JP6445273B2 - Lithium ion battery separator coating liquid and lithium ion battery separator - Google Patents

Lithium ion battery separator coating liquid and lithium ion battery separator Download PDF

Info

Publication number
JP6445273B2
JP6445273B2 JP2014160007A JP2014160007A JP6445273B2 JP 6445273 B2 JP6445273 B2 JP 6445273B2 JP 2014160007 A JP2014160007 A JP 2014160007A JP 2014160007 A JP2014160007 A JP 2014160007A JP 6445273 B2 JP6445273 B2 JP 6445273B2
Authority
JP
Japan
Prior art keywords
mass
coating
fibers
cellulose
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014160007A
Other languages
Japanese (ja)
Other versions
JP2015084318A (en
Inventor
友洋 佐藤
友洋 佐藤
鍛治 裕夫
裕夫 鍛治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2014160007A priority Critical patent/JP6445273B2/en
Publication of JP2015084318A publication Critical patent/JP2015084318A/en
Application granted granted Critical
Publication of JP6445273B2 publication Critical patent/JP6445273B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Description

本発明は、リチウムイオン電池用セパレータ用塗液及びこの塗液を不織布基材に塗工してなるリチウムイオン電池用セパレータに関する。   TECHNICAL FIELD The present invention relates to a lithium ion battery separator coating liquid and a lithium ion battery separator formed by coating the coating liquid on a nonwoven fabric substrate.

リチウムイオン電池(以下、「電池」と略記する場合がある)には、正負極間の接触を防ぐためのリチウムイオン電池用セパレータが用いられている。   Lithium ion batteries (hereinafter sometimes abbreviated as “batteries”) use lithium ion battery separators for preventing contact between positive and negative electrodes.

リチウムイオン電池用セパレータ(以下、「セパレータ」と略記する場合がある)として従来用いられているポリエチレン又はポリプロピレンからなる多孔性フィルムは、耐熱性が低く、安全上重大な問題を抱えている。すなわち、このような多孔性フィルムをセパレータとして用いた電池は、内部短絡等の原因により電池内部で局部的な発熱が生じた場合、発熱部位周辺のセパレータが収縮して内部短絡が更に拡大し、暴走的に発熱して発火・破裂等の重大な事象に至ることがある。   A porous film made of polyethylene or polypropylene conventionally used as a separator for lithium ion batteries (hereinafter sometimes abbreviated as “separator”) has low heat resistance and has a serious safety problem. That is, when a battery using such a porous film as a separator causes local heat generation inside the battery due to an internal short circuit or the like, the separator around the heat generation site contracts and the internal short circuit further expands. Runaway fever may lead to serious events such as ignition and rupture.

このような問題に対し、ベーマイト等の無機粒子及び繊維状物を含有してなるセパレータが提案されている(例えば、特許文献1参照)。さらに、不織布基材に無機粒子を含有させてなるセパレータが提案されている(例えば、特許文献2参照)。特許文献1及び2には、このようなセパレータの製造方法として、無機粒子、有機バインダー及び繊維状物を含むリチウムイオン電池用セパレータ用塗液(以下、「塗液」と略記する場合がある)を用いた製造方法が記載されている。   In order to solve such problems, a separator containing inorganic particles such as boehmite and a fibrous material has been proposed (for example, see Patent Document 1). Furthermore, the separator formed by making a nonwoven fabric base material contain an inorganic particle is proposed (for example, refer patent document 2). In Patent Documents 1 and 2, as a method for producing such a separator, a coating liquid for a lithium ion battery separator containing inorganic particles, an organic binder, and a fibrous material (hereinafter sometimes abbreviated as “coating liquid”). A production method using is described.

しかし、不織布基材に塗液を塗工するセパレータの製造方法では、塗工装置における強い動圧のために、塗液が不織布基材の内部に押し込まれやすく、また、高速で乾燥させるための多量の熱風からくる風圧によっても、塗液が不織布基材の内部に押し込まれやすい。とりわけ、セパレータを高速で製造しようとする場合、この傾向が顕著である。そのため、塗液を付与したのとは反対面から、押し込まれた塗液が滲出する現象(以下、「塗液の裏抜け」と記す場合がある)が生じ、塗工装置のロールを汚すことや、ロールに付着した汚れがセパレータに再転写して、その表面を不均一にすることがあり、この製造方法では、セパレータを高速で生産することが著しく困難であった。   However, in the separator manufacturing method in which the coating liquid is applied to the nonwoven fabric substrate, the coating liquid is easily pushed into the nonwoven fabric substrate due to the strong dynamic pressure in the coating apparatus, and also for drying at high speed. The coating liquid is likely to be pushed into the nonwoven fabric substrate even by the wind pressure coming from a large amount of hot air. This tendency is particularly noticeable when a separator is to be manufactured at high speed. For this reason, a phenomenon in which the pressed coating liquid oozes out from the side opposite to which the coating liquid is applied (hereinafter sometimes referred to as “coating liquid back-through”) causes the coating apparatus roll to become dirty. In addition, dirt adhered to the roll may be retransferred to the separator and the surface thereof may become non-uniform. With this manufacturing method, it is extremely difficult to produce the separator at high speed.

さらに、塗液が繊維を含有している場合、塗工装置に繊維が付着し、対応する部分の塗液付着量が不十分になったり、過剰になったりして、均一な塗層が得られない現象(以下、「ストリーク」と記す場合がある)が発生する問題があった。   Furthermore, when the coating liquid contains fibers, the fibers adhere to the coating device, and the coating liquid adhesion amount at the corresponding part becomes insufficient or excessive, resulting in a uniform coating layer. There is a problem that a phenomenon (hereinafter, sometimes referred to as “streak”) occurs.

また、特許文献3では、酸化アルミニウム及びミクロフィブリル化セルロース繊維を含有してなるセパレータが提案されている。そして、ミクロフィブリル化セルロース繊維を含む塗液が記載されている。しかし、この塗液を用いてセパレータを製造した場合、塗液の裏抜けは改善するものの、セルロース繊維の微細化が不十分であるため、ミクロフィブリル化セルロース繊維がもつれてダマになり、ストリークが発生する場合があった。   Patent Document 3 proposes a separator containing aluminum oxide and microfibrillated cellulose fibers. And the coating liquid containing a microfibrillated cellulose fiber is described. However, when a separator is produced using this coating solution, the back-through of the coating solution is improved, but the fineness of the cellulose fibers is insufficient, so the microfibrillated cellulose fibers become entangled and become streaked, causing streak. It may occur.

特開2008−4439号公報JP 2008-4439 A 特開2008−4442号公報JP 2008-4442 A 特開2010−67653号公報JP 2010-67653 A

本発明の課題は、不織布基材上に、無機粒子及び有機ポリマーバインダーを含む塗層を設けるにあたり、塗液が不織布基材から裏抜けするのを抑制し、セパレータの生産性を高められるリチウムイオン電池用セパレータ用塗液を提供することにある。また、該塗液を不織布基材に塗工して得られる、生産性が高く、ピンホールの少ないセパレータを提供することにある。   An object of the present invention is to provide lithium ions capable of suppressing separator penetration of a coating liquid from a nonwoven fabric substrate and improving separator productivity when a coating layer containing inorganic particles and an organic polymer binder is provided on the nonwoven fabric substrate. It is providing the coating liquid for battery separators. Another object of the present invention is to provide a separator having high productivity and few pinholes, which is obtained by coating the coating liquid on a nonwoven fabric substrate.

上記課題を解決した本発明は、下記のとおりである。   The present invention that has solved the above problems is as follows.

(1)不織布基材への塗工に用いるリチウムイオン電池用セパレータ用塗液において、無機顔料、添加剤、有機ポリマーバインダー及びセルロース繊維を含み、該セルロース繊維が、バクテリアセルロース繊維、ナノセルロース繊維及び懸濁安定性が30%以上の微細セルロース繊維の群から選ばれる少なくとも1種であり、塗液の固形分に対して、無機顔料の含有量が100×100/110.85質量%〜100×100/106.70質量%であり、添加剤の含有量が100×1.5/110.85質量%〜100×1.5/106.70質量%であり、有機ポリマーバインダーの含有量が100×5/110.85質量%〜100×5/106.70質量%であり、セルロース繊維の含有量が100×0.20/106.70質量%〜100×4.35/110.85質量%であることを特徴とするリチウムイオン電池用セパレータ用塗液。 (1) In a coating solution for a separator for a lithium ion battery used for coating on a nonwoven fabric substrate, it contains an inorganic pigment, an additive, an organic polymer binder, and cellulose fibers, and the cellulose fibers are bacterial cellulose fibers, nanocellulose fibers, and At least Tanedea that suspension stability is selected from the group of 30% or more of fine cellulose fibers is, the solid of the coating liquid fraction, the content of the inorganic pigment is 100 × 100 / 110.85% by mass to 100 × 100 / 106.70% by mass, the additive content is 100 × 1.5 / 110.85% by mass to 100 × 1.5 / 106.70% by mass, and the organic polymer binder content is 100 × 5 / 110.85 mass% to 100 × 5 / 106.70 mass%, and the content of cellulose fiber is 100 × 0.20 / 106.70 mass% to 1. 0 × 4.35 / 110.85 lithium ion separator coating solution for a battery, which is a mass%.

(2)不織布基材の少なくとも1面に塗層を設けてなるリチウムイオン電池用セパレータにおいて、該塗層が無機顔料、添加剤、有機ポリマーバインダー及びセルロース繊維を含み、該セルロース繊維が、バクテリアセルロース繊維、ナノセルロース繊維及び懸濁安定性が30%以上の微細セルロース繊維の群から選ばれる少なくとも1種であり、塗層の固形分に対して、無機顔料の含有量が100×100/110.85質量%〜100×100/106.70質量%であり、添加剤の含有量が100×1.5/110.85質量%〜100×1.5/106.70質量%であり、有機ポリマーバインダーの含有量が100×5/110.85質量%〜100×5/106.70質量%であり、セルロース繊維の含有量が100×0.20/106.70質量%〜100×4.35/110.85質量%であることを特徴とするリチウムイオン電池用セパレータ。
(2) In a lithium ion battery separator in which a coating layer is provided on at least one surface of a nonwoven fabric substrate, the coating layer includes an inorganic pigment, an additive, an organic polymer binder, and cellulose fibers, and the cellulose fibers are bacterial cellulose. fibers, Ri least 1 Tanedea nano cellulosic fibers and suspension stability is selected from the group of 30% or more of fine cellulose fibers, based on the solids of the coating layer component, the content of the inorganic pigment is 100 × 100/110 .85% by mass to 100 × 100 / 106.70% by mass, and the additive content is 100 × 1.5 / 110.85% by mass to 100 × 1.5 / 106.70% by mass, organic The content of the polymer binder is 100 × 5 / 110.85 mass% to 100 × 5 / 106.70 mass%, and the content of the cellulose fiber is 100 × 0.20 / 1. Separator for lithium-ion batteries, characterized in that 6.70 a% by mass to 100 × 4.35 / 110.85% by mass.

本発明によれば、不織布基材への塗工に用いるリチウムイオン電池用セパレータ用塗液において、無機顔料と有機ポリマーバインダーを含む塗液に、バクテリアセルロース繊維、ナノセルロース繊維及び懸濁安定性が30%以上の微細セルロース繊維の群から選ばれる少なくとも1種であるセルロース繊維を含有させることで、セルロース繊維が不織布基材の繊維に交絡し、塗液を不織布基材中に保持して、裏抜けを抑制することができる。よって、本発明のリチウムイオン電池用セパレータ用塗液を用いることで、塗工した際の塗液の裏抜けが少なくなり、塗液の裏抜けによる塗工装置のロールの汚れや、ピンホールの発生を防ぐことができることから、高速での塗工や高速での乾燥が可能となり、著しく高い生産性で、ピンホールの少ない本発明のリチウムイオン電池用セパレータを製造することができる。   According to the present invention, in a coating solution for a lithium ion battery separator used for coating on a nonwoven fabric substrate, bacterial cellulose fibers, nanocellulose fibers and suspension stability are added to a coating solution containing an inorganic pigment and an organic polymer binder. By containing at least one type of cellulose fiber selected from the group of fine cellulose fibers of 30% or more, the cellulose fibers are entangled with the fibers of the nonwoven fabric substrate, the coating liquid is held in the nonwoven fabric substrate, Omission can be suppressed. Therefore, by using the coating liquid for a lithium-ion battery separator of the present invention, the back-through of the coating liquid at the time of coating is reduced, the contamination of the roll of the coating apparatus due to the back-through of the coating liquid, and pinhole Since generation | occurrence | production can be prevented, high-speed coating and high-speed drying are attained, and the separator for lithium ion batteries of this invention with few pinholes can be manufactured with remarkably high productivity.

