can increase the EGR rate by supplying mixed gas stored in a gas storage container into a cylinder during a transition period of the internal combustion engine.

ディーゼルエンジン等の内燃機関の排気ガス中のNOx(窒素酸化物)を低減するEGR(排気再循環)においては、過給システムを備えた内燃機関では、高圧EGR方式と低圧EGR方式とがある。この高圧EGR方式では、例えば、図6に示すように、高圧EGRシステムを備えた内燃機関1Xでは、ターボ式過給器14よりもエンジン本体11側にEGR通路17が設けられており、エンジン本体11の排気マニホールド11bから吸気マニホールド11aにEGR通路17経由でEGRガスGeを還流している。また、低圧EGR方式では、例えば、図7に示すように、低圧EGRシステムを備えた内燃機関1Yでは、ターボ式過給器14よりもエンジン本体11とは反対側にEGR通路17が設けられており、タービン14bの下流側からコンプレッサ14aの上流側にEGR通路17経由でEGRガスGeを還流している。   In EGR (exhaust gas recirculation) for reducing NOx (nitrogen oxide) in exhaust gas of an internal combustion engine such as a diesel engine, there are a high pressure EGR method and a low pressure EGR method in an internal combustion engine equipped with a supercharging system. In this high pressure EGR system, for example, as shown in FIG. 6, in an internal combustion engine 1X equipped with a high pressure EGR system, an EGR passage 17 is provided closer to the engine body 11 than the turbo-type supercharger 14, and the engine body The EGR gas Ge is recirculated from the 11 exhaust manifolds 11 b to the intake manifold 11 a via the EGR passage 17. In the low pressure EGR system, for example, as shown in FIG. 7, in the internal combustion engine 1Y provided with the low pressure EGR system, an EGR passage 17 is provided on the opposite side of the engine body 11 from the turbo-type supercharger 14. The EGR gas Ge is recirculated from the downstream side of the turbine 14b to the upstream side of the compressor 14a via the EGR passage 17.

これらのいずれのEGR方式でも、EGRガス量の制御には、MAF制御方式が一般的に使用されている。このMAF制御方式では、EGR無しでエンジンのシリンダ内に吸入される新気量(空気量)をMoとし、EGRを行うことでシリンダ内に吸入される新気量をMeとすると、還流されるEGRガス量のMegrがMegr=Mo−Meとなるので、これに基づいて、EGR弁21の弁開度により新気量Meを制御することで、EGRガス量Megrを制御している。   In any of these EGR systems, the MAF control system is generally used to control the amount of EGR gas. In this MAF control method, if the amount of fresh air (air amount) sucked into the cylinder of the engine without EGR is Mo and the amount of fresh air sucked into the cylinder by performing EGR is Me, it is recirculated. Since the EGR gas amount Megr is Megr = Mo−Me, the EGR gas amount Megr is controlled by controlling the fresh air amount Me based on the valve opening degree of the EGR valve 21 based on this.

つまり、エンジンの回転速度Neと燃料負荷Qをパラメータにして、各エンジンの運転状態に対する新気量Meを予め設定して作成した新気量Meのデータマップを基に、実際のエンジン運転時の回転速度Neと燃料負荷Qから目標の新気量Metを算出して、実際の新気量Meをこの目標の新気量Metになるように制御することで、EGRガス量Megrを制御している。   That is, based on the data map of the fresh air amount Me created by setting the fresh air amount Me for each engine operating state in advance using the engine rotational speed Ne and the fuel load Q as parameters, The target fresh air amount Met is calculated from the rotational speed Ne and the fuel load Q, and the actual fresh air amount Me is controlled to become the target fresh air amount Met, thereby controlling the EGR gas amount Megr. Yes.

しかしながら、ターボ式過給機を使用する場合には排気ガスのエネルギー(エンタルピ)を用いて過給を行うため、ターボ式過給機の応答遅れ(ターボラグ)を無くすことは不可能であり、このMAF制御方式では、このターボラグに起因する次のような問題がある。ターボラグにより負荷が急激に増加する過渡運転状態では、過給圧が定常運転時に設定した圧力まで上昇しないため、エンジンの吸入空気量が低下する。つまり、ターボ式過給機付きエンジンでも無過給エンジンと同程度の吸気量となってしまう。   However, when a turbocharger is used, the exhaust gas energy (enthalpy) is used for supercharging, so it is impossible to eliminate the response delay (turbo lag) of the turbocharger. The MAF control method has the following problems due to the turbo lag. In a transient operation state in which the load increases rapidly due to the turbo lag, the supercharging pressure does not increase to the pressure set during steady operation, so the intake air amount of the engine decreases. In other words, even an engine with a turbo-type supercharger has the same intake air amount as a non-supercharged engine.

従って、定常運転条件で設定した目標のEGR量に達成することができず、図8に示すように、急激な過渡運転を行う際にNOxの排出量が増加する。また、煤の発生量を制限するために、過給圧があるレベルより上がらない場合には燃料の投入量が煤が増加しない領域内に抑えられるというスモークリミット制御が行われる。その結果、図9及び図10に示すように、燃料噴射量Qと空気量(Mo、Me)が共に点線で示されるように抑えられ、加速時のパワーが抑えられてしまうという問題がある。そのために、加速時等の負荷が急激に増加する過渡運転時には、NOx排出量の増加や燃費の悪化が発生する。   Therefore, the target EGR amount set under the steady operation condition cannot be achieved, and as shown in FIG. 8, the NOx emission amount increases when performing a rapid transient operation. Further, in order to limit the amount of soot generated, smoke limit control is performed in which the amount of fuel input is suppressed within a region where the soot does not increase when the supercharging pressure does not rise above a certain level. As a result, as shown in FIGS. 9 and 10, there is a problem that the fuel injection amount Q and the air amount (Mo, Me) are both suppressed as indicated by dotted lines, and the power during acceleration is suppressed. For this reason, during transient operation in which the load increases rapidly during acceleration or the like, an increase in NOx emissions and a deterioration in fuel consumption occur.

一方、エンジンのクランクシャフト等によって、過給機を直接駆動して過給を行う機械式過給装置を使用する場合では、過給の応答遅れをなくす事ができるが、エンジンの回転速度が決まると燃料量の多少に関わらず、過給量が決まるために、また、駆動に要する仕事量が大きいために、燃費が悪化するという問題がある。   On the other hand, in the case of using a mechanical supercharger that performs supercharging by directly driving the supercharger by an engine crankshaft or the like, the delay in the supercharging response can be eliminated, but the engine speed is determined. However, there is a problem that fuel efficiency deteriorates because the amount of supercharging is determined regardless of the amount of fuel and the amount of work required for driving is large.

