JP2012223823A - Polishing method, and nozzle structure for blasting apparatus - Google Patents

Polishing method, and nozzle structure for blasting apparatus Download PDF

Info

Publication number
JP2012223823A
JP2012223823A JP2011090365A JP2011090365A JP2012223823A JP 2012223823 A JP2012223823 A JP 2012223823A JP 2011090365 A JP2011090365 A JP 2011090365A JP 2011090365 A JP2011090365 A JP 2011090365A JP 2012223823 A JP2012223823 A JP 2012223823A
Authority
JP
Japan
Prior art keywords
abrasive
workpiece
nozzle
acceleration flow
introduction path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011090365A
Other languages
Japanese (ja)
Other versions
JP5746901B2 (en
JP2012223823A5 (en
Inventor
Keiji Mase
恵二 間瀬
Masato Nitto
正人 日當
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Manufacturing Co Ltd
Original Assignee
Fuji Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Manufacturing Co Ltd filed Critical Fuji Manufacturing Co Ltd
Priority to JP2011090365A priority Critical patent/JP5746901B2/en
Priority to US13/428,565 priority patent/US20120264355A1/en
Priority to KR1020120033755A priority patent/KR101940571B1/en
Priority to CN201210102487.5A priority patent/CN102729153B/en
Publication of JP2012223823A publication Critical patent/JP2012223823A/en
Publication of JP2012223823A5 publication Critical patent/JP2012223823A5/ja
Application granted granted Critical
Publication of JP5746901B2 publication Critical patent/JP5746901B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0046Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a gaseous carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/08Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for polishing surfaces, e.g. smoothing a surface by making use of liquid-borne abrasives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C5/00Devices or accessories for generating abrasive blasts
    • B24C5/02Blast guns, e.g. for generating high velocity abrasive fluid jets for cutting materials
    • B24C5/04Nozzles therefor

Abstract

PROBLEM TO BE SOLVED: To inhibit generation of a cutting force perpendicular to a surface of a workpiece and obtain a horizontal cutting force, in polishing performed by imparting kinetic energy to an abrasive using a compressed gas flow.SOLUTION: A compressed gas containing no abrasive is ejected toward a surface of a workpiece W from an accelerated flow generation nozzle 10, an accelerated flow S is generated along the surface of the workpiece W, the abrasive 30 is introduced into an abrasive introduction path 20 opened toward the surface of the workpiece W at the generation position of this accelerated flow S, preferably introduced together with the compressed gas, the abrasive 30 is merged with the accelerated flow S, the abrasive 30 is slid along the surface of the workpiece W, thereby exerting the horizontal cutting force on the surface.

Description

本発明は研磨方法,及び前記研磨方法を実現するためのブラスト加工装置のノズル構造に関し,より詳細には圧縮気体流によって研磨材に運動エネルギーを与えることにより行う被加工物の研磨方法,及び前記研磨方法をブラスト加工装置によって実現するための,ブラスト加工装置のノズル部分の構造に関する。   The present invention relates to a polishing method and a nozzle structure of a blasting apparatus for realizing the polishing method, and more specifically, a polishing method for a workpiece performed by applying kinetic energy to an abrasive by a compressed gas flow, and The present invention relates to a structure of a nozzle portion of a blasting device for realizing a polishing method by a blasting device.

被加工物表面の平坦度を改善し,鏡面等の平滑面に加工する既知の研磨方法としては,例えば,研磨紙や研磨布による研磨,バフによる研磨,ラッピング,回転する砥粒との接触による研磨,超音波振動を与えられた砥粒との接触により被加工物を研磨する超仕上げ加工等がある。   Known polishing methods for improving the flatness of the workpiece surface and processing it into a smooth surface such as a mirror surface include, for example, polishing with abrasive paper or polishing cloth, polishing with buffing, lapping, or contact with rotating abrasive grains. There are polishing, super finishing processing for polishing a workpiece by contact with abrasive grains subjected to ultrasonic vibration, and the like.

これに対し,同様に研磨材を用いた加工技術に関するものでありながら,研磨材を被加工物の表面に圧縮流体,例えば圧縮空気と共に噴射して切削を行うブラスト加工は,一般的には被加工物の表面における平坦度を改善するための研磨加工には使用されていない。   On the other hand, blasting, in which cutting is performed by spraying an abrasive together with a compressed fluid, for example, compressed air, on the surface of the workpiece, is generally related to a processing technique using an abrasive. It is not used for polishing to improve flatness on the surface of the workpiece.

これは,ブラスト加工が圧縮気体等と共に噴射した研磨材を被加工物の表面に衝突させてこの衝突時のエネルギーによって被加工物の表面を加工するものであるために,研磨材は被加工物Wの表面に対し垂直(深さ)方向の切削力を発揮し,その結果,図18に示すように被加工物の表面に元々生じていた凹凸の形態的な特徴を引き継ぎつつ切削が進むために,切削量が多い割に表面の平坦化が得難いことによる。   This is because the abrasive material injected by the blasting process together with the compressed gas collides with the surface of the workpiece, and the surface of the workpiece is processed by the energy at the time of the collision. Since the cutting force in the direction perpendicular to the surface of W (depth) is exerted, as a result, cutting proceeds while inheriting the morphological features of the irregularities originally formed on the surface of the workpiece as shown in FIG. However, it is difficult to obtain a flat surface for a large amount of cutting.

またブラスト加工では,前述のように研磨材の衝突エネルギーによって切削を行うものであることから,砥粒の衝突に伴う切削や変形によって被加工物の表面に新たな凹凸を形成して梨地とすることも平坦化を困難なものとしている。   In blasting, cutting is performed by the impact energy of the abrasive as described above, so that new irregularities are formed on the surface of the workpiece by cutting or deformation associated with the collision of abrasive grains to make a satin finish. This also makes flattening difficult.

このように,従来の一般的なブラスト加工方法では,被加工物表面の平坦化,特に,鏡面のように高精度で平坦化を行うことは困難であるが,このようなブラスト加工における欠点を解消し,ブラスト加工によっても被加工物の表面に対する梨地の発生を抑制して,表面を例えば鏡面のような平坦面に加工できるようにすることも提案されている。   As described above, in the conventional general blasting method, it is difficult to flatten the surface of the workpiece, in particular, with high precision like a mirror surface. It has also been proposed to solve the problem and suppress the occurrence of matte finish on the surface of the workpiece by blasting so that the surface can be processed into a flat surface such as a mirror surface.

このようなブラスト加工方法の一例として,出願人は,弾性体である母材内に砥粒を分散させた構造を有する研磨材(本明細書において,このような構造の研磨材を「弾性研磨材」という。)を,被加工物の表面に対して所定の入射角度で噴射あるいは投射することにより,衝突時のエネルギーを弾性体の塑性変形によって吸収させることで梨地の発生を抑制すると共に弾性研磨材を被加工面に沿って滑走させるようにすることで,ブラスト加工を平坦度の改善に使用できるようにすることを提案している(特許文献1)。   As an example of such a blasting method, the applicant applied an abrasive having a structure in which abrasive grains are dispersed in a base material that is an elastic body (in this specification, an abrasive having such a structure is referred to as “elastic polishing”. Material)) is injected or projected onto the surface of the workpiece at a predetermined angle of incidence, so that the energy at the time of collision is absorbed by the plastic deformation of the elastic body, thereby suppressing the occurrence of satin and elastic. It has been proposed that blasting can be used to improve flatness by sliding an abrasive along a surface to be processed (Patent Document 1).

また,被加工物の加工表面に対して圧縮流体と共に研磨材を,0<V・sinθ≦1/2・V(V=噴射方向における研磨材の速度,θ=被加工物の加工表面に対する研磨材の入射角)という条件で噴射して,既存の研磨材(砥粒)を使用した場合であっても,被加工物の表面に沿った研磨材の噴流を生じさせることで平坦度の改善を行うことができるようにすることも提案している(特許文献2)。   Also, the abrasive together with the compressed fluid is applied to the processed surface of the workpiece, 0 <V · sin θ ≦ 1/2 · V (V = velocity of the abrasive in the injection direction, θ = polishing to the processed surface of the workpiece) Even if existing abrasives (abrasive grains) are used under the condition of the angle of incidence of the material, the flatness is improved by generating a jet of abrasive along the surface of the workpiece. It has also been proposed to be able to perform (Patent Document 2).

特開2006−159402号公報JP 2006-159402 A 特開2005−022015号公報Japanese Patent Laid-Open No. 2005-022015

前記従来の研磨方法のうち,研磨布や研磨紙による研磨,ラッピング,砥石による研磨等にあっては,粒度の小さい研磨材は研磨力が弱いため,研磨材の粒度を段階的に小さくする多段の研磨工程が必要であり作業が煩雑である。   Among the conventional polishing methods, in polishing with a polishing cloth or paper, lapping, polishing with a grindstone, etc., a polishing material with a small particle size has a weak polishing power. The polishing process is necessary and the work is complicated.

また,研磨量は加工圧力に依存するが,過度に加工歪が生じることを避けるために加工圧力を低く設定すれば,加工速度が低下し,生産性が低いものとなる。   Moreover, although the polishing amount depends on the processing pressure, if the processing pressure is set low in order to avoid excessive processing distortion, the processing speed is lowered and the productivity is low.

これとは逆に,高い加工圧力を加える場合には,研削,研磨割れを起こすおそれがある。   On the other hand, if high processing pressure is applied, grinding and polishing cracks may occur.

また,加工圧力がかかった状態で研磨される被加工物の表面層には,前述のように加工歪が生じるため,被加工物が例えばシリコンウエハーである場合には,ウエハー表面近傍での完全結晶層を確保するために研磨加工の際に生じた加工歪の除去が必要となる場合があり,そのため,研磨加工後に研磨されたウエハーを熱処理したり,酸やアルカリ等を使って表面層を除去する等の工程が必要となる。また,酸やアルカリ等を使って表面層を除去する場合には,この際に使用した酸やアルカリ等の廃液を適切に処理する必要がある等,その作業は極めて煩雑となっている。   In addition, since the processing strain is generated in the surface layer of the workpiece to be polished in a state where the processing pressure is applied, as described above, when the workpiece is a silicon wafer, for example, the complete processing near the wafer surface is performed. In order to secure the crystal layer, it may be necessary to remove the processing strain generated during the polishing process. For this reason, the wafer polished after the polishing process may be heat treated, or the surface layer may be formed using acid or alkali. A process such as removal is required. Further, when removing the surface layer using acid or alkali, it is necessary to appropriately treat the waste liquid such as acid or alkali used at this time.

これに対し,前掲の特許文献1,2として紹介した方法では,従来一般的に行われていた研磨方法であるラッピング等に比較して,研磨後の被加工物に余分な応力が入り難く,また,加工後に歪み等が生じ難いものとすることができる。   On the other hand, in the methods introduced as the above-mentioned Patent Documents 1 and 2, it is difficult for extra stress to enter the workpiece after polishing as compared with lapping, which is a polishing method that is generally performed conventionally. In addition, it is possible to prevent distortion and the like from occurring after processing.

しかし,特許文献1として紹介したブラスト加工方法では,被加工物の表面における梨地の発生を防止すると共に,被加工物表面に沿って研磨材を滑走させるために,前述した弾性研磨材を使用することで,この弾性研磨材の塑性変形によって衝突時のエネルギーを吸収させており,特殊な構造の研磨材の使用が必須となる。   However, in the blasting method introduced as Patent Document 1, the above-mentioned elastic abrasive is used to prevent the occurrence of matte on the surface of the workpiece and to slide the abrasive along the workpiece surface. Therefore, the energy at the time of collision is absorbed by the plastic deformation of this elastic abrasive, and it is essential to use an abrasive with a special structure.

特許文献2として紹介したブラスト加工方法では,研磨材の噴射条件を適切に設定することで,特殊な研磨材を使用することなく,通常の研磨材(砥粒)を使用した場合であっても研磨材を被加工物の表面に沿って滑走させることができ,ブラスト加工によって比較的容易に被加工物の研磨を行うことができる。   In the blasting method introduced as Patent Document 2, even when a normal abrasive (abrasive grain) is used without using a special abrasive by setting the injection condition of the abrasive appropriately. The abrasive can be slid along the surface of the workpiece, and the workpiece can be polished relatively easily by blasting.

しかし,この方法では,研磨材の衝突時,被加工物表面に作用する力の垂直成分に対し,水平成分を十分に大きくすることで,衝突した砥粒による被加工物面表面の梨地の発生防止を図ったものであり,入射角θを0(ゼロ)としなければ,垂直成分を除去できない。   However, with this method, when the abrasive material collides, the horizontal component is sufficiently increased with respect to the vertical component of the force acting on the workpiece surface, so that the surface of the workpiece surface due to the impacted abrasive grains is generated. In order to prevent this, the vertical component cannot be removed unless the incident angle θ is set to 0 (zero).

また,前述した垂直成分を減少させるために入射角θを0(ゼロ)に近付けようとすれば,被加工物の表面に対し噴射ノズルを傾斜させて噴射するか,又は,噴射ノズルより噴射された噴流を被加工物の表面に沿った流れに誘導するための補助機器等が必要となり(特許文献1の図3〜13参照),被加工物の形状等によっては適用が困難な場合も想定される。   If the incident angle θ is to be close to 0 (zero) in order to reduce the vertical component described above, the injection nozzle is inclined with respect to the surface of the workpiece, or is injected from the injection nozzle. An auxiliary device or the like for guiding the jet flow to the flow along the surface of the workpiece is required (see FIGS. 3 to 13 of Patent Document 1), and it may be difficult to apply depending on the shape of the workpiece. Is done.