本発明のリチウムイオン電池用セパレータ用塗液は、不織布基材への塗工に用いるリチウムイオン電池用セパレータ用塗液であり、無機顔料、有機ポリマーバインダー及びセルロース繊維を含み、該セルロース繊維が、バクテリアセルロース繊維、ナノセルロース繊維及び懸濁安定性が30%以上の微細セルロース繊維の群から選ばれる少なくとも1種であることを特徴とする。本発明のリチウムイオン電池用セパレータは、不織布基材の少なくとも1面に塗層を設けてなるリチウムイオン電池用セパレータであり、該塗層が無機顔料、有機ポリマーバインダー及びセルロース繊維を含み、該セルロース繊維が、バクテリアセルロース繊維、ナノセルロース繊維及び懸濁安定性が30%以上の微細セルロース繊維の群から選ばれる少なくとも1種であることを特徴とする。   The lithium ion battery separator coating liquid of the present invention is a lithium ion battery separator coating liquid used for coating on a nonwoven fabric substrate, and includes an inorganic pigment, an organic polymer binder, and cellulose fibers. It is characterized by being at least one selected from the group of bacterial cellulose fibers, nanocellulose fibers and fine cellulose fibers having a suspension stability of 30% or more. The lithium-ion battery separator of the present invention is a lithium-ion battery separator in which a coating layer is provided on at least one surface of a nonwoven fabric substrate, and the coating layer contains an inorganic pigment, an organic polymer binder, and cellulose fibers, and the cellulose The fibers are at least one selected from the group consisting of bacterial cellulose fibers, nanocellulose fibers, and fine cellulose fibers having a suspension stability of 30% or more.

セルロース繊維としては、バクテリアセルロース繊維、ナノセルロース繊維及び懸濁安定性が30%以上の微細セルロース繊維の群からなる少なくとも1種が挙げられるが、これらのセルロース繊維は1種単独で使用しても良いし、複数種を混合して使用しても良い。   Examples of the cellulose fiber include at least one selected from the group consisting of bacterial cellulose fibers, nanocellulose fibers, and fine cellulose fibers having a suspension stability of 30% or more. These cellulose fibers may be used alone. It is also possible to use a mixture of multiple types.

バクテリアセルロース繊維とは、セルロースおよびセルロースを主鎖としたヘテロ多糖を含むものおよびβ−1,3、β−1,2等のグルカンを含むものである。ヘテロ多糖の場合のセルロース以外の構成成分はマンノース、フラクトース、ガラクトース、キシロース、アラビノース、ラムノース、グルクロン酸等の六炭糖、五炭糖および有機酸等である。これらの多糖は単一物質で構成される場合もあるが、2種以上の多糖が水素結合などで結合して構成されている場合もあり、いずれも利用できる。バクテリアセルロース繊維は上記のようなものであればいかなるものでも良い。   Bacterial cellulose fibers include cellulose and heteropolysaccharides containing cellulose as a main chain and those containing glucans such as β-1,3, β-1,2 and the like. Constituent components other than cellulose in the case of heteropolysaccharides are hexoses such as mannose, fructose, galactose, xylose, arabinose, rhamnose, glucuronic acid, pentoses, organic acids and the like. These polysaccharides may be composed of a single substance, or may be composed of two or more kinds of polysaccharides bonded together by hydrogen bonds or the like, and any of them can be used. The bacterial cellulose fiber may be any as long as it is as described above.

このようなバクテリアセルロース繊維を産生する微生物としては特に限定されるものではないが、アセトバクター・アセチ・サブスピーシス・キシリナム(Acetobacter aceti subsp.xylinum)ATCC 10821、同パストウリアン(A.pasteurian)、同ランセンス(A.rancens)、サルシナ・ベントリクリ(Sarcina ventriculi)、バクテリウム・キシロイデス(Bacterium xyloides)、シュードモナス属細菌、アグロバクテリウム属細菌等でバクテリアセルロースを産生するものを利用することができる。   Although it does not specifically limit as microorganisms which produce such a bacterial cellulose fiber, Acetobacter acetic subspis xylinum (Acetobacter acetic subsp. Xylinum) ATCC 10821, the same Pasteurian (A. pasteurian), the same lance ( A. rancens), Sarcina ventriculi, Bacterium xyloides, Pseudomonas bacteria, Agrobacterium bacteria, etc. that produce bacterial cellulose can be used.

これらの微生物を培養してバクテリアセルロース繊維を生成蓄積させる方法は、細菌を培養する一般的方法に従えばよい。すなわち、炭素源、窒素源、無機塩類、その他必要に応じてアミノ酸、ビタミン等の有機微量栄養素を含有する通常の栄養培地に微生物を接種し、静置または緩やかに通気攪拌を行う。   The method for culturing these microorganisms to produce and accumulate bacterial cellulose fibers may follow a general method for culturing bacteria. That is, a microorganism is inoculated into a normal nutrient medium containing a carbon source, a nitrogen source, inorganic salts, and other organic micronutrients such as amino acids and vitamins as necessary, and the mixture is allowed to stand or gently aerated and stirred.

次いで、生成蓄積されたバクテリアセルロース繊維を離解し、水性スラリーとする。離解は回転式の離解機あるいはミキサー等で容易にできる。このようにして得られたバクテリアセルロース離解物は繊維間の結合能力が非常に高いため、不織布基材への塗工に用いるリチウムイオン電池用セパレータ用塗液中に含有させることで、バクテリアセルロース繊維が不織布基材の繊維に交絡し、塗液を不織布基材中に保持して、裏抜けを抑制することができる。   Subsequently, the produced and accumulated bacterial cellulose fibers are disaggregated to form an aqueous slurry. The disaggregation can be easily performed with a rotary disaggregator or a mixer. The bacterial cellulose disaggregate obtained in this way has a very high binding capacity between the fibers. Therefore, the bacterial cellulose fiber can be incorporated into a lithium ion battery separator coating solution used for coating on a nonwoven fabric substrate. Can be entangled with the fibers of the non-woven fabric base material, and the coating liquid can be held in the non-woven fabric base material to suppress the back-through.

ナノセルロース繊維とは、平均繊維径100nm以下のセルロース繊維を指す。ナノセルロース繊維の平均繊維径は、10〜70nmであることがより好ましく、10〜40nmであることが更に好ましい。平均繊維径10nm未満では、解繊処理の回数、時間が増え、ナノセルロース繊維の生産性が落ちることがあり、平均繊維径100nmより太いと、繊維がもつれてダマになり、塗工時にストリーク等の欠陥が発生し、均一な塗層が得られない。また、平均繊維径100nmより太いと、塗液の裏抜けが見られることがある。   The nano cellulose fiber refers to a cellulose fiber having an average fiber diameter of 100 nm or less. The average fiber diameter of the nanocellulose fibers is more preferably 10 to 70 nm, and still more preferably 10 to 40 nm. If the average fiber diameter is less than 10 nm, the number and time of defibrating treatments may increase, and the productivity of nanocellulose fibers may decrease. If the average fiber diameter is greater than 100 nm, the fibers may become entangled and become streaky during coating. Thus, a uniform coating layer cannot be obtained. Further, if the average fiber diameter is larger than 100 nm, the coating liquid may be seen through.

本発明における平均繊維径とは、繊維の走査型電子顕微鏡写真をとり、繊維20本の繊維径を計測した平均値である。   The average fiber diameter in the present invention is an average value obtained by taking a scanning electron micrograph of the fiber and measuring the fiber diameter of 20 fibers.

ナノセルロース繊維の平均繊維長は、0.5〜100μmが好ましく、1.0〜60μmがより好ましく、2.0〜30μmが更に好ましい。繊維長が0.5μmより短いと、不織布基材の繊維への交絡が不十分となり、塗液の裏抜けが見られることがあり、100μmより長いと、繊維がもつれてダマになることがあり、塗工時にストリーク等の欠陥が発生する場合がある。   The average fiber length of the nanocellulose fiber is preferably 0.5 to 100 μm, more preferably 1.0 to 60 μm, and still more preferably 2.0 to 30 μm. If the fiber length is shorter than 0.5 μm, the nonwoven fabric substrate may be insufficiently entangled with the fiber, and the coating liquid may be seen through, and if it is longer than 100 μm, the fiber may be tangled and become lumpy. In some cases, defects such as streaks may occur during coating.

本発明における平均繊維長とは、繊維の走査型電子顕微鏡写真をとり、繊維20本の繊維長を計測した平均値である。   The average fiber length in the present invention is an average value obtained by taking a scanning electron micrograph of the fiber and measuring the fiber length of 20 fibers.

ナノセルロース繊維を製造する方法としては、セルロース繊維を含むセルロース原料に物理的処理を施してセルロース繊維を解繊する物理的方法と、セルロース原料を解繊しやすくするために、酸化等の化学的処理を施した後、物理的処理を施しセルロース繊維を解繊する化学的方法が挙げられる。この中でも物理的方法が好ましい。これらの製造方法は、酢酸菌などの微生物が産生するバクテリアセルロース繊維に比べ、簡便な方法で安価なナノセルロース繊維を得ることができる。   As a method for producing nanocellulose fibers, a cellulose raw material containing cellulose fibers is physically treated to defibrate cellulose fibers, and chemicals such as oxidation are used to facilitate the defibration of cellulose raw materials. After the treatment, there is a chemical method in which the cellulose fiber is defibrated by performing a physical treatment. Of these, the physical method is preferred. These production methods can obtain inexpensive nanocellulose fibers by a simple method as compared with bacterial cellulose fibers produced by microorganisms such as acetic acid bacteria.

これらの製造方法により製造されるナノセルロース繊維は、ミクロフィブリル化セルロース繊維より更に微細化が進んでいて、セルロース原料の基本骨格であるセルロース鎖まで解繊されているため、非フィブリルの形状を有しており、ミクロフィブリル化セルロース繊維とは形状が異なる。非フィブリルとは、走査型電子顕微鏡下にて、繊維様のフリンジ(fringes)又はフィブリル(fibrils)が観察されない状態、又は、極めて少ない状態を表す。   Nanocellulose fibers produced by these production methods are further refined than microfibrillated cellulose fibers and have been fibrillated to the cellulose chain that is the basic skeleton of the cellulose raw material, and therefore have a non-fibrillar shape. The shape is different from that of microfibrillated cellulose fibers. Non-fibril represents a state in which fiber-like fringes or fibrils are not observed or very few under a scanning electron microscope.

ナノセルロース繊維を製造する場合の物理的方法としては、リファイナー、ビーター、ミル、摩砕装置、高速の回転刃により剪断力を与える回転刃式ホモジナイザー、高速で回転する円筒形の内刃と固定された外刃との間で剪断力を生じる二重円筒式の高速ホモジナイザー、超音波による衝撃で微細化する超音波破砕器、セルロース原料懸濁液に100MPa以上の圧力差を与えて小径のオリフィスを通過させて高速度とし、圧力差や、噴出させたセルロース原料懸濁液を噴出先に設けた壁やボール、リング等の硬質体に衝突させることによる急減速により、繊維に剪断力、切断力を加える高圧ホモジナイザー等が挙げられる。この中でも特に高圧ホモジナイザーが好ましい。   The physical methods for producing nanocellulose fibers include refiners, beaters, mills, grinding devices, rotary blade homogenizers that apply shear force with a high-speed rotary blade, and a cylindrical inner blade that rotates at high speed. Double-cylindrical high-speed homogenizer that generates shearing force between the outer blades, ultrasonic crusher that is refined by ultrasonic shock, and a small-diameter orifice by applying a pressure difference of 100 MPa or more to the cellulose raw material suspension High speed by passing through, pressure difference, shear force and cutting force on the fiber due to sudden deceleration by colliding the ejected cellulose raw material suspension with hard body such as wall, ball, ring etc. And a high-pressure homogenizer that adds Among these, a high-pressure homogenizer is particularly preferable.

高圧ホモジナイザー処理により、ナノセルロース繊維を製造する場合、処理を複数回繰り返すことにより、ミクロンオーダーからナノオーダーへの微細化が進み、所望のナノセルロース繊維とすることができる。この繰り返し回数は10回以上が好ましく、12回以上がより好ましく、15回以上が更に好ましい。   In the case of producing nanocellulose fibers by high-pressure homogenizer treatment, by repeating the treatment a plurality of times, refinement from the micron order to the nano order proceeds, and a desired nanocellulose fiber can be obtained. The number of repetitions is preferably 10 times or more, more preferably 12 times or more, and still more preferably 15 times or more.

ナノセルロース繊維を作製する場合のセルロース原料としては、結晶セルロース、溶剤紡糸セルロース、再生セルロース、木材繊維、竹繊維、リンター、リント、麻、柔細胞繊維などの非木材繊維等が挙げられる。柔細胞繊維とは、植物の茎、葉、根、果実等に存在する柔細胞を主体とした部分を、アルカリで処理する等して得られるセルロースを主成分とし、水に不溶な繊維である。この中でも特に結晶セルロース、木材繊維、リンターが好ましい。   Examples of cellulose raw materials for producing nanocellulose fibers include non-wood fibers such as crystalline cellulose, solvent-spun cellulose, regenerated cellulose, wood fibers, bamboo fibers, linter, lint, hemp, and soft cell fibers. The parenchyma fiber is a fiber insoluble in water, mainly composed of cellulose obtained by treating the main part of the parenchyma cells present in plant stems, leaves, roots, fruits, etc. with alkali. . Among these, crystalline cellulose, wood fiber, and linter are particularly preferable.