この対策として、近年では、図11に示すような蓄ガス供給システムを備えた内燃機関1Zが研究されており、この蓄ガス供給システムでは、内燃機関1Zから排出される排気ガスGの一部Gpを空気Aaと混合した混合ガスCを容積型コンプレッサ(排気圧縮器)25で圧縮して高圧化し、この高圧化した混合ガスCを蓄ガス容器(圧力容器)27内に溜め込み、過渡時に放出電磁弁36を開弁して混合ガスCを調圧弁29経由で吸気弁(吸気スロットル)35の下流の吸気通路12に放出し、これにより、内燃機関1Zのシリンダ内への吸気量を過給機付きエンジン並みに増加させると共に、EGRの効果によるNOxの低減を図り、ターボラグの問題を解消している過給制御装置が提案されている(例えば、特許文献1参照)。   As a countermeasure, in recent years, an internal combustion engine 1Z having a storage gas supply system as shown in FIG. 11 has been studied, and in this storage gas supply system, a part Gp of the exhaust gas G discharged from the internal combustion engine 1Z. The mixed gas C mixed with air Aa is compressed by a positive displacement compressor (exhaust compressor) 25 to increase the pressure, and the increased mixed gas C is stored in a gas storage container (pressure container) 27 to release electromagnetic waves in a transient state. The valve 36 is opened and the mixed gas C is discharged to the intake passage 12 downstream of the intake valve (intake throttle) 35 via the pressure regulating valve 29, whereby the amount of intake air into the cylinder of the internal combustion engine 1Z is supercharged. There has been proposed a supercharging control device that increases the same level as an attached engine, reduces NOx by the effect of EGR, and solves the problem of turbo lag (see, for example, Patent Document 1).

この蓄ガス供給システムを採用した場合は、過渡時に加圧された混合ガスCをエンジン1Zの吸気通路12内に放出することで過給圧を上げて、シリンダ内への空気量を増加させることができるので燃料量も増やすことができる。その結果、加速性能が向上し、煤の排出も抑えることができる。また、過給圧は排気マニホールド11bの内圧よりも高くなるので、内燃機関1Zのポンピング損失が低下し燃費の向上を図ることができる。   When this storage gas supply system is adopted, the supercharging pressure is increased by releasing the gas mixture C pressurized during the transition into the intake passage 12 of the engine 1Z, thereby increasing the amount of air into the cylinder. Can increase the amount of fuel. As a result, acceleration performance is improved and soot discharge can be suppressed. Further, since the supercharging pressure is higher than the internal pressure of the exhaust manifold 11b, the pumping loss of the internal combustion engine 1Z is reduced, and the fuel efficiency can be improved.

しかしながら、この蓄ガス供給システムにおいても、次のような問題がある。つまり、EGRを行う場合にEGR弁21が開くと、吸気圧が排気マニホールド11bの内圧より大きいために、吸気通路12内の加圧された混合ガスCの一部は排気マニホールド11b側に抜けてしまう。そのため、この蓄ガス供給システムでは混合ガスCの供給時にEGR弁21を完全に閉じる制御を盛り込んでいるが、EGR弁21は弁座の汚損やカーボン粒子等の異物の噛み込みにより完全に閉状態とならない場合がある。この不具合に遭遇すると、吸気通路12内の混合ガスCの一部が排気通路13経由で排気マニホールド11b側に抜けてしまう。   However, this storage gas supply system also has the following problems. That is, when the EGR valve 21 is opened when performing EGR, the intake pressure is larger than the internal pressure of the exhaust manifold 11b, so that part of the pressurized mixed gas C in the intake passage 12 escapes to the exhaust manifold 11b side. End up. For this reason, this storage gas supply system incorporates a control for completely closing the EGR valve 21 when the mixed gas C is supplied. However, the EGR valve 21 is completely closed due to contamination of the valve seat or the inclusion of foreign matter such as carbon particles. It may not be. When this problem is encountered, a part of the mixed gas C in the intake passage 12 escapes to the exhaust manifold 11 b side through the exhaust passage 13.

この吸気通路12内の混合ガスCの一部が排気マニホールド11b側に抜けてしまうと、エンジンのシリンダ内への吸気量が減少して、過給が十分に行われず、NOxは低減できるがスモークリミットがかかって加速のパワーを十分に引き出すことができない。   If a part of the mixed gas C in the intake passage 12 escapes to the exhaust manifold 11b side, the amount of intake air into the cylinder of the engine is reduced, and supercharging is not sufficiently performed. There is a limit and the power of acceleration cannot be drawn out sufficiently.

特開2011−21558号公報JP 2011-21558 A

本発明は、上記の状況を鑑みてなされたものであり、その目的は、ガス圧縮装置を用いて、排気ガスの一部と空気を混合した混合ガスを蓄ガス容器に溜め込み、負荷が急激に増加する過渡運転時に混合ガスをシリンダ内に一時的に供給して過渡運転時のNOxの排出を抑制するとともに加速性能を向上させる内燃機関において、EGR通路に設けたEGR弁の閉塞が不完全となるようなシール不良等の不具合がEGR弁に発生したとしても、蓄ガス容器から供給される混合ガスの一部が排気系通路に漏れることを防止することができる内燃機関及び内燃機関のEGR方法を提供することにある。   The present invention has been made in view of the above situation, and its purpose is to use a gas compression device to store a mixed gas obtained by mixing a part of exhaust gas and air in a gas storage container, and the load is rapidly increased. In an internal combustion engine that temporarily supplies mixed gas into a cylinder during an increasing transient operation to suppress NOx emission during the transient operation and improve acceleration performance, the EGR valve provided in the EGR passage is incompletely blocked. An internal combustion engine and an EGR method for an internal combustion engine that can prevent a part of a mixed gas supplied from a gas storage container from leaking into an exhaust system passage even if a malfunction such as poor sealing occurs in the EGR valve Is to provide.

