JP2012224752A - Method for producing biomass fuel, device for producing the same, biomass fuel, and information management method and system - Google Patents
Method for producing biomass fuel, device for producing the same, biomass fuel, and information management method and system Download PDFInfo
- Publication number
- JP2012224752A JP2012224752A JP2011093816A JP2011093816A JP2012224752A JP 2012224752 A JP2012224752 A JP 2012224752A JP 2011093816 A JP2011093816 A JP 2011093816A JP 2011093816 A JP2011093816 A JP 2011093816A JP 2012224752 A JP2012224752 A JP 2012224752A
- Authority
- JP
- Japan
- Prior art keywords
- facility
- biomass fuel
- information
- sludge
- activated carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 118
- 239000002028 Biomass Substances 0.000 title claims abstract description 115
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 59
- 238000007726 management method Methods 0.000 title claims abstract description 56
- 239000010802 sludge Substances 0.000 claims abstract description 132
- 238000001035 drying Methods 0.000 claims abstract description 38
- 230000018044 dehydration Effects 0.000 claims abstract description 35
- 238000006297 dehydration reaction Methods 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims abstract description 31
- 238000002156 mixing Methods 0.000 claims abstract description 27
- 238000003860 storage Methods 0.000 claims abstract description 26
- 238000004891 communication Methods 0.000 claims abstract description 21
- 239000000203 mixture Substances 0.000 claims abstract description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 213
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 50
- 238000000746 purification Methods 0.000 claims description 13
- 238000001179 sorption measurement Methods 0.000 claims description 9
- 235000020188 drinking water Nutrition 0.000 claims description 7
- 239000003651 drinking water Substances 0.000 claims description 7
- 239000003610 charcoal Substances 0.000 abstract description 4
- 235000019645 odor Nutrition 0.000 description 19
- 239000003245 coal Substances 0.000 description 7
- 230000001877 deodorizing effect Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000010865 sewage Substances 0.000 description 5
- 239000008399 tap water Substances 0.000 description 5
- 235000020679 tap water Nutrition 0.000 description 5
- 238000003763 carbonization Methods 0.000 description 4
- 239000008186 active pharmaceutical agent Substances 0.000 description 3
- 238000004332 deodorization Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 239000002440 industrial waste Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000010801 sewage sludge Substances 0.000 description 3
- LFYXNXGVLGKVCJ-FBIMIBRVSA-N 2-methylisoborneol Chemical compound C1C[C@@]2(C)[C@](C)(O)C[C@@H]1C2(C)C LFYXNXGVLGKVCJ-FBIMIBRVSA-N 0.000 description 2
- LFYXNXGVLGKVCJ-UHFFFAOYSA-N 2-methylisoborneol Natural products C1CC2(C)C(C)(O)CC1C2(C)C LFYXNXGVLGKVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- DTGKSKDOIYIVQL-UHFFFAOYSA-N dl-isoborneol Natural products C1CC2(C)C(O)CC1C2(C)C DTGKSKDOIYIVQL-UHFFFAOYSA-N 0.000 description 2
- 238000012851 eutrophication Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000008235 industrial water Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 241000192700 Cyanobacteria Species 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000012773 agricultural material Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003183 carcinogenic agent Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009264 composting Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000010840 domestic wastewater Substances 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Solid Fuels And Fuel-Associated Substances (AREA)
Abstract
Description
本発明は、汚泥と使用済み活性炭を含む、バイオマス燃料の製造方法、その製造装置、及びそれらにより製造されたバイオマス燃料、並びにその情報管理方法及びシステムに関する。 The present invention relates to a method for producing biomass fuel including sludge and used activated carbon, a production apparatus thereof, a biomass fuel produced by them, and an information management method and system thereof.
下水汚泥等は、現在、セメントの原材料に用いられる他、コンポスト化によって肥料として用いられているが、再利用されない部分は、脱水および焼却した上で埋め立てることにより処理されてきた。
しかしながら、最近エネルギー資源の乏しい日本で汚泥をできるだけ利活用するため燃料化が進められている。燃料化に当たり解決しなければならない課題が多いが、そのなかで汚泥の水分を極力低減して低位発熱量を向上すること、汚泥燃料からの悪臭の発生を抑制することが重要視されている。
Sewage sludge and the like are currently used as raw materials for cement and are also used as fertilizer by composting, but the parts that are not reused have been treated by being dehydrated and incinerated and then landfilled.
However, recently in Japan, where energy resources are scarce, fuel is being promoted to make the best use of sludge. There are many problems that need to be solved in the course of fuel conversion, but in that case, it is important to reduce the moisture of sludge as much as possible to improve the lower heating value and to suppress the generation of bad odor from sludge fuel.
汚泥を燃料化する場合、乾燥処理と炭化処理の2方式に大別される。
分離液乾燥処理方式では、汚泥を脱水・乾燥して含水率を低減し、必要に応じて造粒化する。炭化処理は、汚泥を脱水・乾燥させた後、加熱して炭化物とするものである。
When sludge is turned into fuel, it is roughly divided into two methods: drying treatment and carbonization treatment.
In the separation liquid drying method, sludge is dehydrated and dried to reduce the moisture content, and granulated as necessary. In the carbonization treatment, sludge is dehydrated and dried, and then heated to obtain a carbide.
炭化方式により製造された炭化汚泥は臭気濃度は低いが、炭化工程で可燃分(有機物)の一部がガス化するため、灰分含有率が多くなり、その結果、単位質量あたりの発熱量が低くなる。一方、乾燥汚泥は可燃分がほぼ残っているので、単位質量あたりの発熱量は炭化汚泥よりも数10%高いが、強い悪臭が残留する。 Carbonized sludge produced by the carbonization method has a low odor concentration, but part of the combustible component (organic matter) is gasified in the carbonization process, resulting in an increase in ash content, resulting in a low calorific value per unit mass. Become. On the other hand, since almost all combustible components remain in the dried sludge, the calorific value per unit mass is several tens of percent higher than that of the carbonized sludge, but a strong odor remains.
乾燥方式によって製造した乾燥汚泥の悪臭を低減させようとした技術として特許文献1が公開されている。
この文献は、下水汚泥等のバイオマスから製造した乾燥造粒物の表面上に粒径500μm以下の粉末状活性炭を付着せしめ、付着活性炭に臭気を吸収せしめて臭気発生量を低減するものである。 In this document, powdered activated carbon having a particle size of 500 μm or less is attached on the surface of a dried granulated product produced from biomass such as sewage sludge, and the odor is absorbed by the attached activated carbon to reduce the amount of odor generation.
特許文献1には、活性炭を付着せしめることによって消臭効果を得ることが開示されている。活性炭は高額(新炭600円/kg程度、再生炭350円/kg程度)であり、少量の添加率、例えば新炭5%添加であっても乾燥汚泥中の新炭価格は約30円/kg乾燥汚泥(3万円/t)以上と高額になり、実用上の大きな障害となる。この価格を実用的な価格まで低減することが重要な課題であった。
本発明は上記課題を解決するものであり、低価格で消臭されたバイオマス燃料の製造方法、その製造装置、及びそれらにより製造されたバイオマス燃料、並びにその情報管理方法及びシステムを提供するものである。
This invention solves the said subject, and provides the manufacturing method of the biomass fuel deodorized at low price, its manufacturing apparatus, the biomass fuel manufactured by them, and its information management method and system. is there.
上記課題を解決するための手段は、以下のとおりである。
1)臭い吸着能を有する使用済み活性炭と、汚泥との混合物を調製する混合工程を含む、バイオマス燃料の製造方法。
2)前記混合工程は、前記汚泥が脱水工程Aで脱水された脱水汚泥あるいはおよび乾燥工程Aで乾燥された乾燥汚泥と、前記使用済み活性炭との混合物を調製する工程を含む、上記1)のバイオマス燃料の製造方法。
3)前記混合工程は、前記汚泥と、前記使用済み活性炭とを混合したのちに脱水する脱水工程B、あるいはさらに該脱水工程Bの脱水汚泥を乾燥する乾燥工程Bを含む、上記1)の又は2)のバイオマス燃料の製造方法。
4)前記使用済み活性炭は粒状活性炭である、上記1)〜3)のいずれか1項のバイオマス燃料の製造方法。
5)前記使用済み活性炭が上水(飲料水)の原水を浄化する工程で使用されたものである、上記1)〜4)のいずれか1項のバイオマス燃料の製造方法。
6)上記2)の脱水工程A又は上記3)の脱水工程Bで使用される脱水装置、及び上記2)の乾燥工程A又は上記3)の乾燥工程Bで使用される乾燥装置、又は上記2)の混合物を調製する工程で使用される混合装置を含む、バイオマス燃料の製造装置。
7)上記1)〜5)のいずれか1項のバイオマス燃料の製造方法又は上記6)のバイオマス燃料の製造装置により製造された、汚泥と臭い吸着能を有する使用済み活性炭を含むバイオマス燃料。
Means for solving the above problems are as follows.