なお,以上の説明では,被加工物の「研磨」の一例として,平坦度の改善(平滑化)という点を主として説明したが,平坦度の改善(平滑化)の他,例えば元の表面に対し平滑度を低下させる(粗くする)作業や,表面に設けた被膜の除去等といったその他の研磨作業に際しても,ブラスト加工と同様の比較的簡単な作業によって,被加工物の表面に対する垂直方向の切削力を抑制した研磨を行うことができれば,被加工物に対するダメージの軽減と必要以上に切削量が増えることを抑制できる等といったメリットがある。   In the above description, as an example of “polishing” of a workpiece, the point of improving (smoothing) flatness is mainly described. However, in addition to improving (smoothing) flatness, for example, the original surface For other polishing operations such as reducing the smoothness (roughening) and removing coatings on the surface, etc., the vertical direction relative to the surface of the workpiece can be achieved by a relatively simple operation similar to blasting. If polishing with reduced cutting force can be performed, there are advantages such as reduction of damage to the workpiece and suppression of an increase in the amount of cutting more than necessary.

そこで本発明は,上記従来技術における欠点を解消するためになされたものであり,既知のブラスト加工方法と同様に,圧縮気体流によって研磨材に運動エネルギーを与えることにより研磨を行うものでありながら,弾性研磨材のような特殊な構造の研磨材を使用することなく,通常の研磨材(砥粒)を使用した場合であっても,被加工物の表面に対する垂直方向の切削力の発生を抑制すると共に,水平方向の切削力を発揮させることで,被加工物の表面の平坦度の改善,その他の表面粗さの調整,表面被膜の除去等といった表面部分の切削除去,その他各種研磨を行うことのできる研磨方法,及び前記研磨方法に使用するブラスト加工装置のノズル構造を提供することを目的とする。   Therefore, the present invention has been made in order to eliminate the above-mentioned drawbacks of the prior art, and as in the known blasting method, polishing is performed by applying kinetic energy to the abrasive by a compressed gas flow. Even if normal abrasives (abrasive grains) are used without using specially structured abrasives such as elastic abrasives, cutting force in the direction perpendicular to the surface of the workpiece is generated. In addition to suppressing the horizontal direction, the cutting force in the horizontal direction can be exerted to improve the surface flatness of the workpiece, adjust the surface roughness, remove the surface coating, etc. An object of the present invention is to provide a polishing method that can be performed, and a nozzle structure of a blasting apparatus used in the polishing method.

上記目的を達成するために,本発明の研磨方法は,被加工物Wの表面に向けて配置した加速流発生ノズル10に噴射流体P1である研磨材を含まない圧縮気体を導入すると共に噴射して,前記被加工物Wの表面に沿った加速流Sを発生させ,
前記加速流Sの発生位置で前記被加工物Wの表面に向かって開口する研磨材導入路20に研磨材30を導入することにより,前記加速流Sに研磨材30を合流させて,前記研磨材30を被加工物Wの表面に沿って滑走させることを特徴とする(請求項1)。
To achieve the above object, the polishing method of the present invention introduces and injects a compressed gas that does not contain an abrasive material, which is the injection fluid P1, into the acceleration flow generating nozzle 10 arranged toward the surface of the workpiece W. Generating an acceleration flow S along the surface of the workpiece W;
By introducing the abrasive 30 into the abrasive introduction path 20 opening toward the surface of the workpiece W at the position where the acceleration flow S is generated, the abrasive 30 is joined to the acceleration flow S, and the polishing is performed. The material 30 is slid along the surface of the workpiece W (Claim 1).

上記の研磨方法において,前記研磨材30を,前記加速流発生ノズル10に導入する前記噴射流体P1に比較して低圧の圧縮気体である搬送流体P2と混合して前記研磨材導入路20に導入するものとしても良い(請求項2)。   In the above polishing method, the abrasive 30 is mixed with the carrier fluid P2, which is a compressed gas having a pressure lower than that of the jet fluid P1 introduced into the acceleration flow generating nozzle 10, and introduced into the abrasive introduction passage 20. (Claim 2).

この場合,前記噴射流体P1に対し,前記搬送流体P2を3分の2以下の圧力とすることが好ましい(請求項3)。   In this case, it is preferable to set the carrier fluid P2 to a pressure equal to or less than two-thirds of the jet fluid P1.

更に,前述した研磨方法は,前記加速流発生ノズル10の噴射口11と被加工物Wの表面間の間隔δ1に対し,前記研磨材導入路20の開口21と被加工物Wの表面間の間隔(δ1+δ2)を広くして行うことが好ましい(請求項4:図3参照)。   Further, in the above-described polishing method, the gap 21 between the nozzle 11 of the acceleration flow generating nozzle 10 and the surface of the workpiece W is between the opening 21 of the abrasive introduction path 20 and the surface of the workpiece W. It is preferable that the interval (δ1 + δ2) is widened (see claim 4: see FIG. 3).

より好ましくは,前記加速流発生ノズル10の噴射口11と被加工物Wの表面間の間隔δ1を0.5〜3.0mmとすると共に,前記研磨材導入路20の開口21と前記被加工物Wの表面間の間隔(δ1+δ2)を,前記加速流発生ノズル10の噴射口11と被加工物Wの表面間の間隔δ1に対して1.0〜3.0mm広く形成する(請求項5)。   More preferably, the interval δ1 between the injection port 11 of the acceleration flow generating nozzle 10 and the surface of the workpiece W is set to 0.5 to 3.0 mm, and the opening 21 of the abrasive introduction path 20 and the workpiece are processed. The interval (δ1 + δ2) between the surfaces of the workpiece W is formed to be 1.0 to 3.0 mm wider than the interval δ1 between the injection port 11 of the acceleration flow generating nozzle 10 and the surface of the workpiece W (Claim 5). ).

また,前記研磨方法を実現するための,本発明のブラスト加工装置のノズル構造(ブラストノズル1)は,圧縮気体供給源(図示せず)より噴射流体P1として供給された研磨材を含まない圧縮気体を被加工物Wの表面に向かって噴射して,前記被加工物Wの表面に沿った加速流Sを発生させる加速流発生ノズル10と,
前記加速流Sの発生位置で前記被加工物Wの表面に向かって開口すると共に,研磨材供給源(図示せず)からの研磨材30が導入される研磨材導入路20を備えたことを特徴とする(請求項6)。
Further, the nozzle structure (blast nozzle 1) of the blasting apparatus of the present invention for realizing the above polishing method is a compression that does not include an abrasive supplied as a jet fluid P1 from a compressed gas supply source (not shown). An acceleration flow generating nozzle 10 for injecting gas toward the surface of the workpiece W to generate an acceleration flow S along the surface of the workpiece W;
An abrasive introduction path 20 is provided that opens toward the surface of the workpiece W at the position where the acceleration flow S is generated and into which the abrasive 30 from an abrasive supply source (not shown) is introduced. It is characterized (claim 6).

上記のノズル構造において,前記研磨材導入路20を,圧縮気体である搬送流体P2との混合流体として前記研磨材30を供給する研磨材供給源(例えば直圧式のブラスト加工装置の研磨材タンク:図示せず)に連通するものとしても良い(請求項7)。   In the nozzle structure described above, an abrasive supply source for supplying the abrasive 30 as a mixed fluid with the carrier fluid P2 that is a compressed gas through the abrasive introduction path 20 (for example, an abrasive tank of a direct pressure blasting apparatus: It is good also as what communicates with (not shown).

上記ノズル構造における加速流発生ノズル10と研磨材導入路20の配置は,前記加速流発生ノズル10の噴射口11側の端部を,前記研磨材導入路20内に配置することによって実現することができる(請求項8:図1〜3参照)。   The arrangement of the acceleration flow generation nozzle 10 and the abrasive introduction path 20 in the nozzle structure is realized by arranging the end of the acceleration flow generation nozzle 10 on the injection port 11 side in the abrasive introduction path 20. (Claim 8: See FIGS. 1 to 3).

また,上記の構成に代え,前記加速流発生ノズル10の噴射口11をスリット状に形成すると共に,前記研磨材導入路20の開口21を前記噴射口11と平行に配置するものとしても良く(請求項9:図4参照),この場合,更に前記加速流発生ノズル10の噴射口11の両側に,前記研磨材導入路20の開口21を配置するものとしても良い(請求項10:図5参照)。   Further, instead of the above configuration, the injection port 11 of the acceleration flow generation nozzle 10 may be formed in a slit shape, and the opening 21 of the abrasive material introduction path 20 may be arranged in parallel with the injection port 11 ( (Claim 9: see FIG. 4). In this case, openings 21 of the abrasive introduction path 20 may be further arranged on both sides of the injection port 11 of the acceleration flow generation nozzle 10 (Claim 10: FIG. 5). reference).

なお,前記ノズル構造において,前記加速流発生ノズル10の噴射口11を,前記研磨材導入路20の開口21に対し1.0〜3.0mm(図3のδ2に対応)噴射方向に突出させることが好ましい(請求項11)。   In the nozzle structure, the injection port 11 of the accelerating flow generating nozzle 10 is protruded in the injection direction by 1.0 to 3.0 mm (corresponding to δ2 in FIG. 3) with respect to the opening 21 of the abrasive introduction passage 20. (Claim 11).

以上説明した本発明の構成により,本発明の研磨方法によれば,以下の顕著な効果を得ることができた。   With the configuration of the present invention described above, the following remarkable effects can be obtained according to the polishing method of the present invention.

被加工物Wの表面に対する噴射流体P1の噴射と,研磨材30の導入とを,加速流発生ノズル10,研磨材導入路20という別個に設けた経路を介して行うことで,被加工物Wの加工面に沿った加速流Sを発生させた後,この加速流Sに対して研磨材30を合流させる構成としたことにより,研磨材30を被加工物の表面に対して垂直方向に衝突させることなく,加速流Sと共に被加工物Wの表面に沿って滑動させることができた。   By injecting the jet fluid P1 onto the surface of the workpiece W and introducing the abrasive 30 through the separately provided paths of the acceleration flow generation nozzle 10 and the abrasive introduction path 20, the workpiece W is obtained. After generating the acceleration flow S along the machining surface, the abrasive 30 is joined to the acceleration flow S so that the abrasive 30 collides with the surface of the workpiece in the vertical direction. It was possible to slide along the surface of the workpiece W together with the accelerating flow S.

その結果,被加工物Wの表面に対して垂直方向に作用する切削力の発生を抑制し,研磨材30の滑動による水平方向の切削力を生じさせることで,研磨に際して被加工物Wに加わるダメージを大幅に減少することが可能であると共に,従来の一般的なブラスト加工では困難であった平坦度の改善(平滑化)等を目的とした研磨に対しても適用可能な研磨方法を提供することができた。   As a result, generation of a cutting force acting in a direction perpendicular to the surface of the workpiece W is suppressed, and a horizontal cutting force is generated by sliding of the abrasive 30 to be applied to the workpiece W during polishing. Provides a polishing method that can greatly reduce damage and is applicable to polishing for the purpose of improving flatness (smoothing), which was difficult with conventional blasting. We were able to.

特に,前記研磨材30の搬送を噴射流体P1に対して低圧の搬送流体P2,好ましくは噴射流体P1に対して3分の2以下の圧力の搬送流体P2との混合流体として行うことで,被加工物Wの表面に対して研磨材30が垂直方向の切削力を発揮することを大幅に抑制しつつ,研磨材30の導入を円滑に行うことが可能となり,しかも,研磨材導入路20の開口21から加速流Sに向けて放出される搬送流体P2が,加速流Sを被加工物Wの表面に向けて押し付けるように作用することとなるために,加速流Sが被加工物Wの表面から離れることを防止でき,加速流Sの被加工物W表面に対する追従性を向上させることができた。   In particular, the abrasive 30 is transported as a mixed fluid with a transport fluid P2 having a pressure lower than that of the jet fluid P1, and preferably with a transport fluid P2 having a pressure less than two-thirds of that of the jet fluid P1. It is possible to smoothly introduce the abrasive 30 while greatly suppressing the abrasive 30 from exerting a cutting force in the vertical direction with respect to the surface of the workpiece W. Since the carrier fluid P2 discharged from the opening 21 toward the acceleration flow S acts to press the acceleration flow S toward the surface of the workpiece W, the acceleration flow S is applied to the workpiece W. The separation from the surface could be prevented, and the followability of the acceleration flow S to the surface of the workpiece W could be improved.

更に,加速流発生ノズル10の噴射口11と被加工物Wの表面間の間隔δ1に対し,研磨材導入路20の開口21と被加工物Wの表面間の間隔(δ1+δ2)を広くすること,好ましくは,間隔δ1を0.5〜3.0mm,間隔δ2を1.0〜3.0mmとすることで,加速流発生ノズル10より噴射された噴射流体P1は,間隔δ1を通過する際に好適に被加工物Wの表面に沿った流れである加速流Sになると共に,間隔δ1に対して広く形成された研磨材導入路20と被加工物Wの表面間の間隔(δ1+δ2)に導入されることで,研磨材導入路20の存在によって加速流Sの流れが遮られることが無く,この位置において好適に加速流Sと研磨材30を合流させることができた。   Furthermore, the interval (δ1 + δ2) between the opening 21 of the abrasive introduction path 20 and the surface of the workpiece W is made wider than the interval δ1 between the injection port 11 of the acceleration flow generating nozzle 10 and the surface of the workpiece W. Preferably, when the interval δ1 is set to 0.5 to 3.0 mm and the interval δ2 is set to 1.0 to 3.0 mm, the jet fluid P1 injected from the acceleration flow generating nozzle 10 passes through the interval δ1. The acceleration flow S is preferably a flow along the surface of the workpiece W, and the distance (δ1 + δ2) between the abrasive introduction path 20 and the surface of the workpiece W, which is formed wider than the interval δ1. By being introduced, the flow of the acceleration flow S is not obstructed by the presence of the abrasive introduction path 20, and the acceleration flow S and the abrasive 30 can be suitably merged at this position.