上記の目的を達成するための本発明の内燃機関は、内燃機関の排気ガスの一部をシリンダ内に再循環するためのEGR通路と、内燃機関の排気ガスの一部と空気が混合した混合ガスを圧縮するガス圧縮装置と、該ガス圧縮装置で圧縮された混合ガスを貯蓄する蓄ガス容器と、該蓄ガス容器と吸気系通路を接続する蓄ガス供給通路を備えた内燃機関において、流路切替装置を介して前記吸気系通路と前記蓄ガス供給通路とを接続すると共に、前記流路切替装置を前記EGR通路と前記吸気系通路との合流部であるEGR合流部よりも下流側に配置し、前記流路切換装置を前記吸気系通路の下流側の通路側を開放したまま、前記蓄ガス供給通路側と前記吸気系通路の上流側の通路側とを切り替えるように構成される。なお、この吸気系通路には、吸気通路だけではなく、吸気マニホールドも含むものとする。   In order to achieve the above object, an internal combustion engine of the present invention comprises an EGR passage for recirculating a part of exhaust gas of the internal combustion engine into the cylinder, and a mixture in which a part of the exhaust gas of the internal combustion engine and air are mixed. An internal combustion engine comprising: a gas compression device that compresses gas; a gas storage container that stores a mixed gas compressed by the gas compression device; and a gas storage supply passage that connects the gas storage container and an intake system passage. The intake system passage and the gas storage supply passage are connected via a passage switching device, and the flow passage switching device is disposed downstream of an EGR merging portion that is a merging portion of the EGR passage and the intake system passage. And the flow path switching device is configured to switch between the stored gas supply passage side and the upstream side of the intake system passage while the downstream side of the intake system passage is open. The intake system passage includes not only the intake passage but also an intake manifold.

この構成によれば、内燃機関の過渡運転で、EGR弁の下流でEGR通路が吸気系通路に合流するEGR合流部よりも下流側に、吸気系通路と蓄ガス供給通路とが合流する流路切替装置を配置したので、EGR弁にシール不良等の不具合が発生しても、蓄ガス容器から供給される混合ガスがEGR通路を経由して排気系通路に漏れることを流路切替装置により防止できる。従って、EGR通路に設けたEGR弁の閉塞が不完全となる不具合が発生しても、蓄ガス容器から供給される混合ガスを排気系通路に抜けることなく効率良くシリンダ内に供給することができる。   According to this configuration, in the transient operation of the internal combustion engine, the flow path in which the intake system passage and the stored gas supply passage join downstream of the EGR valve and downstream of the EGR merging portion where the EGR passage joins the intake system passage. Since the switching device is arranged, the flow switching device prevents the mixed gas supplied from the gas storage container from leaking to the exhaust system passage via the EGR passage even if a malfunction such as a sealing failure occurs in the EGR valve. it can. Therefore, even if a malfunction occurs in which the EGR valve provided in the EGR passage is incompletely closed, the mixed gas supplied from the gas storage container can be efficiently supplied into the cylinder without passing through the exhaust system passage. .

上記の内燃機関において、前記流路切替装置を三方切替弁で構成するか、あるいは、前記流路切替装置を、前記吸気系通路に設けた吸気弁と、前記蓄ガス供給通路に設けた開閉弁で構成することにより、比較的容易に、流路切替装置を構成することができる。   In the internal combustion engine, the flow path switching device is configured by a three-way switching valve, or the flow path switching device is provided with an intake valve provided in the intake system passage and an open / close valve provided in the stored gas supply passage. By configuring with, the flow path switching device can be configured relatively easily.

そして、上記の目的を達成するための内燃機関のEGR方法は、内燃機関の排気系通路の排気ガスの一部を空気と混合した混合ガスを圧縮して貯蓄すると共に、EGRでは、内燃機関の過渡運転でないときには、内燃機関の排気ガスの一部をEGR通路を経由してシリンダ内に再循環し、内燃機関の過渡運転であるときには、前記混合ガスを一時的に吸気系通路に供給する内燃機関のEGR方法において、内燃機関の過渡運転であるときには、前記EGR通路からのEGRガスと、前記吸気系通路からの新気とを流路切換装置で遮断して、前記混合ガスのみを、前記EGR通路と前記吸気系通路との合流部であるEGR合流部よりも下流側に供給することを特徴とする方法である。   An EGR method for an internal combustion engine for achieving the above object compresses and stores a mixed gas obtained by mixing a part of exhaust gas in an exhaust system passage of the internal combustion engine with air, and in EGR, When the engine is not in a transient operation, a part of the exhaust gas of the internal combustion engine is recirculated into the cylinder via the EGR passage, and when the engine is in a transient operation, the internal gas is temporarily supplied to the intake system passage. In the engine EGR method, when the internal combustion engine is in a transient operation, the EGR gas from the EGR passage and the fresh air from the intake system passage are blocked by a flow path switching device, and only the mixed gas is The method is characterized in that the gas is supplied to a downstream side of an EGR merging portion, which is a merging portion of an EGR passage and the intake system passage.

この方法によれば、内燃機関の過渡運転時に、EGR弁の下流でEGR通路が吸気系通路に合流するEGR合流部よりも下流側に、EGRガスと新気を流路切換装置で遮断して、蓄ガス容器から供給される混合ガスのみを供給するので、EGR弁にシール不良等の不具合が発生しても、流路切換装置により混合ガスがEGR通路を経由して排気系通路に漏れることを防止できる。従って、EGR通路に設けたEGR弁の閉塞が不完全となる不具合が発生しても、蓄ガス容器から供給される混合ガスを排気系通路に抜けることなく効率良くシリンダ内に供給することができる。   According to this method, during the transient operation of the internal combustion engine, the EGR gas and the fresh air are blocked by the flow path switching device downstream of the EGR valve and downstream of the EGR merging portion where the EGR passage merges with the intake system passage. Since only the mixed gas supplied from the gas storage container is supplied, the mixed gas leaks to the exhaust system passage via the EGR passage by the flow path switching device even if the EGR valve has a malfunction such as poor sealing. Can be prevented. Therefore, even if a malfunction occurs in which the EGR valve provided in the EGR passage is incompletely closed, the mixed gas supplied from the gas storage container can be efficiently supplied into the cylinder without passing through the exhaust system passage. .

上記の内燃機関のEGR方法において、EGRガスと新気との遮断、及び混合ガスの供給を、三方切替弁で構成した前記流路切替装置で行うか、あるいは、EGRガスと新気との遮断、及び混合ガスの供給を、前記吸気系通路に設けた吸気弁と、前記蓄ガス供給通路に設けた開閉弁で構成した前記流路切替装置で行う方法を採用すると、比較的容易に流路切替装置を構成することができる。   In the above EGR method for an internal combustion engine, the EGR gas and fresh air are shut off and the mixed gas is supplied by the flow path switching device constituted by a three-way switching valve, or the EGR gas and fresh air are shut off. And a method of supplying the mixed gas by the flow path switching device configured by the intake valve provided in the intake system passage and the on-off valve provided in the storage gas supply passage, the flow path is relatively easy. A switching device can be configured.