1) A method for producing biomass fuel, comprising a mixing step of preparing a mixture of used activated carbon having odor adsorbing ability and sludge.
2) The mixing step includes a step of preparing a mixture of the dehydrated sludge from which the sludge has been dehydrated in the dehydration step A or the dried sludge dried in the drying step A and the used activated carbon. A method for producing biomass fuel.
3) The mixing step includes a dehydration step B in which the sludge and the used activated carbon are mixed and then dehydrated, or a drying step B in which the dehydrated sludge in the dehydration step B is further dried. 2) A method for producing biomass fuel.
4) The method for producing biomass fuel according to any one of 1) to 3) above, wherein the used activated carbon is granular activated carbon.
5) The method for producing biomass fuel according to any one of 1) to 4) above, wherein the used activated carbon is used in a step of purifying raw water of drinking water (drinking water).
6) The dehydration apparatus used in the dehydration process A of 2) or the dehydration process B of 3) and the drying apparatus used in the drying process A of 2) or the drying process B of 3), or 2 The biomass fuel manufacturing apparatus including the mixing apparatus used in the step of preparing the mixture.
7) A biomass fuel containing sludge and spent activated carbon having an odor adsorbing capacity produced by the method for producing biomass fuel according to any one of 1) to 5) above or the biomass fuel producing apparatus according to 6) above.
8)施設a:前記汚泥を生産する一箇所以上の施設であって、前記汚泥の、少なくとも日発生量、含水率、該発生量と該含水率との年間変動、及び計画発生量を含む情報を、少なくとも情報管理施設fとの間で相互に共有することが可能な施設、
施設b:臭い吸着能を有する使用済み活性炭を生産する一箇所以上の浄水施設であって、前記臭い吸着能を有する使用済み活性炭の、少なくとも日発生量、含水率、該発生量と該含水率との年間変動、及び計画発生量を含む情報を、少なくとも情報管理施設fとの間で相互に共有することが可能な施設、
施設c:前記施設aの汚泥と、前記bの該使用済み活性炭とから上記7)のバイオマス燃料を製造するバイオマス燃料生産施設であって、前記バイオマス燃料の、少なくとも日生産量、年間変動、及び計画生産量を含む情報を、少なくとも情報管理施設fとの間で相互に共有することが可能な施設、
施設d:前記バイオマス燃料の利用施設であって、前記バイオマス燃料の、少なくとも日消費量、年間変動、及び計画消費量を含む情報を、少なくとも情報管理施設fとの間で相互に共有することが可能な施設、及び
施設e:前記施設a、b、c、及びdの間を相互に連絡する輸送システムを管理する輸送管理施設を少なくとも含む施設に対して、前記情報を管理する方法であって、
前記情報管理施設はf、前記施設a、b、c、d、及びeの間の前記情報を相互に共有する、
バイオマス燃料の情報管理方法。
9)前記施設a、b、c、d、e及びfの少なくとも2施設が同一敷地内にある、上記8)のバイオマス燃料の情報管理方法。
8) Facility a: one or more facilities that produce the sludge, and information including at least the daily generation amount, the moisture content, the annual fluctuation of the generation amount and the moisture content, and the planned generation amount of the sludge A facility that can be shared with at least the information management facility f,
Facility b: One or more water purification facilities producing used activated carbon having odor adsorbing capacity, and at least daily generation amount, water content, generated amount and water content of the used activated carbon having odor adsorbing capacity Facilities that can share information, including annual fluctuations and planned generation amounts, at least with the information management facility f,
Facility c: a biomass fuel production facility for producing the biomass fuel of 7) above from the sludge of the facility a and the used activated carbon of the b, wherein the biomass fuel has at least daily production, annual fluctuation, and A facility capable of sharing information including the planned production volume with at least the information management facility f,
Facility d: a facility for using the biomass fuel, wherein information including at least daily consumption, annual fluctuation, and planned consumption of the biomass fuel is shared with at least the information management facility f Possible facilities, and facility e: a method for managing said information for a facility comprising at least a transportation management facility that manages a transportation system that interconnects said facilities a, b, c, and d. ,
The information management facility shares the information between f, the facilities a, b, c, d, and e;
Information management method for biomass fuel.
9) The biomass fuel information management method according to 8), wherein at least two of the facilities a, b, c, d, e, and f are on the same site.
10)施設a:前記汚泥を生産する一箇所以上の施設であって、前記汚泥の、少なくとも日発生量、含水率、該発生量と該含水率との年間変動、及び計画発生量を含む情報を記憶する情報記憶手段と、少なくとも情報管理施設fとの間を相互に該情報を共有することが可能な通信手段とを備えた施設
施設b:臭い吸着能を有する使用済み活性炭を生産する一箇所以上の浄水施設であって、前記臭い吸着能を有する使用済み活性炭の、少なくとも日発生量、含水率、該発生量と該含水率との年間変動、及び計画発生量を含む情報を記憶する情報記憶手段と、少なくとも情報管理施設fとの間を相互に該情報を共有することが可能な通信手段とを備えた施設
施設c:前記施設aの汚泥と、前記bの該使用済み活性炭とから上記7)のバイオマス燃料を製造するバイオマス燃料生産施設であって、前記バイオマス燃料の、少なくとも日生産量、年間変動、及び計画生産量を含む情報を記憶する情報記憶手段と、少なくとも情報管理施設fとの間を相互に該情報を共有することが可能な通信手段とを備える施設、
施設d:前記バイオマス燃料の利用施設であって、前記バイオマス燃料の、少なくとも日消費量、年間変動、及び計画消費量を含む情報を記憶する情報記憶手段と、少なくとも情報管理施設fとの間を相互に該情報を共有することが可能な通信手段とを備える施設、及び
施設e:前記施設a、b、c、及びdの間を相互に連絡する輸送システムを管理する輸送管理施設を少なくとも含む施設に対して、前記情報を管理するシステムであって、
前記情報管理施設fは、前記施設a、b、c、d、及びeの間を相互に共有することが可能な情報を記憶する情報記憶手段、及び前記施設a、b、c、d、及びeの間を相互に前記情報を共有することが可能な通信手段を少なくとも備えている、
バイオマス燃料の情報管理システム。
10) Facility a: Information on one or more facilities that produce the sludge, including at least the daily generation amount, the moisture content, the annual variation of the generation amount and the moisture content, and the planned generation amount of the sludge. A facility comprising an information storage means for storing the information and a communication means capable of sharing the information with at least the information management facility f. Facility b: One used to produce a used activated carbon having an odor adsorbing ability. Stores information including at least daily generation amount, moisture content, annual fluctuation of the generation amount and the moisture content, and planned generation amount of the used activated carbon having the odor adsorbing ability at more than one location Facility comprising information storage means and communication means capable of sharing the information with each other at least between the information management facilities f Facility c: The sludge of the facility a, and the used activated carbon of the b To biomass 7) above A biomass fuel production facility for producing a feedstock, wherein information storage means for storing information including at least a daily production amount, an annual variation, and a planned production amount of the biomass fuel, and at least an information management facility f A facility comprising a communication means capable of sharing the information
Facility d: a facility for using the biomass fuel, between the information storage means for storing information including at least daily consumption, annual variation, and planned consumption of the biomass fuel, and at least the information management facility f A facility comprising communication means capable of sharing the information with each other; and facility e: at least a transportation management facility that manages a transportation system that mutually communicates between the facilities a, b, c, and d A system for managing the information for a facility,
The information management facility f includes information storage means for storing information that can be shared among the facilities a, b, c, d, and e, and the facilities a, b, c, d, and e at least communication means capable of sharing the information between each other,
Information management system for biomass fuel.