本発明における懸濁安定性とは、繊維懸濁液を0.1%(w/w)濃度に調整してメスシリンダー等に入れ、24時間静置後の懸濁した繊維の沈降面より下の体積を読み取って、懸濁液全量に対する割合を算出した値のことである。この懸濁安定性は、繊維の大きさと関係しており、繊維が微細である程その懸濁液の安定性は高い。   In the present invention, the suspension stability means that the fiber suspension is adjusted to a concentration of 0.1% (w / w), placed in a graduated cylinder or the like, and below the sedimentation surface of the suspended fiber after standing for 24 hours. Is a value obtained by calculating the ratio of the total amount of the suspension. This suspension stability is related to the size of the fiber. The finer the fiber, the higher the suspension stability.

本発明における微細セルロース繊維の懸濁安定性は30%以上であり、35%以上がより好ましく、40%以上が更に好ましい。   The suspension stability of fine cellulose fibers in the present invention is 30% or more, more preferably 35% or more, and still more preferably 40% or more.

本発明においては、セルロース原料を微細化して懸濁安定性が30%以上の微細セルロース繊維を得る。微細化は、湿式ボールミル、湿式振動ミル、湿式ペイントシェーカー、リファイナー、ビーター、摩砕装置、高圧ホモジナイザー、高速ホモジナイザー、超音波破砕器などを用いて行う。この中でも高圧ホモジナイザーが好ましい。   In the present invention, the cellulose raw material is refined to obtain fine cellulose fibers having a suspension stability of 30% or more. The miniaturization is performed using a wet ball mill, a wet vibration mill, a wet paint shaker, a refiner, a beater, an attritor, a high-pressure homogenizer, a high-speed homogenizer, an ultrasonic crusher, or the like. Among these, a high pressure homogenizer is preferable.

高圧ホモジナイザー処理により、懸濁安定性が30%以上の微細セルロース繊維を得る場合、セルロース原料懸濁液に100MPa以上の圧力差を与える処理を複数回繰り返すことにより、セルロース繊維の微細化が進み、懸濁安定性が30%以上の微細セルロース繊維とすることができる。この繰り返し回数は10回以上が好ましく、12回以上がより好ましく、15回以上が更に好ましい。   In the case of obtaining fine cellulose fibers having a suspension stability of 30% or more by high-pressure homogenizer treatment, by repeating the treatment that gives a pressure difference of 100 MPa or more to the cellulose raw material suspension multiple times, the refinement of the cellulose fibers proceeds, It can be set as the fine cellulose fiber whose suspension stability is 30% or more. The number of repetitions is preferably 10 times or more, more preferably 12 times or more, and still more preferably 15 times or more.

懸濁安定性が30%以上の微細セルロース繊維を作製するためのセルロース原料としては、結晶セルロース、溶剤紡糸セルロース、再生セルロース、木材繊維、竹繊維、リンター、リント、麻、柔細胞繊維などの非木材繊維等が挙げられる。柔細胞繊維とは、植物の茎、葉、根、果実等に存在する柔細胞を主体とした部分を、アルカリで処理する等して得られるセルロースを主成分とし、水に不溶な繊維である。この中でも特に結晶セルロース、木材繊維、リンターが好ましい。   Examples of cellulose raw materials for producing fine cellulose fibers having a suspension stability of 30% or more include non-crystalline cellulose, solvent-spun cellulose, regenerated cellulose, wood fibers, bamboo fibers, linters, lint, hemp, and soft cell fibers. Wood fiber etc. are mentioned. The parenchyma fiber is a fiber insoluble in water, mainly composed of cellulose obtained by treating the main part of the parenchyma cells present in plant stems, leaves, roots, fruits, etc. with alkali. . Among these, crystalline cellulose, wood fiber, and linter are particularly preferable.

本発明の塗液において、セルロース繊維の含有量は、溶媒、分散媒を含む塗液に対して0.05質量%〜1.0質量%が好ましい。含有量が低すぎると、本発明の塗液にセルロース繊維を含有させて得られる効果が十分に発現しない場合がある。逆に、含有量が高すぎると、塗工時にストリーク等の欠陥が発生する場合がある。   In the coating liquid of the present invention, the content of cellulose fibers is preferably 0.05% by mass to 1.0% by mass with respect to the coating liquid containing a solvent and a dispersion medium. When content is too low, the effect obtained by making a coating liquid of this invention contain a cellulose fiber may not fully express. Conversely, if the content is too high, defects such as streaks may occur during coating.

無機顔料としては、セパレータの塗層に用いるのに好適なものであれば、特に制限はされない。その例としては、α−アルミナ、β−アルミナ、γ−アルミナ等のアルミナ、ベーマイト等のアルミナ水和物、酸化マグネシウム、酸化カルシウム等を挙げることができる。これらの中でも、リチウムイオン電池に用いられる電解質に対する安定性が高い点で、α−アルミナ又はアルミナ水和物が好ましく用いられる。   The inorganic pigment is not particularly limited as long as it is suitable for use in the separator coating layer. Examples thereof include alumina such as α-alumina, β-alumina and γ-alumina, hydrated alumina such as boehmite, magnesium oxide, calcium oxide and the like. Among these, α-alumina or alumina hydrate is preferably used in terms of high stability to the electrolyte used in the lithium ion battery.

本発明の塗液及び塗層には、塗層の強度を高めるため、有機ポリマーバインダーを含有させる。有機ポリマーバインダーは、セパレータの塗層に用いるのに好適なものであれば特に制限はされない。その例としては、(メタ)アクリル酸エステル系ポリマー、スチレン−ブタジエン系ポリマー等を挙げることができる。   The coating liquid and coating layer of the present invention contain an organic polymer binder in order to increase the strength of the coating layer. The organic polymer binder is not particularly limited as long as it is suitable for use in the separator coating layer. Examples thereof include (meth) acrylic acid ester polymers and styrene-butadiene polymers.

本発明のセパレータは、本発明の塗液を不織布基材に塗工してなる。本発明のセパレータの製造において、塗液を不織布基材に塗工する方法としては、各種の塗工装置を用いることができる。塗工装置としては、グラビアコーター、ダイコーター、ブレードコーター、ロッドコーター、ロールコーター等の各種コーターを用いることができる。塗液が裏抜けしてしまうため、塗工時に深さ方向の動圧が加わる塗工装置の使用が困難であった従来の塗液と比較して、より多様な塗工装置を生産性等の観点から選択可能になることも、本発明の塗液の優れた特徴である。   The separator of the present invention is obtained by applying the coating liquid of the present invention to a nonwoven fabric substrate. In the production of the separator of the present invention, various coating apparatuses can be used as a method for coating the coating liquid on the nonwoven fabric substrate. As the coating apparatus, various coaters such as a gravure coater, a die coater, a blade coater, a rod coater, and a roll coater can be used. Compared with conventional coating liquids, where it was difficult to use a coating apparatus that applies dynamic pressure in the depth direction during coating because the coating liquid will be exposed, productivity, etc. is more diverse. It is also an excellent feature of the coating liquid of the present invention that it can be selected from the viewpoint of the above.

本発明において、不織布基材は特に制限されないが、耐熱性の高いセパレータを製造するという目的を達成するためには、耐熱性の高い不織布基材であることが好ましい。この観点から、融点の高い繊維を含有する不織布基材が好ましい。本発明において、不織布基材に含まれる繊維としては、ポリプロピレン、ポリエチレン等のポリオレフィン;ポリエチレンテレフタレート(PET)、ポリエチレンイソフタレート、ポリエチレンナフタレート等のポリエステル;ポリアクリロニトリル等のアクリル;6,6ナイロン、6ナイロン等のポリアミド等の各種合成繊維、木材パルプ、麻パルプ、コットンパルプ等の各種セルロースパルプ、レーヨン、リヨセルなどのセルロース系再生繊維等が例示される。これらの中で、耐熱性、低吸湿性等の理由から、ポリエステル又はポリプロピレンを含有する不織布基材が好ましい。不織布基材に含まれる繊維の好ましい繊維径は、塗液の物性にも依存するが、2〜8μmの範囲にあることが好ましい。不織布基材の厚みとしては、15〜30μmの範囲にあることが好ましい。また、不織布基材の空隙率は、低すぎると電池の内部抵抗が上昇し、高すぎると十分な機械的強度が得られないことから、30〜70%が好ましい。   In the present invention, the nonwoven fabric substrate is not particularly limited, but is preferably a nonwoven fabric substrate having high heat resistance in order to achieve the object of producing a separator having high heat resistance. From this viewpoint, a nonwoven fabric substrate containing fibers having a high melting point is preferable. In the present invention, the fibers contained in the nonwoven fabric substrate include polyolefins such as polypropylene and polyethylene; polyesters such as polyethylene terephthalate (PET), polyethylene isophthalate and polyethylene naphthalate; acrylics such as polyacrylonitrile; 6,6 nylon, 6 Examples include various synthetic fibers such as polyamide such as nylon, various cellulose pulps such as wood pulp, hemp pulp and cotton pulp, and cellulose-based regenerated fibers such as rayon and lyocell. Among these, a nonwoven fabric base material containing polyester or polypropylene is preferred for reasons such as heat resistance and low hygroscopicity. Although the preferable fiber diameter of the fiber contained in a nonwoven fabric base material also depends on the physical property of a coating liquid, it is preferable to exist in the range of 2-8 micrometers. The thickness of the nonwoven fabric substrate is preferably in the range of 15 to 30 μm. Moreover, since the internal resistance of a battery will raise when the porosity of a nonwoven fabric base material is too low, and sufficient mechanical strength is not acquired when it is too high, 30 to 70% is preferable.

不織布基材の製造において、繊維をシート状に形成する方法としては、スパンボンド法、メルトブロー法、静電紡糸法、湿式法等の各種製造方法が挙げられる。これらの中で、湿式法が、薄くて緻密な構造を得ることができるため、好ましい。繊維間を接合する方法としては、ケミカルボンド法、熱融着法等の各種方法が挙げられる。これらの中で、熱融着法が、表面が平滑な不織布基材が得られることから、好ましい。   In the production of a nonwoven fabric substrate, examples of a method for forming fibers into a sheet include various production methods such as a spun bond method, a melt blow method, an electrostatic spinning method, and a wet method. Among these, the wet method is preferable because a thin and dense structure can be obtained. Examples of methods for joining fibers include various methods such as a chemical bond method and a heat fusion method. Among these, the heat fusion method is preferable because a nonwoven fabric substrate having a smooth surface can be obtained.

塗液には、無機顔料、有機ポリマーバインダー及びセルロース繊維の他に、ポリアクリル酸、カルボキシメチルセルロースナトリウム等の各種分散剤、ヒドロキシエチルセルロース、カルボキシメチルセルロースナトリウム、ポリエチレンオキサイド等の各種増粘剤、各種の濡れ剤、防腐剤、消泡剤等の各種添加剤を、必要に応じて配合することもできる。   In addition to inorganic pigments, organic polymer binders, and cellulose fibers, the coating liquid includes various dispersants such as polyacrylic acid and sodium carboxymethyl cellulose, various thickeners such as hydroxyethyl cellulose, sodium carboxymethyl cellulose, and polyethylene oxide, and various wetness. Various additives such as a preservative, an antiseptic, and an antifoaming agent can be blended as necessary.

本発明において、塗液の乾燥後の塗工量は、好ましくは5〜20g/mである。塗工量が少なすぎると、ピンホールが発生する場合がある。塗工量が多すぎると、内部抵抗が高くなりすぎることがある。また、セパレータの厚みが厚くなる。本発明において、セパレータの厚さは、好ましくは15〜35μmである。セパレータが厚すぎると、内部抵抗が高くなりすぎることがあるし、セパレータが薄すぎると、安全性が確保できないことがある。本発明のセパレータを製造するに際し、本発明の塗液は不織布基材の片面にのみ塗工しても良いし、両面に塗工しても良い。また、各面に2回以上塗布しても良い。 In the present invention, the coating amount after drying of the coating solution is preferably 5 to 20 g / m 2 . If the coating amount is too small, pinholes may occur. If the coating amount is too large, the internal resistance may become too high. Moreover, the thickness of a separator becomes thick. In the present invention, the thickness of the separator is preferably 15 to 35 μm. If the separator is too thick, the internal resistance may be too high, and if the separator is too thin, safety may not be ensured. In producing the separator of the present invention, the coating liquid of the present invention may be applied only to one side of the nonwoven fabric substrate, or may be applied to both sides. Moreover, you may apply to each surface twice or more.

以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。なお、実施例において、%及び部は、断りのない限り、全て質量基準である。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. In Examples,% and part are all based on mass unless otherwise specified.