本発明に係る内燃機関及び内燃機関のEGR方法によれば、急加速等の過渡運転時においてターボラグに起因するEGR不足を解消し、過渡運転時のNOx排出を低減することができると共に加速性能の向上とPMの低減を図ることができ、更に、EGR弁に異物噛み込み等の不具合が生じてEGR弁が全閉しなくなった場合でも、蓄ガス容器から供給される混合ガスが排気系通路に抜けることを防止でき、この混合ガスの排気系通路側への抜けに起因する加速性能の低下を確実に回避することができる。   According to the internal combustion engine and the EGR method of the internal combustion engine according to the present invention, EGR shortage caused by turbo lag during transient operation such as rapid acceleration can be resolved, NOx emission during transient operation can be reduced, and acceleration performance can be reduced. In addition, it is possible to improve and reduce PM, and even if the EGR valve is not fully closed due to problems such as biting of foreign matter, the mixed gas supplied from the gas storage container can enter the exhaust system passage. It is possible to prevent escape, and it is possible to reliably avoid a decrease in acceleration performance due to the escape of the mixed gas to the exhaust system passage side.

本発明に係る第1の実施の形態の内燃機関の構成を示す図である。It is a figure showing composition of an internal-combustion engine of a 1st embodiment concerning the present invention. 本発明に係る第2の実施の形態の内燃機関の構成を示す図である。It is a figure which shows the structure of the internal combustion engine of 2nd Embodiment which concerns on this invention. 蓄ガス用の容積型コンプレッサの駆動を説明するための図である。It is a figure for demonstrating the drive of the positive displacement compressor for stored gas. 三方切替弁で構成された流路切換装置の構造を吸気ラインが連通された状態で示す図である。It is a figure which shows the structure of the flow-path switching apparatus comprised by the three-way switching valve in the state by which the intake line was connected. 三方切替弁で構成された流路切換装置の構造を蓄ガス供給ラインが連通された状態で示す図である。It is a figure which shows the structure of the flow-path switching apparatus comprised by the three-way switching valve in the state by which the stored gas supply line was connected. 従来技術の高圧EGR方式の内燃機関の構成を示す図である。It is a figure which shows the structure of the internal combustion engine of a high pressure EGR system of a prior art. 従来技術の低圧EGR方式の内燃機関の構成を示す図である。It is a figure which shows the structure of the low pressure EGR type internal combustion engine of a prior art. 車速の変化と瞬時NOx排出量の関係を示す図である。It is a figure which shows the relationship between the change of a vehicle speed, and instantaneous NOx discharge | emission amount. 全負荷における燃料噴射量の特性と過渡時の動きを示す図である。It is a figure which shows the characteristic of the fuel injection quantity in a full load, and the movement at the time of transition. 過渡時のターボ式過給機の応答遅れとEGRの関係を示す図である。It is a figure which shows the response delay of the turbo supercharger at the time of transition, and the relationship of EGR. 先行技術の内燃機関の構成を示す図である。It is a figure which shows the structure of the internal combustion engine of a prior art.

以下、本発明に係る実施の形態の内燃機関及び内燃機関のEGR方法について、図面を参照しながら説明する。   Hereinafter, an internal combustion engine and an EGR method for an internal combustion engine according to embodiments of the present invention will be described with reference to the drawings.

図1に示すように、本発明に係る第1の実施の形態のエンジン(内燃機関)1は、エンジン本体11と吸気マニホールド11aに接続する吸気通路12と排気マニホールド11bに接続する排気通路13を有して構成される。この吸気マニホールド11aと吸気通路12とで吸気系通路を形成し、排気マニホールド11bと排気通路13とで排気系通路を形成する。   As shown in FIG. 1, an engine (internal combustion engine) 1 according to a first embodiment of the present invention includes an intake passage 12 connected to an engine body 11, an intake manifold 11a, and an exhaust passage 13 connected to an exhaust manifold 11b. It is configured. The intake manifold 11a and the intake passage 12 form an intake system passage, and the exhaust manifold 11b and the exhaust passage 13 form an exhaust system passage.

吸気通路12には、ターボ式過給器14のコンプレッサ14aが設けられ、排気通路13には、ターボ式過給器14のタービン14bと、ディーゼルパティキュレートフィルタ(DPF)装置15とNOx吸蔵還元型触媒等で形成されるNOx浄化触媒16が設けられている。   The intake passage 12 is provided with a compressor 14a of a turbocharger 14, and the exhaust passage 13 is provided with a turbine 14b of a turbocharger 14, a diesel particulate filter (DPF) device 15, and a NOx occlusion reduction type. A NOx purification catalyst 16 formed of a catalyst or the like is provided.

また、タービン14bの上流側の排気通路13からEGR通路17が分岐され、コンプレッサ14aの上流側の吸気通路12にEGR合流部18で合流している。このEGR通路17には上流側から、ディーゼルパティキュレートフィルタ(DPF)装置19とEGRクーラ20とEGR弁21が設けられている。   Further, an EGR passage 17 is branched from the exhaust passage 13 on the upstream side of the turbine 14b, and merges with the intake passage 12 on the upstream side of the compressor 14a at the EGR merging portion 18. The EGR passage 17 is provided with a diesel particulate filter (DPF) device 19, an EGR cooler 20, and an EGR valve 21 from the upstream side.

更に、NOx浄化触媒16の下流側の排気通路13から分岐して、排気ガス導入通路22が設けられている。この排気ガス導入通路22にはEGRクーラ23と三方弁24が設けられ、この排気ガス導入通路22は機械式の容積型過給機(往復動式が望ましい)等で形成されるガス圧縮装置25に接続されている。このガス圧縮装置25は、圧縮ガス供給通路26により圧力容器等で形成される蓄ガス容器27に接続されている。また、この蓄ガス容器27は蓄ガス供給通路28により吸気通路12と接続されている。この排気ガス導入通路22と圧縮ガス供給通路26と蓄ガス供給通路28で混合ガス系通路を形成する。   Further, an exhaust gas introduction passage 22 is provided so as to branch from the exhaust passage 13 on the downstream side of the NOx purification catalyst 16. The exhaust gas introduction passage 22 is provided with an EGR cooler 23 and a three-way valve 24, and the exhaust gas introduction passage 22 is formed by a mechanical positive displacement turbocharger (preferably a reciprocating type) or the like. It is connected to the. The gas compression device 25 is connected to a gas storage container 27 formed of a pressure container or the like by a compressed gas supply passage 26. The gas storage container 27 is connected to the intake passage 12 by a stored gas supply passage 28. The exhaust gas introduction passage 22, the compressed gas supply passage 26 and the stored gas supply passage 28 form a mixed gas system passage.