なお,前述した方法は,圧縮気体供給源(図示せず)より噴射流体P1として供給された圧縮気体を被加工物Wの表面に向かって噴射して,前記被加工物Wの表面に沿った加速流Sを発生させる加速流発生ノズル10と,前記加速流Sの発生位置で前記被加工物Wの表面に向かって開口すると共に,研磨材供給源(図示せず)からの研磨材30が導入される研磨材導入路20を備えたブラスト加工装置のノズル構造(ブラストノズル1)によって実現することができた。   In the above-described method, the compressed gas supplied as the jet fluid P1 from the compressed gas supply source (not shown) is sprayed toward the surface of the workpiece W, and the surface of the workpiece W is aligned. An acceleration flow generating nozzle 10 for generating the acceleration flow S, an opening 30 toward the surface of the workpiece W at the generation position of the acceleration flow S, and an abrasive 30 from an abrasive supply source (not shown) are provided. This was realized by the nozzle structure (blast nozzle 1) of the blast processing apparatus provided with the abrasive introduction path 20 to be introduced.

このノズル構造において,前記研磨材導入路20を,圧縮気体である搬送流体P2との混合流体として前記研磨材30を供給する研磨材供給源(図示せず)に連通した構成では,研磨材30の搬送及び合流を円滑に行うことができると共に,前述したように搬送流体によって加速流Sを被加工物の表面に向けて押し付けることで,加速流Sが表面より離れることを好適に防止することができた。   In this nozzle structure, in the configuration in which the abrasive introduction path 20 communicates with an abrasive supply source (not shown) that supplies the abrasive 30 as a mixed fluid with the carrier fluid P2 that is a compressed gas, the abrasive 30 As described above, the accelerating flow S is pressed against the surface of the workpiece by the conveying fluid, so that the accelerating flow S is preferably prevented from separating from the surface. I was able to.

更に,前記加速流発生ノズル10の噴射口11側の端部を,前記研磨材導入路20内に配置した構成(図1〜3参照)では,加速流発生ノズル10の噴射口11の全周に亘り,被加工物Wの表面に沿って研磨材30を滑動させることができ,加工範囲を広くすることができた。   Further, in the configuration in which the end of the acceleration flow generation nozzle 10 on the injection port 11 side is disposed in the abrasive introduction path 20 (see FIGS. 1 to 3), the entire circumference of the injection port 11 of the acceleration flow generation nozzle 10 As a result, the abrasive 30 could be slid along the surface of the workpiece W, and the processing range could be widened.

また,前記加速流発生ノズル10の噴射口11をスリット状とした構成(図4,図5参照)にあっては,スリットの長さに対応して広範囲に亘って同時に研磨加工を施すことができ,特に,前記加速流発生ノズル10の噴射口11の両側に研磨材導入路20の開口21を設けた構成(図5参照)では,加速流発生ノズル10を中心として,該ノズル10の開口幅方向の二方向に対して同時に研磨処理を行うことができ,効率的な加工を実現することができた。   Further, in the configuration in which the injection port 11 of the acceleration flow generating nozzle 10 has a slit shape (see FIGS. 4 and 5), the polishing process can be simultaneously performed over a wide range corresponding to the length of the slit. In particular, in the configuration in which the openings 21 of the abrasive introduction path 20 are provided on both sides of the injection port 11 of the acceleration flow generation nozzle 10 (see FIG. 5), the opening of the nozzle 10 is centered on the acceleration flow generation nozzle 10. The polishing process could be performed simultaneously in two directions of the width direction, and efficient processing was realized.

本発明の研磨方法に使用するノズル構造(ブラストノズル)の構成例を示す概略断面図。The schematic sectional drawing which shows the structural example of the nozzle structure (blast nozzle) used for the grinding | polishing method of this invention. 図1のII−II線断面図。II-II sectional view taken on the line of FIG. ブラストノズル先端部分の拡大断面図。The expanded sectional view of the blast nozzle tip part. ブラストノズルの先端部分の変形例を示す説明図であり,(A)は側面断面図,(B)は(A)のB−B線断面図。It is explanatory drawing which shows the modification of the front-end | tip part of a blast nozzle, (A) is side surface sectional drawing, (B) is the BB sectional drawing of (A). ブラストノズルの先端部分の変形例を示す説明図であり,(A)は側面断面図,(B)は(A)のB−B線断面図。It is explanatory drawing which shows the modification of the front-end | tip part of a blast nozzle, (A) is side surface sectional drawing, (B) is the BB sectional drawing of (A). 本発明の方法による被加工物表面の切削過程を模式的に示した説明図。Explanatory drawing which showed typically the cutting process of the surface of a workpiece by the method of this invention. RMS(二乗平均粗さ)の説明図。Explanatory drawing of RMS (root mean square roughness). 未処理のテストピース(ソーダガラス:鏡面)の表面電子顕微鏡写真であり,(A)は平面像,(B)は立体像。It is the surface electron micrograph of an untreated test piece (soda glass: mirror surface), (A) is a plane image, (B) is a three-dimensional image. 本発明の方法(実施例1)による処理後のソーダガラスの表面電子顕微鏡写真であり,(A)は平面像,(B)は立体像。It is the surface electron micrograph of the soda glass after the process by the method (Example 1) of this invention, (A) is a plane image, (B) is a stereo image. 既知のブラスト加工(比較例1)による処理後のソーダガラスの表面電子顕微鏡写真であり,(A)は平面像,(B)は立体像。It is the surface electron micrograph of the soda glass after the process by the known blast process (comparative example 1), (A) is a plane image, (B) is a three-dimensional image. 本発明の方法(実施例2)による処理後のソーダガラスの表面電子顕微鏡写真であり,(A)は平面像,(B)は立体像。It is the surface electron micrograph of the soda glass after the process by the method (Example 2) of this invention, (A) is a plane image, (B) is a stereo image. 未処理のテストピース(アルミ合金:ヘアライン加工品)の表面電子顕微鏡写真であり,(A)は平面像,(B)は立体像。It is the surface electron micrograph of an untreated test piece (aluminum alloy: hairline processed product), (A) is a plane image, (B) is a three-dimensional image. 本発明の方法(実施例3)による処理後のアルミ合金の表面電子顕微鏡写真であり,(A)は平面像,(B)は立体像。It is the surface electron micrograph of the aluminum alloy after the process by the method (Example 3) of this invention, (A) is a plane image, (B) is a stereo image. 既知のブラスト加工(比較例2:噴射圧力0.2MPa)による処理後のアルミ合金の表面電子顕微鏡写真であり,(A)は平面像,(B)は立体像。It is the surface electron micrograph of the aluminum alloy after the process by the known blast processing (Comparative example 2: injection pressure 0.2MPa), (A) is a plane image, (B) is a three-dimensional image. 既知のブラスト加工(比較例3:噴射圧力0.4MPa)による処理後のアルミ合金の表面電子顕微鏡写真であり,(A)は平面像,(B)は立体像。It is the surface electron micrograph of the aluminum alloy after the process by the known blasting (comparative example 3: injection pressure 0.4MPa), (A) is a plane image, (B) is a three-dimensional image. 本発明の方法(実施例4)による処理後のアルミ合金の表面電子顕微鏡写真であり,(A)は平面像,(B)は立体像。It is the surface electron micrograph of the aluminum alloy after the process by the method (Example 4) of this invention, (A) is a plane image, (B) is a stereo image. 本発明の方法(実施例5)による処理後のアルミ合金の表面電子顕微鏡写真であり,(A)は平面像,(B)は立体像。It is the surface electron micrograph of the aluminum alloy after the process by the method (Example 5) of this invention, (A) is a plane image, (B) is a stereo image. 既知のブラスト加工における切削の様子を模式的に示した説明図。Explanatory drawing which showed typically the mode of the cutting in known blasting.

次に,本発明の実施形態につき添付図面を参照しながら以下説明する。   Next, embodiments of the present invention will be described below with reference to the accompanying drawings.

〔ブラストノズル〕
図1中の符号1は,本発明の研磨方法に使用するブラストノズルであり,このブラストノズル1は,圧縮気体供給源及び研磨材供給源を備えた既知のブラスト加工装置(図示せず)に取り付けて使用することで,本発明の研磨方法を実現可能とするものである。
[Blast nozzle]
Reference numeral 1 in FIG. 1 denotes a blast nozzle used in the polishing method of the present invention. This blast nozzle 1 is connected to a known blast processing apparatus (not shown) having a compressed gas supply source and an abrasive supply source. By attaching and using, the polishing method of the present invention can be realized.

このブラストノズル1は,図示せざるブラスト加工装置に設けられた圧縮気体供給源に連通されて,圧縮気体供給源より噴射流体P1として導入された圧縮気体を被加工物Wの表面に向かって噴射して,被加工物Wの表面に沿って流れる加速流Sを生じさせる加速流発生ノズル10と,図示せざる研磨材供給源(例えば研磨材タンク)からの研磨材30を導入して前記加速流Sに合流させる研磨材導入路20を備えており,研磨材導入路20の開口21を前述の加速流Sの発生位置において被加工物Wの表面に向けて配置することにより,研磨材導入路20内に導入した研磨材を,加速流Sと合流させて,被加工物Wの表面を滑動させることができるようにしている。   The blast nozzle 1 communicates with a compressed gas supply source provided in a blasting apparatus (not shown), and injects compressed gas introduced as an injection fluid P1 from the compressed gas supply source toward the surface of the workpiece W. Then, the acceleration flow generating nozzle 10 for generating the acceleration flow S flowing along the surface of the workpiece W and the abrasive 30 from an unillustrated abrasive supply source (for example, an abrasive tank) are introduced to accelerate the acceleration. A polishing material introduction path 20 that joins the flow S is provided, and the opening 21 of the polishing material introduction path 20 is arranged toward the surface of the workpiece W at the position where the acceleration flow S is generated. The abrasive introduced into the path 20 is merged with the acceleration flow S so that the surface of the workpiece W can be slid.

図示の実施形態にあっては,加速流発生ノズル10を円筒状のノズルとして形成すると共に,研磨材導入路20を加速流発生ノズル10の外径に対して大径の内径を有する略円筒形状に形成して,この加速流発生ノズル10の先端側の一部を研磨材導入路20内に同心状に配置することで,噴射口11を中心に,その外周方向における全周を囲むように研磨材導入路20の開口21を形成している(図2参照)。   In the illustrated embodiment, the acceleration flow generation nozzle 10 is formed as a cylindrical nozzle, and the abrasive introduction path 20 has a substantially cylindrical shape having an inner diameter that is larger than the outer diameter of the acceleration flow generation nozzle 10. And a part of the tip side of the acceleration flow generating nozzle 10 is arranged concentrically in the abrasive introduction passage 20 so as to surround the entire circumference in the outer circumferential direction centering on the injection port 11. An opening 21 of the abrasive introduction path 20 is formed (see FIG. 2).

もっとも,加速流発生ノズル10や研磨材導入路20の形状及び配置は,図1〜3に示す実施形態に限定されず,図示の例では円筒状に形成した研磨材導入路20を,例えば角筒状に形成する等しても良く,また,図4(A),(B)に示すように,加速流発生ノズル10の噴射口11をスリット状に形成し,このスリット状に形成された加速流発生ノズル10の噴射口11と平行に,研磨材導入路20の開口21を設ける構成としても良く,更には,図5(A),(B)に示すように,この研磨材導入路20の開口21を,加速流発生ノズル10の噴射口11を中心に両側に配置するものとしても良く〔図5(B)参照〕,加速流発生ノズル10で発生させた加速流Sに向けて研磨材導入路20の開口21が設けられることにより加速流Sに対して研磨材を合流させることができるものであれば,各種の設計変更が可能である。   However, the shape and arrangement of the acceleration flow generating nozzle 10 and the abrasive introduction path 20 are not limited to the embodiment shown in FIGS. It may be formed in a cylindrical shape, and as shown in FIGS. 4 (A) and 4 (B), the injection port 11 of the acceleration flow generating nozzle 10 is formed in a slit shape, and this slit shape is formed. An opening 21 of the abrasive material introduction path 20 may be provided in parallel with the injection port 11 of the acceleration flow generating nozzle 10, and further, as shown in FIGS. 5A and 5B, this abrasive material introduction path. 20 openings 21 may be arranged on both sides centering on the injection port 11 of the acceleration flow generation nozzle 10 (see FIG. 5B), and toward the acceleration flow S generated by the acceleration flow generation nozzle 10. The acceleration flow S is provided by providing the opening 21 of the abrasive introduction path 20. As long as it can be merged abrasive against a possible various design changes are.

前述の加速流発生ノズル10の噴射口11は,研磨材導入路20の開口21より僅かな突出長さ(図3のδ2)で噴射方向に飛び出した配置となるように加速流発生ノズル10と研磨材導入路20の配置が決定されている。   The accelerating flow generation nozzle 10 and the accelerating flow generation nozzle 10 are arranged so that the injection port 11 of the accelerating flow generation nozzle 10 protrudes in the injection direction with a slight projecting length (δ 2 in FIG. 3) from the opening 21 of the abrasive introduction path 20. The arrangement of the abrasive introduction path 20 is determined.