<不織布基材の作製>
繊度0.1dtex(平均繊維径3.0μm)、繊維長3mmの配向結晶化PET系短繊維50質量部と繊度0.2dtex(平均繊維径4.3μm)、繊維長3mmの単一成分型バインダー用PET系短繊維(軟化点120℃、融点230℃)50質量部とをパルパーにより水中に分散し、濃度1質量%の均一な抄造用スラリーを調製した。この抄造用スラリーを、円網型抄紙機にて、湿式方式で抄き上げ、135℃のシリンダードライヤーによって、バインダー用PET系短繊維同士、及びバインダー用PET系短繊維と配向結晶化PET系短繊維の交点を融着させて引張強度を発現させ、目付12g/mの不織布とした。さらに、この不織布を、誘電発熱ジャケットロール(金属製熱ロール)及び弾性ロールからなる1ニップ式熱カレンダーを使用して、熱ロール温度200℃、線圧100kN/m、処理速度30m/分の条件で熱カレンダー処理し、厚み18μmの不織布基材を作製した。この不織布基材の空隙率は52%である。
<Preparation of nonwoven substrate>
Single component binder with fineness of 0.1 dtex (average fiber diameter of 3.0 μm), 50 mass parts of oriented crystallized short PET fibers with a fiber length of 3 mm, fineness of 0.2 dtex (average fiber diameter of 4.3 μm) and fiber length of 3 mm 50 parts by mass of PET short fibers (softening point 120 ° C., melting point 230 ° C.) were dispersed in water by a pulper to prepare a uniform papermaking slurry having a concentration of 1% by mass. This slurry for papermaking is made up by a wet type machine with a circular net type paper machine, and with a cylinder dryer at 135 ° C., the PET short fibers for binders, and the PET short fibers for binders and the oriented crystallized PET short The nonwoven fabric having a basis weight of 12 g / m 2 was obtained by fusing the intersections of the fibers to develop the tensile strength. Furthermore, this nonwoven fabric was subjected to conditions of a hot roll temperature of 200 ° C., a linear pressure of 100 kN / m, and a processing speed of 30 m / min, using a 1-nip thermal calender consisting of a dielectric heating jacket roll (metal hot roll) and an elastic roll. Was subjected to thermal calendering to prepare a nonwoven fabric substrate having a thickness of 18 μm. The porosity of this nonwoven fabric substrate is 52%.

<バクテリアセルロース離解物の調製>
シュークロース5g/dl、酵母エキス0.5g/dl、硫安0.5g/dl、リン酸水素カリウム(KHPO)0.3g/dl、硫酸マグネシウム(MgSO・7HO)0.05g/dlからなるpH5の培地50mlを容量200mlの三角フラスコに張り込み、120度で20分間蒸気殺菌した。これに酵母エキス0.5g/dl、ペプトン0.3g/dl、マンニトール2.5g/dl(pH6)の組成の試験管斜面寒天培地で生育させたアセトバクター・アセチ・サブスピーシス・キシリナムATCC 10821を1白金耳ずつ接種し、30℃で培養した。30日後、培養液の上層に白色のバクテリアセルロース性多糖を含むゲル状の膜が形成された。このゲル状の膜を水洗後、乾燥質量の33.3倍の水を加え、エキセルオートホモジナイザー((株)日本精機製作所製)を用いて15000rpmで10分間処理し、バクテリアセルロース離解物の3%懸濁液を調製した。
<Preparation of bacterial cellulose disaggregate>
Sucrose 5 g / dl, yeast extract 0.5 g / dl, ammonium sulfate 0.5 g / dl, potassium hydrogen phosphate (KH 2 PO 4 ) 0.3 g / dl, magnesium sulfate (MgSO 4 .7H 2 O) 0.05 g 50 ml of a pH 5 medium consisting of / dl was put into a 200 ml Erlenmeyer flask and steam sterilized at 120 degrees for 20 minutes. Acetobacter aceti subsp. Xylinum ATCC 10821 grown on a test tube slope agar medium having the composition of yeast extract 0.5 g / dl, peptone 0.3 g / dl, mannitol 2.5 g / dl (pH 6) Each platinum ear was inoculated and cultured at 30 ° C. After 30 days, a gel-like film containing white bacterial cellulosic polysaccharide was formed on the upper layer of the culture solution. After washing this gel-like membrane with water, 33.3 times the dry mass of water was added and treated with an Excel Auto Homogenizer (manufactured by Nippon Seiki Seisakusho Co., Ltd.) for 10 minutes at 15000 rpm, and 3% of the bacterial cellulose disaggregation product. A suspension was prepared.

(実施例1−1)
体積平均粒子径0.9μm、BET比表面積5.5m/gのベーマイト100部を、水150部に分散したものに、その1質量%水溶液の25℃における粘度が200mPa・sのカルボキシメチルセルロースナトリウム塩2%水溶液75部を添加・攪拌混合し、ガラス転移点−18℃、体積平均粒子径0.2μmのカルボキシ変性スチレン−ブタジエン共重合樹脂エマルション(固形分濃度50%)10部を添加・攪拌混合し、先に調製したバクテリアセルロース離解物の3%懸濁液15部を添加・混合し、最後に調製水を加えて固形分濃度を25%に調製し、塗液を調製した。
(Example 1-1)
Sodium carboxymethyl cellulose having a viscosity of 200 mPa · s at 25 ° C. in a 1% by mass aqueous solution of boehmite having a volume average particle size of 0.9 μm and a BET specific surface area of 5.5 m 2 / g dispersed in 150 parts of water. 75 parts of a 2% salt aqueous solution was added and mixed with stirring, and 10 parts of a carboxy-modified styrene-butadiene copolymer resin emulsion (solid content concentration 50%) having a glass transition point of −18 ° C. and a volume average particle size of 0.2 μm was added and stirred. After mixing, 15 parts of a 3% suspension of the bacterial cellulose disaggregation prepared above was added and mixed, and finally the prepared water was added to adjust the solid content concentration to 25% to prepare a coating solution.

(実施例1−2)
バクテリアセルロース離解物の3%懸濁液の添加量を30部に変更した以外は、実施例1−1の塗液と同様にして、塗液を調製した。
(Example 1-2)
A coating solution was prepared in the same manner as the coating solution of Example 1-1, except that the addition amount of the 3% suspension of bacterial cellulose disaggregate was changed to 30 parts.

(実施例1−3)
バクテリアセルロース離解物の3%懸濁液の添加量を60部に変更した以外は、実施例1−1の塗液と同様にして、塗液を調製した。
(Example 1-3)
A coating solution was prepared in the same manner as the coating solution of Example 1-1, except that the addition amount of the 3% suspension of bacterial cellulose disaggregate was changed to 60 parts.

(実施例1−4)
体積平均粒子径0.9μm、BET比表面積5.5m/gのベーマイト100部を、水110部に分散したものに、その1質量%水溶液の25℃における粘度が200mPa・sのカルボキシメチルセルロースナトリウム塩2%水溶液75部を添加・攪拌混合し、ガラス転移点−18℃、体積平均粒子径0.2μmのカルボキシ変性スチレン−ブタジエン共重合樹脂エマルション(固形分濃度50%)10部を添加・攪拌混合し、先に調製したバクテリアセルロース離解物の3%懸濁液145部を添加・混合し、最後に調製水を加えて固形分濃度を25%に調製し、塗液を調製した。
(Example 1-4)
Sodium carboxymethyl cellulose having a viscosity of 200 mPa · s at 25 ° C. in a 1% by mass aqueous solution of boehmite having a volume average particle size of 0.9 μm and a BET specific surface area of 5.5 m 2 / g dispersed in 110 parts of water. 75 parts of a 2% salt aqueous solution was added and mixed with stirring, and 10 parts of a carboxy-modified styrene-butadiene copolymer resin emulsion (solid content concentration 50%) having a glass transition point of −18 ° C. and a volume average particle size of 0.2 μm was added and stirred. After mixing, 145 parts of a 3% suspension of the bacterial cellulose disaggregation prepared previously was added and mixed, and finally the prepared water was added to adjust the solid concentration to 25% to prepare a coating solution.

(実施例1−5)
バクテリアセルロース離解物の3%懸濁液の添加量を7部に変更した以外は、実施例1−1の塗液と同様にして、塗液を調製した。
(Example 1-5)
A coating solution was prepared in the same manner as the coating solution of Example 1-1 except that the addition amount of the 3% suspension of bacterial cellulose disaggregate was changed to 7 parts.

(比較例1−1)
体積平均粒子径0.9μm、BET比表面積5.5m/gのベーマイト100部を、水150部に分散したものに、その1質量%水溶液の25℃における粘度が200mPa・sのカルボキシメチルセルロースナトリウム塩2%水溶液75部を添加・攪拌混合し、ガラス転移点−18℃、体積平均粒子径0.2μmのカルボキシ変性スチレン−ブタジエン共重合樹脂エマルション(固形分濃度50%)10部を添加・攪拌混合し、最後に調製水を加えて固形分濃度を25%に調製し、塗液を調製した。
(Comparative Example 1-1)
Sodium carboxymethyl cellulose having a viscosity of 200 mPa · s at 25 ° C. in a 1% by mass aqueous solution of boehmite having a volume average particle size of 0.9 μm and a BET specific surface area of 5.5 m 2 / g dispersed in 150 parts of water. 75 parts of a 2% salt aqueous solution was added and mixed with stirring, and 10 parts of a carboxy-modified styrene-butadiene copolymer resin emulsion (solid content concentration 50%) having a glass transition point of −18 ° C. and a volume average particle size of 0.2 μm was added and stirred. Finally, the prepared water was added to adjust the solid content concentration to 25% to prepare a coating solution.

<ミクロフィブリル化セルロース繊維の作製>
リンターを5質量%濃度になるようにイオン交換水中に分散させ、高圧ホモジナイザーを用いて50MPaの圧力で20回繰り返し処理して、平均繊維径0.8μm、平均繊維長330μm、懸濁安定性25%のミクロフィブリル化セルロース繊維の5%懸濁液を作製した。ミクロフィブリル化セルロース繊維の平均繊維径に関しては、繊維の走査型電子顕微鏡写真をとり、繊維のフィブリル化されていない部分の径を計測し、20本の平均値を平均繊維径とした。
<Preparation of microfibrillated cellulose fiber>
The linter was dispersed in ion-exchanged water so as to have a concentration of 5% by mass, and repeatedly treated 20 times at a pressure of 50 MPa using a high-pressure homogenizer. The average fiber diameter was 0.8 μm, the average fiber length was 330 μm, and the suspension stability was 25. A 5% suspension of% microfibrillated cellulose fibers was made. Regarding the average fiber diameter of the microfibrillated cellulose fiber, a scanning electron micrograph of the fiber was taken, the diameter of the non-fibrillated portion of the fiber was measured, and the average value of 20 fibers was defined as the average fiber diameter.

(比較例1−2)
体積平均粒子径0.9μm、BET比表面積5.5m/gのベーマイト100部を、水150部に分散したものに、その1質量%水溶液の25℃における粘度が200mPa・sのカルボキシメチルセルロースナトリウム塩2%水溶液75部を添加・攪拌混合し、ガラス転移点−18℃、体積平均粒子径0.2μmのカルボキシ変性スチレン−ブタジエン共重合樹脂エマルション(固形分濃度50%)10部を添加・攪拌混合し、先に作製したミクロフィブリル化セルロース繊維の5%懸濁液18部を添加・混合し、最後に調製水を加えて固形分濃度を25%に調製し、塗液を調製した。
(Comparative Example 1-2)
Sodium carboxymethyl cellulose having a viscosity of 200 mPa · s at 25 ° C. in a 1% by mass aqueous solution of boehmite having a volume average particle size of 0.9 μm and a BET specific surface area of 5.5 m 2 / g dispersed in 150 parts of water. 75 parts of a 2% salt aqueous solution was added and mixed with stirring, and 10 parts of a carboxy-modified styrene-butadiene copolymer resin emulsion (solid content concentration 50%) having a glass transition point of −18 ° C. and a volume average particle size of 0.2 μm was added and stirred. After mixing, 18 parts of the 5% suspension of microfibrillated cellulose fibers prepared above was added and mixed, and finally the prepared water was added to adjust the solid content concentration to 25% to prepare a coating solution.

<塗工>
前記不織布基材に、塗工装置としてリバースグラビアコーターを用い、30m/minのライン速度にて、液としての付着量が47g/mとなるように塗工した。塗工された基材は、リバースグラビアコーターに直結されたフローティングエアドライヤーで、90℃の熱風を吹き付けて乾燥させ、セパレータを得た。「塗液裏抜け」の評価として、塗工装置のガイドロール及びフローティングエアドライヤー内部への塗液の付着状態により、次の3段階に分類した。
<Coating>
The nonwoven fabric substrate was coated using a reverse gravure coater as a coating apparatus at a line speed of 30 m / min so that the adhesion amount as a liquid was 47 g / m 2 . The coated substrate was dried by blowing hot air at 90 ° C. with a floating air dryer directly connected to a reverse gravure coater to obtain a separator. As the evaluation of “coating liquid back-through”, it was classified into the following three stages depending on the state of the coating liquid adhering to the inside of the guide roll and floating air dryer of the coating apparatus.