図3に示すように、このガス圧縮装置25は、エンジン1を搭載した車両の車軸31から歯車32、33と、電磁クラッチ34を経由してガス圧縮装置25の駆動軸に動力を伝達する。この電磁クラッチ34をONにして接続することにより、ガス圧縮装置25を駆動して、混合ガス系通路22、26、28からの混合ガスCを、圧縮して高圧化して蓄ガス容器27に供給し、貯蔵する。なお、蓄ガス供給通路28には、調圧弁29が配置され、流路切換装置30に供給される混合ガスCの圧力を調整する。このとき、三方弁24で、排気ガスGの一部Gpの量と空気Aaの量を調整して、蓄ガス容器27で貯蔵される混合ガスCにおける酸素濃度を略一定に保つことが好ましく、これにより、EGRを行うときの制御を単純化することができる。   As shown in FIG. 3, the gas compression device 25 transmits power from an axle 31 of a vehicle on which the engine 1 is mounted to a drive shaft of the gas compression device 25 via gears 32 and 33 and an electromagnetic clutch 34. When the electromagnetic clutch 34 is turned on and connected, the gas compression device 25 is driven, and the mixed gas C from the mixed gas system passages 22, 26, 28 is compressed and pressurized to be supplied to the gas storage container 27. And store. A pressure regulating valve 29 is disposed in the stored gas supply passage 28 to adjust the pressure of the mixed gas C supplied to the flow path switching device 30. At this time, it is preferable that the three-way valve 24 adjusts the amount of part Gp of the exhaust gas G and the amount of air Aa to keep the oxygen concentration in the mixed gas C stored in the gas storage container 27 substantially constant, Thereby, the control when performing EGR can be simplified.

そして、上記の機器類の制御を行うために、エンジンコントロールユニット(ECU)と呼ばれるエンジン1の運転の全般を制御する制御装置40を設け、この制御装置40で蓄ガス容器27内の圧力やエンジン回転速度やアクセル開度等を検出して、その結果に基づいて電磁クラッチ34や三方弁24を制御して、蓄ガス容器27内の混合ガスCの量(圧力)と排気ガスGpと空気Aaの混合比率を調整制御する。   And in order to control said apparatus, the control apparatus 40 which controls the whole driving | operation of the engine 1 called an engine control unit (ECU) is provided, and the pressure in the gas storage container 27 and engine by this control apparatus 40 are provided. The rotational speed, the accelerator opening, and the like are detected, and the electromagnetic clutch 34 and the three-way valve 24 are controlled based on the detection result, and the amount (pressure) of the mixed gas C in the gas storage container 27, the exhaust gas Gp, and the air Aa The mixing ratio is adjusted and controlled.

なお、図1に示すように、この蓄ガス容器27の内部の最大圧を調整する調整弁27aを、蓄ガス容器27に設けて、ガス圧縮装置25を駆動している時には、常に仕事が発生するように調整弁27aを調整する。なお、図1及び図2では、調整弁27aを蓄ガス容器27に設けているが、調整弁27aを蓄ガス容器27とガス圧縮装置25の間の排気ガス導入通路22を設けてもよい。   As shown in FIG. 1, when the gas storage device 27 is provided with an adjustment valve 27a for adjusting the maximum pressure inside the gas storage container 27 and the gas compression device 25 is driven, work always occurs. The adjustment valve 27a is adjusted as follows. 1 and 2, the regulating valve 27a is provided in the gas storage container 27, but the regulating valve 27a may be provided in the exhaust gas introduction passage 22 between the gas storage container 27 and the gas compression device 25.

つまり、エンジン1は、排気ガスGの一部Geをシリンダ内に再循環するためのEGR通路17と、エンジン1の排気ガスGの一部Gpと空気Aが混合した混合ガスCを圧縮するガス圧縮装置25と、このガス圧縮装置25で圧縮された混合ガスCを貯蓄する蓄ガス容器27と、この蓄ガス容器27と吸気通路12を接続する蓄ガス供給通路28を備えて構成される。   That is, the engine 1 compresses the EGR passage 17 for recirculating a part Ge of the exhaust gas G into the cylinder and the mixed gas C in which the part Gp of the exhaust gas G of the engine 1 and the air A are mixed. The compressor 25 includes a gas storage container 27 that stores the mixed gas C compressed by the gas compressor 25, and a gas storage supply passage 28 that connects the gas storage container 27 and the intake passage 12.

そして、吸気通路12と蓄ガス供給通路28は流路切替装置30を介して接続される。この流路切替装置30をEGR通路17と吸気通路12との合流部であるEGR合流部18よりも下流側に配置する。また、流路切換装置30は吸気通路12の下流側の通路側を開放したまま、蓄ガス供給通路28側と吸気通路12の上流側の通路側とを切り替えるように構成される。   The intake passage 12 and the stored gas supply passage 28 are connected via a flow path switching device 30. The flow path switching device 30 is disposed downstream of the EGR merging portion 18 that is a merging portion of the EGR passage 17 and the intake passage 12. The flow path switching device 30 is configured to switch between the stored gas supply passage 28 side and the upstream passage side of the intake passage 12 while the downstream passage side of the intake passage 12 is open.

この流路切換装置30は、図4及び図5に示すような三方切替弁30で構成することができる。また、図示しないが、吸気系通路12に設けた吸気弁と、蓄ガス供給通路28に設けた開閉弁で構成することもできる。つまり、三方切替弁30を用いずに、吸気通路12を吸気弁(吸気スロットル)等で閉塞する方式の場合には、吸気弁(図示しない)の上流にEGR合流部18を設けて、EGRガスGeをEGR弁21と吸気弁(図示しない)とで2段構えで遮断する。   The flow path switching device 30 can be constituted by a three-way switching valve 30 as shown in FIGS. In addition, although not shown, the intake valve provided in the intake system passage 12 and the opening / closing valve provided in the stored gas supply passage 28 may be used. That is, in the case where the intake passage 12 is closed with an intake valve (intake throttle) or the like without using the three-way switching valve 30, an EGR merging portion 18 is provided upstream of the intake valve (not shown) to provide EGR gas. Ge is shut off in two stages by an EGR valve 21 and an intake valve (not shown).