この加速流発生ノズル10の先端部における突出長さδ2は,好ましくは1.0〜3.0mmであり,図示の実施形態にあっては,この突出長さδ2を1.0mmとすることで,加速流発生ノズル10の噴射口11を被加工物の表面に向けて配置した際に,加速流発生ノズル10の噴射口11と被加工物Wの表面間の間隔δ1に対し,研磨剤導入路20の開口21と被加工物Wの表面間の間隔が大きくなるように構成している。   The protruding length δ2 at the tip of the acceleration flow generating nozzle 10 is preferably 1.0 to 3.0 mm. In the illustrated embodiment, the protruding length δ2 is set to 1.0 mm. When the injection port 11 of the acceleration flow generation nozzle 10 is arranged toward the surface of the workpiece, the abrasive is introduced with respect to the interval δ1 between the injection port 11 of the acceleration flow generation nozzle 10 and the surface of the workpiece W. The distance between the opening 21 of the path 20 and the surface of the workpiece W is increased.

前述した研磨材導入路20に対する研磨材30の導入は,例えば研磨材導入路20に対して高所に配置された研磨材タンク(図示せず)から研磨材を重力によって落下させることにより行うものとしても良いが,本実施形態にあっては,前述の研磨材導入路20の内部空間を,例えば直圧式のブラスト加工装置の研磨材タンクのように圧縮気体である搬送流体P2によって加圧された研磨材タンク(図示せず)に連通することで,前記搬送流体P2との混合流体として搬送された研磨材30を,研磨材導入路20の内部空間に導入すると共に,前述した開口21を介して加速流Sと合流させることができるようにしている。   The introduction of the abrasive 30 into the abrasive introduction path 20 described above is performed, for example, by dropping the abrasive by gravity from an abrasive tank (not shown) disposed at a high position with respect to the abrasive introduction path 20. However, in this embodiment, the internal space of the above-described abrasive introduction path 20 is pressurized by the carrier fluid P2 that is a compressed gas, such as the abrasive tank of a direct pressure blasting apparatus. By communicating with a polishing material tank (not shown), the polishing material 30 transported as a mixed fluid with the transporting fluid P2 is introduced into the internal space of the polishing material introduction path 20, and the opening 21 described above is introduced. And the acceleration flow S can be merged.

このような研磨材30の搬送を可能とするために,図1に示す実施形態にあっては,図示せざる研磨材タンクに連通した研磨材ホース25の先端に研磨材ノズル24を取り付けて研磨材の搬送量を制御すると共に,この研磨材ノズル24の先端を,研磨材導入路20の内部空間と連通した連結管23内に挿入することで,研磨材導入路20内に搬送流体P2と共に研磨材30を導入することができるようにしている。   In order to enable such conveyance of the abrasive 30, in the embodiment shown in FIG. 1, the abrasive nozzle 24 is attached to the tip of an abrasive hose 25 communicating with an abrasive tank (not shown) for polishing. Along with controlling the amount of material transported, the tip of the abrasive nozzle 24 is inserted into the connecting pipe 23 communicating with the internal space of the abrasive material introduction path 20, so that the material is transferred into the abrasive material introduction path 20 together with the transport fluid P 2. The abrasive 30 can be introduced.

〔研磨方法〕
以上のように構成されたブラストノズル1の前記加速流発生ノズル10に対しては,前述したように図示せざるブラスト加工装置の圧縮気体供給源を連通し,前述した噴射流体P1として0.1〜0.7MPaの圧縮気体を導入する。
[Polishing method]
The accelerating flow generating nozzle 10 of the blast nozzle 1 configured as described above is communicated with a compressed gas supply source of a blast processing apparatus (not shown) as described above, and the above-described jet fluid P1 is 0.1. Introduce a compressed gas of ~ 0.7 MPa.

また,研磨材導入路20に対しても,図示せざるブラスト加工装置の研磨材供給源を連通して,研磨材30を導入可能できるようにする。このとき,研磨材30の搬送を前述した搬送流体P2と混合して行う場合には,搬送流体P2の圧力を,噴射流体P1の圧力よりも低圧,好ましくは3分の2以下の圧力として行う。   Further, the abrasive material supply path of an unillustrated blasting apparatus is also communicated with the abrasive material introduction path 20 so that the abrasive material 30 can be introduced. At this time, when the abrasive 30 is transported by mixing with the above-described transport fluid P2, the pressure of the transport fluid P2 is set to be lower than the pressure of the jet fluid P1, and preferably less than two-thirds. .

加速流発生ノズル10に導入する噴射流体,及び研磨材30の搬送に使用する搬送流体の種類は,圧縮気体であれば特に限定されず,本実施形態にあってはブラスト加工に際して一般的に使用されている圧縮空気を使用した。   The type of the jet fluid introduced into the acceleration flow generation nozzle 10 and the type of the carrier fluid used for conveying the abrasive 30 are not particularly limited as long as they are compressed gas, and are generally used in blasting in this embodiment. Used compressed air.

もっとも,使用する研磨材が粉塵火災の虞のある粒径や材質である場合には,不活性ガスの圧縮気体を使用する等,加工条件に応じて種々の圧縮気体を使用可能である。   However, when the abrasive used has a particle size or material that may cause a dust fire, various compressed gases can be used depending on the processing conditions, such as using a compressed gas of an inert gas.

以上のように,ブラストノズル1をブラスト加工装置の圧縮気体供給源及び研磨材供給源のそれぞれに連通し,図3に示すように,加速流発生ノズル10の噴射口11より噴射流体を噴射する。   As described above, the blast nozzle 1 is communicated with each of the compressed gas supply source and the abrasive supply source of the blast processing apparatus, and the injection fluid is injected from the injection port 11 of the acceleration flow generation nozzle 10 as shown in FIG. .

噴射流体の噴射は,噴射口11より噴射された噴射流体が被加工物Wの表面に衝突して,ノズル先端と被加工物Wの表面間の間隔δ1を通過する際に向きを変えて被加工物Wの表面に沿った加速流Sを発生させることができるよう,比較的狭い間隔δ1,好ましくは0.5〜3.0mm程度の間隔δ1に調整する(本実施形態にあっては間隔δ1は1.0mm)。   The jet fluid is jetted from the jet port 11 when the jet fluid collides with the surface of the workpiece W and passes through the interval δ1 between the nozzle tip and the surface of the workpiece W. In order to generate the acceleration flow S along the surface of the workpiece W, it is adjusted to a relatively narrow interval δ1, preferably about 0.5 to 3.0 mm (in this embodiment, the interval δ1). δ1 is 1.0 mm).

また,このような加速流Sが安定して生じるようにするために,噴射口11の直径に対し,加速流発生ノズル10の先端部分の直径φ(図3参照)を,1.4〜2倍程度の寸法に形成することが好ましく,本実施形態にあっては,一例として噴射口11の直径を3mm,加速流発生ノズル10の先端部分の直径φを5mmとした。   Further, in order to stably generate such acceleration flow S, the diameter φ (see FIG. 3) of the tip portion of the acceleration flow generation nozzle 10 is set to 1.4 to 2 with respect to the diameter of the injection port 11. In the present embodiment, the diameter of the injection port 11 is 3 mm, and the diameter φ of the tip portion of the acceleration flow generating nozzle 10 is 5 mm as an example.

このようにして,加速流発生ノズル10に対する噴射流体P1の導入を開始すると共に,研磨材導入路20に対し研磨材30を単独又は搬送流体P2との混合流体として導入すると,加速流発生ノズル10の噴射口11より噴射された噴射流体P1は,加速流発生ノズル10と被加工物Wの表面間の間隔δ1に導入されてその向きを変えて加速流発生ノズル10の全周方向に拡散されて,被加工物Wの表面に沿って流れる加速流Sとなる。   In this way, when the introduction of the jet fluid P1 to the acceleration flow generating nozzle 10 is started and the abrasive 30 is introduced into the abrasive introduction path 20 alone or as a mixed fluid with the carrier fluid P2, the acceleration flow generating nozzle 10 is introduced. The jet fluid P1 jetted from the jet nozzle 11 is introduced into the interval δ1 between the acceleration flow generation nozzle 10 and the surface of the workpiece W, changes its direction, and is diffused in the entire circumferential direction of the acceleration flow generation nozzle 10. Thus, the acceleration flow S flows along the surface of the workpiece W.

そして,研磨材導入路20の開口21と被加工物表面間の間隔を通過する際にこの加速流Sに対して研磨材導入路20からの研磨材30が合流され,加速流Sに乗って研磨材30が被加工物の表面を滑動する。   Then, when passing through the gap between the opening 21 of the abrasive introduction path 20 and the surface of the workpiece, the abrasive 30 from the abrasive introduction path 20 joins the acceleration flow S and rides on the acceleration flow S. The abrasive 30 slides on the surface of the workpiece.

前述したように,加速流発生ノズル10に導入された,0.1〜0.7MPa(実施形態において0.3MPa)という比較的高圧の噴射流体P1は,加速流発生ノズル10の先端と被加工物W間に形成された,0.5〜3mm(実施形態において1.0mm)という比較的狭い間隔δ1を通過することで,被加工物の表面に沿って比較的高速の加速流Sが生じ,この加速流Sが,被加工物Wの表面を覆うエアカーテンの如く作用する。   As described above, the relatively high pressure injection fluid P1 of 0.1 to 0.7 MPa (0.3 MPa in the embodiment) introduced into the acceleration flow generation nozzle 10 is applied to the tip of the acceleration flow generation nozzle 10 and the workpiece. By passing a relatively narrow distance δ1 of 0.5 to 3 mm (1.0 mm in the embodiment) formed between the workpieces W, a relatively high-speed acceleration flow S is generated along the surface of the workpiece. The acceleration flow S acts like an air curtain that covers the surface of the workpiece W.

そのため,研磨材導入路20に対する研磨材の導入を,圧縮気体である搬送流体P2によって行う場合であっても,研磨材30が被加工物Wの表面に対して垂直方向に衝突すること,従って,研磨材30が被加工物Wの表面に対して垂直方向の切削力を発揮することを防止することが可能となる。   Therefore, even when the abrasive material is introduced into the abrasive material introduction path 20 by the carrier fluid P2 that is a compressed gas, the abrasive material 30 collides with the surface of the workpiece W in the vertical direction. , It is possible to prevent the abrasive 30 from exerting a cutting force in a direction perpendicular to the surface of the workpiece W.

特に,搬送流体P2の圧力を,噴射流体P1の圧力に対して低圧とし,好ましくは,搬送流体P2の圧力を噴射流体P1の圧力に対して3分の2以下の圧力とする場合には,研磨材30が被加工物Wの表面に対して垂直方向の切削力を発揮することを大幅に抑制することができる。   In particular, when the pressure of the transport fluid P2 is set to a low pressure relative to the pressure of the jet fluid P1, and preferably, the pressure of the transport fluid P2 is set to a pressure that is less than two-thirds of the pressure of the jet fluid P1, It can suppress significantly that the abrasive 30 exhibits the cutting force of the orthogonal | vertical direction with respect to the surface of the workpiece W. FIG.

また,このようにして研磨材の導入を圧縮気体である搬送流体P2によって行うことで,研磨材導入路20の開口21より搬送気体が加速流Sを被加工物Wの表面に押しつけるように吐出されることから,加速流Sが被加工物Wの表面より離れることを防止でき,より長距離に亘って被加工物Wの表面に沿って移動させることが可能である。   Further, the introduction of the abrasive is performed by the carrier fluid P2 that is a compressed gas in this way, so that the carrier gas is discharged from the opening 21 of the abrasive introduction path 20 so as to press the acceleration flow S against the surface of the workpiece W. Thus, the acceleration flow S can be prevented from being separated from the surface of the workpiece W, and can be moved along the surface of the workpiece W over a longer distance.

その結果,研磨材は被加工物Wの表面に対して直交方向の切削力を発揮していた従来の一般的なブラスト加工方法とは異なり,本発明の研磨方法では,研磨材30を被加工物Wの表面に沿って滑動させることにより,被加工物Wの表面に対し水平方向の切削力を発揮させることができるものとなっており,これにより,図6に示すように被加工物の表面に生じていた凹凸における山頂部分から徐々に研磨除去することが可能となっている。   As a result, unlike the conventional general blasting method in which the abrasive exhibits a cutting force in a direction orthogonal to the surface of the workpiece W, in the polishing method of the present invention, the abrasive 30 is processed. By sliding along the surface of the workpiece W, a horizontal cutting force can be exerted on the surface of the workpiece W. As a result, as shown in FIG. It is possible to gradually polish and remove from the peak portion of the unevenness generated on the surface.

このような切削作用から,本発明の研磨方法では,被加工物の表面を深さ方向に必要以上に削り取ることがなく,また,圧縮気体のエネルギーのみでソフトな研磨を行うものであるため,研磨工程において新たに深い研磨傷をつけることが防止できるものとなっている。   Because of this cutting action, the polishing method of the present invention does not remove the surface of the workpiece in the depth direction more than necessary, and soft polishing is performed only with the energy of the compressed gas. It is possible to prevent new deep polishing scratches from being made in the polishing process.