本発明は前記課題を解決するため、産業廃棄物として有償で大量に処分されている浄水場の使用済み活性炭の利用について着目して実験的に検討した結果想到したものである。なお、使用済み活性炭は、全てが産業廃棄物として処分されているわけではなく、再生炭として再利用、農芸資材として有効利用されているものもある。 In order to solve the above-mentioned problems, the present invention has been conceived as a result of an experimental investigation focusing on the use of used activated carbon in a water purification plant that is disposed of as a large amount of industrial waste for a fee. The used activated carbon is not all disposed as industrial waste, but may be reused as recycled charcoal and effectively used as agricultural material.
ところで、浄水場は、河川、湖沼等の水源から取水した水を浄化して上水(水道水)として市町村の給水するために建設されている。近年、湖沼等の閉鎖系水域の富栄養化、河川等への生活排水の流入等により水源が汚濁されてきており、特に富栄養化によるプランクトンの異状発生等により異臭味が水道水に残存することが大きな問題になった。この異種味成分は、浄水場の主処理である凝集沈澱処理でも除去できないため、さらにその後段に活性炭吸着装置が高度処理のために併設されるようになった。活性炭吸着装置の設計には、吸着等温線を作成して充填容量、活性炭交換に関る附帯設備、LV(線速度)、SV(空間速度)等を決める。水道水源のCODは3〜10mg/Lであり、その凝集沈殿処理水が活性炭原水であるため、活性炭処理水のCODは1mg/L前後と低くなる。 By the way, water purification plants are constructed to purify water taken from water sources such as rivers, lakes and marshes and to supply municipal water as tap water. In recent years, water sources have become polluted due to eutrophication of closed water bodies such as lakes and marshes, and inflow of domestic wastewater into rivers, etc., especially with a strange smell remaining in tap water due to the occurrence of plankton abnormalities due to eutrophication, etc. That became a big problem. This heterogeneous taste component cannot be removed even by the coagulation sedimentation treatment, which is the main treatment of the water purification plant, and an activated carbon adsorbing device is additionally provided in the subsequent stage for advanced treatment. For the design of the activated carbon adsorption device, an adsorption isotherm is created to determine the filling capacity, incidental equipment related to activated carbon exchange, LV (linear velocity), SV (space velocity), and the like. The COD of the tap water source is 3 to 10 mg / L, and the coagulation precipitation treated water is activated carbon raw water, so the COD of the activated carbon treated water is as low as around 1 mg / L.
また、活性炭吸着処理の主目的である、異臭味成分の吸着等温線については、文献(荏原インフィルコ時報、第100号、1989年)に示されている(本願の図1参照)。図1に示したように代表的な水道水の異臭味成分である2−メチルイソボルネオール(藍藻類によって生産されるカビ臭)、発癌の原因物質のトリハロメタン前駆物質の飽和吸着量は極めて低いことがわかった。一方、2−メチルイソボルネオールの水道水基準は、0.00001mg/L(0.01μg/L)以下であり、この濃度まで低減するための活性炭の飽和吸着量は0.1mg/g−活性炭となる。 Further, the adsorption isotherm of the off-flavor component, which is the main purpose of the activated carbon adsorption treatment, is shown in the literature (Kashihara Infilco Time Report, No. 100, 1989) (see FIG. 1 of the present application). As shown in Fig. 1, the saturated adsorption amount of 2-methylisoborneol (mold odor produced by cyanobacteria), which is a typical off-flavor component of tap water, and the carcinogenic substance trihalomethane precursor are extremely low. I understood. On the other hand, the standard for tap water of 2-methylisoborneol is 0.00001 mg / L (0.01 μg / L) or less, and the saturated adsorption amount of activated carbon for reducing to this concentration is 0.1 mg / g-activated carbon. Become.
一般的には使用済み活性炭は再使用(リユース)されず、特に臭い成分のように強い臭気があって、低分子である臭気成分に使用済み活性炭は利用できないと予想されたが、大量に混合すれば減臭できる可能性を想起し、消臭試験を行なった。その結果、使用済み活性炭は、新炭には性能的には及ばないものの、消臭効果、減臭効果があり、実用できることが判明し、本発明を見出すに至った。 In general, used activated carbon is not reused, and it is expected that used activated carbon cannot be used for odor components that have low odor components, especially strong odors like odor components. Recalling the possibility of deodorization, a deodorization test was conducted. As a result, it was found that the used activated carbon has a deodorizing effect and a deodorizing effect, although it does not reach the performance of the new coal, and can be put into practical use, and the present invention has been found.
事業所から発生した使用済み活性炭は産業廃棄物として扱われ1万円/t前後の有償で処分されているが、バイオマス燃料化することによって有価物に変わり、新炭購入費も零となるので、汚泥の燃料化が促進されてわが国の重要な代替エネルギーとなり、また、バイオマス燃料の使用量が増加することによって化石燃料の消費量が削減されて地球温暖化防止に貢献することができる。 Spent activated carbon generated from business sites is treated as industrial waste and is disposed of for a fee of around 10,000 yen / t. However, by converting it to biomass fuel, it becomes a valuable resource and the cost of purchasing new coal will be zero. As the sludge fuel is promoted, it becomes an important alternative energy in Japan, and the consumption of fossil fuel can be reduced by increasing the amount of biomass fuel used, thereby contributing to the prevention of global warming.
以下、本発明を詳細に説明する。
本発明に用いられる臭い吸着能を有する使用済み活性炭(以下、単に「活性炭」ともいう)とは、上水(飲料水)を供給するための浄水場又はそれと等価な設備で通常の浄化処理を行って、廃棄された活性炭を意味する。
また、本発明に用いられる活性炭は、その形状は特に限定されないが、粒状活性炭であることが好ましい。ここで、粒状活性炭とは、JIS K 1474:2007の規格による粒径が150μm以上のものであることを意味する。
本発明に用いられる汚泥とは、下水、屎尿、厨芥などの有機性物質を処理する工程で排出された、初沈汚泥、メタン発酵汚泥、腐敗汚泥、余剰汚泥等の有機性汚泥である。
Hereinafter, the present invention will be described in detail.
The used activated carbon (hereinafter also simply referred to as “activated carbon”) having an odor adsorbing ability used in the present invention is a normal purification process at a water purification plant for supplying clean water (drinking water) or an equivalent equipment. Means activated and discarded activated carbon.
Moreover, the activated carbon used in the present invention is not particularly limited in shape, but is preferably granular activated carbon. Here, the granular activated carbon means that the particle diameter according to the standard of JIS K 1474: 2007 is 150 μm or more.
The sludge used in the present invention is organic sludge such as primary sludge, methane fermentation sludge, septic sludge, surplus sludge, etc. discharged in a process of treating organic substances such as sewage, manure, and soot.
次に本発明の製造方法について説明する。
本発明の製造方法における混合工程は、活性炭と、汚泥との混合物を調製する工程である。
本発明は、混合工程のみで、バイオマス燃料を製造することができるが、汚泥を脱水する脱水工程、汚泥を乾燥する乾燥工程、等を含むことができる。
活性炭は、バイオマス燃料の製造工程の任意の工程で添加することができる。例えば、上記脱水工程、及び乾燥工程の少なくとも1工程は、活性炭の共存下でも非共存下でも行うことができる。
前記混合工程は、前記汚泥が脱水工程Aで脱水された脱水汚泥あるいはおよび乾燥工程Aで乾燥された乾燥汚泥と、前記使用済み活性炭との混合物を調製する工程を含むか、又は前記混合工程は、前記汚泥と、前記使用済み活性炭とを混合したのちに脱水する脱水工程B、あるいはさらに該脱水工程Bの脱水汚泥を乾燥する乾燥工程Bを含むことが好ましい。ここで、脱水工程A、脱水工程B、乾燥工程A、乾燥工程Bとの文言を用いているが、便宜的に区別したもので、必ずしも脱水工程A、乾燥工程Aにおいて、活性炭が使用されないという意味ではない。
本発明では、汚泥の含水率によって、バイオマス燃料を製造するための種々の上記工程を構成することができる。例えば、以下の構成が挙げられる。
1)脱水工程A、乾燥工程A、及び混合工程をこの順で行う方法
脱水工程Aは、例えば、含水率95〜99%の汚泥を活性炭の非存在下に脱水する。この脱水は、所望により凝集剤による調質法が適用されてもよい。また、脱水は、遠心、プレス、スクリーン、等を用いて、通常、含水率80%以下とすることができる。ここで、含水率とは、水を含む汚泥の質量に対する該含水の水質量の100分率である。
乾燥工程Aは、例えば、上記脱水された汚泥(以下、脱水汚泥ともいう)を乾燥する工程であり、通常、含水率が0〜30%になるように乾燥され、乾燥された汚泥が調製される。以下、この乾燥された汚泥を乾燥汚泥という。当該乾燥装置は、熱源として熱流体(例えば、蒸気等のガス、湯等の液体)、固体熱源(セラミック、金属等)等を用いた加熱手段に加えて汚泥に対して物理的に力を与え、所望の形状、例えば、粒状等に成形可能な成形手段を有していてもよい。
混合工程は、例えば、上記脱水汚泥と活性炭とを混合する工程である。ここで、混合とは、少なくとも活性炭が脱水汚泥に付着(混合)していることが満たされればよく、汚泥における活性炭の分布に制限はなく、表面でも内部でもその両者でもよい。活性炭は、該乾燥汚泥に対して、通常、10〜50質量%、好ましくは、30%以上質量%含有される。
Next, the manufacturing method of this invention is demonstrated.