図4及び図5に示す三方切替弁30では、駆動用低圧空気Apを入れてピストン背面空気Aeを抜くことで、駆動用高速シリンダ30aのロッド30bを移動させることにより、シャッター部30cを移動させて、図4に示すように、蓄ガス供給通路28側を閉じて、吸気通路12の上流側12aと下流側12bを連通させ、また、図5に示すように、吸気通路12の上流側12a側を閉じて、蓄ガス供給通路28と吸気通路12の下流側12bを連通させる。   In the three-way switching valve 30 shown in FIGS. 4 and 5, the shutter 30c is moved by moving the rod 30b of the driving high-speed cylinder 30a by inserting the driving low-pressure air Ap and extracting the piston back surface air Ae. As shown in FIG. 4, the storage gas supply passage 28 side is closed to connect the upstream side 12a and the downstream side 12b of the intake passage 12, and as shown in FIG. 5, the upstream side 12a of the intake passage 12 is connected. The side is closed, and the stored gas supply passage 28 and the downstream side 12b of the intake passage 12 are communicated.

次に、本発明に係る第2の実施の形態のエンジン(内燃機関)1Aについて説明する。図2に示すように、この第2の実施の形態のエンジン1Aでは、EGR通路17がNOx浄化触媒16の下流側の排気通路13から分岐し、このEGR通路17から排気ガス導入通路22が分岐している点が、EGR通路17がターボ式過給器14のタービン14bの上流側の排気通路13から分岐して、排気ガス導入通路22がNOx浄化触媒15の下流側の排気通路13から分岐している第1の実施の形態と異なっている。その他の点は、第1の実施の形態と同じである。   Next, an engine (internal combustion engine) 1A according to a second embodiment of the present invention will be described. As shown in FIG. 2, in the engine 1A of the second embodiment, the EGR passage 17 branches from the exhaust passage 13 downstream of the NOx purification catalyst 16, and the exhaust gas introduction passage 22 branches from the EGR passage 17. The EGR passage 17 branches from the exhaust passage 13 upstream of the turbine 14 b of the turbocharger 14, and the exhaust gas introduction passage 22 branches from the exhaust passage 13 downstream of the NOx purification catalyst 15. This is different from the first embodiment. Other points are the same as in the first embodiment.

つまり、EGR通路17に流入する排気ガスGeが、第1の実施の形態のエンジン1では、ターボ式過給器14のタービン14bを通過する前の排気ガスGの一部となっているのに対して、この第2の実施の形態のエンジン1Aでは、ターボ式過給器14のタービン14bを通過した後の排気ガスGの一部となっている。言い換えれば、第1の実施の形態のエンジン1では、高圧EGR方式が採用されており、第2の実施の形態のエンジン1Aでは低圧EGR方式が採用されている。   That is, the exhaust gas Ge flowing into the EGR passage 17 is a part of the exhaust gas G before passing through the turbine 14b of the turbocharger 14 in the engine 1 of the first embodiment. On the other hand, in the engine 1A of the second embodiment, it is a part of the exhaust gas G after passing through the turbine 14b of the turbocharger 14. In other words, the engine 1 of the first embodiment employs the high pressure EGR method, and the engine 1A of the second embodiment employs the low pressure EGR method.

次に、本発明に係る内燃機関のEGR方法について説明する。この内燃機関のEGR方法は、上記の構成の内燃機関1、1A等で実施できる方法である。この内燃機関のEGR方法は、エンジン(内燃機関)1、1Aの排気通路(排気系通路)13の排気ガスGの一部Gpを空気Aaと混合した混合ガスCを圧縮して貯蓄する。   Next, an EGR method for an internal combustion engine according to the present invention will be described. This EGR method for an internal combustion engine is a method that can be implemented by the internal combustion engine 1, 1 </ b> A or the like having the above-described configuration. This EGR method for an internal combustion engine compresses and stores a mixed gas C obtained by mixing a part Gp of the exhaust gas G in the exhaust passage (exhaust system passage) 13 of the engine (internal combustion engine) 1 and 1A with air Aa.

それと共に、EGRでは、エンジン1、1Aの過渡運転でないときには、エンジン1、1Aの排気ガスGの一部Geを、EGR通路17を経由してシリンダ内に再循環し、エンジン1、1Aの過渡運転であるときには、混合ガスCを一時的に吸気通路(吸気系通路)12に供給する。   At the same time, in the EGR, when the engine 1, 1A is not in a transient operation, a part Ge of the exhaust gas G of the engine 1, 1A is recirculated into the cylinder via the EGR passage 17, and the engine 1, 1A is in a transient state. During operation, the mixed gas C is temporarily supplied to the intake passage (intake system passage) 12.

更に、エンジン1、1Aの過渡運転であるときには、EGR通路17からのEGRガスGeと、吸気通路12からの新気Aとを流路切換装置30で遮断して、混合ガスCのみを、EGR通路17と吸気通路12との合流部であるEGR合流部よりも下流側に供給する。   Further, when the engine 1, 1A is in a transient operation, the EGR gas Ge from the EGR passage 17 and the fresh air A from the intake passage 12 are shut off by the flow path switching device 30, and only the mixed gas C is removed from the EGR. The EGR merging portion, which is a merging portion between the passage 17 and the intake passage 12, is supplied downstream.

また、この内燃機関のEGR方法において、EGRガスGeと新気Aとの遮断、及び混合ガスCの供給を、図4と図5で示すような三方切替弁で構成した流路切替装置30で行うか、あるいは、EGRガスGeと新気Aとの遮断、及び混合ガスCの供給を、吸気通路(吸気系通路)12に設けた吸気弁(図示しない)と、蓄ガス供給通路27に設けた開閉弁(図示しない)で構成した流路切替装置30で行う。   In this EGR method for an internal combustion engine, the EGR gas Ge and the fresh air A are shut off and the mixed gas C is supplied by a flow path switching device 30 constituted by a three-way switching valve as shown in FIGS. Or an intake valve (not shown) provided in the intake passage (intake system passage) 12 and a storage gas supply passage 27 for shutting off the EGR gas Ge and fresh air A and supplying the mixed gas C. This is performed by the flow path switching device 30 constituted by a separate on-off valve (not shown).

これらの制御においては制御装置40で、エンジン回転速度Ne、エンジン空気量(Mo、Me)、エンジン燃料量(燃料噴射量)Q、蓄ガス容器27の内部の圧力等の検出値等に基づいて、調圧弁29とEGR弁21と流路切替装置30を制御する。   In these controls, the control device 40 is based on detected values such as engine rotational speed Ne, engine air amount (Mo, Me), engine fuel amount (fuel injection amount) Q, pressure inside the gas storage container 27, and the like. The pressure regulating valve 29, the EGR valve 21, and the flow path switching device 30 are controlled.