また,本発明の研磨方法では,ラッピング研磨,ポリッシング研磨等とは異なり研磨材以外は被加工物に触れることがないため,研磨時,研磨後に余計な応力が入り難く,歪み等の発生を防止できるという効果を有するだけでなく,従来の一般的なブラスト加工方法と比較した場合であっても,垂直方向に研磨材が衝突することが抑制されるため,同様に応力の発生や歪みの発生が少ないものとすることができる。   In addition, in the polishing method of the present invention, unlike lapping polishing, polishing polishing, and the like, no abrasive material touches the workpiece, so that extra stress is difficult to enter after polishing, preventing the occurrence of distortion, etc. Not only has the effect of being able to do this, but even when compared with the conventional general blasting method, it prevents the abrasive from colliding in the vertical direction. Can be reduced.

次に,本発明の研磨方法による各種テストピースに対する加工試験例を,実施例として以下に紹介する。   Next, working test examples for various test pieces by the polishing method of the present invention will be introduced as examples.

なお,以下で説明する実施例で使用したブラストノズルは,図1を参照して説明したものと同様の構造のもので,加速流発生ノズル10の噴射口11の直径3mm,ノズル先端部の直径(φ)が5mm,研磨材導入路20の開口21の直径が20mm,加速流発生ノズル10の先端部における突出長さδ2が1.0mmのものを使用した。   The blast nozzle used in the embodiment described below has the same structure as that described with reference to FIG. 1, and the diameter of the injection port 11 of the acceleration flow generating nozzle 10 is 3 mm and the diameter of the nozzle tip. (Φ) is 5 mm, the diameter of the opening 21 of the abrasive introduction passage 20 is 20 mm, and the protruding length δ2 at the tip of the acceleration flow generating nozzle 10 is 1.0 mm.

また,いずれの実施例共に加速流発生ノズルの先端と被加工物Wの表面間の間隔δ1を1.0mmとし,各実施例及び比較例共に,テストピースとして幅90mm,長さ90mmの板体を使用し,このうちの半分(45mm×90mm)を観察した。   In each of the examples, the distance δ1 between the tip of the acceleration flow generating nozzle and the surface of the workpiece W is set to 1.0 mm, and each of the examples and comparative examples has a plate having a width of 90 mm and a length of 90 mm as a test piece. And half of them (45 mm x 90 mm) were observed.

A.ガラス板に対する加工例
A−1.一般的なブラスト加工との対比試験
(1)試験の目的
凹凸の無いテストピースの表面(鏡面)に対し,本発明の研磨方法(実施例1)と,圧縮気体と共に研磨材を噴射する従来の一般的なブラスト加工(比較例1)をそれぞれ行い,加工後のテストピース表面がどのように変化しているかを観察することで,両加工方法でテストピースの表面における研磨材の挙動の相違を確認する。
A. Processing example A-1. Contrast test with general blasting (1) Purpose of the test The polishing method of the present invention (Example 1) is applied to the surface (mirror surface) of a test piece without unevenness, and the conventional method of injecting an abrasive together with compressed gas By performing general blasting (Comparative Example 1) and observing how the surface of the test piece after processing changes, the difference in the behavior of the abrasive on the surface of the test piece can be observed with both processing methods. Check.

(2)試験条件
〔実施例1〕
テストピース:ソーダガラス(鏡面)
研磨材:不二製作所製の高純度アルミナ研磨材「フジランダムWA♯220」(平均粒径53〜45μm)
供給圧力:加速流発生ノズル;0.3MPa(圧縮空気)
研磨材供給ノズル;0.1MPa(圧縮空気)+研磨材
処理時間:13分(観察した45mm×90mm範囲に対する処理時間:以下同じ)
〔比較例1〕
テストピース:ソーダガラス(鏡面)
研磨材:不二製作所製の高純度アルミナ研磨材「フジランダムWA♯600」(平均粒径20.0±1.5μm)
噴射方法:0.4MPaの圧縮空気と共に研磨材をテストピース表面に対し垂直に噴射
処理時間:1分
(2) Test conditions [Example 1]
Test piece: Soda glass (mirror surface)
Abrasive: High-purity alumina abrasive "Fuji Random WA # 220" manufactured by Fuji Seisakusho (average particle size 53-45 μm)
Supply pressure: Acceleration flow generation nozzle; 0.3 MPa (compressed air)
Abrasive supply nozzle: 0.1 MPa (compressed air) + abrasive processing time: 13 minutes (processing time for the observed 45 mm × 90 mm range: the same applies hereinafter)
[Comparative Example 1]
Test piece: Soda glass (mirror surface)
Abrasive: High purity alumina abrasive "Fuji Random WA # 600" manufactured by Fuji Seisakusho (average particle size 20.0 ± 1.5μm)
Injection method: Abrasive material is injected perpendicularly to the surface of the test piece together with compressed air of 0.4 MPa Processing time: 1 minute

(3)試験結果
未処理のテストピース(実施例1に使用したもの)の表面状態を図8(A),(B)に,実施例1の処理後のテストピースの表面状態を図9(A),(B)に,比較例1の処理後のテストピースの表面状態を図10(A),(B)にそれぞれ示す。
(3) Test results The surface state of an untreated test piece (used in Example 1) is shown in FIGS. 8A and 8B, and the surface state of the test piece after treatment in Example 1 is shown in FIG. FIGS. 10A and 10B show the surface states of the test pieces after the processing of Comparative Example 1 in FIGS. 10A and 10B, respectively.

また,各テストピースの表面粗さを下記の表1に示す。   The surface roughness of each test piece is shown in Table 1 below.


ここで,上記粗さのパラメータのうち,Ra(算術平均粗さ),Ry(最大高さ),Rz(十点平均粗さ),tp(付加長さ率)は,いずれもJIS(JISB0601-1994)に従う(以下同じ)。   Of the roughness parameters, Ra (arithmetic average roughness), Ry (maximum height), Rz (ten-point average roughness), and tp (additional length ratio) are all JIS (JISB0601- 1994) (the same shall apply hereinafter).

また,RMSとは「二乗平均粗さ」であり,この値は,粗さ曲線に基づいて平均線から測定曲線までの偏差を二乗した値の平方根として求められる(図7参照:以下同じ)。   RMS is “root mean square roughness”, and this value is obtained as the square root of a value obtained by squaring the deviation from the average line to the measurement curve based on the roughness curve (see FIG. 7; the same applies hereinafter).

(4)試験結果に基づく考察
図8と図10との比較から判るように,処理前には鏡面であったテストピースの表面〔図8(A),(B)〕は,比較例1の処理後,鋭利な形状の山頂,谷底を有する凹凸面に変化していた〔図10(B)参照〕。
(4) Consideration based on test results As can be seen from the comparison between FIG. 8 and FIG. 10, the surface of the test piece which was a mirror surface before the treatment [FIGS. After the treatment, it changed to an uneven surface having sharp peaks and valleys (see FIG. 10B).

また,比較例1の加工方法では,実施例1の加工方法に比較して,粒径の小さい(従って,一般に表面を粗くする作用の小さい)研磨材を使用するものでありながら,加工後の表面粗さは,いずれのパラメータにおいても実施例1の加工方法に比較して大きく増大していることが確認された。   Further, in the processing method of Comparative Example 1, compared with the processing method of Example 1, an abrasive having a small particle size (and thus generally having a small effect of roughening the surface) is used. It was confirmed that the surface roughness was greatly increased in all parameters as compared with the processing method of Example 1.

このことから,比較例1のように,圧縮気体と共に研磨材をテストピースの表面に衝突させる既知のブラスト加工方法では,衝突した研磨材は,テストピースの表面を垂直(深さ)方向に切削する作用を発揮していることが判る。   Therefore, as in Comparative Example 1, in the known blasting method in which the abrasive material collides with the surface of the test piece together with the compressed gas, the collided abrasive material cuts the surface of the test piece in the vertical (depth) direction. It can be seen that it exerts the action of

これに対し,実施例1の処理を行った場合には,鏡面であった未処理のテストピース表面が削られて凹凸が形成されてはいるものの,この凹凸の山頂及び谷底は比較例1の場合のような鋭利なものではなく比較的なだらかな形状となっていることが確認できる〔図9(B)参照〕。   On the other hand, when the treatment of Example 1 was performed, the surface of the untreated test piece that was a mirror surface was shaved to form irregularities, but the peaks and valleys of these irregularities were the same as those of Comparative Example 1. It can be confirmed that the shape is comparatively gentle rather than sharp as in the case (see FIG. 9B).

また,実施例1では,比較例1に比較して粒径の大きな研磨材,従って表面を粗くする効果の大きな研磨材を使用したが,実施例1における処理後のテストピース表面は,何れのパラメータにおいても比較例1に比較して粗さの増加が小さい(形成された凹凸の高低差が小さい)ことを示しており,テストピースの表面に対して直交方向の切削力が発揮されることを大幅に抑制できていることが判る。   Further, in Example 1, an abrasive having a larger particle diameter than that of Comparative Example 1 and, therefore, an abrasive having a large effect of roughening the surface was used. The parameter also shows that the increase in roughness is small compared to Comparative Example 1 (the difference in height of the formed irregularities is small), and the cutting force perpendicular to the surface of the test piece is exhibited. It can be seen that it is possible to greatly suppress this.

以上の結果から,実施例1及び比較例1の2つの処理において,テストピースの表面における研磨材の挙動には明らかな相違があることが判り,図18を参照して説明したように,従来の一般的なブラスト加工方法では,衝突時のエネルギーによって研磨材が被加工物の表面を深さ方向に切削するものであるのに対し,本発明の研磨方法(実施例1)が,研磨材を被加工物の表面に沿って滑動させることで,図6を参照して説明したようにテストピースの表面に対して水平方向の切削力を発揮するものであることが判る。   From the above results, it can be seen that there is a clear difference in the behavior of the abrasive on the surface of the test piece in the two treatments of Example 1 and Comparative Example 1, and as described with reference to FIG. In this general blasting method, the abrasive cuts the surface of the workpiece in the depth direction by the energy at the time of collision, whereas the polishing method of the present invention (Example 1) is an abrasive. As shown in FIG. 6, it can be seen that the cutting force in the horizontal direction is exerted on the surface of the test piece by sliding along the surface of the workpiece.

また,上記のような本発明の方法(実施例1)における切削原理より,既知のブラスト加工のように被加工物の表面に対し研磨材(砥粒)が衝突することによるダメージを生じさせることなく,かつ,従来のブラスト加工では困難であった,被加工物の表面部分を薄く削り取るといった作業が可能であることが判る。   Further, due to the cutting principle in the method of the present invention (Example 1) as described above, damage caused by collision of abrasive (abrasive grains) against the surface of the workpiece as in known blasting is caused. In addition, it can be seen that it is possible to perform the work of thinly cutting the surface portion of the workpiece, which was difficult with the conventional blasting.

A−2.表面粗さの改善試験(実施例2)
(1)試験の目的
表面に凹凸が生じているガラスのテストピースに対して本発明の研磨方法を適用することで,テストピースの表面粗さの改善(平坦化)が可能であることを確認する。
A-2. Surface roughness improvement test (Example 2)
(1) Purpose of the test It is confirmed that the surface roughness of the test piece can be improved (flattened) by applying the polishing method of the present invention to a glass test piece with uneven surfaces. To do.

(2)試験条件
テストピース:ソーダガラス(比較例1による加工後のもの)
研磨材:不二製作所製の高純度アルミナ研磨材「フジランダムWA♯1000」(平均粒径11.5±1.0μm)
供給圧力:加速流発生ノズル;0.3MPa(圧縮空気)
研磨材供給ノズル;0.1MPa(圧縮空気)+研磨材
処理時間:13分
(2) Test conditions Test piece: Soda glass (after processing according to Comparative Example 1)
Abrasive: High-purity alumina abrasive "Fuji Random WA # 1000" manufactured by Fuji Seisakusho (average particle size 11.5 ± 1.0 μm)
Supply pressure: Acceleration flow generation nozzle; 0.3 MPa (compressed air)
Abrasive supply nozzle; 0.1 MPa (compressed air) + abrasive Processing time: 13 minutes

(3)試験結果
実施例2による処理後のテストピースの表面状態を図11(A),(B)に示す〔処理前の表面状態については図10(A),(B)を参照〕。
(3) Test results The surface state of the test piece after the treatment according to Example 2 is shown in FIGS. 11A and 11B (see FIGS. 10A and 10B for the surface state before the treatment).

また,各テストピースの表面粗さを下記の表2に示す。   The surface roughness of each test piece is shown in Table 2 below.

(4)試験結果に基づく考察
以上の結果から,本発明の方法(実施例2)により,テストピースの表面粗さが改善(平坦化)されていることが確認できた。
(4) Consideration based on test results From the above results, it was confirmed that the surface roughness of the test piece was improved (flattened) by the method of the present invention (Example 2).

また,図10(B)と図11(B)の比較から判るように,未処理の状態では,鋭利な山頂及び谷底を有していたテストピースの表面凹凸〔図10(B)参照〕が,本発明の方法(実施例2)による処理後には,角が除去されたなだらかな凹凸形状に変化していることが判る〔図11(B)参照〕。   Further, as can be seen from the comparison between FIG. 10B and FIG. 11B, the surface irregularities of the test piece having sharp peaks and valleys in the untreated state (see FIG. 10B). It can be seen that after the treatment according to the method of the present invention (Example 2), the shape is changed to a gentle uneven shape with the corners removed (see FIG. 11B).

また,表面粗さを示すRa,Ry,Rz,RMSのいずれのパラメータの数値においても,本発明の加工後におけるテストピースの表面にあっては,表面粗さの改善が得られていること,従って,凹凸における高低差が減少していることを示している。   Further, in any of the numerical values of parameters Ra, Ry, Rz and RMS indicating the surface roughness, the surface roughness of the test piece after the processing of the present invention is improved. Therefore, it is shown that the height difference in the unevenness is reduced.