The mixing step in the production method of the present invention is a step of preparing a mixture of activated carbon and sludge.
Although this invention can manufacture biomass fuel only by a mixing process, it can include the dehydration process which dehydrates sludge, the drying process which dries sludge, etc.
Activated carbon can be added at any step of the biomass fuel production process. For example, at least one of the dehydration step and the drying step can be performed in the presence or absence of activated carbon.
The mixing step includes a step of preparing a mixture of the dehydrated sludge from which the sludge has been dehydrated in the dehydration step A or the dried sludge dried in the drying step A and the used activated carbon, or the mixing step includes It is preferable to include a dehydration step B in which the sludge and the used activated carbon are mixed and then dehydrated, or a drying step B in which the dewatered sludge in the dehydration step B is further dried. Here, the terms dehydration step A, dehydration step B, drying step A, and drying step B are used, but are distinguished for convenience, and in the dehydration step A and drying step A, activated carbon is not necessarily used. It doesn't mean.
In the present invention, various processes described above for producing biomass fuel can be configured by the moisture content of sludge. For example, the following configurations are exemplified.
1) Method of performing dehydration step A, drying step A, and mixing step in this order In dehydration step A, for example, sludge having a moisture content of 95 to 99% is dehydrated in the absence of activated carbon. For this dehydration, a tempering method using a flocculant may be applied if desired. Dehydration can usually be performed at a water content of 80% or less using a centrifuge, a press, a screen, or the like. Here, the moisture content is 100% of the water mass of the water relative to the mass of the sludge containing water.
The drying step A is, for example, a step of drying the dehydrated sludge (hereinafter also referred to as dehydrated sludge). Usually, the dried sludge is prepared such that the moisture content is 0 to 30% and dried. The Hereinafter, this dried sludge is called dry sludge. In addition to heating means using a heat fluid (eg, gas such as steam, liquid such as hot water), a solid heat source (ceramic, metal, etc.) as a heat source, the drying apparatus physically applies power to sludge. Further, it may have a forming means that can be formed into a desired shape, for example, a granular shape.
The mixing step is, for example, a step of mixing the dehydrated sludge and activated carbon. Here, the mixing only needs to satisfy that at least the activated carbon is attached (mixed) to the dewatered sludge, and the distribution of the activated carbon in the sludge is not limited, and may be on the surface, inside, or both. The activated carbon is usually contained in an amount of 10 to 50% by mass, preferably 30% or more by mass with respect to the dried sludge.
2)汚泥と活性炭との混合物とを脱水する脱水工程Bの後に、脱水された汚泥と活性炭との混合物とを乾燥する乾燥工程Bを行う方法
脱水工程Bは、例えば、上記脱水工程Aにおいて、活性炭が共存することを除いて、上記処理条件、処理装置等を適用することができる。活性炭が共存すると活性炭により水の排出がより容易となる効果がある。活性炭の量は、上記混合工程の配合割合が適用される。また、脱水工程Bの処理で得られる活性炭を含む脱水汚泥(以下、活性炭含有脱水汚泥ともいう)は、乾燥工程Bで乾燥処理が施され、バイオマス燃料が製造される。乾燥工程Bでの適用装置等は、上記乾燥工程Aと同様なものが適用される。活性炭含有脱水汚泥は、その中の汚泥が上記乾燥汚泥の含水率となるように乾燥されることが好ましい。
2) Method of performing drying process B which dries the mixture of dehydrated sludge and activated carbon after dehydration process B which dehydrates the mixture of sludge and activated carbon Dehydration process B is, for example in the above-mentioned dehydration process A, Except for the coexistence of activated carbon, the above processing conditions, processing equipment, etc. can be applied. When activated carbon coexists, activated carbon has the effect of facilitating water discharge. The mixing ratio of the mixing step is applied to the amount of activated carbon. Moreover, the dehydrated sludge containing activated carbon obtained by the process of the dehydration process B (hereinafter also referred to as activated carbon-containing dehydrated sludge) is subjected to a drying process in the drying process B to produce biomass fuel. As the application device and the like in the drying step B, the same devices as those in the drying step A are applied. The activated carbon-containing dewatered sludge is preferably dried so that the sludge in the activated sludge has a moisture content of the dried sludge.
次に、本発明のバイオマス燃料の情報管理方法及びシステムについて説明する。
本発明の情報管理方法は、以下の施設の間の任意の情報を相互に共有する、情報管理施設を含むものである。
本発明の情報管理システムは、以下の施設の間を相互に共有することが可能な任意の情報を記憶する情報記憶手段、及び該施設間を相互に前記情報を共有することが可能な通信手段を少なくとも備えている。
Next, the biomass fuel information management method and system of the present invention will be described.
The information management method of the present invention includes an information management facility that shares arbitrary information among the following facilities.
The information management system of the present invention includes an information storage unit that stores arbitrary information that can be shared among the following facilities, and a communication unit that can share the information between the facilities. At least.
施設aは、汚泥を生産する一箇所以上の施設である。この施設aとしては、種々の含水率の汚泥を生産することができる。例えば、濃縮汚泥、脱水汚泥、乾燥汚泥等が挙げられる。
また、施設aは、前記汚泥の生産に関する任意の情報を、少なくとも情報管理施設との間で相互に共有することが可能な施設である。該情報としては、前記汚泥の、少なくとも日発生量、含水率、該発生量と該含水率との年間変動、計画発生量、等が挙げられる。該情報は、任意の情報記憶手段に記憶される。該情報記憶手段としては、パソコン又はサーバー等の情報記憶手段が挙げられ、例えば、ハードディスク等が挙げられる。また、該情報は、任意の通信手段により少なくとも情報管理施設との間で相互の情報の共有を行なうことができる。該通信手段としては、パソコン又はサーバー等のインターネット等が挙げられる。施設aは、情報管理施設以外に以下の諸施設の少なくとも1施設と情報を共有することができる。このことは、以下の諸施設においても同様である。
The facility a is one or more facilities that produce sludge. As this facility a, sludge having various moisture contents can be produced. For example, concentrated sludge, dewatered sludge, dried sludge and the like can be mentioned.
The facility a is a facility capable of sharing any information related to the production of the sludge with at least an information management facility. Examples of the information include at least the daily generation amount, water content, annual fluctuation between the generation amount and the water content, and the planned generation amount of the sludge. The information is stored in an arbitrary information storage unit. Examples of the information storage means include information storage means such as a personal computer or a server, such as a hard disk. Further, the information can be shared with at least the information management facility by any communication means. Examples of the communication means include the Internet such as a personal computer or a server. The facility a can share information with at least one of the following facilities in addition to the information management facility. The same applies to the following facilities.
施設bは、活性炭を生産する一箇所以上の浄水施設である。この施設bとしては、飲料水、工業用水等の用水の処理施設が挙げられる。
また、施設bは、前記活性炭の生産に関する任意の情報を、少なくとも情報管理施設との間で相互に共有することが可能な施設である。該情報としては、前記活性炭の、少なくとも日発生量、含水率、該発生量と該含水率との年間変動、計画発生量、等が挙げられる。該情報は、任意の情報記憶手段に記憶される。該情報記憶手段としては、上記施設aと同様なものが挙げられる。また、該情報は、任意の通信手段により少なくとも情報管理施設との間で相互の情報の共有を行なうことができる。該通信手段としては、上記のもの等が挙げられる。
The facility b is one or more water purification facilities that produce activated carbon. Examples of the facility b include water treatment facilities such as drinking water and industrial water.
The facility b is a facility capable of sharing any information related to the production of the activated carbon with at least an information management facility. Examples of the information include at least the daily generation amount, water content, annual fluctuation between the generation amount and the water content, and the planned generation amount of the activated carbon. The information is stored in an arbitrary information storage unit. Examples of the information storage means include the same as the facility a. Further, the information can be shared with at least the information management facility by any communication means. Examples of the communication means include those described above.
施設cは、前記施設aの汚泥と、前記bの活性炭とから本発明の方法によりバイオマス燃料を製造する施設である。この施設も上記と同様複数箇所であってよい。
また、施設cは、前記バイオマス燃料の生産に関する任意の情報を、少なくとも情報管理施設との間で相互に共有することが可能な施設である。該情報としては、前記バイオマス燃料の、少なくとも日生産量、年間変動、計画生産量、等が挙げられる。該情報は、任意の情報記憶手段に記憶される。該情報記憶手段としては、上記施設a、bと同様なものが挙げられる。また、該情報は、任意の通信手段により少なくとも情報管理施設との間で相互の情報の共有を行なうことができる。該通信手段としては、上記のもの等が挙げられる。
The facility c is a facility for producing biomass fuel from the sludge of the facility a and the activated carbon of the b by the method of the present invention. This facility may also be provided at a plurality of locations as described above.
The facility c is a facility capable of sharing any information regarding the production of the biomass fuel with at least an information management facility. The information includes at least daily production, annual fluctuation, planned production, etc. of the biomass fuel. The information is stored in an arbitrary information storage unit. Examples of the information storage means are the same as those for the facilities a and b. Further, the information can be shared with at least the information management facility by any communication means. Examples of the communication means include those described above.
施設dは、バイオマス燃料の利用施設である。この施設も上記と同様複数箇所であってよい。この施設としては、例えば、発電所等が挙げられる。
また、施設dは、前記バイオマス燃料の消費に関する任意の情報を、少なくとも情報管理施設との間で相互に共有することが可能な施設である。該情報としては、前記バイオマス燃料の、少なくとも日消費量、年間変動、計画消費量、等が挙げられる。該情報は、任意の情報記憶手段に記憶される。該情報記憶手段としては、上記施設と同様なものが挙げられる。また、該情報は、任意の通信手段により少なくとも情報管理施設との間で相互の情報の共有を行なうことができる。該通信手段としては、上記のもの等が挙げられる。
The facility d is a biomass fuel utilization facility. This facility may also be provided at a plurality of locations as described above. Examples of this facility include a power plant.
The facility d is a facility capable of sharing any information related to consumption of the biomass fuel with at least an information management facility. The information includes at least daily consumption, annual fluctuation, planned consumption, etc. of the biomass fuel. The information is stored in an arbitrary information storage unit. Examples of the information storage means are the same as those in the above facility. Further, the information can be shared with at least the information management facility by any communication means. Examples of the communication means include those described above.
施設eは、前記施設a、b、c、及びdの間を相互に連絡する輸送システムを管理する輸送管理施設である。この施設も上記と同様複数箇所であってよい。この施設としては、例えば、情報の共有が可能な配送センター等を包含する。また、該輸送システムは、交通手段、例えば、車、鉄道、航空機、等の運行を監視、制御するシステムが挙げられる。 The facility e is a transportation management facility that manages a transportation system that interconnects the facilities a, b, c, and d. This facility may also be provided at a plurality of locations as described above. This facility includes, for example, a distribution center capable of sharing information. Examples of the transportation system include a system that monitors and controls the operation of transportation means such as cars, railroads, and airplanes.
次に本発明のバイオマス燃料を製造するための態様の一例を図を参照して説明する。
図2において、汚泥1は脱水工程2に導入されて脱水され、脱水ろ液9と脱水汚泥3が調製され、脱水汚泥3は乾燥工程4に導入され乾燥処理が施される。乾燥工程4にて調製された乾燥汚泥5は混合工程6で活性炭7と混合され、減臭されたバイオマス燃料8として取り出される。汚泥1は予め濃縮しておく方が脱水効率が良い。脱水工程2では公知の凝集剤による調質法、公知の脱水機を利用することができる。脱水汚泥の含水率は80%以下が望ましい。乾燥工程4では公知の乾燥機を利用することができる。造粒乾燥装置を利用して乾燥汚泥を粒状にすると、燃料として取り扱いやすいバイオマス燃料を製造することができる。乾燥汚泥の含水率は10%以下、好ましくは数%以下が望ましい。混合工程は公知の混合機を利用することができるが、攪拌強度は小さいもので充分である。スクリューコンベアを用いても混合することができる。混合する活性炭7は含水したものも効果はあるが、乾燥したものの方が減臭効果が大きいので、好ましくは乾燥して混合すると良い。
Next, an example of the aspect for manufacturing the biomass fuel of this invention is demonstrated with reference to figures.
In FIG. 2, the
次にバイオマス燃料を製造するための他の実施態様を図3に示す。
汚泥1は脱水混合工程12に導入され、活性炭7とともに混合された後に、公知の凝集剤によって調質されたのちに脱水され、脱水ろ液9と活性炭含有脱水汚泥13が調製される。活性炭の添加によって、水が抜ける経路が形成されるため、脱水が容易となり含水率が低下する。活性炭含有脱水汚泥13は乾燥工程4に導入されて乾燥処理が施されて活性炭含有乾燥汚泥が調製され、この活性炭含有乾燥汚泥は減臭されたバイオマス燃料8として取り出される。
Next, another embodiment for producing biomass fuel is shown in FIG.
The
次に、本発明の情報管理の実施態様の一例を図4に示す。活性炭と汚泥の排出量をバイマス燃料製造に整合せしめ、供給先の需要情報に基づいた配給は、コンピュータプログラムによって効率よく管理することができ、円滑な運営を行なうことができる。
本発明が管理する施設は次のa〜eの施設である。本発明の情報管理施設は、コンピュータプログラム、及び上記諸施設との情報の共有を可能とするITラインが設置されている情報管理施設である。この施設を施設fという。
a:有機性排水あるいは有機性廃棄物を処理して有機性汚泥を排出し、該排出有機性汚泥を濃縮汚泥、脱水汚泥、乾燥汚泥の少なくとも一つの形状でバイオマス燃料原料として場外に搬出する一箇所以上の施設
b:飲料水、工業用水等の用水の処理に活性炭を利用し、使用済み活性炭(廃活性炭)をバイオマス燃料原料として場外に排出する一箇所以上の浄水施設
c:前記施設aの濃縮汚泥、脱水汚泥、乾燥汚泥の少なくとも一つ以上と、前記bの使用済み活性炭を混合してバイオマス燃料とするバイオマス燃料生産施設
d:前記バイオマス燃料を発電等の燃料とするバイオマス燃料利用施設
e:前記施設a、b、c、dの間を相互に連絡する輸送システムを管理する施設
Next, an example of an embodiment of information management according to the present invention is shown in FIG. The activated carbon and sludge emissions are matched to the production of biomass fuel, and the distribution based on the demand information of the supply destination can be efficiently managed by the computer program and can be smoothly operated.