上記の内燃機関1、1A、及び内燃機関のEGR方法によれば、急加速等の過渡運転時においてターボラグに起因するEGR不足を解消し、過渡運転時のNOx排出を低減することができると共に加速性能の向上とPMの低減を図ることができ、更に、EGR弁21に異物噛み込み等の不具合が生じてEGR弁21が全閉しなくなった場合でも、蓄ガス容器27から供給される混合ガスCが排気系通路11b、13に抜けることを防止でき、この混合ガスCの排気系通路11b、13側への抜けに起因する加速性能の低下を確実に回避することができる。   According to the above-described internal combustion engine 1, 1A and internal combustion engine EGR method, EGR deficiency due to turbo lag can be resolved during transient operation such as rapid acceleration, and NOx emissions during transient operation can be reduced and accelerated. The performance can be improved and the PM can be reduced. Furthermore, even if the EGR valve 21 has a problem such as a foreign matter bite and the EGR valve 21 is not fully closed, the mixed gas supplied from the gas storage container 27 C can be prevented from escaping into the exhaust system passages 11b and 13, and a decrease in acceleration performance due to the escape of the mixed gas C to the exhaust system passages 11b and 13 can be reliably avoided.

本発明の内燃機関及び内燃機関のEGR方法は、EGR通路に設けたEGR弁の閉塞が不完全となるようなシール不良等の不具合が発生したとしても、蓄ガス容器から供給される混合ガスの一部が排気系通路に漏れることを防止することができるので、ガス圧縮装置を用いて、排気ガスの一部と新気を混合した混合ガスを蓄ガス容器に溜め込み、負荷が急激に増加する過渡運転時に混合ガスをシリンダ内に一時的に供給して過渡運転時のNOxの排出を抑制するとともに加速性能を向上させる、トラックやバスや乗用車等に搭載する内燃機関で利用できる。   The internal combustion engine and the EGR method of the internal combustion engine of the present invention can prevent the mixed gas supplied from the gas storage container even if a malfunction such as a sealing failure that causes the EGR valve provided in the EGR passage to be completely closed occurs. Since it is possible to prevent a part of the gas from leaking into the exhaust system passage, the gas compression device is used to store a mixed gas in which a part of the exhaust gas and fresh air are mixed in the gas storage container, and the load increases rapidly. It can be used in an internal combustion engine mounted on a truck, a bus, a passenger car, etc. that temporarily supplies mixed gas into a cylinder during transient operation to suppress NOx emission during transient operation and improve acceleration performance.

1、1A エンジン(内燃機関)
11 エンジン本体
11a 吸気マニホールド(吸気系通路)
11b 排気マニホールド(排気系通路)
12 吸気通路(吸気系通路)
13 排気通路(排気系通路)
14 ターボ式過給器
14a コンプレッサ
14b タービン
15、19 ディーゼルパティキュレートフィルタ(DPF)装置
16 NOx浄化触媒
17 EGR通路
18 EGR合流部
20、23 EGRクーラ
21 EGR弁
22 排気ガス導入通路
24 三方弁
25 ガス圧縮装置
26 圧縮ガス供給通路
27 蓄ガス容器
28 蓄ガス供給通路
30 三方切替弁(流路切替装置)
31 車両の車軸
34 電磁クラッチ
35 吸気弁(吸気スロットル)
40 制御装置
A 新気
Aa 空気
C 混合ガス
G 排気ガス
Ge EGRガス
Gp 排気ガスの一部
1, 1A engine (internal combustion engine)
11 Engine body 11a Intake manifold (intake system passage)
11b Exhaust manifold (exhaust system passage)
12 Intake passage (intake system passage)
13 Exhaust passage (exhaust system passage)
14 Turbo-type supercharger 14a Compressor 14b Turbine 15, 19 Diesel particulate filter (DPF) device 16 NOx purification catalyst 17 EGR passage 18 EGR merging section 20, 23 EGR cooler 21 EGR valve 22 Exhaust gas introduction passage 24 Three-way valve 25 Gas Compressor 26 Compressed gas supply passage 27 Storage gas container 28 Storage gas supply passage 30 Three-way switching valve (channel switching device)
31 Vehicle axle 34 Electromagnetic clutch 35 Intake valve (intake throttle)
40 Control device A Fresh air Aa Air C Mixed gas G Exhaust gas Ge EGR gas Gp Part of exhaust gas

Claims (6)