○:ガイドロール又はフローティングエアドライヤー内部への塗液の付着がほとんど無い。
△:ガイドロール又はフローティングエアドライヤー内部に塗液が付着しているが、セパレータに再転写はしない。
×:裏抜けした塗液がガイドロール又はフローティングエアドライヤー内部に付着しており、得られたセパレータに再転写による面の不均一性が生じている。
○: Almost no coating liquid adheres to the inside of the guide roll or floating air dryer.
(Triangle | delta): Although the coating liquid has adhered to the inside of a guide roll or a floating air dryer, it does not re-transfer to a separator.
X: The through-coating liquid has adhered to the inside of the guide roll or the floating air dryer, and the obtained separator has surface non-uniformity due to retransfer.

さらに、「塗層均一性」を、次の3段階に分類し、評価した。   Furthermore, “coating layer uniformity” was classified into the following three stages and evaluated.

○:塗層に欠陥が無く、均一である。
△:塗層に不均一性が認められるが、ストリークはない。
×:塗層にストリークがある。
○: The coating layer has no defects and is uniform.
Δ: Nonuniformity is observed in the coating layer, but there is no streak.
X: There is a streak in the coating layer.

<評価用電池の作製>
前記の各セパレータを用い、正極にマンガン酸リチウム、負極にメソカーボンマイクロビーズ、電解液にヘキサフルオロリン酸リチウムの1mol/L炭酸ジエチル/炭酸エチレン(容量比7/3)混合溶媒溶液を用いた設計容量30mAhの評価用電池を作製した。
<Production of evaluation battery>
Each separator was used, lithium manganate as the positive electrode, mesocarbon microbeads as the negative electrode, and 1 mol / L diethyl carbonate / ethylene carbonate (volume ratio 7/3) mixed solvent solution of lithium hexafluorophosphate as the electrolyte. An evaluation battery with a design capacity of 30 mAh was produced.

<内部抵抗の評価>
作製した各電池について、60mA定電流充電→4.2V定電圧充電(1時間)→60mAで定電流放電→2.8Vになったら次のサイクル のシーケンスにて、5サイクルの慣らし充放電を行った後、60mA定電流充電→4.2V定電圧充電(1時間)→6mAで30分間定電流放電(放電量3mAh)→放電終了直前の電圧を測定(電圧a)→60mA定電流充電→4.2V定電圧充電(1時間)→90mAで2分間定電流放電(放電量3mAh)→放電終了直前の電圧(電圧b)の測定を行い、内部抵抗Ω=(電圧a−電圧b)/(90mA−6mA)の式で内部抵抗を求めた。結果を表1に記す。
<Evaluation of internal resistance>
For each battery manufactured, 60mA constant current charge → 4.2V constant voltage charge (1 hour) → constant current discharge at 60mA → 2.8V, then charge and discharge for 5 cycles in the next cycle sequence Then, 60 mA constant current charge → 4.2 V constant voltage charge (1 hour) → 30 mA constant current discharge at 6 mA (discharge amount 3 mAh) → Measure the voltage just before the end of discharge (voltage a) → 60 mA constant current charge → 4 .2V constant voltage charge (1 hour) → constant current discharge at 90 mA for 2 minutes (discharge amount 3 mAh) → measurement of voltage (voltage b) just before the end of discharge, internal resistance Ω = (voltage a−voltage b) / ( The internal resistance was determined by the formula of 90 mA-6 mA). The results are shown in Table 1.

○:内部抵抗4Ω未満
△:内部抵抗4Ω以上5Ω未満
×:内部抵抗5Ω以上
○: Internal resistance 4Ω or less △: Internal resistance 4Ω or more and less than 5Ω ×: Internal resistance 5Ω or more

Figure 0006445273
Figure 0006445273

表1に示したとおり、実施例1−1〜1−5で調製したリチウムイオン電池用セパレータ用塗液が無機顔料、有機ポリマーバインダー及びバクテリアセルロース繊維を含むことで、塗液の裏抜けを抑制することができた。かつ、実施例1−1〜1−5で得られたセパレータは、塗層均一性にも優れ、また、実施例1−1〜1−5で得られたセパレータを用いてなる電池の内部抵抗も低く、優れていた。   As shown in Table 1, the coating liquid for separators for lithium ion batteries prepared in Examples 1-1 to 1-5 contains an inorganic pigment, an organic polymer binder, and bacterial cellulose fibers, thereby suppressing the back-through of the coating liquid. We were able to. And the separator obtained in Examples 1-1 to 1-5 is excellent in coating layer uniformity, and the internal resistance of the battery using the separator obtained in Examples 1-1 to 1-5. It was also low and excellent.

一方、比較例1−1で調製したリチウムイオン電池用セパレータ用塗液は、無機顔料と有機ポリマーバインダーを含んでいるが、バクテリアセルロース繊維を含んでいないため、塗液が裏抜けした。   On the other hand, the coating liquid for a lithium ion battery separator prepared in Comparative Example 1-1 contained an inorganic pigment and an organic polymer binder, but did not contain bacterial cellulose fibers, so that the coating liquid broke through.

比較例1−2で調製したリチウムイオン電池用セパレータ用塗液は無機顔料、有機ポリマーバインダー及びミクロフィブリル化セルロース繊維を含んでいるが、ミクロフィブリル化セルロース繊維同士が絡まって塊となり、塗工時にストリークを生じやすく、塗層均一性が悪くなった。また、塗層の細孔を閉塞したため、内部抵抗も高くなった。   The coating solution for a lithium ion battery separator prepared in Comparative Example 1-2 contains an inorganic pigment, an organic polymer binder, and microfibrillated cellulose fibers, but the microfibrillated cellulose fibers are entangled to form a lump, and at the time of coating Streaks were likely to occur, and the coating layer uniformity deteriorated. Moreover, since the pores of the coating layer were blocked, the internal resistance was also increased.

実施例1−4で作製したリチウムイオン電池用セパレータ用塗液は、塗液へのバクテリアセルロース繊維の添加量がやや多いことから、実施例1−1〜1−3及び1−5のリチウムイオン電池用セパレータ用塗液に比べ、塗層均一性がやや悪くなり、また、内部抵抗もやや高くなった。   The lithium ion battery separator coating liquid prepared in Example 1-4 has a slightly higher amount of bacterial cellulose fiber added to the coating liquid, so that the lithium ions of Examples 1-1 to 1-3 and 1-5 are used. Compared with the battery separator coating solution, the coating layer uniformity was slightly worse, and the internal resistance was slightly higher.

実施例1−5で調製したリチウムイオン電池用セパレータ用塗液は、塗液へのバクテリアセルロース繊維の添加量がやや少ないことから、実施例1−1〜1−4のリチウムイオン電池用セパレータ用塗液に比べ、塗液の裏抜けがやや悪くなった。   Since the coating liquid for lithium ion battery separators prepared in Example 1-5 is slightly less in the amount of bacterial cellulose fibers added to the coating liquid, it is for the lithium ion battery separators in Examples 1-1 to 1-4. Compared to the coating solution, the back-through of the coating solution was slightly worse.

<ナノセルロース繊維Aの作製>
結晶セルロースを2質量%濃度になるようにイオン交換水中に分散させ、高圧ホモジナイザーを用いて200MPaの圧力で噴出、解繊する処理を25回繰り返して、平均繊維径10nm、平均繊維長2μmのナノセルロース繊維Aの2%懸濁液を作製した。
<Preparation of nanocellulose fiber A>
A process of dispersing crystalline cellulose in ion-exchanged water so as to have a concentration of 2% by mass, and ejecting and defibrating with a high-pressure homogenizer at a pressure of 200 MPa is repeated 25 times to obtain nano particles having an average fiber diameter of 10 nm and an average fiber length of 2 μm. A 2% suspension of cellulose fiber A was made.

<ナノセルロース繊維Bの作製>
結晶セルロースを2質量%濃度になるようにイオン交換水中に分散させ、高圧ホモジナイザーを用いて200MPaの圧力で噴出、解繊する処理を20回繰り返して、平均繊維径20nm、平均繊維長6μmのナノセルロース繊維Bの2%懸濁液を作製した。
<Preparation of nanocellulose fiber B>
A process of dispersing crystalline cellulose in ion-exchanged water so as to have a concentration of 2% by mass and ejecting and defibrating with a high-pressure homogenizer at a pressure of 200 MPa is repeated 20 times to obtain nano particles having an average fiber diameter of 20 nm and an average fiber length of 6 μm. A 2% suspension of cellulose fiber B was prepared.

<ナノセルロース繊維Cの作製>
結晶セルロースを2質量%濃度になるようにイオン交換水中に分散させ、高圧ホモジナイザーを用いて200MPaの圧力で噴出、解繊する処理を15回繰り返して、平均繊維径40nm、平均繊維長20μmのナノセルロース繊維Cの2%懸濁液を作製した。
<Preparation of nanocellulose fiber C>
A process of dispersing crystalline cellulose in ion-exchanged water so as to have a concentration of 2% by mass, and ejecting and defibrating at a pressure of 200 MPa using a high-pressure homogenizer is repeated 15 times to obtain nano particles having an average fiber diameter of 40 nm and an average fiber length of 20 μm. A 2% suspension of cellulose fiber C was prepared.

<ナノセルロース繊維Dの作製>
結晶セルロースを2質量%濃度になるようにイオン交換水中に分散させ、高圧ホモジナイザーを用いて200MPaの圧力で噴出、解繊する処理を12回繰り返して、平均繊維径70nm、平均繊維長60μmのナノセルロース繊維Dの2%懸濁液を作製した。
<Preparation of nanocellulose fiber D>
A process of dispersing crystalline cellulose in ion-exchanged water so as to have a concentration of 2% by mass, and ejecting and defibrating at a pressure of 200 MPa using a high-pressure homogenizer is repeated 12 times to obtain nano particles having an average fiber diameter of 70 nm and an average fiber length of 60 μm. A 2% suspension of cellulose fiber D was prepared.

<ナノセルロース繊維Eの作製>
結晶セルロースを2質量%濃度になるようにイオン交換水中に分散させ、高圧ホモジナイザーを用いて200MPaの圧力で噴出、解繊する処理を10回繰り返して、平均繊維径100nm、平均繊維長100μmのナノセルロース繊維Eの2%懸濁液を作製した。
<Preparation of nanocellulose fiber E>
A process of dispersing crystalline cellulose in ion-exchanged water so as to have a concentration of 2% by mass and ejecting and defibrating with a high-pressure homogenizer at a pressure of 200 MPa is repeated 10 times to obtain nano particles having an average fiber diameter of 100 nm and an average fiber length of 100 μm. A 2% suspension of cellulose fiber E was made.

(実施例2−1)
体積平均粒子径0.9μm、BET比表面積5.5m/gのベーマイト100部を、水150部に分散したものに、その1%水溶液の25℃における粘度が200mPa・sのカルボキシメチルセルロースナトリウム塩2%水溶液75部を添加・攪拌混合し、ガラス転移点−18℃、体積平均粒子径0.2μmのカルボキシ変性スチレン−ブタジエン共重合樹脂エマルション(固形分濃度50%)10部を添加・攪拌混合し、先に調製したナノセルロース繊維Bの2%懸濁液を25部添加・混合し、最後に調製水を加えて固形分濃度を25%に調製し、塗液を調製した。
(Example 2-1)
Carboxymethylcellulose sodium salt having a viscosity of 200 mPa · s at 25 ° C. in a 1% aqueous solution obtained by dispersing 100 parts of boehmite having a volume average particle size of 0.9 μm and a BET specific surface area of 5.5 m 2 / g in 150 parts of water. 75 parts of 2% aqueous solution was added and mixed with stirring, and 10 parts of a carboxy-modified styrene-butadiene copolymer resin emulsion (solid content concentration 50%) having a glass transition point of -18 ° C. and a volume average particle size of 0.2 μm was added and mixed with stirring. Then, 25 parts of the previously prepared 2% suspension of nanocellulose fiber B was added and mixed, and finally the prepared water was added to adjust the solid concentration to 25% to prepare a coating solution.

(実施例2−2)
ナノセルロース繊維Bの2%懸濁液の添加量を45部に変更した以外は、実施例2−1の塗液と同様にして、塗液を調製した。
(Example 2-2)
A coating solution was prepared in the same manner as the coating solution of Example 2-1, except that the addition amount of the 2% suspension of nanocellulose fiber B was changed to 45 parts.

(実施例2−3)
ナノセルロース繊維Bの2%懸濁液の添加量を90部に変更した以外は、実施例2−1の塗液と同様にして、塗液を調製した。
(Example 2-3)
A coating solution was prepared in the same manner as the coating solution of Example 2-1, except that the addition amount of the 2% suspension of nanocellulose fiber B was changed to 90 parts.