The facilities managed by the present invention are the following facilities a to e. The information management facility of the present invention is an information management facility in which an IT line that enables sharing of information with a computer program and the above facilities is installed. This facility is called facility f.
a: Processing organic wastewater or organic waste to discharge organic sludge, and transporting the discharged organic sludge out of the field as biomass fuel material in at least one of concentrated sludge, dehydrated sludge, and dried sludge More than one facility b: One or more water purification facilities c: using activated carbon to treat drinking water, industrial water, etc., and discharging used activated carbon (waste activated carbon) as a biomass fuel raw material c: the facility a Biomass fuel production facility d that uses at least one of concentrated sludge, dewatered sludge, and dried sludge and the used activated carbon b to make biomass fuel d: Biomass fuel utilization facility e that uses the biomass fuel as fuel for power generation or the like e : Facility for managing a transportation system that mutually communicates between the facilities a, b, c, and d
施設aでは濃縮汚泥、脱水汚泥、乾燥汚泥の少なくとも一つの汚泥の毎日の発生量、含水率、該発生量と含水率の年間変動の情報記憶手段を有する。この記憶情報を施設fのコンピュータに送信することによって、施設fは毎日の乾物ベースの汚泥発生量、年間の乾物ベースの汚泥発生予想量の情報を得ることができる。1日の乾物ベース汚泥発生量DSは次式で求めることができる。
乾物ベース汚泥発生量DS(t/日)=汚泥発生量t/日×{(100−汚泥含水率)/100} (1)
The facility a has information storage means for the daily generation amount, water content, and annual variation of the generation amount and water content of at least one of sludge, dehydrated sludge and dry sludge. By transmitting this stored information to the computer of the facility f, the facility f can obtain information on the daily dry matter-based sludge generation amount and the expected annual dry matter-based sludge generation amount. The daily dry matter-based sludge generation amount DS can be obtained by the following equation.
Dry matter base sludge generation amount DS (t / day) = sludge generation amount t / day × {(100-sludge water content) / 100} (1)
施設bは、使用済み活性炭の毎日の発生量、含水率(%)及び年間の発生量、含水率の年間変動の情報記憶手段を有する。この記憶情報を施設fのコンピュータに送信することによって、施設fは毎日の乾物ベースの使用済み活性炭発生量、年間の乾物ベースの使用済み活性炭発生予想量の情報を得ることができる。前記1日の乾物ベース使用済み活性炭発生量DSは前記(1)式と同様の式で求めることができる。 The facility b has information storage means for the daily generation amount of used activated carbon, the moisture content (%) and the annual generation amount, and the annual fluctuation of the moisture content. By transmitting this stored information to the computer of the facility f, the facility f can obtain information on the daily dry matter-based used activated carbon generation amount, and the annual dry matter-based used activated carbon generation expected amount information. The daily dry matter-based used activated carbon generation amount DS can be obtained by the same formula as the formula (1).
施設cには、施設fから汚泥と使用済み活性炭の乾物ベース発生量から計算された日ベースのバイオマス燃料生産可能量の情報が送信されて、バイオマス燃料の生産計画を立てることができる。 Information on the daily-based biomass fuel production amount calculated from the dry matter base generation amount of sludge and used activated carbon is transmitted from the facility f to the facility c, and a biomass fuel production plan can be made.
施設dは、バイオマス燃料の日ベースの消費量と貯留残量、消費計画量の情報記憶手段を有する。この記憶情報を施設fのコンピュータに送信することによって、計画量のバイオマス燃料を確保することができる。 The facility d has information storage means for the daily consumption amount of biomass fuel, the remaining storage amount, and the planned consumption amount. By transmitting this stored information to the computer of the facility f, it is possible to secure a planned amount of biomass fuel.
施設eは、施設fから施設a,b,cからそれぞれから搬出するバイオマス燃料原料(汚泥、使用済み活性炭)及びバイオマス燃料の質量あるいは容量の情報を受け、配車計画を立てる。 The facility e receives information on biomass fuel raw materials (sludge, used activated carbon) and biomass fuel that are carried out from the facilities a, b, and c from the facility f, and makes a dispatch plan.
施設fは、バイオマス燃料生産、流通を実用に供するため以下に列記する機能を有する。
1)バイオマス燃料生産可能量(乾物ベース)の情報提供
施設a、bの情報からプログラムにより演算する
2)バイオマス燃料生産費用の演算
施設a、bの汚泥、使用済み活性炭それぞれの含水率からプログラムにより演算される薬品費、燃料費、人件費。施設a、bからのバイオマス原料購入費及び輸送費。
3)バイオマス原料の熱量の情報提供
バイオマス原料の配分比からプログラムにより演算する
4)バイオマス燃料の最適輸送ルートの演算
GPS(Global Positioning System,全地球測位システム)からの輸送間距離の情報によりバイオマス燃料原料及びバイオマス燃料の輸送最短距離を演算し、施設eへ配車情報を送信する。最短距離の演算ソフトは市販されているものが利用できる。
5)計画
施設a、b、c、d、eからの情報記憶手段により累積した情報によりバイオマス燃料生産、配給の年間計画を立案し、需給のバランスを確保するための新規の需給市場を開拓するための情報を提供する。
本発明の施設fはコンピュータ及びオペレータが配置されていればよいので、施設fは施設a、b、c、d、eのいずれかと同一建物内にあってもよい。
The facility f has the functions listed below in order to put biomass fuel production and distribution into practical use.
1) Providing information on biomass fuel production potential (based on dry matter) Calculated by program from information on facilities a and b 2) Calculating biomass fuel production cost Calculated by program based on moisture content of each sludge and used activated carbon of facilities a and b Calculated chemical, fuel, and labor costs. Biomass raw material purchase costs and transportation costs from facilities a and b.
3) Provision of information on the calorific value of biomass feedstock Calculated by program from the distribution ratio of biomass feedstock 4) Calculation of optimal transport route for biomass fuel Biomass fuel based on information on distance between transport from GPS (Global Positioning System, Global Positioning System) The shortest transportation distance of raw materials and biomass fuel is calculated, and dispatch information is transmitted to the facility e. Commercially available software for the shortest distance can be used.
5) Planning Develop an annual plan for biomass fuel production and distribution based on information accumulated by information storage means from facilities a, b, c, d, and e, and develop new supply and demand markets to ensure a balance between supply and demand Provide information for
Since the facility f of the present invention only needs to have a computer and an operator, the facility f may be in the same building as any of the facilities a, b, c, d, and e.
以下、本発明バイオマス燃料の製造の実験例を実施例として説明する。本発明はこの実施例により何等制限されるものではない。
実験例1
J下水処理場の含水率5%以下の乾燥汚泥(粒径:1〜3mm)又は含水率35〜40%の汚泥にA、B、C浄水場の使用済み活性炭(粒径:0.5〜2mm)を活性炭添加率0〜50質量%で添加して付着・混合したのちに、100mlの密閉容器に約60%(容積%)充填し、7日後に密閉容器の蓋をはずし、3人でそれぞれ感覚的に臭気を判定し、表1に示した。
Hereinafter, experimental examples of the production of the biomass fuel of the present invention will be described as examples. The present invention is not limited in any way by this embodiment.
Experimental example 1
J: Used activated carbon (particle size: 0.5 ~) of A, B, C water purification plant to dry sludge (particle size: 1 to 3 mm) with a water content of 5% or less or sewage sludge with a water content of 35 to 40% 2mm) is added at an activated carbon addition rate of 0 to 50% by mass, and after adhering and mixing, about 100% (volume%) is filled into a 100 ml sealed container. After 7 days, the lid of the sealed container is removed and three people Each odor was judged sensuously and shown in Table 1.
上表のように、浄水場によって効果は異なるが、いずれも消臭作用があること、汚泥の水分は消臭にはマイナスであること、水分を含んでいても活性炭を大量に添加すると消臭効果があることが判明した。 As shown in the table above, the effects differ depending on the water purification plant, but all have deodorizing action, the moisture of the sludge is negative for deodorization, and even if it contains moisture, adding a large amount of activated carbon deodorizes It turned out to be effective.
実験例2
J下水処理場の濃縮汚泥(汚泥濃度:5質量%)にB浄水場の使用済み活性炭(粒径:0.5〜2mm、含水率:35%)を活性炭添加率0〜60質量%添加混合したのちに、ポリマーを対SS 1.5質量%注入し、フィルタープレス試験機(加圧型ベルトプレス)で脱水し、含水率72〜78%の脱水汚泥を得、この脱水汚泥を含水率5%以下まで乾燥した乾燥汚泥を100mlの密閉容器に約60%(容積%)充填し、7日後に密閉容器の蓋をはずし、3人でそれぞれ感覚的に臭気を判定した。その結果、活性炭を添加したものは脱水効果、減臭効果のあることが判明した。結果を表2に示した。
Experimental example 2
Concentrated sludge (sludge concentration: 5% by mass) at J sewage treatment plant and used activated carbon (particle size: 0.5-2mm, water content: 35%) from B water treatment plant, 0-60% by mass addition of activated carbon After that, 1.5% by mass of polymer was injected into SS, and dehydrated with a filter press tester (pressure belt press) to obtain dehydrated sludge having a moisture content of 72 to 78%. The dry sludge dried to the following was filled into a 100 ml sealed container at about 60% (volume%), and after 7 days, the lid of the sealed container was removed, and three people sensed the odor sensuously. As a result, it was found that the one added with activated carbon had a dehydrating effect and a deodorizing effect. The results are shown in Table 2.