しかも,粗さのパラメータ中,tpの数値増大は,50%の切断レベルが元の凹凸における谷底側に移動したこと,従って,元の凹凸に対し山の高さが減少していることを示しており,本発明の方法による研磨が,図6を参照して説明したように,研磨材がテストピースの表面に沿って滑動することにより水平方向の切削力を発揮し,凹凸における山の部分を水平方向に切削することにより行われていることが判る。   Moreover, in the roughness parameter, an increase in the numerical value of tp indicates that the cutting level of 50% has moved to the valley bottom in the original unevenness, and thus the height of the mountain has decreased with respect to the original unevenness. As described with reference to FIG. 6, the polishing by the method of the present invention exerts a horizontal cutting force by sliding the abrasive along the surface of the test piece, and the ridges in the unevenness. It can be seen that this is done by cutting in a horizontal direction.

このように,本発明の研磨方法では,従来の一般的なブラスト加工では困難であった,被加工物表面の平坦度の改善(平滑化)に対しても適用可能であることが確認できた。   As described above, it was confirmed that the polishing method of the present invention is applicable to the improvement (smoothing) of the flatness of the workpiece surface, which was difficult in the conventional general blast processing. .

B.アルミ合金に対する加工例
B−1.表面粗さの改善試験(実施例3,比較例2,3)
(1)試験の目的
表面に凹凸(ヘアライン)が生じているテストピースに対して本発明の研磨方法を適用することで,テストピースの表面粗さを改善することができることを確認すると共に,同様の凹凸(ヘアライン)が形成されたテストピースに対し既知のブラスト加工を行った場合の加工状態と比較し,両加工方法のテストピース表面において研磨材が示す挙動の相違を確認する。
B. Processing example for aluminum alloy B-1. Surface roughness improvement test (Example 3, Comparative Examples 2 and 3)
(1) Purpose of the test While confirming that the surface roughness of the test piece can be improved by applying the polishing method of the present invention to the test piece having unevenness (hairline) on the surface, the same Compared with the processing state when the known blasting is performed on the test piece with the unevenness (hairline) formed, the difference in the behavior of the abrasive on the test piece surface of both processing methods is confirmed.

(2)試験条件
〔実施例3〕
テストピース:アルミ合金(A5052P)のヘアライン加工品
研磨材:不二製作所製の高純度アルミナ研磨材「フジランダムWA♯1000」(平均粒径11.5±1.0μm)
供給圧力:加速流発生ノズル;0.3MPa(圧縮空気)
研磨材供給ノズル;0.1MPa(圧縮空気)+研磨材
処理時間:13分
〔比較例2〕
テストピース:アルミ合金(A5052P)のヘアライン加工品
研磨材:不二製作所製の高純度アルミナ研磨材「フジランダムWA♯1000」(平均粒径11.5±1.0μm)
噴射方法:0.2MPaの圧縮空気と共に研磨材をテストピース表面に対し垂直に噴射(ノズルとテストピース間の距離150mm)
処理時間:30秒
〔比較例3〕
テストピース:アルミ合金(A5052P)のヘアライン加工品
研磨材:不二製作所製の高純度アルミナ研磨材「フジランダムWA♯1000」(平均粒径11.5±1.0μm)
噴射方法:0.4MPaの圧縮空気と共に研磨材をテストピース表面に対し垂直に噴射(ノズルとテストピース間の距離150mm)
処理時間:30秒
(2) Test conditions [Example 3]
Test piece: Hairline processed product of aluminum alloy (A5052P) Abrasive: High-purity alumina abrasive “Fuji Random WA # 1000” manufactured by Fuji Seisakusho (average particle size 11.5 ± 1.0 μm)
Supply pressure: Acceleration flow generation nozzle; 0.3 MPa (compressed air)
Abrasive supply nozzle: 0.1 MPa (compressed air) + Abrasive Treatment time: 13 minutes [Comparative Example 2]
Test piece: Hairline processed product of aluminum alloy (A5052P) Abrasive: High-purity alumina abrasive “Fuji Random WA # 1000” manufactured by Fuji Seisakusho (average particle size 11.5 ± 1.0 μm)
Injection method: Abrasive material is injected perpendicularly to the surface of the test piece together with compressed air of 0.2 MPa (distance between nozzle and test piece is 150 mm)
Processing time: 30 seconds [Comparative Example 3]
Test piece: Hairline processed product of aluminum alloy (A5052P) Abrasive: High-purity alumina abrasive “Fuji Random WA # 1000” manufactured by Fuji Seisakusho (average particle size 11.5 ± 1.0 μm)
Injection method: Abrasive material is injected perpendicularly to the surface of the test piece together with compressed air of 0.4 MPa (distance between nozzle and test piece is 150 mm)
Processing time: 30 seconds

(3)試験結果
未処理のテストピース(実施例3で使用したもの)の表面状態を図12(A),(B)に,本発明の方法(実施例3)による処理後のテストピースの表面状態を図13(A),(B)に,噴射圧力を0.2MPaとした従来の一般的なブラスト加工(比較例2)で処理した後のテストピースを図14(A),(B)に,噴射圧力を0.4MPaとした従来の一般的なブラスト加工(比較例3)で処理した後のテストピースを図15(A),(B)に,それぞれ示す。
(3) Test results The surface condition of an untreated test piece (used in Example 3) is shown in FIGS. 12 (A) and 12 (B). The test piece after treatment by the method of the present invention (Example 3) is shown in FIGS. FIGS. 13A and 13B show the surface state, and the test pieces after the conventional general blast processing (Comparative Example 2) with an injection pressure of 0.2 MPa are shown in FIGS. 15A and 15B show test pieces after being processed by a conventional general blasting process (Comparative Example 3) with an injection pressure of 0.4 MPa, respectively.

また,各テストピースの表面粗さを下記の表3に示す。   The surface roughness of each test piece is shown in Table 3 below.

(4)試験結果に基づく考察
上記の結果より,本発明の研磨方法(実施例3)では,未処理のテストピースに対して表面粗さが改善されており,アルミのように研磨材の衝突により塑性変形を生じ得る材質に対しても,本発明の方法によれば梨地等を発生させることなく好適に研磨を行えることが確認された。
(4) Consideration based on test results From the above results, in the polishing method of the present invention (Example 3), the surface roughness was improved with respect to the untreated test piece, and the impact of abrasives like aluminum According to the method of the present invention, it was confirmed that polishing can be suitably performed on a material that can cause plastic deformation due to the above, without causing a matte finish or the like.

また,図12と図13との比較より判るように,未処理のテストピース表面に明確に現れていたヘアライン〔テストピースを幅方向に横断する凹溝及び凸条:図12(A),(B)参照〕が,本発明の処理(実施例3)を行った後には,完全に消失していた〔図13(A),(B)〕。   Further, as can be seen from a comparison between FIG. 12 and FIG. 13, hairlines clearly appearing on the surface of the untreated test piece [concave grooves and ridges crossing the test piece in the width direction: FIG. 12 (A), ( B)] completely disappeared after the processing of the present invention (Example 3) was performed [FIGS. 13A and 13B].

これに対し,従来の一般的なブラスト加工では,噴射圧力を0.2MPaとして,テストピースの表面粗さ(一例としてRa)が大幅に変化(悪化)しない程度に加工を行った場合(比較例2)では,ヘアラインの痕跡を明確に確認することができ〔図14(A),(B)参照〕,しかも,表面粗さが改善されることなく悪化していた(表3参照)。   On the other hand, in the conventional general blasting, when the injection pressure is set to 0.2 MPa, the surface roughness of the test piece (for example, Ra) is processed so as not to change (deteriorate) significantly (comparative example) In 2), traces of the hairline could be clearly confirmed (see FIGS. 14A and 14B), and the surface roughness deteriorated without improvement (see Table 3).

また,従来の一般的なブラスト加工において,噴射圧力を0.4MPaとして更に加工度を上げた場合(比較例3)では,図15(A),(B)に示すように比較例2の場合に比較してヘアラインの存在は不鮮明とはなっているものの,図15(B)に示した立体像の長さ方向の両側辺の形状を観察すると,凹凸の現れ方に一致が見られ,依然として元のヘアラインにおける山頂乃至は谷底に対応する凹凸形状が維持されていることが判る。   Further, in the conventional general blast processing, when the injection pressure is set to 0.4 MPa and the degree of processing is further increased (Comparative Example 3), the case of Comparative Example 2 as shown in FIGS. 15 (A) and 15 (B). Although the presence of the hairline is unclear compared to the above, when the shape of both sides in the length direction of the stereoscopic image shown in FIG. It can be seen that the concavo-convex shape corresponding to the top or bottom of the original hairline is maintained.

しかも,このようにして加工度を上げることで,未処理のテストピースはもとより,比較例2のテストピースとの比較でも,粗さの数値が大幅に上昇しており,表面粗さが改善されることなく,更に悪化していることが確認された。   Moreover, by increasing the degree of processing in this way, the numerical value of the roughness is greatly increased in comparison with the test piece of Comparative Example 2 as well as the untreated test piece, and the surface roughness is improved. It was confirmed that the condition was getting worse.

以上の試験結果からも,従来の一般的なブラスト加工では,図18を参照して説明したように,元の表面凹凸が持つ形態的な特徴を維持しつつ,テストピースの表面全体に対し深さ方向の切削が行われていることが判り,その結果,ヘアラインが形成されているテストピースを加工した場合,切削量を増加させても,ヘアライン乃至はその痕跡を完全に除去することができなかったものと考えられる。   From the above test results, in the conventional general blasting process, as described with reference to FIG. 18, the morphological characteristics of the original surface irregularities are maintained, and the entire surface of the test piece is deepened. As a result, when the test piece on which the hairline is formed is machined, it is possible to completely remove the hairline or traces even if the cutting amount is increased. It is thought that there was not.

これに対し,本発明の加工方法(実施例3)にあっては,未処理のテストピースの表面に生じていたヘアラインが完全に消失していることからも明らかなように,研磨材を被加工物の表面に沿って滑動させることにより,図6を参照して説明したように凹凸の山の部分を切削除去することにより,深さ方向への切削量を増やすことなく必要最小限の切削で効率的に元の凹凸が持っていた形態的な特徴を消失させているものと考えられる。   On the other hand, in the processing method of the present invention (Example 3), it is clear from the fact that the hairline generated on the surface of the untreated test piece has completely disappeared. By sliding along the surface of the workpiece, as described with reference to FIG. 6, the minimum and maximum cutting is achieved without increasing the amount of cutting in the depth direction by cutting and removing the uneven peaks. It is thought that the morphological features that the original unevenness had had disappeared efficiently.

このような特徴から,本発明の研磨方法は,従来の一般的なブラスト加工方法では行うことができなかった,平坦度の改善や,各種機械部品等のツールマークの除去,表面粗れを生じることなく表面に形成された被膜を除去する等といった作業に好適に適用できるものと考えられる。   Due to these characteristics, the polishing method of the present invention improves the flatness, removes tool marks such as various machine parts, and causes surface roughness, which cannot be performed by the conventional general blasting method. It is considered that the present invention can be suitably applied to operations such as removing a film formed on the surface without any problems.

なお,実施例3における加工後の表面粗さであるRa0.133μmという数値は,従来の一般的なブラスト加工において,番手で3倍程度(♯3000程度)の細かい研磨材を使用して加工を行ったと同程度の表面粗さの状態である。   The numerical value of Ra 0.133 μm, which is the surface roughness after processing in Example 3, is processed by using a fine abrasive of about 3 times (about # 3000) in the conventional general blast processing. The surface roughness is almost the same as that performed.

一般に研磨材は粒径が小さい微粉となる程高価であると共に,粒子同士の結合による凝集,飛散や浮遊による作業環境の汚染,更に材質によっては粉塵火災の危険がある等,取り扱いが難しくなることから,本発明の方法によれば,従来の一般的なブラスト加工に比較して粒径の大きな研磨材,従って安価で取り扱いが容易な研磨材を使用して,同等以上の効果が得られることが判る。   In general, abrasives are more expensive as they become smaller powders, and they are difficult to handle, such as aggregation due to bonding between particles, contamination of the work environment due to scattering and floating, and risk of dust fire depending on the material. From the above, according to the method of the present invention, the same or better effect can be obtained by using an abrasive having a larger particle size compared to conventional general blasting, and hence an inexpensive and easy to handle abrasive. I understand.

B−2.加工条件の変化に伴う影響の確認試験(実施例3〜5)
(1)試験の目的
使用する研磨材の粒径及び研磨材供給圧力(図1における搬送流体P2の圧力)の変化が加工状態に及ぼす影響を確認する。
B-2. Confirmation test of influence accompanying change of processing conditions (Examples 3 to 5)
(1) Purpose of the test The effect of changes in the particle size of the abrasive used and the abrasive supply pressure (pressure of the carrier fluid P2 in FIG. 1) on the processing state is confirmed.

(2)試験方法
ヘアライン加工されたアルミ合金板(A5052P)から成る3枚のテストピースに対し,本発明の方法によりそれぞれ下記の表4に示す条件で加工を行った。
(2) Test Method Three test pieces made of a hairline processed aluminum alloy plate (A5052P) were processed according to the method of the present invention under the conditions shown in Table 4 below.

(3)試験結果
実施例4による処理後のテストピースの表面状態を図16(A),(B)に,実施例5による処理後のテストピースの表面状態を図17(A),(B)にそれぞれ示す。
(3) Test results The surface state of the test piece after the treatment according to Example 4 is shown in FIGS. 16A and 16B, and the surface state of the test piece after the treatment according to Example 5 is shown in FIGS. ) Respectively.

なお,未処理のテストピース(実施例3で使用したもの)の表面状態は,図12(A),(B)を,実施例3による処理後のテストピースの表面状態は図13(A),(B)を参照。   The surface state of the untreated test piece (used in Example 3) is shown in FIGS. 12A and 12B, and the surface state of the test piece after treatment in Example 3 is shown in FIG. See (B).

また,各テストピースの表面粗さを下記の表5に示す。   The surface roughness of each test piece is shown in Table 5 below.

(4)試験結果に基づく考察
以上の結果から,実施例3〜5のいずれの条件で加工したものについてもヘアラインの除去が行われていることが確認できた(図13,16,17参照)。
(4) Consideration based on test results From the above results, it was confirmed that the hairline was removed for those processed under any of the conditions of Examples 3 to 5 (see FIGS. 13, 16, and 17). .

従来の一般的なブラスト加工(比較例2,3)のように,研磨材がテストピースの表面に対し深さ方向の切削力を発揮している場合には,ヘアラインを完全に除去することができないことに鑑みれば,ヘアラインが消失している実施例3〜5の加工では,使用する研磨材の粒径の相違に拘わらず,いずれも研磨材を被加工物の表面に沿って滑動させることにより,テストピースの表面に対し水平方向の切削力を発揮させることができているものと考えられる。   When the abrasive material exhibits a cutting force in the depth direction against the surface of the test piece as in the conventional general blasting (Comparative Examples 2 and 3), the hairline can be completely removed. In view of the inability to do so, in the processing of Examples 3 to 5 where the hairline has disappeared, the abrasive is slid along the surface of the workpiece regardless of the particle size of the abrasive used. Therefore, it is considered that the cutting force in the horizontal direction can be exerted on the surface of the test piece.

また,実施例3及び5では,研磨材の搬送に使用している搬送流体P2の圧力を0.1MPaとしているのに対し,実施例3では2倍の0.2MPaとし,噴射流体P1の圧力に対して3分の2の圧力に上昇させているが,このような圧力上昇によっても,被加工物の表面に対する垂直方向の切削を抑制できることが確認できた。   In Examples 3 and 5, the pressure of the transport fluid P2 used for transporting the abrasive is 0.1 MPa, whereas in Example 3, the pressure of the jet fluid P1 is doubled to 0.2 MPa. However, it was confirmed that cutting in the direction perpendicular to the surface of the workpiece could be suppressed even by such a pressure increase.

以上で説明した本発明の研磨方法は,従来の一般的なブラスト加工や,既知の研磨方法,例えば研磨紙や研磨布による研磨やラッピング,バフがけ,超音波研磨等に代えて,これらが行われていた各種分野において利用可能である。   The polishing method of the present invention described above is performed in place of conventional general blasting and known polishing methods, such as polishing, lapping, buffing, ultrasonic polishing, and the like using polishing paper or polishing cloth. It can be used in various fields.

特に,本発明の研磨方法は,研磨材を被加工物の表面で滑動させることにより,被加工物の表面に対する垂直方向の切削力の発生を抑制する一方で,水平方向の切削力を発揮させて行うものであるから,被加工物の対するダメージを可及的に減少させ,且つ,深さ方向の切削量を減少して表面部分を薄くはぎ取るような研磨を行うことが可能であるから,特に以下のような分野における利用が期待される。   In particular, the polishing method of the present invention allows the abrasive to slide on the surface of the workpiece, thereby suppressing the generation of a cutting force in the vertical direction with respect to the surface of the workpiece, while exerting the horizontal cutting force. Therefore, it is possible to reduce the damage to the work piece as much as possible and to reduce the amount of cutting in the depth direction and to polish the surface part thinly. In particular, it is expected to be used in the following fields.

(1)ラップ前処理
ラップ処理を行う前処理として,被加工物の表面粗さの改善に利用することができ,特に,本発明の方法では,前述したように被加工物に対して与えるダメージが少ないことから,例えばウェハ(シリコン,石英,サファイア等)の研磨の前処理に使用するに適している。しかも,本発明の方法では,高い表面粗さの改善効果が得られることから,その後のラッピングの労力も大幅に軽減可能となることが期待できる。
(1) Lapping pretreatment As a pretreatment for lapping, it can be used to improve the surface roughness of the workpiece. In particular, in the method of the present invention, as described above, damage to the workpiece is caused. For example, it is suitable for use in pretreatment for polishing a wafer (silicon, quartz, sapphire, etc.). Moreover, since the method of the present invention can improve the surface roughness, it can be expected that the subsequent lapping effort can be greatly reduced.

(2)薄膜除去等
本発明の方法では,研磨材が被加工物表面を滑動することにより,深さ方向の切削量を増加させることなく表面付近の切削が可能であるため,シリコンウエハー表面に形成された薄膜除去等に対しても必要以上の深さで母材を切削することなく薄膜を除去することが可能である。
(2) Thin film removal etc. In the method of the present invention, since the abrasive slides on the surface of the workpiece, cutting near the surface is possible without increasing the amount of cutting in the depth direction. It is possible to remove the thin film without cutting the base material at a depth more than necessary for removing the formed thin film.

特に,薄膜上に材質の異なる薄膜を形成している場合であっても,本発明の方法による一工程で除去することが可能であり,化学的にエッチングにより除去する場合のように被膜の材質に応じた薬液の交換等の煩雑な作業が不要となる。   In particular, even when a thin film of a different material is formed on the thin film, it can be removed in one step according to the method of the present invention. This eliminates the need for complicated work such as replacement of chemical solutions according to the conditions.

(3)積層膜の形成前処理(表面活性化)
更に,本発明の方法では,被加工物の表面を滑動する研磨材によって被加工物の表面を極僅かに薄くはぎ取ることが可能であることから,例えばスパッタリングや各種蒸着等による積層膜の形成に先立ち母材の表面に対し本発明の表面処理を施すことで,表面に生じている酸化被膜等を除去して活性表面を露出させる作業を,母材の平坦さを大きく低下させることなく行うことができるものと考える。
(3) Pre-formation process (surface activation) of laminated film
Furthermore, in the method of the present invention, the surface of the work piece can be peeled off very slightly with an abrasive that slides on the surface of the work piece. By performing the surface treatment of the present invention on the surface of the base material in advance, the work to remove the oxide film etc. generated on the surface and expose the active surface is performed without greatly reducing the flatness of the base material. I think that I can do it.

従って,本発明の研磨方法を,スパッタリングや各種蒸着による積層膜の形成の前処理として行うことで,母材と積層膜の密着強度の向上が得られることが期待される。   Therefore, it is expected that the adhesion strength between the base material and the laminated film can be improved by performing the polishing method of the present invention as a pretreatment for forming the laminated film by sputtering or various vapor depositions.

(4)傷消し,ツールマークの除去
なお,前述したように本発明の方法によれば,テストピース上に形成されたヘアラインの除去が可能であることから,金型や各種機械加工部品の表面に生じた傷や,バイトとの接触痕として生じるツールマークの除去等に際しても好適に利用できる。
(4) Scratching and tool mark removal As described above, according to the method of the present invention, it is possible to remove the hairline formed on the test piece. It can also be suitably used for removing scratches generated on the tool and tool marks generated as contact marks with the cutting tool.

1 ブラストノズル
10 加速流発生ノズル
11 噴射口
20 研磨材導入路
21 開口
23 連結管
24 研磨材ノズル
25 研磨材ホース
30 研磨材
P1 噴射流体
P2 搬送流体
S 加速流
W 被加工物
δ1 間隔(加速流発生ノズルの先端と被加工物の表面間の)
δ2 突出長さ(研磨材導入路の開口に対する加速流発生ノズル先端の)
DESCRIPTION OF SYMBOLS 1 Blast nozzle 10 Acceleration flow generation nozzle 11 Injection port 20 Abrasive material introduction path 21 Opening 23 Connection pipe 24 Abrasive material nozzle 25 Abrasive material hose 30 Abrasive material P1 Injection fluid P2 Conveyance fluid S Acceleration flow W Workpiece δ1 interval (acceleration flow (Between the tip of the generating nozzle and the surface of the workpiece)
δ2 Protrusion length (accelerated flow generation nozzle tip with respect to abrasive material introduction path opening)

Claims (11)

被加工物の表面に向けて配置した加速流発生ノズルに噴射流体として研磨材を含まない圧縮気体を導入すると共に噴射して,前記被加工物の表面に沿った加速流を発生させ,
前記加速流の発生位置で前記被加工物の表面に向かって開口する研磨材導入路に研磨材を導入することにより,前記加速流に研磨材を合流させて,前記研磨材を被加工物の表面に沿って滑走させることを特徴とする研磨方法。
Injecting and injecting a compressed gas not containing an abrasive as an injection fluid into an acceleration flow generating nozzle arranged toward the surface of the workpiece, and generating an acceleration flow along the surface of the workpiece,
By introducing an abrasive into an abrasive introduction path that opens toward the surface of the workpiece at the position where the accelerated flow is generated, the abrasive is joined to the accelerated flow, and the abrasive is moved to the workpiece. A polishing method characterized by sliding along a surface.
前記研磨材を,前記加速流発生ノズルに導入する前記噴射流体に比較して低圧の圧縮気体である搬送流体と混合して前記研磨材導入路に導入することを特徴とする請求項1記載の研磨方法。   2. The abrasive according to claim 1, wherein the abrasive is mixed with a carrier fluid which is a compressed gas having a pressure lower than that of the jet fluid introduced into the acceleration flow generation nozzle and introduced into the abrasive introduction path. Polishing method. 前記噴射流体に対し,前記搬送流体を3分の2以下の圧力としたことを特徴とする請求項2記載の研磨方法。   The polishing method according to claim 2, wherein the carrier fluid is set to a pressure equal to or less than two-thirds of the jet fluid. 前記加速流発生ノズルの噴射口と被加工物の表面間の間隔に対し,前記研磨材導入路の開口と被加工物の表面間の間隔を広くしたことを特徴とする請求項1〜3いずれか1項記載の研磨方法。   4. The gap between the opening of the abrasive introduction path and the surface of the workpiece is made wider than the gap between the jet of the acceleration flow generating nozzle and the surface of the workpiece. The polishing method according to claim 1. 前記加速流発生ノズルの噴射口と被加工物の表面間の間隔を0.5〜3.0mmとすると共に,前記研磨材導入路の開口と前記被加工物の表面間の間隔を,前記加速流発生ノズルの噴射口と被加工物の表面間の間隔に対して1.0〜3.0mm広く形成したことを特徴とする請求項4記載の研磨方法。   The distance between the jet of the acceleration flow generating nozzle and the surface of the workpiece is set to 0.5 to 3.0 mm, and the distance between the opening of the abrasive introduction path and the surface of the workpiece is accelerated. 5. The polishing method according to claim 4, wherein the polishing method is formed to be 1.0 to 3.0 mm wider than a distance between the jet port of the flow generating nozzle and the surface of the workpiece. 圧縮気体供給源より噴射流体として供給された研磨材を含まない圧縮気体を被加工物の表面に向かって噴射して,前記被加工物の表面に沿った加速流を発生させる加速流発生ノズルと,
前記加速流の発生位置で前記被加工物の表面に向かって開口すると共に,研磨材供給源からの研磨材が導入される研磨材導入路を備えたことを特徴とするブラスト加工装置のノズル構造。
An acceleration flow generating nozzle for injecting a compressed gas not containing an abrasive supplied from a compressed gas supply source toward the surface of the workpiece and generating an acceleration flow along the surface of the workpiece; ,
A nozzle structure for a blasting apparatus, comprising an abrasive introduction path that opens toward the surface of the workpiece at a position where the acceleration flow is generated and into which an abrasive from an abrasive supply source is introduced .
前記研磨材導入路を,圧縮気体である搬送流体との混合流体として前記研磨材を供給する研磨材供給源に連通することを特徴とする請求項6記載のブラスト加工装置におけるノズル構造。   The nozzle structure in the blast processing apparatus according to claim 6, wherein the abrasive introduction path communicates with an abrasive supply source that supplies the abrasive as a mixed fluid with a carrier fluid that is a compressed gas. 前記加速流発生ノズルの噴射口側の端部を,前記研磨材導入路内に配置したことを特徴とする請求項6又は7記載のブラスト加工装置のノズル構造。   The nozzle structure of the blast processing apparatus according to claim 6 or 7, wherein an end portion on the injection port side of the acceleration flow generating nozzle is disposed in the abrasive introduction path. 前記加速流発生ノズルの噴射口をスリット状に形成すると共に,前記研磨材導入路の開口を前記噴射口と平行に配置したことを特徴とする請求項6又は7記載のブラストノズル。   The blast nozzle according to claim 6 or 7, wherein the blast nozzle of the acceleration flow generating nozzle is formed in a slit shape, and the opening of the abrasive introduction path is arranged in parallel to the blast port. 前記加速流発生ノズルの噴射口の両側に,前記研磨材導入路の開口を配置したことを特徴とする請求項9記載のブラストノズル。   The blast nozzle according to claim 9, wherein openings for the abrasive introduction path are arranged on both sides of the injection port of the acceleration flow generating nozzle. 前記加速流発生ノズルの噴射口を,前記研磨材導入路の開口に対し1.0〜3.0mm噴射方向に突出させたことを特徴とする請求項6〜10いずれか1項記載のブラストノズル。   The blast nozzle according to any one of claims 6 to 10, wherein an injection port of the acceleration flow generation nozzle is projected in an injection direction of 1.0 to 3.0 mm with respect to an opening of the abrasive material introduction path. .
JP2011090365A 2011-04-14 2011-04-14 Polishing method and nozzle structure of blast processing apparatus Active JP5746901B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011090365A JP5746901B2 (en) 2011-04-14 2011-04-14 Polishing method and nozzle structure of blast processing apparatus
US13/428,565 US20120264355A1 (en) 2011-04-14 2012-03-23 Polishing method by blasting and nozzle structure for a blasting apparatus for use in the polishing method
KR1020120033755A KR101940571B1 (en) 2011-04-14 2012-04-02 Polishing method by blasting and nozzle structure for a blasting apparatus for use in the polishing method
CN201210102487.5A CN102729153B (en) 2011-04-14 2012-04-09 By the finishing method of sandblasting and the nozzle arrangements of its sand blasting unit used

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011090365A JP5746901B2 (en) 2011-04-14 2011-04-14 Polishing method and nozzle structure of blast processing apparatus

Publications (3)

Publication Number Publication Date
JP2012223823A true JP2012223823A (en) 2012-11-15
JP2012223823A5 JP2012223823A5 (en) 2014-05-22
JP5746901B2 JP5746901B2 (en) 2015-07-08

Family

ID=46985816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011090365A Active JP5746901B2 (en) 2011-04-14 2011-04-14 Polishing method and nozzle structure of blast processing apparatus

Country Status (4)

Country Link
US (1) US20120264355A1 (en)
JP (1) JP5746901B2 (en)
KR (1) KR101940571B1 (en)
CN (1) CN102729153B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5606824B2 (en) * 2010-08-18 2014-10-15 株式会社不二製作所 Mold surface treatment method and mold surface-treated by the above method
US20130084190A1 (en) * 2011-09-30 2013-04-04 General Electric Company Titanium aluminide articles with improved surface finish and methods for their manufacture
US9011205B2 (en) * 2012-02-15 2015-04-21 General Electric Company Titanium aluminide article with improved surface finish
CN103128672B (en) * 2013-02-05 2015-02-18 浙江工业大学 Constraint abrasive flow polishing tool head
JP6426395B2 (en) * 2014-08-06 2018-11-21 ブラスト工業株式会社 Blasting apparatus and blasting method
JP6540821B2 (en) * 2015-11-09 2019-07-10 日産自動車株式会社 Surface treatment apparatus and surface treatment method
DE102015224933A1 (en) * 2015-12-11 2017-06-14 Siltronic Ag Monocrystalline semiconductor wafer and method for producing a semiconductor wafer
EP3578297B1 (en) * 2018-06-04 2021-12-22 Audi Ag Device and method for producing a matt surface
JP6886734B1 (en) * 2020-02-20 2021-06-16 株式会社不二製作所 Elastic Abrasive Manufacturing Method, Elastic Abrasive Manufacturing Equipment, Blasting Method, and Blasting Equipment
CN113211323B (en) * 2021-03-05 2023-02-24 贺州学院 Cutter polishing process method based on flexible abrasive particle flow
CN113843717B (en) * 2021-11-09 2023-07-14 西安热工研究院有限公司 Quick polishing device and method for thermal spraying hard coating
CN114473876B (en) * 2022-02-08 2023-03-24 成都中科翼能科技有限公司 Method for removing residual permeable layer on surface of blade
CN116038444B (en) * 2023-03-27 2023-06-23 四川托璞勒科技有限公司 Ultrasonic grinder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119322A (en) * 1984-11-13 1986-06-06 Ishikawajima Harima Heavy Ind Co Ltd Descaling method
JPH0724736A (en) * 1993-07-12 1995-01-27 Nippon Steel Corp Nozzle assembly for noise eliminated water jet
JP2006123151A (en) * 2004-11-01 2006-05-18 Fuji Seisakusho:Kk Polishing method of workpiece and blast processing device used for the method
JP2006218559A (en) * 2005-02-09 2006-08-24 Tokyo Univ Of Science Granular material injection device

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2462480A (en) * 1944-01-08 1949-02-22 Arthur H Eppler Polishing method and apparatus
US3186132A (en) * 1963-09-16 1965-06-01 Zero Mfg Company Surface treating apparatus and method
US3427763A (en) * 1966-07-18 1969-02-18 Woma Maasberg Co Gmbh W Method of treating solid surfaces
US4405878A (en) * 1979-05-09 1983-09-20 The United States Of America As Represented By The Secretary Of The Army Bonded grid-cathode electrode structure
FR2523019B1 (en) * 1982-03-15 1985-11-08 Commissariat Energie Atomique FLAT JET SANDBLASTING NOZZLE CONTAINING SOLID ABRASIVE PARTICLES, AND METHOD FOR IMPLEMENTING A SANDBLASTING NOZZLE FOR RADIOACTIVE DECONTAMINATION
US4666083A (en) * 1985-11-21 1987-05-19 Fluidyne Corporation Process and apparatus for generating particulate containing fluid jets
GB8628930D0 (en) * 1986-12-03 1987-01-07 Mccoll & Co Ltd K G Sand blasting
US4984396A (en) * 1988-08-29 1991-01-15 Uragami Fukashi Cleaning device
US4941298A (en) * 1988-09-28 1990-07-17 Mark Fernwood Rear reservoir micro sandblaster
US5551909A (en) * 1990-12-28 1996-09-03 Bailey; Donald C. Method and apparatus for cleaning with high pressure liquid at low flow rates
JPH0725029B2 (en) * 1991-09-13 1995-03-22 株式会社ニッチュー Pneumatic blasting device with control mechanism of abrasive distribution
DE4225590C2 (en) * 1992-08-03 1995-04-27 Johann Szuecs Device for the treatment of sensitive surfaces, in particular sculptures
US7226342B2 (en) * 1995-08-21 2007-06-05 Reuben Hertz Handheld apparatus for delivery of particulate matter with directional flow control
US6126528A (en) * 1995-09-18 2000-10-03 3M Innovative Properties Company Preformed ophthalmic lens base block with textured surface
JP3086784B2 (en) * 1996-08-19 2000-09-11 株式会社不二製作所 Blasting method and apparatus
KR19980018601U (en) * 1996-09-30 1998-07-06 양재신 Multiple Sunvisor
DE19651107C2 (en) * 1996-12-09 1999-12-16 Anton Jaeger Sandblasting nozzle
AU747679B2 (en) * 1997-07-11 2002-05-16 Waterjet Technology, Inc. Method and apparatus for producing a high-velocity particle stream
US6053803A (en) * 1997-09-16 2000-04-25 S.S. White Technologies Inc. Apparatus and method for generating a pressurized fluid stream having abrasive particles
US6273788B1 (en) * 1999-07-23 2001-08-14 General Electric Company Sustained surface scrubbing
US6910957B2 (en) * 2000-02-25 2005-06-28 Andrew M. Taylor Method and apparatus for high pressure article cleaner
JP2001252872A (en) * 2000-03-08 2001-09-18 Sinto Brator Co Ltd Quantitative supply device for projection material
US6383062B1 (en) * 2000-06-01 2002-05-07 Wuu-Cheau Jou Sandblasting gun
DE10102924C1 (en) * 2001-01-23 2002-06-13 Pieper Innovationsgmbh Blasting treatment process for hard surfaces involves applying at least one auxiliary energy pulse to blasting medium
US6402593B1 (en) * 2001-01-29 2002-06-11 General Electric Company Bilayer surface scrubbing
US6752685B2 (en) * 2001-04-11 2004-06-22 Lai East Laser Applications, Inc. Adaptive nozzle system for high-energy abrasive stream cutting
US6601783B2 (en) * 2001-04-25 2003-08-05 Dennis Chisum Abrasivejet nozzle and insert therefor
US6520838B1 (en) * 2001-06-25 2003-02-18 General Electric Company Shielded spin polishing
JP2003305634A (en) * 2002-02-13 2003-10-28 Aoki Gijutsu Kenkyusho:Kk Surface roughing method of processed article and device for it
US7303600B2 (en) * 2002-04-25 2007-12-04 Advanced Minerals Corporation Unexpanded perlite ore polishing composition and methods
US7727054B2 (en) * 2002-07-26 2010-06-01 Saint-Gobain Abrasives, Inc. Coherent jet nozzles for grinding applications
JP4331985B2 (en) 2003-06-30 2009-09-16 株式会社不二製作所 Workpiece polishing method and jet guiding means and jet regulating means used in the method
US7052362B2 (en) * 2003-10-29 2006-05-30 Lynn William R Blendable blasting media and method of reusing and discharging same
US7125322B1 (en) * 2004-09-17 2006-10-24 Electronics, Inc. Media transport device providing stable flow of media
KR100709587B1 (en) * 2004-11-11 2007-04-20 가부시끼가이샤 후지세이사쿠쇼 Abrasive, a method for manufacturing the abrasive, and a method for blast processing with the use of the abrasive
JP4901184B2 (en) 2004-11-11 2012-03-21 株式会社不二製作所 Abrasive material, method for producing the abrasive material, and blasting method using the abrasive material
US7347768B1 (en) * 2006-07-28 2008-03-25 United States Of America As Represented By The Secretary Of The Army Apparatus and method to test abrasion resistance of material using airborne particulate
EP2132001B1 (en) * 2007-02-23 2014-10-01 TGC Technologie- Beteiligungsgesellschaft mbH Method for grinding and polishing wooden materials
JP5183089B2 (en) * 2007-04-18 2013-04-17 株式会社不二製作所 Abrasive material supply equipment
US8834232B2 (en) * 2007-08-21 2014-09-16 Abrasive Cutting Technology Ltd. Fluid/abrasive jet cutting arrangement
KR20100074154A (en) * 2007-08-21 2010-07-01 어브래시브 커팅 테크놀로지 엘티디 Cutting head and cutting nozzle for a liquid/abrasive jet cutting arrangement
JP5074136B2 (en) * 2007-09-19 2012-11-14 株式会社不二製作所 Abrasive material supply equipment
US8308525B2 (en) * 2008-11-17 2012-11-13 Flow Internationl Corporation Processes and apparatuses for enhanced cutting using blends of abrasive materials
WO2010122851A1 (en) * 2009-04-21 2010-10-28 シャープ株式会社 Blasting apparatus and method for blasting
US8389066B2 (en) * 2010-04-13 2013-03-05 Vln Advanced Technologies, Inc. Apparatus and method for prepping a surface using a coating particle entrained in a pulsed waterjet or airjet
JP5504079B2 (en) * 2010-07-13 2014-05-28 株式会社不二製作所 Abrasive material supply equipment
JP7025029B2 (en) * 2019-04-05 2022-02-24 株式会社高尾 Pachinko machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119322A (en) * 1984-11-13 1986-06-06 Ishikawajima Harima Heavy Ind Co Ltd Descaling method
JPH0724736A (en) * 1993-07-12 1995-01-27 Nippon Steel Corp Nozzle assembly for noise eliminated water jet
JP2006123151A (en) * 2004-11-01 2006-05-18 Fuji Seisakusho:Kk Polishing method of workpiece and blast processing device used for the method
JP2006218559A (en) * 2005-02-09 2006-08-24 Tokyo Univ Of Science Granular material injection device

Also Published As

Publication number Publication date
KR20120117644A (en) 2012-10-24
KR101940571B1 (en) 2019-04-10
JP5746901B2 (en) 2015-07-08
CN102729153B (en) 2016-08-03
CN102729153A (en) 2012-10-17
US20120264355A1 (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP5746901B2 (en) Polishing method and nozzle structure of blast processing apparatus
JP5782338B2 (en) End processing method for plate material and blasting apparatus
TWI421934B (en) Method for polishing a semiconductor wafer
US8721390B2 (en) Method for the double-side polishing of a semiconductor wafer
Lv et al. A research on ultrasonic-assisted abrasive waterjet polishing of hard-brittle materials
CN105390383A (en) Wafer processing method
TW201318776A (en) Processing device for board-shaped object and processing method for board-shaped object
US10029941B2 (en) Machining methods of forming laminated glass structures
CN109822290B (en) Preparation method of jet polishing micro-texture coating cutter and cutting method of coating cutter matched with micro-lubrication
JP2003048160A (en) Minute groove machining method and device therefor
CN107199514A (en) Superhard material jet polishing method
JP6315471B2 (en) Method of dividing plate workpiece
JP2005022015A (en) Workpiece polishing method, and jet guiding means and jet regulating means used for the method
US9969058B2 (en) System and method for contoured peel grinding
CN107520681A (en) A kind of sectional material polishing technique
JP2014046392A (en) Scribing method, and blast processing apparatus for scribing process
JP2012101327A (en) Method of chamfering wafer
JP2015207658A (en) Method and device of polishing disc-like semiconductor wafer edge part
Ichida et al. Formation mechanism of finished surface in ultrahigh-speed grinding with cubic boron nitride (cBN) wheels
JP2004200240A (en) Manufacturing method for single-sided mirror finished wafer
TW202120189A (en) Grinding chamber with multiple vibration sources capable of forming multi-directional medium flow to achieve grinding process in all orientations
JP6976713B2 (en) Chamfer grinding method and chamfer grinding equipment
Li et al. Material removal model for abrasive jet precision finishing restricted by abrasive wheel.
CN107529474A (en) A kind of brake disc polishing process
CN107529476A (en) A kind of technique for grinding of Surface of profile

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150511

R150 Certificate of patent or registration of utility model

Ref document number: 5746901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250