(実施例2−4)
体積平均粒子径0.9μm、BET比表面積5.5m/gのベーマイト100部を、水43部に分散したものに、その1%水溶液の25℃における粘度が200mPa・sのカルボキシメチルセルロースナトリウム塩2%水溶液75部を添加・攪拌混合し、ガラス転移点−18℃、体積平均粒子径0.2μmのカルボキシ変性スチレン−ブタジエン共重合樹脂エマルション(固形分濃度50%)10部を添加・攪拌混合し、先に調製したナノセルロース繊維Bの2%懸濁液を215部添加・混合し、最後に調製水を加えて固形分濃度を25%に調製し、塗液を調製した。
(Example 2-4)
Carboxymethylcellulose sodium salt having a viscosity of 200 mPa · s at 25 ° C. in a 1% aqueous solution of boehmite having a volume average particle size of 0.9 μm and a BET specific surface area of 5.5 m 2 / g dispersed in 43 parts of water. 75 parts of 2% aqueous solution was added and mixed with stirring, and 10 parts of a carboxy-modified styrene-butadiene copolymer resin emulsion (solid content concentration 50%) having a glass transition point of -18 ° C. and a volume average particle size of 0.2 μm was added and mixed with stirring. Then, 215 parts of the 2% suspension of nanocellulose fiber B prepared previously was added and mixed, and finally the prepared water was added to adjust the solid content concentration to 25% to prepare a coating solution.

(実施例2−5)
ナノセルロース繊維Bの2%懸濁液の添加量を10部に変更した以外は、実施例2−1の塗液と同様にして、塗液を調製した。
(Example 2-5)
A coating solution was prepared in the same manner as the coating solution of Example 2-1, except that the addition amount of the 2% suspension of nanocellulose fiber B was changed to 10 parts.

(実施例2−6)
ナノセルロース繊維Bをナノセルロース繊維Aに変更した以外は、実施例2−1の塗液と同様にして、塗液を調製した。
(Example 2-6)
A coating solution was prepared in the same manner as the coating solution of Example 2-1, except that the nanocellulose fiber B was changed to the nanocellulose fiber A.

(実施例2−7)
ナノセルロース繊維Bをナノセルロース繊維Cに変更した以外は、実施例2−1の塗液と同様にして、塗液を調製した。
(Example 2-7)
A coating solution was prepared in the same manner as the coating solution of Example 2-1, except that the nanocellulose fiber B was changed to the nanocellulose fiber C.

(実施例2−8)
ナノセルロース繊維Bをナノセルロース繊維Dに変更した以外は、実施例2−1の塗液1と同様にして、塗液を調製した。
(Example 2-8)
A coating liquid was prepared in the same manner as in the coating liquid 1 of Example 2-1, except that the nanocellulose fiber B was changed to the nanocellulose fiber D.

(実施例2−9)
ナノセルロース繊維Bをナノセルロース繊維Eに変更した以外は、実施例2−1の塗液1と同様にして、塗液を調製した。
(Example 2-9)
A coating liquid was prepared in the same manner as in the coating liquid 1 of Example 2-1, except that the nanocellulose fiber B was changed to the nanocellulose fiber E.

(比較例2−1)
体積平均粒子径0.9μm、BET比表面積5.5m/gのベーマイト100部を、水150部に分散したものに、その1%水溶液の25℃における粘度が200mPa・sのカルボキシメチルセルロースナトリウム塩2%水溶液75部を添加・攪拌混合し、ガラス転移点−18℃、体積平均粒子径0.2μmのカルボキシ変性スチレン−ブタジエン共重合樹脂エマルション(固形分濃度50%)10部を添加・攪拌混合し、最後に調製水を加えて固形分濃度を25%に調製し、塗液を調製した。
(Comparative Example 2-1)
Carboxymethylcellulose sodium salt having a viscosity of 200 mPa · s at 25 ° C. in a 1% aqueous solution obtained by dispersing 100 parts of boehmite having a volume average particle size of 0.9 μm and a BET specific surface area of 5.5 m 2 / g in 150 parts of water. 75 parts of 2% aqueous solution was added and mixed with stirring, and 10 parts of a carboxy-modified styrene-butadiene copolymer resin emulsion (solid content concentration 50%) having a glass transition point of -18 ° C. and a volume average particle size of 0.2 μm was added and mixed with stirring. Finally, preparation water was added to adjust the solid content concentration to 25% to prepare a coating solution.

<セルロース繊維fの作製>
結晶セルロースを2質量%濃度になるようにイオン交換水中に分散させ、高圧ホモジナイザーを用いて200MPaの圧力で噴出、解繊する処理を9回繰り返して、平均繊維径110nm、平均繊維長110μmのセルロース繊維fの2%懸濁液を作製した。
<Preparation of cellulose fiber f>
Cellulose having an average fiber diameter of 110 nm and an average fiber length of 110 μm is obtained by dispersing crystalline cellulose in ion-exchanged water so as to have a concentration of 2% by mass, and ejecting and defibrating at a pressure of 200 MPa using a high-pressure homogenizer 9 times. A 2% suspension of fiber f was made.

(比較例2−2)
体積平均粒子径0.9μm、BET比表面積5.5m/gのベーマイト100部を、水150部に分散したものに、その1%水溶液の25℃における粘度が200mPa・sのカルボキシメチルセルロースナトリウム塩2%水溶液75部を添加・攪拌混合し、ガラス転移点−18℃、体積平均粒子径0.2μmのカルボキシ変性スチレン−ブタジエン共重合樹脂エマルション(固形分濃度50%)10部を添加・攪拌混合し、先に作製したセルロース繊維fの2%懸濁液45部を添加・混合し、最後に調製水を加えて固形分濃度を25%に調製し、塗液を調製した。
(Comparative Example 2-2)
Carboxymethylcellulose sodium salt having a viscosity of 200 mPa · s at 25 ° C. in a 1% aqueous solution obtained by dispersing 100 parts of boehmite having a volume average particle size of 0.9 μm and a BET specific surface area of 5.5 m 2 / g in 150 parts of water. 75 parts of 2% aqueous solution was added and mixed with stirring, and 10 parts of a carboxy-modified styrene-butadiene copolymer resin emulsion (solid content concentration 50%) having a glass transition point of -18 ° C. and a volume average particle size of 0.2 μm was added and mixed with stirring. Then, 45 parts of a 2% suspension of cellulose fiber f prepared above was added and mixed, and finally, prepared water was added to adjust the solid content concentration to 25% to prepare a coating solution.

<ミクロフィブリル化セルロース繊維の作製>
リンターを5質量%濃度になるようにイオン交換水中に分散させ、高圧ホモジナイザーを用いて50MPaの圧力で噴出、解繊する処理を5回繰り返して、平均繊維径1.0μm、平均繊維長800μm、懸濁安定性10%のミクロフィブリル化セルロース繊維の5%懸濁液を作製した。ミクロフィブリル化セルロース繊維の平均繊維径に関しては、繊維の走査型電子顕微鏡写真をとり、繊維のフィブリル化されていない部分の径を計測し、20本の平均値を平均繊維径とした。
<Preparation of microfibrillated cellulose fiber>
Disperse the linters in ion-exchanged water so as to have a concentration of 5% by mass, and spray and defibrate with a high-pressure homogenizer at a pressure of 50 MPa, and repeat the treatment 5 times to obtain an average fiber diameter of 1.0 μm, an average fiber length of 800 μm, A 5% suspension of microfibrillated cellulose fibers with a suspension stability of 10% was made. Regarding the average fiber diameter of the microfibrillated cellulose fiber, a scanning electron micrograph of the fiber was taken, the diameter of the non-fibrillated portion of the fiber was measured, and the average value of 20 fibers was defined as the average fiber diameter.

(比較例2−3)
体積平均粒子径0.2μm、BET比表面積9.0m/gの酸化アルミニウム100部を、水200部に分散したものに、酢酸1部を添加・攪拌混合し、先に作製したミクロフィブリル化セルロース繊維の5%懸濁液10部を添加・混合し、最後に調製水を加えて固形分濃度を25%に調製し、塗液を調製した。
(Comparative Example 2-3)
Microfibrillation made earlier by adding 1 part of acetic acid to 100 parts of aluminum oxide having a volume average particle size of 0.2 μm and a BET specific surface area of 9.0 m 2 / g dispersed in 200 parts of water and stirring and mixing. 10 parts of a 5% suspension of cellulose fiber was added and mixed, and finally, prepared water was added to adjust the solid content concentration to 25% to prepare a coating solution.

Figure 0006445273
Figure 0006445273

表2に示したとおり、実施例2−1〜2−9で調製したリチウムイオン電池用セパレータ用塗液は、無機顔料、有機ポリマーバインダー及びナノセルロース繊維を含むことで、塗液の裏抜けを抑制することができた。かつ、実施例2−1〜2−9で得られたセパレータは、塗層均一性にも優れ、また、製造されたセパレータを用いてなる電池の内部抵抗も低く、優れていた。   As shown in Table 2, the coating liquid for separators for lithium ion batteries prepared in Examples 2-1 to 2-9 contains an inorganic pigment, an organic polymer binder, and nanocellulose fibers, thereby allowing the coating liquid to break through. I was able to suppress it. In addition, the separators obtained in Examples 2-1 to 2-9 were excellent in coating layer uniformity, and the internal resistance of the battery using the manufactured separator was low and excellent.

一方、比較例2−1で調製したリチウムイオン電池用セパレータ用塗液は、無機顔料と有機ポリマーバインダーを含んでいるが、ナノセルロース繊維が添加されていないため、塗液が裏抜けした。   On the other hand, the coating liquid for a lithium ion battery separator prepared in Comparative Example 2-1 contained an inorganic pigment and an organic polymer binder, but the nanocellulose fibers were not added, and thus the coating liquid was broken through.

比較例2−2で調製したリチウムイオン電池用セパレータ用塗液は、無機顔料、有機ポリマーバインダー及び平均繊維径110nmのセルロース繊維fを添加しているが、セルロース繊維fがもつれてダマとなり、塗工時にストリークを生じやすく、塗層均一性が悪くなった。   The coating solution for a lithium ion battery separator prepared in Comparative Example 2-2 contains an inorganic pigment, an organic polymer binder, and cellulose fibers f having an average fiber diameter of 110 nm. Streaks were likely to occur during construction, and the coating layer uniformity deteriorated.

比較例2−3で調製したリチウムイオン電池用セパレータ用塗液は、無機顔料とミクロフィブリル化セルロース繊維を含む塗液を用いているが、ミクロフィブリル化セルロース繊維がもつれてダマとなり、塗工時にストリークを生じやすく、塗層均一性が悪くなった。また、塗層の細孔を閉塞したため、内部抵抗も高くなった。   The coating solution for a lithium-ion battery separator prepared in Comparative Example 2-3 uses a coating solution containing an inorganic pigment and microfibrillated cellulose fibers, but the microfibrillated cellulose fibers become entangled and become lumpy. Streaks were likely to occur, and the coating layer uniformity deteriorated. Moreover, since the pores of the coating layer were blocked, the internal resistance was also increased.

実施例2−4で調製したリチウムイオン電池用セパレータ用塗液は、塗液へのナノセルロース繊維の添加量がやや多いことから、実施例2−1〜2−3、2−5〜2−8のリチウムイオン電池用セパレータ用塗液に比べ、塗層均一性がやや悪くなり、また、内部抵抗もやや高くなった。   Since the coating liquid for separators for lithium ion batteries prepared in Example 2-4 has a slightly large amount of nanocellulose fiber added to the coating liquid, Examples 2-1 to 2-3 and 2-5 to 2 Compared with the coating solution for a lithium ion battery separator of No. 8, the coating layer uniformity was slightly deteriorated, and the internal resistance was also slightly increased.

実施例2−5で調製したリチウムイオン電池用セパレータ用塗液は、塗液へのナノセルロース繊維の添加量がやや少ないことから、実施例2−1〜2−4、2−6〜2−9のリチウムイオン電池用セパレータ用塗液に比べ、塗液の裏抜けがやや悪くなった。   Since the coating liquid for lithium ion battery separators prepared in Example 2-5 has a slightly small amount of nanocellulose fiber added to the coating liquid, Examples 2-1 to 2-4 and 2-6 to 2- Compared with the coating liquid for separators for lithium ion batteries of No. 9, the back-through of the coating liquid was slightly worse.

実施例2−9で調製したリチウムイオン電池用セパレータ用塗液は、ナノセルロース繊維の平均繊維径がやや太いことから、実施例2−1〜2−3、2−5〜2−8のリチウムイオン電池用セパレータ用塗液に比べ、ストリーク等の欠点がやや発生しやすく、塗層均一性がやや悪くなった。   The lithium ion battery separator coating solution prepared in Example 2-9 has a slightly larger average fiber diameter of nanocellulose fibers, so that the lithium in Examples 2-1 to 2-3 and 2-5 to 2-8 was used. Compared with the coating liquid for an ion battery separator, defects such as streaks are slightly more likely to occur, and the coating layer uniformity is slightly worse.

<微細セルロース繊維Aの作製>
リンターを2質量%濃度になるようにイオン交換水中に分散させ、高圧ホモジナイザーを用いて200MPaの圧力で12回繰り返し処理して、懸濁安定性が30%の微細セルロース繊維Aの2%懸濁液を作製した。
<Preparation of fine cellulose fiber A>
A linter is dispersed in ion-exchanged water so as to have a concentration of 2% by mass, and is repeatedly treated 12 times at a pressure of 200 MPa using a high-pressure homogenizer, and a 2% suspension of fine cellulose fibers A having a suspension stability of 30%. A liquid was prepared.

<微細セルロース繊維Bの作製>
リンターを2質量%濃度になるようにイオン交換水中に分散させ、高圧ホモジナイザーを用いて200MPaの圧力で15回繰り返し処理して、懸濁安定性が35%の微細セルロース繊維Bの2%懸濁液を作製した。
<Preparation of fine cellulose fiber B>
The linter is dispersed in ion-exchanged water so as to have a concentration of 2% by mass, and is repeatedly treated 15 times at a pressure of 200 MPa using a high-pressure homogenizer, whereby a 2% suspension of fine cellulose fibers B having a suspension stability of 35%. A liquid was prepared.

<微細セルロース繊維Cの作製>
リンターを2質量%濃度になるようにイオン交換水中に分散させ、高圧ホモジナイザーを用いて200MPaの圧力で20回繰り返し処理して、懸濁安定性が40%の微細セルロース繊維Cの2%懸濁液を作製した。
<Preparation of fine cellulose fiber C>
Disperse linters in ion exchange water to a concentration of 2% by mass and repeat the treatment 20 times at a pressure of 200 MPa using a high-pressure homogenizer to obtain a 2% suspension of fine cellulose fibers C having a suspension stability of 40%. A liquid was prepared.

<微細セルロース繊維Dの作製>
リンターを2質量%濃度になるようにイオン交換水中に分散させ、高圧ホモジナイザーを用いて200MPaの圧力で45回繰り返し処理して、懸濁安定性が90%の微細セルロース繊維Dの2%懸濁液を作製した。
<Preparation of fine cellulose fiber D>
A linter is dispersed in ion exchange water to a concentration of 2% by mass, and is repeatedly treated 45 times at a pressure of 200 MPa using a high-pressure homogenizer, and a 2% suspension of fine cellulose fibers D having a suspension stability of 90%. A liquid was prepared.

(実施例3−1)
体積平均粒子径0.9μm、BET比表面積5.5m/gのベーマイト100部を、水150部に分散したものに、その1%水溶液の25℃における粘度が200mPa・sのカルボキシメチルセルロースナトリウム塩2%水溶液75部を添加・攪拌混合し、ガラス転移点−18℃、体積平均粒子径0.2μmのカルボキシ変性スチレン−ブタジエン共重合樹脂エマルション(固形分濃度50%)10部を添加・攪拌混合し、先に調製した微細セルロース繊維Cの2%懸濁液を25部添加・混合し、最後に調製水を加えて固形分濃度を25%に調製し、塗液を調製した。
(Example 3-1)
Carboxymethylcellulose sodium salt having a viscosity of 200 mPa · s at 25 ° C. in a 1% aqueous solution obtained by dispersing 100 parts of boehmite having a volume average particle size of 0.9 μm and a BET specific surface area of 5.5 m 2 / g in 150 parts of water. 75 parts of 2% aqueous solution was added and mixed with stirring, and 10 parts of a carboxy-modified styrene-butadiene copolymer resin emulsion (solid content concentration 50%) having a glass transition point of -18 ° C. and a volume average particle size of 0.2 μm was added and mixed with stirring. Then, 25 parts of the 2% suspension of fine cellulose fiber C prepared earlier was added and mixed, and finally the prepared water was added to adjust the solid content concentration to 25% to prepare a coating solution.

(実施例3−2)
微細セルロース繊維Cの2%懸濁液の添加量を45部に変更した以外は、実施例3−1の塗液と同様にして、塗液を調製した。
(Example 3-2)
A coating solution was prepared in the same manner as the coating solution of Example 3-1, except that the addition amount of the 2% suspension of fine cellulose fibers C was changed to 45 parts.

(実施例3−3)
微細セルロース繊維Cの2%懸濁液の添加量を90部に変更した以外は、実施例3−1の塗液と同様にして、塗液を調製した。
(Example 3-3)
A coating solution was prepared in the same manner as the coating solution of Example 3-1, except that the addition amount of the 2% suspension of fine cellulose fibers C was changed to 90 parts.

(実施例3−4)
体積平均粒子径0.9μm、BET比表面積5.5m/gのベーマイト100部を、水43部に分散したものに、その1%水溶液の25℃における粘度が200mPa・sのカルボキシメチルセルロースナトリウム塩2%水溶液75部を添加・攪拌混合し、ガラス転移点−18℃、体積平均粒子径0.2μmのカルボキシ変性スチレン−ブタジエン共重合樹脂エマルション(固形分濃度50%)10部を添加・攪拌混合し、先に調製した微細セルロース繊維Cの2%懸濁液を215部添加・混合し、最後に調製水を加えて固形分濃度を25%に調製し、塗液を調製した。
(Example 3-4)
Carboxymethylcellulose sodium salt having a viscosity of 200 mPa · s at 25 ° C. in a 1% aqueous solution of boehmite having a volume average particle size of 0.9 μm and a BET specific surface area of 5.5 m 2 / g dispersed in 43 parts of water. 75 parts of 2% aqueous solution was added and mixed with stirring, and 10 parts of a carboxy-modified styrene-butadiene copolymer resin emulsion (solid content concentration 50%) having a glass transition point of -18 ° C. and a volume average particle size of 0.2 μm was added and mixed with stirring. Then, 215 parts of the 2% suspension of the fine cellulose fiber C prepared earlier was added and mixed, and finally the prepared water was added to adjust the solid content concentration to 25%, thereby preparing a coating solution.

(実施例3−5)
微細セルロース繊維Cの2%懸濁液の添加量を10部に変更した以外は、実施例3−1の塗液と同様にして、塗液を調製した。
(Example 3-5)
A coating solution was prepared in the same manner as the coating solution of Example 3-1, except that the addition amount of the 2% suspension of fine cellulose fibers C was changed to 10 parts.

(実施例3−6)
微細セルロース繊維Cを微細セルロース繊維Aに変更した以外は、実施例3−1の塗液と同様にして、塗液を調製した。
(Example 3-6)
A coating solution was prepared in the same manner as the coating solution of Example 3-1, except that the fine cellulose fiber C was changed to the fine cellulose fiber A.

(実施例3−7)
微細セルロース繊維Cを微細セルロース繊維Bに変更した以外は、実施例3−1の塗液と同様にして、塗液を調製した。
(Example 3-7)
A coating solution was prepared in the same manner as the coating solution of Example 3-1, except that the fine cellulose fiber C was changed to the fine cellulose fiber B.

(実施例3−8)
微細セルロース繊維Cを微細セルロース繊維Dに変更した以外は、実施例3−1の塗液と同様にして、塗液を調製した。
(Example 3-8)
A coating solution was prepared in the same manner as the coating solution of Example 3-1, except that the fine cellulose fiber C was changed to the fine cellulose fiber D.

(比較例3−1)
体積平均粒子径0.9μm、BET比表面積5.5m/gのベーマイト100部を、水150部に分散したものに、その1%水溶液の25℃における粘度が200mPa・sのカルボキシメチルセルロースナトリウム塩2%水溶液75部を添加・攪拌混合し、ガラス転移点−18℃、体積平均粒子径0.2μmのカルボキシ変性スチレン−ブタジエン共重合樹脂エマルション(固形分濃度50%)10部を添加・攪拌混合し、最後に調製水を加えて固形分濃度を25%に調製し、塗液を調製した。
(Comparative Example 3-1)
Carboxymethylcellulose sodium salt having a viscosity of 200 mPa · s at 25 ° C. in a 1% aqueous solution obtained by dispersing 100 parts of boehmite having a volume average particle size of 0.9 μm and a BET specific surface area of 5.5 m 2 / g in 150 parts of water. 75 parts of 2% aqueous solution was added and mixed with stirring, and 10 parts of a carboxy-modified styrene-butadiene copolymer resin emulsion (solid content concentration 50%) having a glass transition point of -18 ° C. and a volume average particle size of 0.2 μm was added and mixed with stirring. Finally, preparation water was added to adjust the solid content concentration to 25% to prepare a coating solution.

<ミクロフィブリル化セルロース繊維eの作製>
リンターを5質量%濃度になるようにイオン交換水中に分散させ、高圧ホモジナイザーを用いて50MPaの圧力で20回繰り返し処理して、平均繊維径0.8μm、平均繊維長330μm、懸濁安定性が25%の微細セルロース繊維eの5質量%懸濁液を作製した。
<Preparation of microfibrillated cellulose fiber e>
The linter is dispersed in ion-exchanged water so as to have a concentration of 5% by mass, and repeatedly treated 20 times at a pressure of 50 MPa using a high-pressure homogenizer. The average fiber diameter is 0.8 μm, the average fiber length is 330 μm, and the suspension stability is high. A 5% by mass suspension of 25% fine cellulose fibers e was prepared.

(比較例3−2)
体積平均粒子径0.9μm、BET比表面積5.5m/gのベーマイト100部を、水150部に分散したものに、その1質量%水溶液の25℃における粘度が200mPa・sのカルボキシメチルセルロースナトリウム塩2%水溶液75部を添加・攪拌混合し、ガラス転移点−18℃、体積平均粒子径0.2μmのカルボキシ変性スチレン−ブタジエン共重合樹脂エマルション(固形分濃度50%)10部を添加・攪拌混合し、先に作製したミクロフィブリル化セルロース繊維eの5%懸濁液18部を添加・混合し、最後に調製水を加えて固形分濃度を25%に調製し、塗液を調製した。
(Comparative Example 3-2)
Sodium carboxymethyl cellulose having a viscosity of 200 mPa · s at 25 ° C. in a 1% by mass aqueous solution of boehmite having a volume average particle size of 0.9 μm and a BET specific surface area of 5.5 m 2 / g dispersed in 150 parts of water. 75 parts of a 2% salt aqueous solution was added and mixed with stirring, and 10 parts of a carboxy-modified styrene-butadiene copolymer resin emulsion (solid content concentration 50%) having a glass transition point of −18 ° C. and a volume average particle size of 0.2 μm was added and stirred. After mixing, 18 parts of a 5% suspension of the microfibrillated cellulose fiber e prepared earlier was added and mixed, and finally the prepared water was added to adjust the solid concentration to 25% to prepare a coating solution.

(比較例3−3)
体積平均粒子径0.2μm、BET比表面積9.0m/gの酸化アルミニウム100部を、水200部に分散したものに、酢酸1部を添加・攪拌混合し、先に作製したミクロフィブリル化セルロース繊維eの5%懸濁液10部を添加・混合し、最後に調製水を加えて固形分濃度を25%に調製し、塗液を調製した。
(Comparative Example 3-3)
Microfibrillation made earlier by adding 1 part of acetic acid to 100 parts of aluminum oxide having a volume average particle size of 0.2 μm and a BET specific surface area of 9.0 m 2 / g dispersed in 200 parts of water and stirring and mixing. 10 parts of a 5% suspension of cellulose fiber e was added and mixed, and finally the prepared water was added to adjust the solid content concentration to 25% to prepare a coating solution.

Figure 0006445273
Figure 0006445273

表3に示したとおり、実施例3−1〜3−8で調製したリチウムイオン電池用セパレータ用塗液は、無機顔料、有機ポリマーバインダー及び懸濁安定性が30%以上の微細セルロース繊維を含むことで、塗液の裏抜けを抑制することができた。かつ、実施例3−1〜3−8で得られたセパレータは、塗層均一性にも優れ、また、製造されたセパレータを用いてなる電池の内部抵抗も低く、優れていた。   As shown in Table 3, the lithium ion battery separator coating liquid prepared in Examples 3-1 to 3-8 includes an inorganic pigment, an organic polymer binder, and fine cellulose fibers having a suspension stability of 30% or more. As a result, it was possible to suppress the back-through of the coating liquid. In addition, the separators obtained in Examples 3-1 to 3-8 were excellent in coating layer uniformity and the internal resistance of the battery using the manufactured separator was low and excellent.

一方、比較例3−1で調製したリチウムイオン電池用セパレータ用塗液は、無機顔料と有機ポリマーバインダーを含んでいるが、懸濁安定性が30%以上の微細セルロース繊維が添加されていないため、塗液が裏抜けした。   On the other hand, the coating liquid for a lithium ion battery separator prepared in Comparative Example 3-1 contains an inorganic pigment and an organic polymer binder, but fine cellulose fibers having a suspension stability of 30% or more are not added. , The coating liquid got through.