内燃機関の排気ガスの一部をシリンダ内に再循環するためのEGR通路と、
内燃機関の排気ガスの一部と空気が混合した混合ガスを圧縮するガス圧縮装置と、
該ガス圧縮装置で圧縮された混合ガスを貯蓄する蓄ガス容器と、
該蓄ガス容器と吸気系通路を接続する蓄ガス供給通路を備えた内燃機関において、
流路切替装置を介して前記吸気系通路と前記蓄ガス供給通路とを接続すると共に、
前記流路切替装置を前記EGR通路と前記吸気系通路との合流部であるEGR合流部よりも下流側に配置し、
前記流路切換装置を前記吸気系通路の下流側の通路側を開放したまま、前記蓄ガス供給通路側と前記吸気系通路の上流側の通路側とを切り替えるように構成したことを特徴とする内燃機関。
An EGR passage for recirculating a portion of the exhaust gas of the internal combustion engine into the cylinder;
A gas compression device for compressing a mixed gas in which a part of the exhaust gas of the internal combustion engine and air are mixed;
A gas storage container for storing the mixed gas compressed by the gas compression device;
In the internal combustion engine provided with a storage gas supply passage connecting the gas storage container and the intake system passage,
While connecting the intake system passage and the stored gas supply passage through a flow switching device,
The flow path switching device is disposed on the downstream side of an EGR merging portion that is a merging portion of the EGR passage and the intake system passage,
The flow path switching device is configured to switch between the stored gas supply passage side and the upstream side of the intake system passage while the downstream side of the intake system passage is open. Internal combustion engine.
前記流路切替装置を三方切替弁で構成したことを特徴とする請求項1記載の内燃機関。   2. The internal combustion engine according to claim 1, wherein the flow path switching device comprises a three-way switching valve. 前記流路切替装置を、前記吸気系通路に設けた吸気弁と、前記蓄ガス供給通路に設けた開閉弁で構成したことを特徴とする請求項1記載の内燃機関。   2. The internal combustion engine according to claim 1, wherein the flow path switching device includes an intake valve provided in the intake system passage and an on-off valve provided in the stored gas supply passage. 内燃機関の排気系通路の排気ガスの一部を空気と混合した混合ガスを圧縮して貯蓄すると共に、EGRでは、内燃機関の過渡運転でないときには、内燃機関の排気ガスの一部をEGR通路を経由してシリンダ内に再循環し、内燃機関の過渡運転であるときには、前記混合ガスを一時的に吸気系通路に供給する内燃機関のEGR方法において、
内燃機関の過渡運転であるときには、前記EGR通路からのEGRガスと、前記吸気系通路からの新気とを流路切換装置で遮断して、前記混合ガスのみを、前記EGR通路と前記吸気系通路との合流部であるEGR合流部よりも下流側に供給することを特徴とする内燃機関のEGR方法。
In the EGR, a part of the exhaust gas in the exhaust system passage of the internal combustion engine is compressed and stored, and in EGR, when the internal combustion engine is not in a transient operation, a part of the exhaust gas of the internal combustion engine is passed through the EGR passage. In an EGR method for an internal combustion engine that temporarily recirculates the mixed gas to an intake system passage when the internal combustion engine is in a transient operation through recirculation in a cylinder via
When the internal combustion engine is in a transient operation, the EGR gas from the EGR passage and the fresh air from the intake system passage are shut off by a flow path switching device, and only the mixed gas is sent to the EGR passage and the intake system. An EGR method for an internal combustion engine, characterized in that the EGR method supplies to the downstream side of an EGR junction that is a junction with a passage.
EGRガスと新気との遮断、及び混合ガスの供給を、三方切替弁で構成した前記流路切替装置で行うことを特徴とする請求項4記載の内燃機関のEGR方法。   5. The EGR method for an internal combustion engine according to claim 4, wherein the EGR gas and fresh air are shut off and the mixed gas is supplied by the flow path switching device constituted by a three-way switching valve. EGRガスと新気との遮断、及び混合ガスの供給を、前記吸気系通路に設けた吸気弁と、前記蓄ガス供給通路に設けた開閉弁で構成した前記流路切替装置で行うことを特徴とする請求項4記載の内燃機関のEGR方法。   The EGR gas and fresh air are shut off and the mixed gas is supplied by the flow path switching device including an intake valve provided in the intake system passage and an on-off valve provided in the stored gas supply passage. The EGR method for an internal combustion engine according to claim 4.
JP2011094663A 2011-04-21 2011-04-21 Internal combustion engine and EGR method for internal combustion engine Expired - Fee Related JP5811577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011094663A JP5811577B2 (en) 2011-04-21 2011-04-21 Internal combustion engine and EGR method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011094663A JP5811577B2 (en) 2011-04-21 2011-04-21 Internal combustion engine and EGR method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2012225282A true JP2012225282A (en) 2012-11-15
JP5811577B2 JP5811577B2 (en) 2015-11-11

Family

ID=47275710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011094663A Expired - Fee Related JP5811577B2 (en) 2011-04-21 2011-04-21 Internal combustion engine and EGR method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5811577B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017172508A (en) * 2016-03-24 2017-09-28 株式会社豊田自動織機 Deposit accumulation arrester for binary fuel internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216056A (en) * 2008-03-12 2009-09-24 Toyota Motor Corp Exhaust recirculating device for internal combustion engine
JP2010077928A (en) * 2008-09-26 2010-04-08 Isuzu Motors Ltd Exhaust emission control system and exhaust emission control method
JP2010528211A (en) * 2007-05-21 2010-08-19 ボーグワーナー・インコーポレーテッド Intake / exhaust system of combustion engine, component thereof, and operation control method thereof
JP2011021558A (en) * 2009-07-16 2011-02-03 Isuzu Motors Ltd Supercharge control method and supercharge control device
JP2011508849A (en) * 2008-01-03 2011-03-17 ヴァレオ システム ドゥ コントロール モトゥール EGR circuit of an automobile equipped with an internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528211A (en) * 2007-05-21 2010-08-19 ボーグワーナー・インコーポレーテッド Intake / exhaust system of combustion engine, component thereof, and operation control method thereof
JP2011508849A (en) * 2008-01-03 2011-03-17 ヴァレオ システム ドゥ コントロール モトゥール EGR circuit of an automobile equipped with an internal combustion engine
JP2009216056A (en) * 2008-03-12 2009-09-24 Toyota Motor Corp Exhaust recirculating device for internal combustion engine
JP2010077928A (en) * 2008-09-26 2010-04-08 Isuzu Motors Ltd Exhaust emission control system and exhaust emission control method
JP2011021558A (en) * 2009-07-16 2011-02-03 Isuzu Motors Ltd Supercharge control method and supercharge control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017172508A (en) * 2016-03-24 2017-09-28 株式会社豊田自動織機 Deposit accumulation arrester for binary fuel internal combustion engine

Also Published As

Publication number Publication date
JP5811577B2 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
CN107905920B (en) Device and method for reducing discharge of supercharged diesel engine based on intake component control
KR101664069B1 (en) Engine having low pressure egr system and the method thereof
WO2019119783A1 (en) Exhaust gas recirculation system for petrol engine, and control method thereof
US10760504B2 (en) Method for controlling an internal combustion engine
JP6060492B2 (en) Internal combustion engine and control method thereof
KR20080026659A (en) Boost pressure control
JP3674254B2 (en) EGR device for supercharged engine
KR101683495B1 (en) Engine system having turbo charger
JP2011001877A (en) Internal combustion engine equipped with mechanical supercharger and supercharging method therefor
JP2007071179A (en) Two stage supercharging system
JP5923869B2 (en) Flow path switching valve
JP2012132370A (en) Diesel engine with turbo-supercharger
JP5814008B2 (en) Accumulated EGR system
JP5811577B2 (en) Internal combustion engine and EGR method for internal combustion engine
JP2009191667A (en) Supercharging device and supercharging engine system
JP5845640B2 (en) Flow path switching valve and internal combustion engine provided with the same
JP5742484B2 (en) Supercharging assist method for internal combustion engine and internal combustion engine
JP5982739B2 (en) Flow path switching valve, internal combustion engine, and EGR method for internal combustion engine
JP5834505B2 (en) Supercharging assist method for internal combustion engine and internal combustion engine
JP5824881B2 (en) Supercharging assist method for internal combustion engine and internal combustion engine
JP5824882B2 (en) Gas storage method for internal combustion engine and internal combustion engine
KR101526390B1 (en) Engine system
KR102463199B1 (en) Engine system
JP5830946B2 (en) Supercharging assist method for internal combustion engine and internal combustion engine
US10890129B1 (en) High pressure loop exhaust gas recirculation and twin scroll turbocharger flow control

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120820

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150907

R150 Certificate of patent or registration of utility model

Ref document number: 5811577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees