JP2012223299A - Apparatus for measuring ununiformity in static magnetic field in magnetic resonance imaging system - Google Patents

Apparatus for measuring ununiformity in static magnetic field in magnetic resonance imaging system Download PDF

Info

Publication number
JP2012223299A
JP2012223299A JP2011092560A JP2011092560A JP2012223299A JP 2012223299 A JP2012223299 A JP 2012223299A JP 2011092560 A JP2011092560 A JP 2011092560A JP 2011092560 A JP2011092560 A JP 2011092560A JP 2012223299 A JP2012223299 A JP 2012223299A
Authority
JP
Japan
Prior art keywords
magnetic field
static magnetic
measurement
measuring
resonance imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011092560A
Other languages
Japanese (ja)
Inventor
Hiroshi Shirakawa
洋 白川
Hidehisa Akimaru
英久 秋丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2011092560A priority Critical patent/JP2012223299A/en
Publication of JP2012223299A publication Critical patent/JP2012223299A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for measuring ununiformity in a static magnetic field in a magnetic resonance imaging system, which is improved in convenience when adjusting ununiformity in the static magnetic field in an MRI system.SOLUTION: The apparatus for measuring ununiformity in a static magnetic field in a magnetic resonance imaging system includes: a static magnetic field-generating means for generating a static magnetic field in an imaging space where a subject is disposed; a means for adjusting ununiformity in the static magnetic field for adjusting the static magnetic field in the imaging space to have uniformity; and a display means for displaying the result of measurement of the static magnetic field in each part obtained using the apparatus for measuring ununiformity in a static magnetic field with a frequency spectrum.

Description

本発明は、磁気共鳴イメージング(以下、MRIという。)装置における静磁場不均一測定装置に係り、特にMRI装置において静磁場不均一を調整する際に、その利便性を向上させる技術に関する。   The present invention relates to a static magnetic field inhomogeneity measuring apparatus in a magnetic resonance imaging (hereinafter referred to as MRI) apparatus, and more particularly to a technique for improving the convenience when adjusting the static magnetic field inhomogeneity in an MRI apparatus.

MRI装置は、被検体、特に人体の組織を構成する原子核スピンが発生するNMR信号を計測し、その頭部、腹部、四肢等の形態や機能を2次元的に或いは3次元的に画像化する装置である。撮影においては、NMR信号には、傾斜磁場によって異なる位相エンコードが付与されるとともに周波数エンコードされて、時系列データとして計測される。計測されたNMR信号は、2次元又は3次元フーリエ変換されることにより画像に再構成される。   The MRI device measures NMR signals generated by the spins of the subject, especially the tissues of the human body, and visualizes the form and function of the head, abdomen, limbs, etc. in two or three dimensions Device. In imaging, the NMR signal is given different phase encoding depending on the gradient magnetic field, frequency-encoded, and measured as time series data. The measured NMR signal is reconstructed into an image by two-dimensional or three-dimensional Fourier transform.

このMRI装置では、撮影のために必要となる静磁場を調整するシミング(例えば、特許文献1参照)において、所望の撮像空間内の磁場を複数箇所測定する必要があるが、この測定においては従来、高価かつ複雑なガウスメーターによる方法と、安価かつ手動のMRIシステムの周波数測定機能を利用した方法があった。   In this MRI apparatus, it is necessary to measure a plurality of magnetic fields in a desired imaging space in shimming (for example, refer to Patent Document 1) for adjusting a static magnetic field necessary for imaging. There were an expensive and complicated method using a gauss meter and a method using the frequency measurement function of an inexpensive and manual MRI system.

特開2004-73752号公報JP 2004-73752 A

しかしながら、安価かつ手動のMRIシステムの周波数測定機能を利用した方法では、中心周波数に対して周波数測定する範囲に制限があり、また、各測定箇所において、測定結果の周波数の数字のみしか出力されなかった。そのため得られた結果が適切な値かどうか判断する材料がなく、使用者の経験で再測定の必要の有無を判断したり、装置の動作確認のための余分な作業に時間を費やすことが多々あった。また、調整が進められて間もないMRIシステムだと、測定される磁場の値が、磁場測定の中心周波数から大きくずれたまま、測定されてしまう場合があり、その場合でも、使用者は、調整作業を精度の悪いまま進めてしまうおそれがある問題があった。   However, in the method using the frequency measurement function of an inexpensive and manual MRI system, the range of frequency measurement with respect to the center frequency is limited, and only the number of the frequency of the measurement result is output at each measurement location. It was. For this reason, there is no material to judge whether the obtained results are appropriate values, and it is often necessary to judge whether re-measurement is necessary based on the experience of the user, or to spend extra work for checking the operation of the device. there were. In addition, with an MRI system that has just been adjusted, the value of the magnetic field to be measured may be measured with a significant deviation from the center frequency of the magnetic field measurement. There was a problem that adjustment work could be advanced with low accuracy.

本発明の目的は、MRI装置において静磁場不均一を調整する際に、精度良く磁場測定を行えるようにすることにある。   An object of the present invention is to enable accurate magnetic field measurement when adjusting static magnetic field inhomogeneity in an MRI apparatus.

上記の課題を解決するために、本発明は、被検体を配置する撮像空間に静磁場を発生させる静磁場発生手段と、前記撮像空間における静磁場を均一に調整するための静磁場不均一調整手段と、を備えた磁気共鳴イメージング装置における静磁場不均一測定装置において、該静磁場不均一測定装置において得られた各箇所での磁場測定の結果を、周波数スペクトルで表示する表示手段を備えたことを特徴とする磁気共鳴イメージング装置における静磁場不均一測定装置が提供される。   In order to solve the above problems, the present invention provides a static magnetic field generating means for generating a static magnetic field in an imaging space in which a subject is arranged, and a static magnetic field non-uniform adjustment for uniformly adjusting the static magnetic field in the imaging space. A static magnetic field inhomogeneous measuring apparatus in a magnetic resonance imaging apparatus, comprising: a display means for displaying a result of magnetic field measurement at each location obtained in the static magnetic field inhomogeneous measuring apparatus in a frequency spectrum An apparatus for measuring static magnetic field inhomogeneity in a magnetic resonance imaging apparatus is provided.

前記磁気共鳴イメージング装置における静磁場不均一測定装置は、複数箇所での磁場測定を行った後、任意の箇所での前記磁場測定結果を、前記周波数スペクトルで表示する手段を備えたことを特徴とする磁気共鳴イメージング装置における静磁場不均一測定装置が提供される。   The static magnetic field inhomogeneity measuring apparatus in the magnetic resonance imaging apparatus comprises means for displaying the magnetic field measurement result at an arbitrary position in the frequency spectrum after performing magnetic field measurement at a plurality of positions. An apparatus for measuring a static magnetic field inhomogeneity in a magnetic resonance imaging apparatus is provided.

前記磁気共鳴イメージング装置における静磁場不均一測定装置は、得られた前記周波数スペクトルの表示結果に応じて、前記磁場測定における測定の周波数帯域を変換する手段を備えたことを特徴とする磁気共鳴イメージング装置における静磁場不均一測定装置が提供される。   The static magnetic field inhomogeneity measuring apparatus in the magnetic resonance imaging apparatus comprises means for converting the frequency band of the measurement in the magnetic field measurement according to the obtained display result of the frequency spectrum. An apparatus for measuring static magnetic field inhomogeneity in an apparatus is provided.

本発明によれば、MRI装置において静磁場不均一を調整する際に、その利便性を向上させ、精度良く磁場測定を行えるようにすることができる。   According to the present invention, when adjusting the static magnetic field inhomogeneity in the MRI apparatus, the convenience can be improved and the magnetic field measurement can be performed with high accuracy.

本発明に係るMRI装置の一例の全体概要を説明するための図である。It is a figure for demonstrating the general outline | summary of an example of the MRI apparatus which concerns on this invention. 本発明に係るMRI装置の外観図である。1 is an external view of an MRI apparatus according to the present invention. 本発明に係るオープン型MRI装置の被検体を配置する空間33における静磁場均一度の測定方法を説明する図である。It is a figure explaining the measuring method of the static magnetic field uniformity in the space 33 which arrange | positions the test object of the open type MRI apparatus which concerns on this invention. 本発明に係る簡易磁場測定用プレートに取り付ける送受信兼用簡易磁場測定器の結線図である。It is a connection diagram of the simple magnetic field measuring device for both transmitting and receiving attached to the plate for simple magnetic field measurement according to the present invention. 撮像空間の各測定箇所を測定した場合の数値結果の表示画面を説明する図である。It is a figure explaining the display screen of the numerical result at the time of measuring each measurement location of imaging space.

以下、添付図面に従って本発明のMRI装置の好ましい実施形態について詳説する。なお、発明の実施形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。   Hereinafter, preferred embodiments of the MRI apparatus of the present invention will be described in detail with reference to the accompanying drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments of the invention, and the repetitive description thereof is omitted.

最初に、本発明に係るMRI装置の一例の全体概要を図1に基づいて説明する。図1は、本発明に係るMRI装置の一実施例の全体構成を示すブロック図である。このMRI装置は、NMR現象を利用して被検体の断層画像を得るもので、図1に示すように、MRI装置は静磁場発生系2と、傾斜磁場発生系3と、送信系5と、受信系6と、信号処理系7と、シーケンサ4と、中央処理装置(CPU)8とを備えて構成される。   First, an overall outline of an example of an MRI apparatus according to the present invention will be described with reference to FIG. FIG. 1 is a block diagram showing the overall configuration of an embodiment of an MRI apparatus according to the present invention. This MRI apparatus uses a NMR phenomenon to obtain a tomographic image of a subject.As shown in FIG. 1, the MRI apparatus includes a static magnetic field generation system 2, a gradient magnetic field generation system 3, a transmission system 5, A reception system 6, a signal processing system 7, a sequencer 4, and a central processing unit (CPU) 8 are provided.