以下、本発明のバイオマス燃料の情報管理に関する実施例について説明する。
実施例1
本発明の情報管理システムはプログラムされたコンピュータをK環境装置メーカに設置し、メーカ社員が操作した。各施設からの情報からバイオマス燃料化を実施するための次のデータをまとめることができた。
・J下水処理場の汚泥排出量をプログラムで演算した結果、乾燥汚泥として2t/日であった。
・A,B浄水場の使用済み活性炭排出量プログラムで演算した結果、乾燥炭として1t/日であった。
・乾燥汚泥と乾燥炭を混合すると、活性炭添加率は33%=(1/(1+2))×100となる。
・バイオマス燃料生産量 3t/日
・バイオマス燃料需要施設のバイオマス燃料需要量 2t/日
・需要量に対して1t/日過剰生産になるので新規の需要先見つけることが緊急目標とする計画を立案した。
・バイオマス燃料生産施設、J下水処理場、A浄水場、バイオマス燃料需要施設の各々の相互間のGPSによる距離
上記各情報から、配車施設を選定し、移動ルートを、配車施設→J下水処理場→A浄水場→バイオマス燃料生産施設(バイオマス燃料積込)→バイオマス燃料需要施設→配車施設、とするのが最短距離になると計算され、輸送コストも低廉になることが明らかになった。
Hereinafter, the Example regarding the information management of the biomass fuel of this invention is described.
Example 1
In the information management system of the present invention, a programmed computer is installed in a K environment apparatus manufacturer and operated by a manufacturer employee. Based on the information from each facility, we were able to summarize the following data for implementing biomass fuel.
-As a result of calculating the sludge discharge amount of J sewage treatment plant by the program, it was 2 t / day as dry sludge.
-As a result of calculating with the used activated carbon discharge program of A and B water purification plants, it was 1 t / day as dry coal.
-When dry sludge and dry charcoal are mixed, the activated carbon addition rate becomes 33% = (1 / (1 + 2)) × 100.
・ Biomass fuel production 3t / day ・ Biomass fuel demand 2m / day ・ Biomass fuel demand facility 1t / day .
・ Distance between each of biomass fuel production facility, J sewage treatment plant, A water treatment plant, and biomass fuel demand facility by GPS From the above information, select the dispatch facility and specify the travel route to the dispatch facility → J sewage treatment plant → A water purification plant → Biomass fuel production facility (biomass fuel loading) → Biomass fuel demand facility → Vehicle dispatch facility is calculated as the shortest distance, and it became clear that the transportation cost is also low.
1…汚泥、2…脱水工程、3…脱水汚泥、4…乾燥工程、5…乾燥汚泥、6…混合工程、7…活性炭、8…バイオマス燃料、9…脱水ろ液、12…脱水混合工程、13…活性炭含有脱水汚泥。
DESCRIPTION OF
Claims (10)
施設b:臭い吸着能を有する使用済み活性炭を生産する一箇所以上の浄水施設であって、前記臭い吸着能を有する使用済み活性炭の、少なくとも日発生量、含水率、該発生量と該含水率との年間変動、及び計画発生量を含む情報を、少なくとも情報管理施設fとの間で相互に共有することが可能な施設、
施設c:前記施設aの汚泥と、前記bの該使用済み活性炭とから請求項7のバイオマス燃料を製造するバイオマス燃料生産施設であって、前記バイオマス燃料の、少なくとも日生産量、年間変動、及び計画生産量を含む情報を、少なくとも情報管理施設fとの間で相互に共有することが可能な施設、
施設d:前記バイオマス燃料の利用施設であって、前記バイオマス燃料の、少なくとも日消費量、年間変動、及び計画消費量を含む情報を、少なくとも情報管理施設fとの間で相互に共有することが可能な施設、及び
施設e:前記施設a、b、c、及びdの間を相互に連絡する輸送システムを管理する輸送管理施設を少なくとも含む施設に対して、前記情報を管理する方法であって、
前記情報管理施設はf、前記施設a、b、c、d、及びeの間の前記情報を相互に共有する、
バイオマス燃料の情報管理方法。 Facility a: It is one or more facilities that produce the sludge, and at least the daily generation amount of the sludge, the moisture content, the annual variation of the generation amount and the moisture content, and information including the planned generation amount, Facilities that can be shared with at least the information management facility f,
Facility b: One or more water purification facilities producing used activated carbon having odor adsorbing capacity, and at least daily generation amount, water content, generated amount and water content of the used activated carbon having odor adsorbing capacity Facilities that can share information, including annual fluctuations and planned generation amounts, at least with the information management facility f,
Facility c: A biomass fuel production facility for producing the biomass fuel of claim 7 from the sludge of the facility a and the used activated carbon of the b, wherein the biomass fuel has at least daily production, annual fluctuation, and A facility capable of sharing information including the planned production volume with at least the information management facility f,
Facility d: a facility for using the biomass fuel, wherein information including at least daily consumption, annual fluctuation, and planned consumption of the biomass fuel is shared with at least the information management facility f Possible facilities, and facility e: a method for managing said information for a facility comprising at least a transportation management facility that manages a transportation system that interconnects said facilities a, b, c, and d. ,
The information management facility shares the information between f, the facilities a, b, c, d, and e;
Information management method for biomass fuel.
施設b:臭い吸着能を有する使用済み活性炭を生産する一箇所以上の浄水施設であって、前記臭い吸着能を有する使用済み活性炭の、少なくとも日発生量、含水率、該発生量と該含水率との年間変動、及び計画発生量を含む情報を記憶する情報記憶手段と、少なくとも情報管理施設fとの間を相互に該情報を共有することが可能な通信手段とを備えた施設
施設c:前記施設aの汚泥と、前記bの該使用済み活性炭とから請求項7のバイオマス燃料を製造するバイオマス燃料生産施設であって、前記バイオマス燃料の、少なくとも日生産量、年間変動、及び計画生産量を含む情報を記憶する情報記憶手段と、少なくとも情報管理施設fとの間を相互に該情報を共有することが可能な通信手段とを備える施設、
施設d:前記バイオマス燃料の利用施設であって、前記バイオマス燃料の、少なくとも日消費量、年間変動、及び計画消費量を含む情報を記憶する情報記憶手段と、少なくとも情報管理施設fとの間を相互に該情報を共有することが可能な通信手段とを備える施設、及び
施設e:前記施設a、b、c、及びdの間を相互に連絡する輸送システムを管理する輸送管理施設を少なくとも含む施設に対して、前記情報を管理するシステムであって、
前記情報管理施設fは、前記施設a、b、c、d、及びeの間を相互に共有することが可能な情報を記憶する情報記憶手段、及び前記施設a、b、c、d、及びeの間を相互に前記情報を共有することが可能な通信手段を少なくとも備えている、
バイオマス燃料の情報管理システム。 Facility a: one or more facilities that produce the sludge, storing information including at least daily generation amount, moisture content, annual variation of the generated amount and moisture content, and planned generation amount of the sludge Facility having information storage means for communication and communication means capable of sharing the information with each other at least information management facility f Facility b: One or more places producing used activated carbon having odor adsorbing ability An information storage for storing information including at least daily generation amount, moisture content, annual fluctuation of the generation amount and the moisture content, and planned generation amount of the used activated carbon having the odor adsorbing capacity And a communication means capable of sharing the information with at least the information management facility f. Facility c: Claimed from the sludge of the facility a and the used activated carbon of the b. Item 7 biomass fuel A biomass fuel production facility to be constructed, wherein information storage means for storing information including at least a daily production amount, an annual variation, and a planned production amount of the biomass fuel, and at least the information management facility f A facility comprising a communication means capable of sharing information;
Facility d: a facility for using the biomass fuel, between the information storage means for storing information including at least daily consumption, annual variation, and planned consumption of the biomass fuel, and at least the information management facility f A facility comprising communication means capable of sharing the information with each other; and facility e: at least a transportation management facility that manages a transportation system that mutually communicates between the facilities a, b, c, and d A system for managing the information for a facility,
The information management facility f includes information storage means for storing information that can be shared among the facilities a, b, c, d, and e, and the facilities a, b, c, d, and e at least communication means capable of sharing the information between each other,
Information management system for biomass fuel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011093816A JP6055168B2 (en) | 2011-04-20 | 2011-04-20 | Biomass fuel manufacturing method, manufacturing apparatus, biomass fuel, and information management method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011093816A JP6055168B2 (en) | 2011-04-20 | 2011-04-20 | Biomass fuel manufacturing method, manufacturing apparatus, biomass fuel, and information management method and system |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2012224752A true JP2012224752A (en) | 2012-11-15 |