比較例3−2で調製したリチウムイオン電池用セパレータ用塗液は、無機顔料と有機ポリマーバインダーを含む塗液に、懸濁安定性が30%未満のミクロフィブリル化セルロース繊維を添加しているが、懸濁安定性が30%未満のミクロフィブリル化セルロース繊維がもつれてダマとなり、塗工時にストリークを生じやすく、塗層均一性が悪くなった。また、塗層の細孔を閉塞したため、内部抵抗も高くなった。   The coating solution for a lithium ion battery separator prepared in Comparative Example 3-2 is obtained by adding microfibrillated cellulose fibers having a suspension stability of less than 30% to a coating solution containing an inorganic pigment and an organic polymer binder. The microfibrillated cellulose fibers having a suspension stability of less than 30% were entangled, resulting in streaks during coating, resulting in poor coating layer uniformity. Moreover, since the pores of the coating layer were blocked, the internal resistance was also increased.

比較例3−3で調製したリチウムイオン電池用セパレータ用塗液は、無機顔料と懸濁安定性が30%未満のミクロフィブリル化セルロース繊維を含む塗液を用いているが、懸濁安定性が30%未満のミクロフィブリル化セルロース繊維がもつれてダマとなり、塗工時にストリークを生じやすく、塗層均一性が悪くなった。また、塗層の細孔を閉塞したため、内部抵抗も高くなった。   The coating solution for a lithium ion battery separator prepared in Comparative Example 3-3 uses a coating solution containing an inorganic pigment and microfibrillated cellulose fibers having a suspension stability of less than 30%. Less than 30% of the microfibrillated cellulose fibers were entangled, resulting in a streak during coating, resulting in poor coating layer uniformity. Moreover, since the pores of the coating layer were blocked, the internal resistance was also increased.

実施例3−4で調製したリチウムイオン電池用セパレータ用塗液は、塗液への懸濁安定性が30%以上の微細セルロース繊維の添加量がやや多いことから、実施例3−1〜3−3、3−5〜3−8のリチウムイオン電池用セパレータ用塗液に比べ、塗層均一性がやや悪くなり、また、内部抵抗もやや高くなった。   Since the coating liquid for a lithium ion battery separator prepared in Example 3-4 has a slightly higher amount of fine cellulose fibers having a suspension stability of 30% or more in the coating liquid, Examples 3-1 to 3 -3, 3-5 to 3-8, the coating layer uniformity was slightly worse and the internal resistance was slightly higher than that of the lithium ion battery separator coating solution.

実施例3−5で調製したリチウムイオン電池用セパレータ用塗液は、塗液への懸濁安定性が30%以上の微細セルロース繊維の添加量がやや少ないことから、実施例3−1〜3−4、3−7、3−8のリチウムイオン電池用セパレータ用塗液に比べ、塗液の裏抜けがやや悪くなった。   Since the coating liquid for a lithium ion battery separator prepared in Example 3-5 has a slightly low amount of fine cellulose fibers having a suspension stability in the coating liquid of 30% or more, Examples 3-1 to 3 Compared with the coating liquid for separators for lithium ion batteries of -4, 3-7, and 3-8, the back-through of the coating liquid was slightly worse.

実施例3−6で調製したリチウムイオン電池用セパレータ用塗液6は、無機顔料と有機ポリマーバインダーを含む塗液へ添加した微細セルロース繊維の懸濁安定性が30%とやや低いことから、実施例3−1〜3−4、3−7、3−8のリチウムイオン電池用セパレータ用塗液に比べ、塗液の裏抜けがやや悪くなった。   Since the coating liquid 6 for a lithium ion battery separator prepared in Example 3-6 has a slightly low suspension stability of 30% of fine cellulose fibers added to a coating liquid containing an inorganic pigment and an organic polymer binder, Compared with the coating liquid for lithium ion battery separators of Examples 3-1 to 3-4, 3-7, and 3-8, the back-through of the coating liquid was slightly worse.

本発明のリチウムイオン電池用セパレータ用塗液及びリチウムイオン電池用セパレータは、安全性が高く、かつ内部抵抗が良好なリチウムイオン電池の製造に用いることができる。   The coating solution for a lithium ion battery separator and the lithium ion battery separator of the present invention can be used for producing a lithium ion battery having high safety and good internal resistance.

Claims (2)

不織布基材への塗工に用いるリチウムイオン電池用セパレータ用塗液において、無機顔料、添加剤、有機ポリマーバインダー及びセルロース繊維を含み、該セルロース繊維が、バクテリアセルロース繊維、ナノセルロース繊維及び懸濁安定性が30%以上の微細セルロース繊維の群から選ばれる少なくとも1種であり、塗液の固形分に対して、無機顔料の含有量が100×100/110.85質量%〜100×100/106.70質量%であり、添加剤の含有量が100×1.5/110.85質量%〜100×1.5/106.70質量%であり、有機ポリマーバインダーの含有量が100×5/110.85質量%〜100×5/106.70質量%であり、セルロース繊維の含有量が100×0.20/106.70質量%〜100×4.35/110.85質量%であることを特徴とするリチウムイオン電池用セパレータ用塗液。 Lithium-ion battery separator coating solution used for coating non-woven fabric substrates contains inorganic pigments, additives, organic polymer binders and cellulose fibers, which are bacterial cellulose fibers, nanocellulose fibers and suspension stable sex Ri least 1 Tanedea selected from the group of 30% or more of fine cellulose fibers, based on the solids of the coating liquid fraction, the content of the inorganic pigment is 100 × 100 / 110.85 wt% to 100 × 100 / 106.70% by mass, the additive content is 100 × 1.5 / 110.85% by mass to 100 × 1.5 / 106.70% by mass, and the organic polymer binder content is 100 × 5. /110.85 mass% to 100 × 5 / 106.70 mass%, and the content of cellulose fiber is 100 × 0.20 / 106.70 mass% to 100 × 4. A coating solution for a separator for a lithium ion battery, characterized by being 35 / 110.85% by mass . 不織布基材の少なくとも1面に塗層を設けてなるリチウムイオン電池用セパレータにおいて、該塗層が無機顔料、添加剤、有機ポリマーバインダー及びセルロース繊維を含み、該セルロース繊維が、バクテリアセルロース繊維、ナノセルロース繊維及び懸濁安定性が30%以上の微細セルロース繊維の群から選ばれる少なくとも1種であり、塗層の固形分に対して、無機顔料の含有量が100×100/110.85質量%〜100×100/106.70質量%であり、添加剤の含有量が100×1.5/110.85質量%〜100×1.5/106.70質量%であり、有機ポリマーバインダーの含有量が100×5/110.85質量%〜100×5/106.70質量%であり、セルロース繊維の含有量が100×0.20/106.70質量%〜100×4.35/110.85質量%であることを特徴とするリチウムイオン電池用セパレータ。 In a separator for a lithium ion battery in which a coating layer is provided on at least one surface of a nonwoven fabric base material, the coating layer contains an inorganic pigment, an additive, an organic polymer binder, and cellulose fibers, and the cellulose fibers include bacterial cellulose fibers, nano-fibers. Ri least Tanedea the cellulose fibers and suspension stability is selected from the group of 30% or more of fine cellulose fibers, based on the solids of the coating layer component, the content of the inorganic pigment is 100 × 100 / 110.85 weight % To 100 × 100 / 106.70 mass%, the content of the additive is 100 × 1.5 / 110.85 mass% to 100 × 1.5 / 106.70 mass%, and the organic polymer binder Content is 100 * 5 / 110.85 mass%-100 * 5 / 106.70 mass%, and content of a cellulose fiber is 100 * 0.20 / 106. Separator for lithium-ion batteries, which is a 0 wt% to 100 × 4.35 / 110.85% by mass.
JP2014160007A 2013-08-14 2014-08-06 Lithium ion battery separator coating liquid and lithium ion battery separator Active JP6445273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014160007A JP6445273B2 (en) 2013-08-14 2014-08-06 Lithium ion battery separator coating liquid and lithium ion battery separator

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013168519 2013-08-14
JP2013168519 2013-08-14
JP2013192827 2013-09-18
JP2013192827 2013-09-18
JP2014160007A JP6445273B2 (en) 2013-08-14 2014-08-06 Lithium ion battery separator coating liquid and lithium ion battery separator

Publications (2)

Publication Number Publication Date
JP2015084318A JP2015084318A (en) 2015-04-30
JP6445273B2 true JP6445273B2 (en) 2018-12-26

Family

ID=53047819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014160007A Active JP6445273B2 (en) 2013-08-14 2014-08-06 Lithium ion battery separator coating liquid and lithium ion battery separator

Country Status (1)

Country Link
JP (1) JP6445273B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI127814B (en) * 2014-11-06 2019-03-15 Teknologian Tutkimuskeskus Vtt Oy Cellulose based functional composites, energy storage devices and manufacturing methods thereof
JP2017179677A (en) * 2016-03-31 2017-10-05 特種東海製紙株式会社 Porous sheet
WO2018070473A1 (en) * 2016-10-14 2018-04-19 王子ホールディングス株式会社 Thickener used in coating liquid for battery separators, coating liquid for battery separators, and battery separator
JP6390814B2 (en) * 2016-10-14 2018-09-19 王子ホールディングス株式会社 Thickener for battery separator coating liquid, battery separator coating liquid and battery separator
CN106531931B (en) * 2016-11-10 2018-11-20 武汉纺织大学 A kind of preparation method of metal oxide-cellulose composite diaphragm
JP2018147769A (en) * 2017-03-07 2018-09-20 マクセルホールディングス株式会社 Separator for electrochemical element and nonaqueous electrolyte battery
JP6695304B2 (en) * 2017-05-31 2020-05-20 日本電信電話株式会社 Method for manufacturing magnesium-air battery, positive electrode thereof, negative electrode and separator
JP7005950B2 (en) * 2017-06-09 2022-01-24 王子ホールディングス株式会社 Sheets and laminates
CN108630871B (en) * 2018-05-16 2021-05-28 深圳市星源材质科技股份有限公司 Battery, battery diaphragm and preparation method thereof
CN109037556A (en) * 2018-07-04 2018-12-18 东华大学 Functional lithium-sulfur cell diaphragm and preparation method thereof
US11811088B2 (en) 2019-09-19 2023-11-07 Kabushiki Kaisha Toshiba Separator, electrode group, secondary battery, battery pack, vehicle, and stationary power supply
EP4023436A1 (en) * 2020-12-29 2022-07-06 Renata AG Multilayer separator for a battery
CN112909428B (en) * 2021-01-26 2023-04-21 南京捷纳思新材料有限公司 Battery diaphragm and preparation method thereof
CN114068858B (en) * 2021-11-16 2023-04-07 安徽大学 Preparation method of dendrite-free zinc anode

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202987A (en) * 2009-02-27 2010-09-16 Asahi Kasei Corp Composite sheet material and method for producing the same
JP5844067B2 (en) * 2011-05-02 2016-01-13 株式会社ダイセル Non-woven fiber laminate, method for producing the same, and separator
WO2013054936A1 (en) * 2011-10-13 2013-04-18 大王製紙株式会社 Porous three-layer laminate sheet and method for manufacturing same, and separator for electricity storage element comprising three-layer laminate sheet

Also Published As

Publication number Publication date
JP2015084318A (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP6445273B2 (en) Lithium ion battery separator coating liquid and lithium ion battery separator
Jin et al. Nanofibrillated cellulose as coating agent for food packaging paper
US10597501B2 (en) Fibers with filler
KR101799658B1 (en) Filaments comprising microfibrillar cellulose, fibrous nonwoven webs and process for making the same
KR102398127B1 (en) Separator for electrochemical device and electrochemical device comprising same
CN103755190B (en) A kind of regenerated cellulose fibre and manufacture method thereof
CN109661737B (en) Base material for lithium ion battery separator and lithium ion battery separator
JP2016126998A (en) Lithium ion secondary battery separator and method for manufacturing the same
JP2018154699A5 (en)
JP2016001663A (en) Manufacturing method of separator for electrochemical element and separator for electrochemical element
JP2014096335A (en) Method of manufacturing separator for battery and separator for battery
JP5594844B2 (en) Electrochemical element separator
JP6515801B2 (en) Thickener for battery separator coating solution, battery separator coating solution and battery separator
KR20150100769A (en) Separator for electric double layer capacitors, and electric double layer capacitor
WO2018003936A1 (en) Separator for capacitor
JP2013206591A (en) Separator for power storage element and manufacturing method thereof
JP2014139903A (en) Method for manufacturing laminate for storage element and lithium ion battery
JP2014051767A (en) Separator for electricity storage device and production method of the same
Kumar Roll-to-roll processing of nanocellulose into coatings
SE541680C2 (en) A method for preparing a fibrous material of crosslinked phosphorylated microfibrillated cellulose by spinning and heat treatment
JP5594845B2 (en) Electrochemical element separator
JP2016091597A (en) Method for manufacturing electrochemical device separator, and electrochemical device separator
JP2018032537A (en) Lithium ion battery separator
JP6916676B2 (en) Derivative functional group desorbed cellulose fine fiber-containing sheet
Zhang et al. Facilitated fibrillation of regenerated cellulose fibers by immiscible polymer blending using an ionic liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181129

R150 Certificate of patent or registration of utility model

Ref document number: 6445273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250