静磁場発生系2は、垂直磁場方式であれば、被検体1の周りの空間にその体軸と直交する方向に、水平磁場方式であれば、体軸方向に均一な静磁場を発生させるもので、被検体1の周りに永久磁石方式、常電導方式あるいは超電導方式の静磁場発生源が配置されている。   The static magnetic field generation system 2 generates a uniform static magnetic field in the direction perpendicular to the body axis in the space around the subject 1 if the vertical magnetic field method is used, and in the direction of the body axis if the horizontal magnetic field method is used. Thus, a permanent magnet type, normal conducting type or superconducting type static magnetic field generating source is arranged around the subject 1.

傾斜磁場発生系3は、MRI装置の座標系(静止座標系)であるX,Y,Zの3軸方向に傾斜磁場を印加する傾斜磁場コイル9と、それぞれの傾斜磁場コイルを駆動する傾斜磁場電源10とから成り、後述のシ−ケンサ4からの命令に従ってそれぞれのコイルの傾斜磁場電源10を駆動することにより、X,Y,Zの3軸方向に傾斜磁場Gx,Gy,Gzを印加する。撮影時には、スライス面(撮影断面)に直交する方向にスライス選択傾斜磁場パルス(Gs)を印加して被検体1に対するスライス面を設定し、そのスライス面に直交して且つ互いに直交する残りの2つの方向に位相エンコード傾斜磁場パルス(Gp)と周波数エンコード傾斜磁場パルス(Gf)を印加して、エコー信号にそれぞれの方向の位置情報をエンコードする。   The gradient magnetic field generation system 3 includes a gradient magnetic field coil 9 that applies a gradient magnetic field in the three-axis directions of X, Y, and Z, which is a coordinate system (stationary coordinate system) of the MRI apparatus, and a gradient magnetic field that drives each gradient magnetic field coil. Gradient magnetic fields Gx, Gy, and Gz are applied in the X, Y, and Z axis directions by driving the gradient magnetic field power supply 10 of each coil according to a command from the sequencer 4 described later. . During imaging, a slice selection gradient magnetic field pulse (Gs) is applied in a direction orthogonal to the slice plane (imaging cross section) to set a slice plane for the subject 1, and the remaining two orthogonal to the slice plane and orthogonal to each other A phase encode gradient magnetic field pulse (Gp) and a frequency encode gradient magnetic field pulse (Gf) are applied in one direction, and position information in each direction is encoded in the echo signal.

シーケンサ4は、高周波磁場パルス(以下、「RFパルス」という)と傾斜磁場パルスをある所定のパルスシーケンスで繰り返し印加する制御手段で、CPU8の制御で動作し、被検体1の断層画像のデータ収集に必要な種々の命令を送信系5、傾斜磁場発生系3、および受信系6に送る。   The sequencer 4 is a control means that repeatedly applies a high-frequency magnetic field pulse (hereinafter referred to as “RF pulse”) and a gradient magnetic field pulse in a predetermined pulse sequence, and operates under the control of the CPU 8 to collect tomographic image data of the subject 1. Various commands necessary for the transmission are sent to the transmission system 5, the gradient magnetic field generation system 3, and the reception system 6.

送信系5は、被検体1の生体組織を構成する原子の原子核スピンに核磁気共鳴を起こさせるために、被検体1にRFパルスを照射するもので、高周波発振器11と変調器12と高周波増幅器13と送信側の高周波コイル(送信コイル)14aとから成る。高周波発振器11から出力されたRFパルスをシーケンサ4からの指令によるタイミングで変調器12により振幅変調し、この振幅変調されたRFパルスを高周波増幅器13で増幅した後に被検体1に近接して配置された高周波コイル14aに供給することにより、RFパルスが被検体1に照射される。   The transmission system 5 irradiates the subject 1 with RF pulses in order to cause nuclear magnetic resonance to occur in the nuclear spins of the atoms constituting the living tissue of the subject 1, and includes a high frequency oscillator 11, a modulator 12, and a high frequency amplifier. 13 and a high frequency coil (transmission coil) 14a on the transmission side. The RF pulse output from the high-frequency oscillator 11 is amplitude-modulated by the modulator 12 at the timing according to the command from the sequencer 4, and the amplitude-modulated RF pulse is amplified by the high-frequency amplifier 13 and then placed close to the subject 1. By supplying to the high frequency coil 14a, the subject 1 is irradiated with the RF pulse.

受信系6は、被検体1の生体組織を構成する原子核スピンの核磁気共鳴により放出されるエコー信号(NMR信号)を検出するもので、受信側の高周波コイル(受信コイル) 14bと信号増幅器15と直交位相検波器16と、A/D変換器17とから成る。送信側の高周波コイル14aから照射された電磁波によって誘起された被検体1の応答のNMR信号が被検体1に近接して配置された高周波コイル14bで検出され、信号増幅器15で増幅された後、シーケンサ4からの指令によるタイミングで直交位相検波器16により直交する二系統の信号に分割され、それぞれがA/D変換器17でディジタル量に変換されて、信号処理系7に送られる。   The receiving system 6 detects an echo signal (NMR signal) emitted by nuclear magnetic resonance of nuclear spins constituting the biological tissue of the subject 1, and receives a high-frequency coil (receiving coil) 14b on the receiving side and a signal amplifier 15 And a quadrature phase detector 16 and an A / D converter 17. After the NMR signal of the response of the subject 1 induced by the electromagnetic wave irradiated from the high frequency coil 14a on the transmission side is detected by the high frequency coil 14b arranged close to the subject 1 and amplified by the signal amplifier 15, The quadrature phase detector 16 divides the signal into two orthogonal signals at the timing according to the command from the sequencer 4, and each signal is converted into a digital quantity by the A / D converter 17 and sent to the signal processing system 7.

信号処理系7は、各種データ処理と処理結果の表示及び保存等を行うもので、光ディスク19、磁気ディスク18等の外部記憶装置と、CRT等からなるディスプレイ20とを有する。受信系6からのデータがCPU8に入力されると、CPU8が信号処理、画像再構成等の処理を実行し、その結果である被検体1の断層画像をディスプレイ20に表示すると共に、外部記憶装置の磁気ディスク18等に記録する。   The signal processing system 7 performs various data processing and display and storage of processing results, and includes an external storage device such as an optical disk 19 and a magnetic disk 18, and a display 20 including a CRT or the like. When data from the receiving system 6 is input to the CPU 8, the CPU 8 executes processing such as signal processing and image reconstruction, and displays the tomographic image of the subject 1 as a result on the display 20, and an external storage device On the magnetic disk 18 or the like.

操作部25は、MRI装置の各種制御情報や上記信号処理系7で行う処理の制御情報を入力するもので、トラックボール又はマウス23、及び、キーボード24から成る。この操作部25はディスプレイ20に近接して配置され、操作者がディスプレイ20を見ながら操作部25を通してインタラクティブにMRI装置の各種処理を制御する。   The operation unit 25 inputs various control information of the MRI apparatus and control information of processing performed in the signal processing system 7, and includes a trackball or mouse 23 and a keyboard 24. The operation unit 25 is disposed close to the display 20, and the operator controls various processes of the MRI apparatus interactively through the operation unit 25 while looking at the display 20.

なお、図1において、送信側の高周波コイル14aと傾斜磁場コイル9は、被検体1が挿入される静磁場発生系2の静磁場空間内に、垂直磁場方式であれば被検体1に対向して、水平磁場方式であれば被検体1を取り囲むようにして設置されている。また、受信側の高周波コイル14bは、被検体1に対向して、或いは取り囲むように設置されている。   In FIG. 1, the high-frequency coil 14a and the gradient magnetic field coil 9 on the transmission side face the subject 1 in the static magnetic field space of the static magnetic field generation system 2 into which the subject 1 is inserted, in the case of the vertical magnetic field method. If the horizontal magnetic field method is used, the subject 1 is installed so as to surround it. The high-frequency coil 14b on the receiving side is installed so as to face or surround the subject 1.

現在MRI装置の撮像対象核種は、臨床で普及しているものとしては、被検体の主たる構成物質である水素原子核(プロトン)である。プロトン密度の空間分布や、励起状態の緩和時間の空間分布に関する情報を画像化することで、人体頭部、腹部、四肢等の形態または、機能を2次元もしくは3次元的に撮像する。   At present, the radionuclide to be imaged by the MRI apparatus is a hydrogen nucleus (proton) which is a main constituent material of the subject as being widely used clinically. By imaging information on the spatial distribution of proton density and the spatial distribution of relaxation time in the excited state, the form or function of the human head, abdomen, limbs, etc. is imaged two-dimensionally or three-dimensionally.

次に図2を用い、本発明の実施例に係るMRI装置の外観図を説明する。図2によれば、本発明に係るMRI装置は、静磁場の調整の際に、31で示したガントリに、簡易磁場測定用プレート32を取り付ける。   Next, an external view of the MRI apparatus according to the embodiment of the present invention will be described with reference to FIG. According to FIG. 2, the MRI apparatus according to the present invention attaches the simple magnetic field measurement plate 32 to the gantry indicated by 31 when adjusting the static magnetic field.

次に図3を用い、本発明に係るオープン型MRI装置の被検体を配置する空間33における静磁場均一度の測定方法を説明する。   Next, a method for measuring the static magnetic field uniformity in the space 33 in which the subject of the open MRI apparatus according to the present invention is placed will be described with reference to FIG.

ただし、図3は、本実施例の静磁場均一度の測定方法の説明がより分かりやすいように、ベース板34に対し空間33を挟んで対向して配置する上部構造物を省略して図示している。この場合の上部構造物は下部構造物と略同一の構成である。空間33には静磁場発生装置により静磁場が発生している。操作者は、台座35とプレート36と、を備えた静磁場均一度測定治具を空間33の略中央底部に対し、台座35が平行となるように設置する。プレート36は、台座35の一部に台座35と垂直になるように固定されている。   However, FIG. 3 does not show the upper structure arranged to face the base plate 34 across the space 33 so that the explanation of the measurement method of the static magnetic field uniformity of this embodiment is easier to understand. ing. The upper structure in this case has substantially the same configuration as the lower structure. A static magnetic field is generated in the space 33 by a static magnetic field generator. The operator installs a static magnetic field uniformity measuring jig provided with a pedestal 35 and a plate 36 so that the pedestal 35 is parallel to the substantially central bottom of the space 33. The plate 36 is fixed to a part of the pedestal 35 so as to be perpendicular to the pedestal 35.

この為、プレート36は、操作者により、空間33の静磁場に対し略平行となる向き、つまりベース板34に対し垂直となる向きに設置される。この場合、MRI装置の高周波コイル(送信コイル)14a、傾斜磁場コイル9、は操作者により外され、高周波コイル(送信コイル)14a、傾斜磁場コイル9を固定するベース板34の上に台座35を設置する。本発明の静磁場均一度測定方法で使用するRFプローブ37は、自身で電磁波を照射するため静磁場均一度測定を行う場合、特にMRI装置の高周波コイル(送信コイル)14aを必要としない。設置したプレート36は、その中心部に加え、外周にも略均等にRFプローブ37を固定することが可能な固定治具38を複数箇所備えている。空間33における静磁場均一度を測定する場合は、操作者は、プレート36の複数箇所に備えられた固定治具38に、送受信兼用簡易磁場測定器の単一のRFプローブ37を順次、所望する箇所の固定治具38に取り付け静磁場均一度測定を行う。台座35を備えたプレート36は、ベース板34の上に安定的に設置しているため、操作者は、空間33における各箇所において、静磁場均一度の測定を安定的に実施することができる。   Therefore, the plate 36 is installed by the operator in a direction substantially parallel to the static magnetic field in the space 33, that is, in a direction perpendicular to the base plate 34. In this case, the high frequency coil (transmission coil) 14a and the gradient magnetic field coil 9 of the MRI apparatus are removed by the operator, and the base 35 is placed on the base plate 34 that fixes the high frequency coil (transmission coil) 14a and the gradient magnetic field coil 9. Install. The RF probe 37 used in the static magnetic field uniformity measurement method of the present invention does not particularly require the high-frequency coil (transmission coil) 14a of the MRI apparatus when performing static magnetic field uniformity measurement because it irradiates itself with electromagnetic waves. The installed plate 36 includes a plurality of fixing jigs 38 capable of fixing the RF probes 37 substantially evenly on the outer periphery in addition to the central portion thereof. When measuring the static magnetic field uniformity in the space 33, the operator sequentially desires the single RF probe 37 of the simple magnetic field measuring instrument for transmission and reception to the fixing jigs 38 provided at a plurality of positions of the plate 36. The static magnetic field uniformity is measured by attaching to the fixing jig 38 at the location. Since the plate 36 having the pedestal 35 is stably installed on the base plate 34, the operator can stably measure the static magnetic field uniformity at each location in the space 33. .

また、静磁場均一度測定治具の台座35は、外周台座と内周台座と、から成り、さらに、プレート36は、内周台座に固定され、且つ内周台座に対し垂直となるように設置されている。外周台座の内側には、内周台座の外側に設けられた切り欠きに掛かる突起が設けられ、また、切り欠きは、例えば30度毎に設けられている。操作者は、外周台座をベース板34に固定し、外周台座に対し、内周台座を回転させ、内周台座の各々の切り欠きに外周台座の突起を掛けることで、MRI装置の空間33において、プレート36を、静磁場方向を回転軸とした向きに30度ずつ回転させることが容易にできる。操作者は、その各々の回転角度で静磁場均一度測定を行うことで、MRI装置の空間33において、より多くの箇所から静磁場均一度の測定データを取得することが出来る。   The pedestal 35 of the static magnetic field uniformity measuring jig is composed of an outer peripheral pedestal and an inner peripheral pedestal. Further, the plate 36 is fixed to the inner peripheral pedestal and is installed so as to be perpendicular to the inner peripheral pedestal. Has been. On the inner side of the outer pedestal pedestal, there are provided projections that are applied to the notches provided on the outer side of the inner pedestal pedestal, and the notches are provided, for example, every 30 degrees. The operator secures the outer pedestal to the base plate 34, rotates the inner pedestal with respect to the outer pedestal, and hangs the protrusions of the outer pedestal on each notch of the inner pedestal so that the space 33 of the MRI apparatus The plate 36 can be easily rotated by 30 degrees in the direction with the static magnetic field direction as the rotation axis. The operator can acquire the measurement data of the static magnetic field uniformity from more places in the space 33 of the MRI apparatus by performing the static magnetic field uniformity measurement at each rotation angle.

これにより、操作者はMRI装置の空間33において、広域且つ高次元の静磁場均一度の測定データを収集することが出来るため、より正確な静磁場均一度測定が可能となる。   Thereby, since the operator can collect the measurement data of the wide-area and high-dimensional static magnetic field uniformity in the space 33 of the MRI apparatus, more accurate static magnetic field uniformity measurement is possible.

ここで、本実施例の静磁場均一度測定治具は、内周台座にプレート36を固定しているが、内周台座ではなく、外周台座にプレート36を固定してもよい。その場合、操作者は、外周台座ではなく、内周台座をベース板34に固定して静磁場均一度測定を行う。   Here, in the static magnetic field uniformity measurement jig of the present embodiment, the plate 36 is fixed to the inner peripheral base, but the plate 36 may be fixed to the outer peripheral base instead of the inner peripheral base. In that case, the operator performs the static magnetic field uniformity measurement by fixing the inner peripheral pedestal, not the outer peripheral pedestal, to the base plate 34.

また、静磁場均一度測定治具の材質は主に塩化ビニール等の安価な材料で構成することが可能である。   The material of the static magnetic field uniformity measuring jig can be mainly composed of an inexpensive material such as vinyl chloride.

次に、図4は、図2で取付けられた簡易磁場測定用プレート32に取り付ける送受信兼用簡易磁場測定器の結線図である。   Next, FIG. 4 is a connection diagram of a transmission / reception simple magnetic field measuring device attached to the simple magnetic field measuring plate 32 attached in FIG.

図4において、39は、照射信号を発生させるRF unitであり、40は、RF unit39に接続され、RF unit39で発生された照射信号を減衰させるAttenuatorであり、41は、Attenuator40に接続され、Attenuator40で減衰された照射信号を増幅するRF Power Amp(RF PA)であり、42は、RF Power Ampのいくつかの不使用のラインを終端させるDummy Load、43は、RF Power Amp42に接続され、RF Power Ampで増幅された照射信号に含まれるノイズを低減させるためのFilter Box、44は、Filter box 43に接続され、信号の送受の切り替えを行なうTransmitting and Receiving box(T/R Box)45は、Transmitting and Receiving box44に接続され、その先端に配置された液体から成るファントムへ照射パルスを送りMR信号を受信するTransmitting and Receiving Probe(T/R Probe)であり 、信号を送受するコイル等から成るもの、46 は、Transmitting and Receiving box44に接続され、Transmitting and Receiving box44で受信されたMR信号を増幅するためのアンプを内蔵した寝台(TB)である。寝台46はまた、MR信号を増幅してそれをFilter Box 43を介してRF Unit39に送る。このような構成の結線図により、磁場均一度測定に必要な箇所で各受信信号の周波数をそれぞれ求めることで、静磁場不均一の測定が可能である。   In FIG. 4, 39 is an RF unit that generates an irradiation signal, 40 is an attenuator that is connected to the RF unit 39 and attenuates the irradiation signal generated by the RF unit 39, and 41 is connected to an Attenuator 40, and the Attenuator 40 RF Power Amp (RF PA) that amplifies the illumination signal attenuated at 42, 42 is a dummy load that terminates several unused lines of the RF Power Amp, 43 is connected to the RF Power Amp 42, and RF Filter Box 44 for reducing noise contained in the irradiation signal amplified by Power Amp, 44 is connected to Filter box 43, and Transmitting and Receiving box (T / R Box) 45 for switching between transmission and reception of signal is Transmitting and Receiving Box 44 is a Transmitting and Receiving Probe (T / R Probe) that sends an irradiation pulse to a liquid phantom placed at the tip of the box and receives an MR signal, and consists of a coil that sends and receives the signal. , 46 is connected to Transmitting and Receiving box 44 It is a bed (TB) that includes an amplifier for amplifying the MR signal that is continued and received by the Transmitting and Receiving box 44. The bed 46 also amplifies the MR signal and sends it to the RF Unit 39 via the Filter Box 43. By determining the frequency of each received signal at a location necessary for the magnetic field uniformity measurement using the connection diagram having such a configuration, it is possible to measure the static magnetic field inhomogeneity.

図5は、図4で結線図を示した送受信兼用簡易磁場測定器で撮像空間の各測定箇所を測定した場合の数値結果の表示画面(GUI)である。図5の本発明に係る送受信兼用簡易磁場測定器のGUI画面において、47は測定を指示するためのSTART釦と、48は磁場測定開始時と終了時に撮像空間中心の静磁場を測定した結果を表示するためのボックスと、49は磁場測定のBandwidth(周波数帯域)を入力するためのボックス、50は、撮像空間の各測定箇所において測定された結果を各測定箇所の位置に応じて基準となる中心周波数に対しての増減で表形式で表示するためのボックス、51及び52は、各測定箇所の位置それぞれ毎に、得られた磁場測定結果の周波数スペクトルをグラフで表示するためのボックスであり、51は測定箇所の位置を表示するためのもの、52は計測したNMR信号をフーリエ変換して得られた結果をグラフで表示したものである。   FIG. 5 is a numerical result display screen (GUI) when each measurement point in the imaging space is measured with the simple transmission / reception magnetic field measuring device whose connection diagram is shown in FIG. In the GUI screen of the simple magnetic field measuring apparatus for transmission and reception according to the present invention in FIG. 5, 47 is a START button for instructing measurement, and 48 is a result of measuring the static magnetic field at the center of the imaging space at the start and end of the magnetic field measurement. A box for displaying, 49 is a box for inputting the band width (frequency band) of the magnetic field measurement, and 50 is a reference based on the result of measurement at each measurement location in the imaging space according to the position of each measurement location. Boxes for displaying in tabular form by increasing / decreasing with respect to the center frequency, 51 and 52 are boxes for displaying the frequency spectrum of the magnetic field measurement results obtained for each position of each measurement point in a graph. , 51 is for displaying the position of the measurement location, and 52 is a graph showing the result obtained by Fourier transforming the measured NMR signal.

上記実施例によれば、各測定箇所で測定する際に、1回1回各測定結果を周波数スペクトルのグラフ52で確認して、適切な場合には次の測定箇所の測定へ移行するといったことが可能となる。また、周波数スペクトル52を見て、磁場測定のための信号がノイズに埋もれている、信号量が極端に少ないなどにより再測定が必要な場合は、測定箇所のマスを再選択し、START釦47をクリックすることで再測定が可能となる。また周波数スペクトルのグラフ52でPeakが無いなど信号が範囲にない場合は、Bandwidthのボックス49内にある周波数範囲を変更して、START釦47をクリックして再測定を行う。全測定箇所の測定が終了した後も、全体の数値結果をみて確認が必要と思われる測定箇所の結果は、ボックス50にて必要と思われる測定箇所を選択することで、その測定結果を周波数スペクトルのグラフ52に表示して参照し、調整作業を開始する前に再度全測定が必要かを判断できる。   According to the above embodiment, when measuring at each measurement location, check each measurement result once in the frequency spectrum graph 52, and if appropriate, move to measurement at the next measurement location. Is possible. In addition, when the frequency spectrum 52 is seen, if the signal for magnetic field measurement is buried in noise, or if re-measurement is necessary due to the extremely small amount of signal, the mass of the measurement location is selected again, and the START button 47 Click to enable re-measurement. If the signal is not in the range such as there is no Peak in the frequency spectrum graph 52, the frequency range in the Bandwidth box 49 is changed, and the START button 47 is clicked to perform measurement again. Even after all the measurement points have been measured, the results of the measurement points that need to be confirmed by looking at the overall numerical results can be obtained by selecting the measurement points that are considered necessary in Box 50. It is possible to determine whether or not all the measurements are necessary again before starting the adjustment operation by referring to the graph 52 displayed on the spectrum.

本発明は、磁気共鳴イメージング装置における静磁場不均一測定装置に利用することができる。   The present invention can be used for a static magnetic field inhomogeneity measuring apparatus in a magnetic resonance imaging apparatus.

47 START釦、48 静磁場測定結果、49 Brandwidth、50 測定結果表、51 位置表示、52 結果グラフ   47 START button, 48 Static magnetic field measurement result, 49 Brandwidth, 50 measurement result table, 51 Position display, 52 Result graph

Claims (3)

被検体を配置する撮像空間に静磁場を発生させる静磁場発生手段と、前記撮像空間における静磁場を均一に調整するための静磁場不均一調整手段と、を備えた磁気共鳴イメージング装置における静磁場不均一測定装置において、該静磁場不均一測定装置において得られた各箇所での磁場測定の結果を、周波数スペクトルで表示する表示手段を備えたことを特徴とする磁気共鳴イメージング装置における静磁場不均一測定装置。   A static magnetic field in a magnetic resonance imaging apparatus, comprising: a static magnetic field generating means for generating a static magnetic field in an imaging space in which a subject is arranged; and a static magnetic field non-uniformity adjusting means for uniformly adjusting the static magnetic field in the imaging space. The inhomogeneous measuring apparatus comprises a display means for displaying the result of the magnetic field measurement at each location obtained in the static magnetic field inhomogeneous measuring apparatus as a frequency spectrum. Uniform measuring device. 前記磁気共鳴イメージング装置における静磁場不均一測定装置は、複数箇所での前記磁場測定を行った後、任意の箇所での前記磁場測定の結果を、前記周波数スペクトルで表示する手段を備えたことを特徴とする請求項1に記載の磁気共鳴イメージング装置における静磁場不均一測定装置。   The static magnetic field inhomogeneity measuring apparatus in the magnetic resonance imaging apparatus comprises means for displaying the result of the magnetic field measurement at an arbitrary position in the frequency spectrum after performing the magnetic field measurement at a plurality of positions. The static magnetic field inhomogeneity measuring apparatus in the magnetic resonance imaging apparatus according to claim 1. 前記磁気共鳴イメージング装置における静磁場不均一測定装置は、得られた前記周波数スペクトルの表示結果に応じて、前記磁場測定における測定の周波数帯域を変換する手段を備えたことを特徴とする請求項1に記載の磁気共鳴イメージング装置における静磁場不均一測定装置。   The static magnetic field inhomogeneity measuring apparatus in the magnetic resonance imaging apparatus comprises means for converting a frequency band of measurement in the magnetic field measurement according to the obtained display result of the frequency spectrum. The static magnetic field inhomogeneity measuring apparatus in the magnetic resonance imaging apparatus of description.
JP2011092560A 2011-04-19 2011-04-19 Apparatus for measuring ununiformity in static magnetic field in magnetic resonance imaging system Withdrawn JP2012223299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011092560A JP2012223299A (en) 2011-04-19 2011-04-19 Apparatus for measuring ununiformity in static magnetic field in magnetic resonance imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011092560A JP2012223299A (en) 2011-04-19 2011-04-19 Apparatus for measuring ununiformity in static magnetic field in magnetic resonance imaging system

Publications (1)

Publication Number Publication Date
JP2012223299A true JP2012223299A (en) 2012-11-15

Family

ID=47274198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011092560A Withdrawn JP2012223299A (en) 2011-04-19 2011-04-19 Apparatus for measuring ununiformity in static magnetic field in magnetic resonance imaging system

Country Status (1)

Country Link
JP (1) JP2012223299A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103869880A (en) * 2012-12-14 2014-06-18 联想(北京)有限公司 Electronic equipment and keyboard thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103869880A (en) * 2012-12-14 2014-06-18 联想(北京)有限公司 Electronic equipment and keyboard thereof

Similar Documents

Publication Publication Date Title
JP6071905B2 (en) Magnetic resonance imaging apparatus and area imaging method
JP6464088B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP6162142B2 (en) Magnetic resonance imaging apparatus and SAR prediction method
JP5666470B2 (en) Nuclear magnetic resonance imaging apparatus and SAR estimation method
JP2015058009A (en) Magnetic resonance imaging apparatus
KR20130135776A (en) Method to determine a subject-specific b1 distribution of an examination subject in a measurement volume in the magnetic resonance technique, magnetic resonance system, computer program, and electronically readable data medium
JP6017443B2 (en) Magnetic resonance imaging apparatus and irradiation magnetic field distribution measuring method
JP5808659B2 (en) Magnetic resonance imaging apparatus and T1ρ imaging method
US9335394B2 (en) Method and magnetic resonance scanner for hyperintense display of areas in the vicinity of dipole fields
JP5670037B2 (en) Static magnetic field measuring instrument
JPS62189056A (en) Method for improving homogeneity of magnetic field
JP2012223299A (en) Apparatus for measuring ununiformity in static magnetic field in magnetic resonance imaging system
JP2011078574A (en) Magnetic resonance imaging apparatus and method for suppressing residual magnetic field
JP6580040B2 (en) Magnetic resonance imaging system
JP2017213042A (en) Magnetic resonance imaging device and multi-channel rf pulse generation method
Schwerter et al. Advanced software and hardware control methods for improved static and dynamic B0 shimming in magnetic resonance imaging
JP2016131847A (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP5758230B2 (en) Magnetic resonance imaging apparatus and inversion RF pulse phase control method
WO2023014924A1 (en) Miniaturized magnetic field sensor
JP2008168024A (en) Magnetic resonance imaging equipment
JP2007181587A (en) Magnetic resonance imaging apparatus
JP6546837B2 (en) Magnetic resonance imaging apparatus and method
JP6151583B2 (en) Static magnetic field generating magnet and magnetic resonance imaging apparatus
JP6233965B2 (en) Magnetic resonance imaging apparatus and RF shimming method
WO2012005137A1 (en) Magnetic resonance imaging device and rf pulse control method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701