JP2012224752A5 JP2012224752A5 (en) | 2014-04-17 |
JP6055168B2 JP6055168B2 (en) | 2016-12-27 |
Family
ID=47275294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011093816A Active JP6055168B2 (en) | 2011-04-20 | 2011-04-20 | Biomass fuel manufacturing method, manufacturing apparatus, biomass fuel, and information management method and system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6055168B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016162362A (en) * | 2015-03-04 | 2016-09-05 | 株式会社東芝 | Control device, control method, and computer program |
JP2020118378A (en) * | 2019-01-24 | 2020-08-06 | 栗田工業株式会社 | ecosystem |
JP2020172654A (en) * | 2020-06-26 | 2020-10-22 | 王子ホールディングス株式会社 | Apparatus for converting sludge into fuel, system for converting sludge into fuel, sludge fuel utilization type factory and method for producing solid fuel |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5712899A (en) * | 1980-06-24 | 1982-01-22 | Miura Eng Internatl Kk | Disposal of sludge |
JPS5879598A (en) * | 1981-11-02 | 1983-05-13 | Kubota Ltd | Treatment for excess sludge of water treatment |
US5718735A (en) * | 1991-01-22 | 1998-02-17 | Solidiwaste Technology, L.P. | Method of preparing a high heating value fuel product |
JPH10305272A (en) * | 1997-03-05 | 1998-11-17 | Kawasaki Heavy Ind Ltd | Treatment of wet organic waste and device therefor |
JPH1135959A (en) * | 1997-07-22 | 1999-02-09 | Kawasaki Heavy Ind Ltd | Manufacture of molded material from wet organic waste and its device |
JP2001087740A (en) * | 1999-09-28 | 2001-04-03 | Mitsui Mining Co Ltd | Particulate matter, its manufacturing method and using method therefor |
JP2005013910A (en) * | 2003-06-27 | 2005-01-20 | Ube Ind Ltd | Method for treating sewage sludge-dehydrated cake |
JP2005106390A (en) * | 2003-09-30 | 2005-04-21 | Tokyo Electric Power Co Inc:The | Biomass fuel supply system |
-
2011
- 2011-04-20 JP JP2011093816A patent/JP6055168B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5712899A (en) * | 1980-06-24 | 1982-01-22 | Miura Eng Internatl Kk | Disposal of sludge |
JPS5879598A (en) * | 1981-11-02 | 1983-05-13 | Kubota Ltd | Treatment for excess sludge of water treatment |
US5718735A (en) * | 1991-01-22 | 1998-02-17 | Solidiwaste Technology, L.P. | Method of preparing a high heating value fuel product |
JPH10305272A (en) * | 1997-03-05 | 1998-11-17 | Kawasaki Heavy Ind Ltd | Treatment of wet organic waste and device therefor |
JPH1135959A (en) * | 1997-07-22 | 1999-02-09 | Kawasaki Heavy Ind Ltd | Manufacture of molded material from wet organic waste and its device |
JP2001087740A (en) * | 1999-09-28 | 2001-04-03 | Mitsui Mining Co Ltd | Particulate matter, its manufacturing method and using method therefor |
JP2005013910A (en) * | 2003-06-27 | 2005-01-20 | Ube Ind Ltd | Method for treating sewage sludge-dehydrated cake |
JP2005106390A (en) * | 2003-09-30 | 2005-04-21 | Tokyo Electric Power Co Inc:The | Biomass fuel supply system |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016162362A (en) * | 2015-03-04 | 2016-09-05 | 株式会社東芝 | Control device, control method, and computer program |
JP2020118378A (en) * | 2019-01-24 | 2020-08-06 | 栗田工業株式会社 | ecosystem |
JP7255198B2 (en) | 2019-01-24 | 2023-04-11 | 栗田工業株式会社 | ecosystem |
JP2020172654A (en) * | 2020-06-26 | 2020-10-22 | 王子ホールディングス株式会社 | Apparatus for converting sludge into fuel, system for converting sludge into fuel, sludge fuel utilization type factory and method for producing solid fuel |
JP7268647B2 (en) | 2020-06-26 | 2023-05-08 | 王子ホールディングス株式会社 | Sludge-to-fuel device, sludge-to-fuel system, sludge-to-fuel factory, and sludge-to-fuel method |
Also Published As
Publication number | Publication date |
---|---|
JP6055168B2 (en) | 2016-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bandala et al. | Emerging materials and technologies for landfill leachate treatment: A critical review | |
Vaneeckhaute et al. | Nutrient recovery from digestate: systematic technology review and product classification | |
Fakkaew et al. | Faecal sludge treatment and utilization by hydrothermal carbonization | |
Di Giacomo et al. | Evolution and prospects in managing sewage sludge resulting from municipal wastewater purification | |
Zhang et al. | Performance and mechanism of sycamore flock based biochar in removing oxytetracycline hydrochloride | |
Patel et al. | Treatment of greywater using waste biomass derived activated carbons and integrated sand column | |
Ferraz et al. | Organic matter removal from landfill leachate by adsorption using spent coffee grounds activated carbon | |
Chauhan et al. | Biochar-mediated removal of pharmaceutical compounds from aqueous matrices via adsorption | |
Kimbell et al. | Biosolids-derived biochar for triclosan removal from wastewater | |
Yek et al. | Production of modified biochar to treat landfill leachate using integrated microwave pyrolytic CO2 activation | |
Luo et al. | Efficient removal of Pb (II) through recycled biochar-mineral composite from the coagulation sludge of swine wastewater | |
Zhao et al. | Removal of tetracycline from water using activated carbon derived from the mixture of phragmites australis and waterworks sludge | |
Tasca et al. | Investigating the activation of hydrochar from sewage sludge for the removal of terbuthylazine from aqueous solutions | |
JP6055168B2 (en) | Biomass fuel manufacturing method, manufacturing apparatus, biomass fuel, and information management method and system | |
Kulkarni et al. | Sustainable wastewater management via biochar derived from industrial sewage sludge | |
Minaei et al. | Adsorption of sulfamethoxazole and lincomycin from single and binary aqueous systems using acid-modified biochar from activated sludge biomass | |
Mayilswamy et al. | Sludge-derived biochar: Physicochemical characteristics for environmental remediation | |
Subramaniyasharma et al. | Pyrolysis of an invasive weed Prosopis juliflora wood biomass for the adsorptive removal of ciprofloxacin | |
El-Azazy et al. | Competitive adsorptive removal of promazine and promethazine from wastewater using olive tree pruning biochar: operational parameters, kinetics, and equilibrium investigations | |
Wurzer et al. | Synergies in sequential biochar systems | |
Stefanelli et al. | Tailoring the porosity of chemically activated carbons derived from the HTC treatment of sewage sludge for the removal of pollutants from gaseous and aqueous phases | |
Kong et al. | Microwave physicochemical activation: an advanced approach to produce activated biochar for palm oil mill effluent treatment | |
Kuchelar et al. | Utilization of rice husk ash for the treatment of leachate generated from Perungudi semi-urban solid waste dumping site of Chennai city, Tamil Nadu, India | |
El-Demerdash et al. | Removal of Trihalo methanes using activated carbon prepared from agricultural solid wastes | |
JP2012224752A5 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140210 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140227 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140227 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20150202 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150306 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150317 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150518 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151104 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160531 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160712 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161122 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161202 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6055168 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R157 | Certificate of patent or utility model (correction) |
Free format text: JAPANESE INTERMEDIATE CODE: R157 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |