JP2012221567A - Separator for electrochemical element - Google Patents

Separator for electrochemical element Download PDF

Info

Publication number
JP2012221567A
JP2012221567A JP2011082635A JP2011082635A JP2012221567A JP 2012221567 A JP2012221567 A JP 2012221567A JP 2011082635 A JP2011082635 A JP 2011082635A JP 2011082635 A JP2011082635 A JP 2011082635A JP 2012221567 A JP2012221567 A JP 2012221567A
Authority
JP
Japan
Prior art keywords
fiber
separator
solvent
fiber length
spun cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011082635A
Other languages
Japanese (ja)
Other versions
JP5594845B2 (en
Inventor
Hiroaki Watanabe
宏明 渡邉
Kenji Hyodo
建二 兵頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47272901&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2012221567(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2011082635A priority Critical patent/JP5594845B2/en
Publication of JP2012221567A publication Critical patent/JP2012221567A/en
Application granted granted Critical
Publication of JP5594845B2 publication Critical patent/JP5594845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a separator for an electrochemical element which is excellent in heat resistance, electrolytic solution retention properties, and strength obtained when an electrolytic solution is adhered.SOLUTION: In a separator made of a porous sheet containing only a cellulose fiber, the porous sheet contains a solvent spun cellulose fiber of which the freeness variation measured based on JIS P8121 except that sample concentration is set at 0.1% by using a 80 mesh wire net having a wire diameter of 0.14 mm and an opening of 0.18 mm as a sieve plate is 0-250 ml and of which the length weight average fiber length is 0.20-2.00 mm. In the fiber length distribution histogram of the solvent spun cellulose fiber, the maximum frequency peak is provided between 0.00-1.00 mm, and the ratio of fabrics having the fabric length of 1.00 mm or more is 50% or more.

Description

本発明は、電気化学素子用セパレーターに関するものである。   The present invention relates to a separator for an electrochemical element.

各種電池や電気二重層キャパシターなどの電気化学素子に用いられるセパレーターとして、セルロース繊維のみからなるセパレーターが使用されている(例えば、特許文献1〜3参照)。これらのセパレーターでは、叩解度をコントロールしたセルロース繊維を用いているが、同一の叩解度であっても叩解されたセルロース繊維の繊維物性が異なってくるため、耐熱性や電解液保持性及び電解液が付着した際の強度の全て満足するものではなかった。   As separators used for electrochemical elements such as various batteries and electric double layer capacitors, separators made only of cellulose fibers are used (for example, see Patent Documents 1 to 3). In these separators, cellulose fibers with controlled beating degree are used. However, even if the beating degree is the same, the fiber properties of the beaten cellulose fibers are different, so heat resistance, electrolyte retention, and electrolyte Not all of the strength when adhering was satisfied.

特開平8−306352号公報JP-A-8-306352 特開平9−45586号公報JP-A-9-45586 特開2000−3834号公報JP 2000-3834 A

本発明の課題は、耐熱性、電解液保持性及び電解液が付着した際の強度適性に優れた電気化学素子用セパレーターを提供することにある。   The subject of this invention is providing the separator for electrochemical elements excellent in heat resistance, electrolyte solution retainability, and the strength suitability at the time of electrolyte solution adhering.

本発明者らは、上記課題を解決するために鋭意研究した結果、
(1)セルロース繊維のみを含有した多孔質シートからなるセパレーターにおいて、多孔質シートが、ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1%にした以外はJIS P8121に準拠して測定した変法濾水度が0〜250mLであり、かつ長さ加重平均繊維長が0.20〜2.00mmである溶剤紡糸セルロース繊維を含有し、該溶剤紡糸セルロース繊維の繊維長分布ヒストグラムにおいて、0.00〜1.00mmの間に最大頻度ピークを有し、1.00mm以上の繊維長を有する繊維の割合が50%以上であることを特徴とする電気化学素子用セパレーター、
(2)溶剤紡糸セルロース繊維の繊維長分布ヒストグラムにおいて、最大頻度ピーク以外に1.50〜3.50mmの間にピークを有する上記(1)記載の電気化学素子用セパレーター、
を見出した。
As a result of intensive studies to solve the above problems, the present inventors have
(1) In a separator composed of a porous sheet containing only cellulose fibers, the porous sheet uses an 80 mesh wire mesh with a wire diameter of 0.14 mm and an aperture of 0.18 mm as a sieve plate, and the sample concentration is 0.1%. A solvent-spun cellulose fiber having a modified freeness measured in accordance with JIS P8121 of 0 to 250 mL and a length-weighted average fiber length of 0.20 to 2.00 mm, In the fiber length distribution histogram of the spun cellulose fiber, it has a maximum frequency peak between 0.00 and 1.00 mm, and the ratio of fibers having a fiber length of 1.00 mm or more is 50% or more. Separator for electrochemical elements,
(2) In the fiber length distribution histogram of the solvent-spun cellulose fiber, the separator for an electrochemical element according to the above (1) having a peak between 1.50 and 3.50 mm in addition to the maximum frequency peak,
I found.

本発明の電気化学素子用セパレーター(1)は、セルロース繊維のみを含有した多孔質シートからなる。素材としてセルロースを見た場合、230℃までの耐熱性を有していることから、セルロース繊維のみで構成することにより耐熱性の点で優れたセパレーターを作製することが可能となる。該多孔質シートは、変法濾水度が0〜250mLであり、かつ長さ加重平均繊維長が0.20〜2.00mmである溶剤紡糸セルロース繊維を含有し、該溶剤紡糸セルロース繊維の繊維長分布ヒストグラムにおいて、0.00〜1.00mmの間に最大頻度ピークを有し、1.00mm以上の繊維長を有する繊維の割合が50%以上の溶剤紡糸セルロース繊維が絡み合うことで、耐熱性、電解液保持性を良好なものにすることができる。   The separator for electrochemical devices (1) of the present invention comprises a porous sheet containing only cellulose fibers. When cellulose is seen as a raw material, it has a heat resistance of up to 230 ° C., so that it is possible to produce a separator that is excellent in heat resistance by being composed only of cellulose fibers. The porous sheet contains solvent-spun cellulose fibers having a modified freeness of 0 to 250 mL and a length-weighted average fiber length of 0.20 to 2.00 mm, and the fibers of the solvent-spun cellulose fibers In the long distribution histogram, the solvent-spun cellulose fiber having a maximum frequency peak between 0.00 and 1.00 mm and a fiber length of 1.00 mm or more having a fiber length of 50% or more is entangled, thereby providing heat resistance. The electrolyte solution retention can be improved.

溶剤紡糸セルロース繊維の繊維長分布ヒストグラムにおいて、最大頻度ピーク以外に1.50〜3.50mmの間にピークを有する電気化学素子用セパレーター(2)は、セパレーターとして必要な耐熱性、電解液保持性及び電解液が付着した際の強度適性が優れている。   In the fiber length distribution histogram of the solvent-spun cellulose fiber, the separator for electrochemical devices (2) having a peak between 1.50 and 3.50 mm in addition to the maximum frequency peak is required for the separator as heat resistance and electrolyte retention In addition, the strength suitability when the electrolytic solution adheres is excellent.

0.00〜1.00mmの間に最大頻度ピークを有する溶剤紡糸セルロース繊維[1]の繊維長分布ヒストグラムの例である。It is an example of the fiber length distribution histogram of solvent-spun cellulose fiber [1] having a maximum frequency peak between 0.00 and 1.00 mm. 最大頻度ピーク以外に1.50〜3.50mmの間にピークを有する溶剤紡糸セルロース繊維[2]の繊維長分布ヒストグラムの例である。It is an example of the fiber length distribution histogram of solvent-spun cellulose fiber [2] having a peak between 1.50 and 3.50 mm in addition to the maximum frequency peak.

以下、本発明の電気化学素子用セパレーターについて詳説する。   Hereinafter, the electrochemical device separator of the present invention will be described in detail.

本発明の電気化学素子用セパレーターはセルロース繊維のみを原料とする。素材としてセルロース繊維を見た場合、230℃までの耐熱性を有していることから、セルロース繊維のみで構成することにより耐熱性の点で優れたセパレーターを作製することが可能となる。原料としたセルロース繊維には変法濾水度が0〜250mLであり、かつ長さ加重平均繊維長が0.20〜2.00mmである溶剤紡糸セルロース繊維を含有する。該溶剤紡糸セルロース繊維は、溶剤紡糸セルロース繊維の繊維長分布ヒストグラムにおいて、0.00〜1.00mmの間に最大頻度ピークを有し、1.00mm以上の繊維長を有する繊維の割合が50%以上である。   The separator for an electrochemical element of the present invention uses only cellulose fibers as a raw material. When the cellulose fiber is seen as a raw material, it has heat resistance up to 230 ° C., and therefore, it is possible to produce a separator excellent in heat resistance by being composed of cellulose fiber alone. The cellulose fiber used as a raw material contains solvent-spun cellulose fiber having a modified freeness of 0 to 250 mL and a length-weighted average fiber length of 0.20 to 2.00 mm. The solvent-spun cellulose fiber has a maximum frequency peak between 0.00 and 1.00 mm in the fiber length distribution histogram of the solvent-spun cellulose fiber, and the proportion of fibers having a fiber length of 1.00 mm or more is 50%. That's it.

本発明における溶剤紡糸セルロース繊維とは、従来のビスコースレーヨンや銅アンモニアレーヨンのように、セルロースを一旦セルロース誘導体に化学的に変換させたのち再度セルロースに戻す、いわゆる再生セルロース繊維と異なり、セルロースを化学的に変化させることなく、アミンオキサイドに溶解させた紡糸原液を水中に乾湿式紡糸してセルロースを析出させた繊維を指す。溶剤紡糸セルロース繊維は、天然セルロース繊維やバクテリアセルロース繊維、レーヨン繊維に比べ、繊維長軸方向に分子が高度に配列しているため、湿潤状態で摩擦等の機械的な力が加えられると、微細化しやすく、細くて長い微細繊維が生成する。この微細繊維間に電解液を強固に保持するため、天然セルロース繊維、バクテリアセルロース繊維、レーヨン繊維の微細化物に比べ、微細化された溶剤紡糸セルロース繊維は、電解液の保液性に優れる。   The solvent-spun cellulose fiber in the present invention is different from the so-called regenerated cellulose fiber in which cellulose is once chemically converted into a cellulose derivative and then returned to cellulose like conventional viscose rayon or copper ammonia rayon. This refers to a fiber in which cellulose is precipitated by dry and wet spinning of a spinning stock solution dissolved in amine oxide in water without being chemically changed. Solvent-spun cellulose fibers have a higher molecular arrangement in the fiber long axis direction than natural cellulose fibers, bacterial cellulose fibers, and rayon fibers, so when mechanical forces such as friction are applied in a wet state, It is easy to form, and fine and long fine fibers are formed. In order to firmly hold the electrolyte solution between the fine fibers, the solvent-spun cellulose fibers that are refined are superior in liquid retention of the electrolyte solution compared to the refined products of natural cellulose fibers, bacterial cellulose fibers, and rayon fibers.

本発明では、変法濾水度0〜250mLの溶剤紡糸セルロース繊維が用いられる。溶剤紡糸セルロース繊維の変法濾水度は、0〜200mLであることがより好ましく、0〜160mLであることがさらに好ましい。変法濾水度が250mLより多いと、セパレーターの緻密性が不十分になり、電解液の保液性が低下することがある。   In the present invention, solvent-spun cellulose fibers having a modified freeness of 0 to 250 mL are used. The modified drainage degree of the solvent-spun cellulose fiber is more preferably 0 to 200 mL, and further preferably 0 to 160 mL. If the modified drainage is more than 250 mL, the separator may have insufficient denseness and the electrolyte retention may be reduced.

本発明における変法濾水度とは、ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1%にした以外はJIS P8121に準拠して測定した値のことである。   The modified freeness in the present invention was measured in accordance with JIS P811, except that an 80 mesh wire net having a wire diameter of 0.14 mm and an aperture of 0.18 mm was used as a sieve plate, and the sample concentration was 0.1%. It is a value.

溶剤紡糸セルロース繊維の場合、微細化が進むに従って、繊維長が短くなっていき、特に試料濃度が薄いと、繊維同士の絡みが少なくなり、繊維ネットワークが形成されにくくなるため、溶剤紡糸セルロース繊維自体がふるい板の穴をすり抜けてしまう。つまり、微細化した溶剤紡糸セルロースの場合は、JIS P8121の測定方法では正確な濾水度が計測できない。より詳細に説明すると、溶剤紡糸セルロース繊維は微細化処理によって繊維の長軸に平行に細かく分割されやすく、分割後の繊維1本1本における繊維径の均一性が高いため、平均繊維長が短くなるほど、繊維同士が絡みにくくなり、繊維ネットワークを形成しにくいと考えられる。そこで、本発明では、溶剤紡糸セルロース繊維の正確な濾水度を測定するために、ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1%にした以外はJIS P8121に準拠して測定する変法濾水度を用いた。   In the case of solvent-spun cellulose fibers, the fiber length becomes shorter as the microfabrication progresses. In particular, when the sample concentration is low, the entanglement between fibers decreases and it becomes difficult to form a fiber network. Will slip through the holes in the sieve plate. That is, in the case of the solvent-spun cellulose refined, an accurate freeness cannot be measured by the measuring method of JIS P8121. More specifically, the solvent-spun cellulose fiber is easily finely divided in parallel with the long axis of the fiber by the refining treatment, and the fiber diameter uniformity in each of the divided fibers is high, so that the average fiber length is short. It is considered that the fibers are less likely to get entangled and it is difficult to form a fiber network. Therefore, in the present invention, in order to measure the exact freeness of the solvent-spun cellulose fiber, an 80-mesh wire mesh having a wire diameter of 0.14 mm and an opening of 0.18 mm is used as a sieve plate, and the sample concentration is 0.1%. The modified freeness measured according to JIS P8121 was used.

さらに本発明では、図1に示したように、溶剤紡糸セルロース繊維の繊維長分布ヒストグラムにおいて、0.00〜1.00mmの間に最大頻度ピークを有し、1.00mm以上の繊維長を有する繊維の割合が50%以上である。電解液保持性の点において、繊維長分布ヒストグラムにおいて0.30〜0.70mmの間に最大頻度ピークを有し、1.00mm以上の繊維長を有する繊維の割合が55%以上であることが好ましい。1.00mm以上の繊維長を有する繊維の割合は高い方が望ましいが、75%程度あれば十分である。   Furthermore, in this invention, as shown in FIG. 1, in the fiber length distribution histogram of solvent-spun cellulose fiber, it has a maximum frequency peak between 0.00 and 1.00 mm, and has a fiber length of 1.00 mm or more. The proportion of fibers is 50% or more. In terms of electrolyte retention, the fiber length distribution histogram has a maximum frequency peak between 0.30 and 0.70 mm, and the proportion of fibers having a fiber length of 1.00 mm or more is 55% or more. preferable. A higher proportion of fibers having a fiber length of 1.00 mm or more is desirable, but about 75% is sufficient.

本発明の溶剤紡糸セルロース繊維の繊維長及び繊維長分布ヒストグラムは、JAPAN TAPPI 紙パルプ試験方法No.52「紙及びパルプの繊維長 試験方法(光学的自動計測法)」に準じてKajaaniFiberLabV3.5(Metso Automation社製)を使用して測定した。   The fiber length and the fiber length distribution histogram of the solvent-spun cellulose fiber of the present invention are shown in JAPAN TAPPI Paper Pulp Test Method No. It was measured using Kajaani Fiber Lab V3.5 (manufactured by Metso Automation) according to 52 “Fiber length test method for paper and pulp (automatic optical measurement method)”.

本発明における「繊維長」及び「繊維長分布」とは、上記に従って測定・算出される「長さ加重繊維長」及び「長さ加重繊維長分布」を意味する。   The “fiber length” and “fiber length distribution” in the present invention mean “length weighted fiber length” and “length weighted fiber length distribution” measured and calculated according to the above.

溶剤紡糸セルロース繊維は、ビーター、PFIミル、シングルディスクリファイナー(SDR)、ダブルディスクリファイナー(DDR)、また、顔料等の分散や粉砕に使用するボールミル、ダイノミル、摩砕装置、高速の回転刃により剪断力を与える回転刃式ホモジナイザー、高速で回転する円筒形の内刃と固定された外刃との間で剪断力を生じる二重円筒式の高速ホモジナイザー、超音波による衝撃で微細化する超音波破砕器、繊維懸濁液に少なくとも20MPaの圧力差を与えて小径のオリフィスを通過させて高速度とし、これを衝突させて急減速することにより繊維に剪断力、切断力を加える高圧ホモジナイザー等が挙げられる。この中でも特にリファイナーが好ましい。これら叩解・分散設備の種類、処理条件(繊維濃度、温度、圧力、回転数、リファイナーの刃の形状、リファイナーのプレート間のギャップ、処理回数)の調整により、目的の溶剤紡糸セルロース繊維の変法濾水度、繊維長及び繊維長分布を達成することが可能となる。   Solvent-spun cellulose fiber is sheared by a beater, PFI mill, single disc refiner (SDR), double disc refiner (DDR), ball mill, dyno mill, grinding device, and high-speed rotary blade used for dispersing and grinding pigments. Blade-type homogenizer, a double-cylindrical high-speed homogenizer that generates a shearing force between a cylindrical inner blade that rotates at high speed and a fixed outer blade, and an ultrasonic crusher that is miniaturized by ultrasonic impact And a high-pressure homogenizer that applies a pressure difference of at least 20 MPa to the fiber suspension, passes through a small-diameter orifice to increase the speed, and collides with this to rapidly decelerate to apply shearing force and cutting force to the fiber. . Of these, refiners are particularly preferred. Modification of the desired solvent-spun cellulose fiber by adjusting the types of beating / dispersing equipment and processing conditions (fiber concentration, temperature, pressure, rotation speed, refiner blade shape, gap between refiner plates, number of treatments) It is possible to achieve freeness, fiber length and fiber length distribution.

溶剤紡糸セルロース繊維の繊維長分布ヒストグラムにおいて、図2に示したように、上記の最大頻度ピーク以外に、1.50〜3.50mmの間にピークを有することが好ましく、1.75〜3.25mmの間にピークを有することがより好ましく、2.00〜3.00mmの間にピークを有することがさらに好ましい。この範囲にピークを有することにより、電解液保持性と電解液が付着した際の強度適性が両立できるため好ましい。該ピークの繊維長が1.50mmより短い場合、電解液が付着した際にセパレーターが破損することがある。また3.50mmを超えると、緻密性が向上せず、電解液保持性が低下する場合がある。   In the fiber length distribution histogram of solvent-spun cellulose fibers, as shown in FIG. 2, it is preferable to have a peak between 1.50 and 3.50 mm in addition to the above maximum frequency peak. It is more preferable to have a peak between 25 mm, and it is more preferable to have a peak between 2.00 to 3.00 mm. By having a peak in this range, it is preferable because both the electrolyte solution retainability and the strength suitability when the electrolyte solution adheres can be achieved. When the fiber length of the peak is shorter than 1.50 mm, the separator may be damaged when the electrolytic solution adheres. On the other hand, if it exceeds 3.50 mm, the denseness may not be improved, and the electrolyte retention may be reduced.

溶剤紡糸再生セルロース繊維以外の他のセルロース繊維には特に限定はなく、針葉樹木材パルプ、広葉樹木材パルプ、エスパルトパルプ、マニラ麻パルプ、サイザル麻パルプ、コットンパルプ等の天然セルロース繊維、あるいはこれら天然セルロース繊維を冷アルカリ処理して得たマーセル化パルプ、さらには普通レーヨン繊維、ポリノジックレーヨン繊維等の再生セルロース繊維等が挙げられるが、特にリファイナー、ビーター、ミル、摩砕装置、高速の回転刃により剪断力を与える回転刃式ホモジナイザー、高速で回転する円筒形の内刃と固定された外刃との間で剪断力を生じる二重円筒式の高速ホモジナイザー、超音波による衝撃で微細化する超音波破砕器、繊維懸濁液に少なくとも20MPaの圧力差を与えて小径のオリフィスを通過させて高速度とし、これを衝突させて急減速することにより繊維に剪断力、切断力を加える高圧ホモジナイザー等で変法濾水度0〜1000mLにフィブリル化した天然セルロース繊維を添加することが好ましい。また、フィブリル化した天然セルロースの含有量は20質量%以下が好ましく、より好ましくは15質量%以下である。フィブリル化した天然セルロースを上記含有量添加することで、電解液保持性と電解液が付着した際の強度適性が両立でき好ましい。   Other cellulose fibers other than solvent-spun recycled cellulose fibers are not particularly limited, and natural cellulose fibers such as coniferous wood pulp, hardwood wood pulp, esparto pulp, manila hemp pulp, sisal hemp pulp, and cotton pulp, or these natural cellulose fibers Mercerized pulp obtained by cold alkali treatment, and regenerated cellulose fibers such as ordinary rayon fiber and polynosic rayon fiber, etc., include refiner, beater, mill, grinding device, and high-speed rotary blade. Blade-type homogenizer, a double-cylindrical high-speed homogenizer that generates a shearing force between a cylindrical inner blade that rotates at high speed and a fixed outer blade, and an ultrasonic crusher that is miniaturized by ultrasonic impact Apply a pressure difference of at least 20 MPa to the fiber suspension and pass through the small-diameter orifice. It is preferable to add a natural cellulose fiber fibrillated to a modified freeness of 0 to 1000 mL with a high-pressure homogenizer or the like that applies a shearing force or a cutting force to the fiber by colliding with it and rapidly decelerating it. . The content of fibrillated natural cellulose is preferably 20% by mass or less, more preferably 15% by mass or less. By adding the above-mentioned content of fibrillated natural cellulose, it is preferable that both the electrolyte solution retainability and the strength suitability when the electrolyte solution adheres can be achieved.

本発明において、溶剤紡糸セルロース繊維の含有量は、80質量%以上が好ましく、より好ましくは90質量%以上である。この含有量にすることにより、電解液保液性に優れ、電解液が付着した際の強度適性が良好となるため、好ましい。   In the present invention, the content of the solvent-spun cellulose fiber is preferably 80% by mass or more, and more preferably 90% by mass or more. This content is preferable because it has excellent electrolyte solution retention properties and good strength suitability when the electrolyte solution adheres.

本発明における電気化学素子用セパレーターの坪量は、特に制限はないが、5〜100g/mが好ましく、10〜50g/mがさらに好ましく用いられる。なお、坪量は、JIS P8124(紙及び板紙−坪量測定法)に規定された方法に基づく坪量を意味する。 The basis weight of the electrochemical device for separator of the present invention is not particularly limited but is preferably 5~100g / m 2, 10~50g / m 2 is more preferably used. In addition, basic weight means the basic weight based on the method prescribed | regulated to JISP8124 (paper and paperboard-basic weight measuring method).

本発明における電気化学素子用セパレーターの厚みは、特に制限はないが、電気化学素子が小型化できること、収容できる電極面積を大きくでき容量を稼げる点から薄い方が好ましい。具体的には電池組立時に破断しない程度の強度を持ち、ピンホールがなく、高い
均一性を備える厚みとして10〜200μmが好ましく用いられ、20〜100μmがより好ましく用いられる。10μm未満では、電気化学素子の製造時の短絡不良率が増加するため好ましくない。一方、200μmより厚くなると、電気化学素子に収納できる電極面積が減少するため電気化学素子の容量が低いものになる。なお、厚みは、JIS B7502に規定された方法により測定した値、つまり、5N荷重時の外側マイクロメーターにより測定された値を意味する。
The thickness of the separator for electrochemical elements in the present invention is not particularly limited, but is preferably thinner from the viewpoint that the electrochemical element can be miniaturized, the electrode area that can be accommodated can be increased and the capacity can be increased. Specifically, 10 to 200 μm is preferably used, and 20 to 100 μm is more preferably used as a thickness having strength that does not break during battery assembly, no pinholes, and high uniformity. If it is less than 10 μm, the short-circuit failure rate during the production of the electrochemical element increases, which is not preferable. On the other hand, when the thickness is greater than 200 μm, the electrode area that can be accommodated in the electrochemical element is reduced, so that the capacity of the electrochemical element is low. In addition, thickness means the value measured by the method prescribed | regulated to JISB7502, ie, the value measured with the outside micrometer at the time of 5N load.

本発明の電気化学素子用セパレーターにおいて、セルロース繊維のみからなる原料を使用して、長網抄紙機や円網抄紙機、長網円網コンビネーションマシン、円網円網コンビネーションマシン等の抄紙機によりセパレーター抄造する。また、長網抄紙機で抄紙したセパレーター紙を2枚以上オンマシンもしくはオフマシンで積層して抄造することもできる。   In the separator for an electrochemical element of the present invention, a raw material composed only of cellulose fibers is used to separate the separator by a paper machine such as a long net paper machine, a circular net paper machine, a long net circular net combination machine, or a circular net circular net combination machine. Paper making. It is also possible to produce paper by laminating two or more separator papers made with a long paper machine by an on-machine or off-machine.

湿式抄紙法は、通常、繊維を固形分濃度が0.1〜5%程度になるように分散助剤、増粘剤などを用いて水中に均一に分散してスラリーとし、さらにスラリー中に水を追加し、固形分濃度を0.1〜0.001%に希釈して希薄水性スラリーとし、これを抄紙機を用いてシート化するものである。   In the wet papermaking method, the fiber is usually uniformly dispersed in water using a dispersion aid, a thickener or the like so that the solid content concentration is about 0.1 to 5%, and further water is added to the slurry. The solid content concentration is diluted to 0.1 to 0.001% to form a dilute aqueous slurry, which is formed into a sheet using a paper machine.

本発明の電気化学素子用セパレーターの厚みが所望の厚みよりも厚い場合には二次加工処理により厚みを薄くする必要がある。この二次加工処理としては、スーパーカレンダー、マシンカレンダー、熱カレンダー、ソフトカレンダー、熱ソフトカレンダーなどのカレンダーを用いてカレンダー処理を施して厚み調整が行われる。なるべく電解液保持性を損なわないようにするため、加熱しないでカレンダー処理を行うことがより好ましい。   When the thickness of the separator for electrochemical elements of the present invention is larger than a desired thickness, it is necessary to reduce the thickness by secondary processing. As the secondary processing, the thickness is adjusted by performing a calendar process using a calendar such as a super calendar, a machine calendar, a thermal calendar, a soft calendar, and a thermal soft calendar. In order not to impair the electrolyte solution retention as much as possible, it is more preferable to perform the calendar process without heating.

以下、本発明を実施例によりさらに詳細に説明するが、本発明は本実施例に限定されるものではない。なお、実施例中における部や百分率は断りのない限り、全て質量によるものである。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a present Example. In the examples, all parts and percentages are by mass unless otherwise specified.

<溶剤紡糸セルロース繊維>
リファイナーを用いて、平均繊維径10μm、繊維長6mmの溶剤紡糸セルロース繊維を処理し、溶剤紡糸セルロース繊維を作製した。
<Solvent-spun cellulose fiber>
Using a refiner, solvent-spun cellulose fibers having an average fiber diameter of 10 μm and a fiber length of 6 mm were processed to produce solvent-spun cellulose fibers.

<溶剤紡糸セルロース繊維の物性値>
上記の方法で作製した溶剤紡糸セルロース繊維について
(1)1.00mm以上の繊維長を有する繊維の割合:「1.00mm以上の繊維割合」
(2)繊維長分布ヒストグラムにおける最大頻度ピークの繊維長:「最大頻度ピークの繊維長」
(3)最大頻度ピーク以外のピークの繊維長:「第2ピークの繊維長」
(4)ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1%にした以外はJIS P8121に準拠して測定した濾水度:「変法濾水度」
として、表1に示す。
<Physical properties of solvent-spun cellulose fiber>
About solvent-spun cellulose fiber produced by the above method (1) Ratio of fibers having a fiber length of 1.00 mm or more: “fiber ratio of 1.00 mm or more”
(2) Fiber length of maximum frequency peak in fiber length distribution histogram: “Fiber length of maximum frequency peak”
(3) Fiber length of peaks other than the maximum frequency peak: “fiber length of second peak”
(4) Freeness measured according to JIS P8121, except that an 80-mesh wire mesh with a wire diameter of 0.14 mm and an aperture of 0.18 mm was used as the sieve plate, and the sample concentration was 0.1%: Water level "
As shown in Table 1.

Figure 2012221567
Figure 2012221567

<フィブリル化天然セルロース繊維>
リンターを高圧ホモジナイザーを用いて処理し、変法濾水度270mLのフィブリル化天然セルロース繊維を作製した。
<Fibrylated natural cellulose fiber>
The linter was treated with a high pressure homogenizer to produce a fibrillated natural cellulose fiber having a modified freeness of 270 mL.

実施例1
溶剤紡糸セルロース繊維A100部をパルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、150℃のシリンダードライヤーによって乾燥し、坪量18.2g/mの不織布を作製した。次に、スーパーカレンダー処理を行い、坪量18.2g/m、厚さ35μmの電気化学素子用セパレーターとした。
Example 1
100 parts of solvent-spun cellulose fiber A was disaggregated in pulper water, and a uniform papermaking slurry (1% concentration) was prepared under stirring by an agitator. This papermaking slurry was made up by a wet method using a circular paper machine and dried with a cylinder dryer at 150 ° C. to produce a nonwoven fabric having a basis weight of 18.2 g / m 2 . Next, a super calendar process was performed to obtain a separator for an electrochemical element having a basis weight of 18.2 g / m 2 and a thickness of 35 μm.

実施例2
溶剤紡糸セルロース繊維B100部をパルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、150℃のシリンダードライヤーによって乾燥し、坪量18.0g/mの不織布を作製した。次に、スーパーカレンダー処理を行い、坪量18.0g/m、厚さ35μmの電気化学素子用セパレーターとした。
Example 2
100 parts of solvent-spun cellulose fiber B was disaggregated in pulper water, and a uniform papermaking slurry (1% concentration) was prepared under stirring by an agitator. This papermaking slurry was made up by a wet method using a circular paper machine and dried by a cylinder dryer at 150 ° C. to prepare a nonwoven fabric having a basis weight of 18.0 g / m 2 . Next, a super calendar process was performed to obtain a separator for an electrochemical element having a basis weight of 18.0 g / m 2 and a thickness of 35 μm.

実施例3
溶剤紡糸セルロース繊維C100部をパルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、150℃のシリンダードライヤーによって乾燥し、坪量17.9g/mの不織布を作製した。次に、スーパーカレンダー処理を行い、坪量17.9g/m、厚さ35μmの電気化学素子用セパレーターとした。
Example 3
100 parts of solvent-spun cellulose fiber C was disaggregated in pulper water, and a uniform papermaking slurry (1% concentration) was prepared under stirring by an agitator. This papermaking slurry was made up by a wet method using a circular paper machine and dried by a cylinder dryer at 150 ° C. to prepare a nonwoven fabric having a basis weight of 17.9 g / m 2 . Next, a super calendar process was performed to obtain a separator for an electrochemical element having a basis weight of 17.9 g / m 2 and a thickness of 35 μm.

実施例4
溶剤紡糸セルロース繊維D100部をパルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、150℃のシリンダードライヤーによって乾燥し、坪量18.2g/mの不織布を作製した。次に、スーパーカレンダー処理を行い、坪量18.2g/m、厚さ36μmの電気化学素子用セパレーターとした。
Example 4
100 parts of solvent-spun cellulose fiber D was disaggregated in pulper water, and a uniform papermaking slurry (1% concentration) was prepared under stirring by an agitator. This papermaking slurry was made up by a wet method using a circular paper machine and dried with a cylinder dryer at 150 ° C. to produce a nonwoven fabric having a basis weight of 18.2 g / m 2 . Next, a super calendar process was performed to obtain a separator for an electrochemical element having a basis weight of 18.2 g / m 2 and a thickness of 36 μm.

実施例5
溶剤紡糸セルロース繊維E100部をパルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、150℃のシリンダードライヤーによって乾燥し、坪量18.1g/mの不織布を作製した。次に、スーパーカレンダー処理を行い、坪量18.1g/m、厚さ35μmの電気化学素子用セパレーターとした。
Example 5
100 parts of solvent-spun cellulose fiber E was disaggregated in pulper water, and a uniform papermaking slurry (1% concentration) was prepared under stirring by an agitator. This papermaking slurry was made up by a wet method using a circular paper machine and dried with a cylinder dryer at 150 ° C. to produce a nonwoven fabric having a basis weight of 18.1 g / m 2 . Next, a super calendar process was performed to obtain a separator for an electrochemical element having a basis weight of 18.1 g / m 2 and a thickness of 35 μm.

実施例6
溶剤紡糸セルロース繊維F100部をパルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、150℃のシリンダードライヤーによって乾燥し、坪量17.8g/mの不織布を作製した。次に、スーパーカレンダー処理を行い、坪量17.8g/m、厚さ34μmの電気化学素子用セパレーターとした。
Example 6
100 parts of solvent-spun cellulose fiber F was disaggregated in pulper water, and a uniform papermaking slurry (1% concentration) was prepared under stirring by an agitator. This papermaking slurry was made up by a wet method using a circular paper machine and dried by a cylinder dryer at 150 ° C. to prepare a nonwoven fabric having a basis weight of 17.8 g / m 2 . Next, a super calendar process was performed to obtain a separator for an electrochemical element having a basis weight of 17.8 g / m 2 and a thickness of 34 μm.

実施例7
溶剤紡糸セルロース繊維G100部をパルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、150℃のシリンダードライヤーによって乾燥し、坪量18.0g/mの不織布を作製した。次に、スーパーカレンダー処理を行い、坪量18.0g/m、厚さ35μmの電気化学素子用セパレーターとした。
Example 7
100 parts of solvent-spun cellulose fiber G was disaggregated in pulper water, and a uniform papermaking slurry (1% concentration) was prepared under stirring by an agitator. This papermaking slurry was made up by a wet method using a circular paper machine and dried by a cylinder dryer at 150 ° C. to prepare a nonwoven fabric having a basis weight of 18.0 g / m 2 . Next, a super calendar process was performed to obtain a separator for an electrochemical element having a basis weight of 18.0 g / m 2 and a thickness of 35 μm.

実施例8
上記で作製したフィブリル化天然セルロース繊維10部と溶剤紡糸セルロース繊維C90部を一緒に混合し、パルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、150℃のシリンダードライヤーによって乾燥し、坪量18.1g/mの不織布を作製した。次に、スーパーカレンダー処理を行い、坪量18.1g/m、厚さ35μmの電気化学素子用セパレーターとした。
Example 8
10 parts of the fibrillated natural cellulose fiber and 90 parts of solvent-spun cellulose fiber C prepared above are mixed together, disaggregated in water of a pulper, and a uniform papermaking slurry (1% concentration) is prepared under stirring by an agitator. did. This papermaking slurry was made up by a wet method using a circular paper machine and dried with a cylinder dryer at 150 ° C. to produce a nonwoven fabric having a basis weight of 18.1 g / m 2 . Next, a super calendar process was performed to obtain a separator for an electrochemical element having a basis weight of 18.1 g / m 2 and a thickness of 35 μm.

実施例9
上記で作製したフィブリル化天然セルロース繊維20部と溶剤紡糸セルロース繊維C80部を一緒に混合し、パルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、150℃のシリンダードライヤーによって乾燥し、坪量17.8g/mの不織布を作製した。次に、スーパーカレンダー処理を行い、坪量17.8g/m、厚さ34μmの電気化学素子用セパレーターとした。
Example 9
20 parts of the fibrillated natural cellulose fiber and 80 parts of solvent-spun cellulose fiber C prepared above are mixed together, disaggregated in the water of the pulper, and a uniform papermaking slurry (1% concentration) is prepared by stirring with an agitator. did. This papermaking slurry was made up by a wet method using a circular paper machine and dried by a cylinder dryer at 150 ° C. to prepare a nonwoven fabric having a basis weight of 17.8 g / m 2 . Next, a super calendar process was performed to obtain a separator for an electrochemical element having a basis weight of 17.8 g / m 2 and a thickness of 34 μm.

実施例10
上記で作製したフィブリル化天然セルロース繊維25部と溶剤紡糸セルロース繊維C75部を一緒に混合し、パルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、150℃のシリンダードライヤーによって乾燥し、坪量17.9g/mの不織布を作製した。次に、スーパーカレンダー処理を行い、坪量17.9g/m、厚さ34μmの電気化学素子用セパレーターとした。
Example 10
25 parts of the fibrillated natural cellulose fiber and 75 parts of solvent-spun cellulose fiber C prepared above are mixed together, disaggregated in pulper water, and a uniform papermaking slurry (1% concentration) is prepared under stirring by an agitator. did. This papermaking slurry was made up by a wet method using a circular paper machine and dried by a cylinder dryer at 150 ° C. to prepare a nonwoven fabric having a basis weight of 17.9 g / m 2 . Next, a super calendar process was performed to obtain a separator for an electrochemical element having a basis weight of 17.9 g / m 2 and a thickness of 34 μm.

実施例11
変法濾水度820mLまで高圧ホモジナイザーを用いて処理したフィブリル化マニラ麻繊維25部と溶剤紡糸セルロース繊維C75部を一緒に混合し、パルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、150℃のシリンダードライヤーによって乾燥し、坪量18.1g/mの不織布を作製した。次に、スーパーカレンダー処理を行い、坪量18.1g/m、厚さ35μmの電気化学素子用セパレーターとした。
Example 11
25 parts of fibrillated Manila hemp fibers and 75 parts of solvent-spun cellulose fibers treated with a high-pressure homogenizer to a modified freeness of 820 mL were mixed together, disaggregated in water in a pulper, and evenly made under stirring by an agitator A slurry (1% concentration) was prepared. This papermaking slurry was made up by a wet method using a circular paper machine and dried with a cylinder dryer at 150 ° C. to produce a nonwoven fabric having a basis weight of 18.1 g / m 2 . Next, a super calendar process was performed to obtain a separator for an electrochemical element having a basis weight of 18.1 g / m 2 and a thickness of 35 μm.

(比較例1)
溶剤紡糸セルロース繊維H100部をパルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、150℃のシリンダードライヤーによって乾燥し、坪量18.0g/mの不織布を作製した。次に、スーパーカレンダー処理を行い、坪量18.0g/m、厚さ35μmの電気化学素子用セパレーターとした。
(Comparative Example 1)
100 parts of solvent-spun cellulose fiber H was disaggregated in pulper water, and a uniform papermaking slurry (1% concentration) was prepared under stirring by an agitator. This papermaking slurry was made up by a wet method using a circular paper machine and dried by a cylinder dryer at 150 ° C. to prepare a nonwoven fabric having a basis weight of 18.0 g / m 2 . Next, a super calendar process was performed to obtain a separator for an electrochemical element having a basis weight of 18.0 g / m 2 and a thickness of 35 μm.

(比較例2)
溶剤紡糸セルロース繊維I100部をパルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、150℃のシリンダードライヤーによって乾燥し、坪量18.0g/mの不織布を作製した。次に、スーパーカレンダー処理を行い、坪量18.0g/m、厚さ35μmの電気化学素子用セパレーターとした。
(Comparative Example 2)
100 parts of solvent-spun cellulose fiber I was disaggregated in pulper water, and a uniform papermaking slurry (1% concentration) was prepared under stirring by an agitator. This papermaking slurry was made up by a wet method using a circular paper machine and dried by a cylinder dryer at 150 ° C. to prepare a nonwoven fabric having a basis weight of 18.0 g / m 2 . Next, a super calendar process was performed to obtain a separator for an electrochemical element having a basis weight of 18.0 g / m 2 and a thickness of 35 μm.

(比較例3)
溶剤紡糸セルロース繊維J100部をパルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、150℃のシリンダードライヤーによって乾燥し、坪量18.0g/mの不織布を作製した。次に、スーパーカレンダー処理を行い、坪量18.0g/m、厚さ35μmの電気化学素子用セパレーターとした。
(Comparative Example 3)
Solvent-spun cellulose fibers J100 parts were disaggregated in pulper water, and a uniform papermaking slurry (1% concentration) was prepared under stirring by an agitator. This papermaking slurry was made up by a wet method using a circular paper machine and dried by a cylinder dryer at 150 ° C. to prepare a nonwoven fabric having a basis weight of 18.0 g / m 2 . Next, a super calendar process was performed to obtain a separator for an electrochemical element having a basis weight of 18.0 g / m 2 and a thickness of 35 μm.

<評価>
実施例及び比較例で得られた電気化学素子用セパレーターについて、下記の評価を行い、結果を表2に示した。
<Evaluation>
The separators for electrochemical devices obtained in Examples and Comparative Examples were evaluated as follows, and the results are shown in Table 2.

Figure 2012221567
Figure 2012221567

[熱収縮率]
実施例及び比較例のセパレーターを、100mm幅、150mm長に切り揃えた。試験片をガラス板に載せ、長さ方向に直角な2辺をクリップで挟んで固定し、180℃に設定した恒温乾燥機の中に3時間静置した。幅方向の寸法を測定し、元の寸法に対する収縮による寸法変化の割合を求め、熱収縮率(%)とした。熱収縮率が1.0%未満であれば「◎」、1.0%以上2.0%未満であれば「○」、2.0%以上であれば「×」とした。
[Heat shrinkage]
The separators of the example and the comparative example were cut to 100 mm width and 150 mm length. The test piece was placed on a glass plate, two sides perpendicular to the length direction were fixed with clips, and the sample was left in a constant temperature dryer set at 180 ° C. for 3 hours. The dimension in the width direction was measured, and the ratio of the dimensional change due to the shrinkage relative to the original dimension was determined to obtain the thermal shrinkage rate (%). When the thermal shrinkage rate was less than 1.0%, “◎”, when it was 1.0% or more and less than 2.0%, “◯”, and when it was 2.0% or more, “×”.

[電解液保液率]
15cm×10cmの大きさに切り取ったセパレーター試料を200℃で3時間乾燥処理した直後の重量(W)を計測し、次いでセパレーター試料を電解液溶媒に1分間浸漬した後、ピンセットで該試料を取り出し、つるした。電解液溶媒が垂れなくなったところで該試料の重量(W)を計測した。下記の数式1より、セパレーターの自重に対する電解液保液率(%)とした。電解液溶媒としては、プロピレンカーボネートを用いた。保液率が、250%以上であれば「◎」、200%以上250%未満であれば「○」、200%未満であれば「×」とした。
[Electrolytic solution retention ratio]
A separator sample cut into a size of 15 cm × 10 cm was measured for weight (W 1 ) immediately after being dried at 200 ° C. for 3 hours, and then the separator sample was immersed in an electrolyte solvent for 1 minute, and then the sample was removed with tweezers. Removed and hung. The weight (W 2 ) of the sample was measured when the electrolyte solvent stopped dripping. From Equation 1 below, the electrolyte solution retention rate (%) with respect to the weight of the separator was determined. Propylene carbonate was used as the electrolyte solution solvent. When the liquid retention rate was 250% or more, “◎”, when it was 200% or more and less than 250%, “◯”, and when it was less than 200%, “×”.

(数式1)
電解液保液率(%)=(W−W)/W×100
(Formula 1)
Electrolytic solution retention ratio (%) = (W 2 −W 1 ) / W 1 × 100

[電解液が付着した際の強度]
実施例及び比較例の基材を、50mm幅、200mm長の短冊状に5本以上切り揃え、次いでセパレーター試料を電解液に1分間浸漬した後、ピンセットで該試料を取り出し、つるした。電解液が垂れなくなったところで試験片を卓上型材料試験機(商品名:STA−1150、(株)オリエンテック製)の試料ツカミで試料の両端を100mm間隔であけて挟み、上端を100mm/minの一定速度で切断するまで引き上げていき、最大荷重を計測した。その際の強度が1.0kgf/50mm以上であれば「◎」、0.5kgf/50mm以上1.0kgf/50mm未満であれば「○」、0.5kgf/50mm未満であれば「×」とした。
[Strength when electrolytic solution adheres]
Five or more of the substrates of Examples and Comparative Examples were cut into a 50 mm wide and 200 mm long strip, and then the separator sample was immersed in an electrolyte for 1 minute, and then the sample was taken out with tweezers and suspended. When the electrolyte no longer hangs, the test piece is sandwiched between sample edges of a desktop material testing machine (trade name: STA-1150, manufactured by Orientec Co., Ltd.) at both ends of the sample at 100 mm intervals, and the upper end is set to 100 mm / min. It was pulled up until it was cut at a constant speed, and the maximum load was measured. When the strength at that time is 1.0 kgf / 50 mm or more, “◎”, when 0.5 kgf / 50 mm or more and less than 1.0 kgf / 50 mm, “◯”, and when less than 0.5 kgf / 50 mm, “×”. did.

実施例で得られた電気化学素子用セパレーターは、セルロース繊維からなり、ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1%にした以外はJIS P8121に準拠して測定した変法濾水度が0〜250mLであり、かつ長さ加重平均繊維長が0.20〜2.00mmである溶剤紡糸セルロース繊維を含有し、該溶剤紡糸セルロース繊維の繊維長分布ヒストグラムにおいて、0.00〜1.00mmの間に最大頻度ピークを有し、1.00mm以上の繊維長を有する繊維の割合が50%以上であるため、緻密な構造を有し、耐熱性・電解液保持性に優れるという良好な結果が得られた。   The separator for an electrochemical element obtained in the examples is made of cellulose fiber, and is a JIS except that an 80-mesh wire mesh having a wire diameter of 0.14 mm and an aperture of 0.18 mm is used as a sieve plate and the sample concentration is 0.1%. A solvent-spun cellulose fiber having a modified freeness measured in accordance with P8121, 0 to 250 mL, and a length-weighted average fiber length of 0.20 to 2.00 mm. In the fiber length distribution histogram, since the ratio of fibers having a maximum frequency peak between 0.00 and 1.00 mm and a fiber length of 1.00 mm or more is 50% or more, it has a dense structure, Good results of excellent heat resistance and electrolyte retention were obtained.

実施例1、4、6、7の比較から、溶剤紡糸セルロース繊維の繊維長分布ヒストグラムにおいて、最大頻度ピーク以外に1.50〜3.50mmの間にピークを有する場合、耐熱性・電解液保持性も高く、また、電解液が付着した場合の強度適性も見られた。最大頻度ピーク以外のピークの繊維長が1.50mmより短い実施例4では、電解液が付着した場合の強度が若干低下する傾向が見られた。また、最大頻度ピーク以外のピークの繊維長が3.50mmより長い実施例7では、電解液保持性が若干悪化する傾向が見られた。   From the comparison of Examples 1, 4, 6, and 7, in the fiber length distribution histogram of the solvent-spun cellulose fiber, when having a peak between 1.50 and 3.50 mm in addition to the maximum frequency peak, heat resistance and electrolyte retention In addition, the strength suitability when the electrolytic solution adhered was also observed. In Example 4 in which the fiber length of the peak other than the maximum frequency peak is shorter than 1.50 mm, there was a tendency that the strength when the electrolytic solution adhered slightly decreased. Moreover, in Example 7 in which the fiber length of the peak other than the maximum frequency peak is longer than 3.50 mm, the electrolyte solution retention tends to be slightly deteriorated.

一方、比較例1で得られた電気化学素子用セパレーターでは、繊維長分布ヒストグラムにおける最大頻度ピークが0.00〜1.00mmの間から外れているため、電解液保持性が実施例より悪化する結果となった。   On the other hand, in the separator for electrochemical devices obtained in Comparative Example 1, the maximum frequency peak in the fiber length distribution histogram is out of the range of 0.00 to 1.00 mm, so that the electrolyte retention is worse than that of the example. As a result.

また、比較例2で得られた電気化学素子用セパレーターでは、1.00mm以上の繊長を有する繊維の割合が50%より少ないため、耐熱性、電解液が付着した場合の強度が実施例より悪化する結果となった。   Moreover, in the separator for electrochemical elements obtained in Comparative Example 2, since the proportion of fibers having a fiber length of 1.00 mm or more is less than 50%, the heat resistance and the strength when an electrolytic solution adheres are higher than those of the Examples. The result was worse.

さらに、比較例3で得られた電気化学素子用セパレーターは、変法濾水度が0〜250mLの間から外れているため、電解液保持性が実施例より悪化する結果となった。   Furthermore, since the separator for electrochemical devices obtained in Comparative Example 3 had a modified freeness of water that was out of the range of 0 to 250 mL, the electrolyte retention was worse than that of the Examples.

本発明の電気化学素子用セパレーターは、マンガン乾電池、アルカリマンガン電池、酸化銀電池、リチウム電池、鉛蓄電池、ニッケル−カドミウム蓄電池、ニッケル−水素蓄電池、ニッケル−亜鉛蓄電池、酸化銀−亜鉛蓄電池、リチウムイオン電池、リチウムポリマー電池、各種のゲル電解質電池、亜鉛−空気蓄電池、鉄−空気蓄電池、アルミニウム−空気蓄電池、燃料電池、太陽電池、ナトリウム硫黄電池、ポリアセン電池、電解コンデンサ、電気二重層キャパシター、リチウムイオンキャパシターに好適に使用できる。   The separator for an electrochemical element of the present invention is a manganese dry battery, alkaline manganese battery, silver oxide battery, lithium battery, lead storage battery, nickel-cadmium storage battery, nickel-hydrogen storage battery, nickel-zinc storage battery, silver oxide-zinc storage battery, lithium ion Batteries, lithium polymer batteries, various gel electrolyte batteries, zinc-air storage batteries, iron-air storage batteries, aluminum-air storage batteries, fuel cells, solar batteries, sodium sulfur batteries, polyacene batteries, electrolytic capacitors, electric double layer capacitors, lithium ions It can be suitably used for a capacitor.

Claims (2)

セルロース繊維のみを含有した多孔質シートからなるセパレーターにおいて、多孔質シートが、ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1%にした以外はJIS P8121に準拠して測定した変法濾水度が0〜250mLであり、かつ長さ加重平均繊維長が0.20〜2.00mmである溶剤紡糸セルロース繊維を含有し、該溶剤紡糸セルロース繊維の繊維長分布ヒストグラムにおいて、0.00〜1.00mmの間に最大頻度ピークを有し、1.00mm以上の繊維長を有する繊維の割合が50%以上であることを特徴とする電気化学素子用セパレーター。   A separator composed of a porous sheet containing only cellulose fibers, except that the porous sheet uses an 80-mesh wire mesh with a wire diameter of 0.14 mm and an aperture of 0.18 mm as a sieve plate, and a sample concentration of 0.1%. A solvent-spun cellulose fiber having a modified freeness measured in accordance with JIS P8121 of 0 to 250 mL and a length-weighted average fiber length of 0.20 to 2.00 mm; In the fiber length distribution histogram, an electrochemical element having a maximum frequency peak between 0.00 and 1.00 mm, and a ratio of fibers having a fiber length of 1.00 mm or more is 50% or more Separator. 溶剤紡糸セルロース繊維の繊維長分布ヒストグラムにおいて、最大頻度ピーク以外に1.50〜3.50mmの間にピークを有する請求項1記載の電気化学素子用セパレーター。   The separator for an electrochemical element according to claim 1, wherein in the fiber length distribution histogram of the solvent-spun cellulose fiber, there is a peak between 1.50 and 3.50 mm in addition to the maximum frequency peak.
JP2011082635A 2011-04-04 2011-04-04 Electrochemical element separator Active JP5594845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011082635A JP5594845B2 (en) 2011-04-04 2011-04-04 Electrochemical element separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011082635A JP5594845B2 (en) 2011-04-04 2011-04-04 Electrochemical element separator

Publications (2)

Publication Number Publication Date
JP2012221567A true JP2012221567A (en) 2012-11-12
JP5594845B2 JP5594845B2 (en) 2014-09-24

Family

ID=47272901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011082635A Active JP5594845B2 (en) 2011-04-04 2011-04-04 Electrochemical element separator

Country Status (1)

Country Link
JP (1) JP5594845B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170104483A (en) 2015-01-16 2017-09-15 닛폰 고도시 코포레이션 Seperator and aluminum electrolytic capacitor
KR20170128250A (en) 2015-03-12 2017-11-22 닛폰 고도시 코포레이션 Separator for power storage device and power storage device using the separator
KR20180061199A (en) 2015-09-29 2018-06-07 닛폰 고도시 코포레이션 Separator and electrochemical device for electrochemical device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163024A (en) * 1992-06-01 1994-06-10 Kuraray Co Ltd Alkaline battery separator
JPH11281641A (en) * 1998-03-31 1999-10-15 Daicel Chem Ind Ltd Device and method for measuring micro-fibrous cellulose
JP2000003834A (en) * 1998-06-16 2000-01-07 Nippon Kodoshi Corp Electric double-layer capacitor
JP2003168629A (en) * 2001-08-30 2003-06-13 Mitsubishi Paper Mills Ltd Separator for capacitor
JP2010225809A (en) * 2009-03-23 2010-10-07 Mitsubishi Paper Mills Ltd Separator-electrode integration type electric storage element for electrochemical element, and electrochemical element using the same
JP4970539B2 (en) * 2007-06-15 2012-07-11 三菱製紙株式会社 Porous sheet, separator for electrochemical device, and method for producing porous sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163024A (en) * 1992-06-01 1994-06-10 Kuraray Co Ltd Alkaline battery separator
JPH11281641A (en) * 1998-03-31 1999-10-15 Daicel Chem Ind Ltd Device and method for measuring micro-fibrous cellulose
JP2000003834A (en) * 1998-06-16 2000-01-07 Nippon Kodoshi Corp Electric double-layer capacitor
JP2003168629A (en) * 2001-08-30 2003-06-13 Mitsubishi Paper Mills Ltd Separator for capacitor
JP4970539B2 (en) * 2007-06-15 2012-07-11 三菱製紙株式会社 Porous sheet, separator for electrochemical device, and method for producing porous sheet
JP2010225809A (en) * 2009-03-23 2010-10-07 Mitsubishi Paper Mills Ltd Separator-electrode integration type electric storage element for electrochemical element, and electrochemical element using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170104483A (en) 2015-01-16 2017-09-15 닛폰 고도시 코포레이션 Seperator and aluminum electrolytic capacitor
US10566141B2 (en) 2015-01-16 2020-02-18 Nippon Kodoshi Corporation Separator and aluminum electrolytic capacitor
KR20170128250A (en) 2015-03-12 2017-11-22 닛폰 고도시 코포레이션 Separator for power storage device and power storage device using the separator
US10497913B2 (en) 2015-03-12 2019-12-03 Nippon Kodoshi Corporation Separator for power storage device and power storage device using the separator
KR20180061199A (en) 2015-09-29 2018-06-07 닛폰 고도시 코포레이션 Separator and electrochemical device for electrochemical device
US10748713B2 (en) 2015-09-29 2020-08-18 Nippon Kodoshi Corporation Separator for electrochemical device and electrochemical device

Also Published As

Publication number Publication date
JP5594845B2 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
JP6445273B2 (en) Lithium ion battery separator coating liquid and lithium ion battery separator
JP5594844B2 (en) Electrochemical element separator
US20030180622A1 (en) Separator for electrochemical device and method for producing the same, and electrochemical device
JP2012036518A (en) Nonwoven fabric including cellulose fiber, method for manufacturing the same, and separator
CN109661737B (en) Base material for lithium ion battery separator and lithium ion battery separator
KR102398127B1 (en) Separator for electrochemical device and electrochemical device comprising same
CN102986060A (en) Separator for lithium ion secondary battery and lithium ion secondary battery using same
CN104425791A (en) Separator for Electrochemical Element, Process for Producing Separator and Electrochemical Element Using Separator
JP6339869B2 (en) Capacitor separator
KR101827617B1 (en) Separator for electric double layer capacitors, and electric double layer capacitor
JP2016001663A (en) Manufacturing method of separator for electrochemical element and separator for electrochemical element
JP5876373B2 (en) Electrochemical element separator and electrochemical element using the same
JP2014096335A (en) Method of manufacturing separator for battery and separator for battery
JP2013206591A (en) Separator for power storage element and manufacturing method thereof
JP5594845B2 (en) Electrochemical element separator
JP2016129094A (en) Lithium primary battery separator and lithium primary battery arranged by use thereof
JP2014051767A (en) Separator for electricity storage device and production method of the same
JP2014053259A (en) Separator for lithium secondary battery, and lithium secondary battery
WO2017047638A1 (en) Alkaline battery separator
JP2016171048A (en) Lithium ion secondary battery separator and lithium ion secondary battery arranged by use thereof
JP5695474B2 (en) Separator for solid electrolytic capacitor and solid electrolytic capacitor using the same
JP7309650B2 (en) Separator for electrochemical device
JP2016091597A (en) Method for manufacturing electrochemical device separator, and electrochemical device separator
JP2020088024A (en) Solid electrolytic capacitor or hybrid separator for electrolytic capacitor, and solid electrolytic or hybrid electrolytic capacitor which is arranged by use thereof
JP2018206671A (en) Lithium ion battery separator substrate, and lithium ion battery separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140801

R150 Certificate of patent or registration of utility model

Ref document number: 5594845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250