JP2012220816A - Polarization-independent optical isolator - Google Patents

Polarization-independent optical isolator Download PDF

Info

Publication number
JP2012220816A
JP2012220816A JP2011088020A JP2011088020A JP2012220816A JP 2012220816 A JP2012220816 A JP 2012220816A JP 2011088020 A JP2011088020 A JP 2011088020A JP 2011088020 A JP2011088020 A JP 2011088020A JP 2012220816 A JP2012220816 A JP 2012220816A
Authority
JP
Japan
Prior art keywords
holder
wedge
birefringent crystal
cylindrical space
crystal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011088020A
Other languages
Japanese (ja)
Other versions
JP5444555B2 (en
Inventor
Junji Iida
潤二 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMM Precision Co Ltd
Original Assignee
SMM Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMM Precision Co Ltd filed Critical SMM Precision Co Ltd
Priority to JP2011088020A priority Critical patent/JP5444555B2/en
Publication of JP2012220816A publication Critical patent/JP2012220816A/en
Application granted granted Critical
Publication of JP5444555B2 publication Critical patent/JP5444555B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Polarising Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polarization-independent optical isolator which includes a pair of wedge birefringent crystal plates and a Faraday rotator disposed between them and has improved assembly accuracy and workability.SOLUTION: The polarization-independent optical isolator includes: a first holder 10 which has an inner body thereof divided into space parts 10a and 10b by a partition 12; and a second holder 9 which has an outer body thereof fitted into the space part 10b and has a space part 9a having one end closed by a bottom part 90 and having the other opened. A wedge birefringent crystal plate 3 is stored in the space part 10a of the first holder 10, and a wedge birefringent crystal plate 5 is stored in the space part 9a of the second holder 9, and a Faraday rotator 4 is fixed between the partition 12 and the bottom part 90. A notched concave portion 95 is provided at an open edge part of the second holder 9. A convex portion of a rotational adjustment external jig is engaged with the concave portion 95, and a rotational operation rod of the jig is caused to act to rotate the second holder 9 relative to the first holder 10, whereby wedge surfaces of the wedge birefringent crystal plate 3 and the wedge birefringent crystal plate 5 are arranged in parallel. Because of work using the rotational operation rod of the jig, fine adjustment at one degree or less is possible.

Description

本発明は、光通信や加工用に使用される高出力レーザーの戻り光対策に用いられる光アイソレータに係り、特に、構成部品の組立精度が高くかつ組立作業の簡便化が図られた偏波無依存型光アイソレータの改良に関するものである。   The present invention relates to an optical isolator used as a countermeasure against return light of a high-power laser used for optical communication and processing, and in particular, is a polarization-free device that has high assembly accuracy of components and simplifies assembly work. The present invention relates to an improvement of a dependent optical isolator.

光通信に利用されている半導体レーザーやレーザー加工等に利用されている固体レーザー等は、レーザー共振器外部の光学面や加工面で反射された光がレーザー素子に戻ってくるとレーザー発振が不安定になる。発振が不安定になると、光通信の場合には信号ノイズとなり、加工用レーザーの場合にはレーザー素子が破壊されてしまうことがある。このため、このような反射戻り光がレーザー素子に戻らないよう遮断するための光アイソレータが使用されている。   Semiconductor lasers used for optical communications and solid-state lasers used for laser processing, etc., do not oscillate when the light reflected from the optical surface or processing surface outside the laser resonator returns to the laser element. Become stable. If the oscillation becomes unstable, signal noise may occur in the case of optical communication, and the laser element may be destroyed in the case of a processing laser. For this reason, an optical isolator for blocking such reflected return light from returning to the laser element is used.

ところで、光ファイバシステムでは、一般に光ファイバから出てくる光の偏光はランダムに変化するため偏波無依存型の光アイソレータが用いられる。   By the way, in an optical fiber system, since polarization of light emitted from an optical fiber generally changes randomly, a polarization-independent optical isolator is used.

そして、この種の偏波無依存型光アイソレータとしては、一対の楔型複屈折結晶板と、これ等楔型複屈折結晶板間に配置されかつ45度偏光を回転させるファラデー回転子と、ファラデー回転子に磁界を印加する磁石とで構成された「光アイソレータコア」と呼ばれる光学部品を主要部とし、「光アイソレータコア」の両端にコリメートレンズとファイバとで構成される「ファイバコリメータ」を配置した構造のものが知られている。   This type of polarization-independent optical isolator includes a pair of wedge-shaped birefringent crystal plates, a Faraday rotator arranged between these wedge-shaped birefringent crystal plates and rotating 45-degree polarized light, and a Faraday An optical component called an “optical isolator core” composed of a magnet that applies a magnetic field to the rotor is the main part, and “fiber collimators” composed of collimating lenses and fibers are placed at both ends of the “optical isolator core”. The thing of the structure which is made is known.

以下、「光アイソレータコア」と「ファイバコリメータ」を具備する偏波無依存型光アイソレータに順方向の光が通過する場合の作用について、図1を用いて説明する。   Hereinafter, the operation when light in the forward direction passes through a polarization-independent optical isolator including an “optical isolator core” and a “fiber collimator” will be described with reference to FIG.

まず、入射側光ファイバ1から出射しコリメートレンズ2を通過した光は平行光となり、順方向入射側に位置する楔型複屈折結晶板3を通過する。このとき、上記平行光は、入射側の楔型複屈折結晶板3により常光と異常光の2つの光に分離される。この2つの光は偏光が90°直交しており、ファラデー回転子4を通過すると各々偏光方向が45°回転し、順方向出射側に位置する楔型複屈折結晶板5に入射する。この際、入射側の楔型複屈折結晶板3と出射側の楔型複屈折結晶板5の光学軸の向きは45°異なることになるため、入射側の楔型複屈折結晶板3で常光および異常光として分離した各々の光は、出射側の楔型複屈折結晶板5の常光、異常光として各々入射する。このため、常光、異常光の各々の光はあたかも平行平板の光学結晶に入射したごとく振る舞い、入射した際の平行光と同じく平行光として出射側のコリメートレンズ6に入射し、出射側光ファイバ7に結合する。   First, the light emitted from the incident side optical fiber 1 and passing through the collimating lens 2 becomes parallel light and passes through the wedge-shaped birefringent crystal plate 3 positioned on the forward direction incident side. At this time, the parallel light is separated into two lights of ordinary light and extraordinary light by the wedge-shaped birefringent crystal plate 3 on the incident side. The two lights are orthogonally polarized by 90 °, and when passing through the Faraday rotator 4, the directions of polarization are rotated by 45 ° and enter the wedge-shaped birefringent crystal plate 5 positioned on the forward emission side. At this time, the direction of the optical axis of the wedge-type birefringent crystal plate 3 on the incident side and the wedge-type birefringent crystal plate 5 on the exit side differ from each other by 45 °. And each light separated as extraordinary light is incident as ordinary light and extraordinary light of the wedge-shaped birefringent crystal plate 5 on the emission side. For this reason, each of ordinary light and extraordinary light behaves as if it is incident on an optical crystal of a parallel plate, and enters the collimating lens 6 on the output side as parallel light at the same time as the incident parallel light. To join.

一方、図2に示すように偏波無依存型光アイソレータに逆方向の光が通過する場合には、出射側の楔型複屈折結晶板5を通過した常光および異常光線は、ファラデー回転子4を通過するとファラデー回転子4の非相反性のために順方向の場合と同じ向きに偏光方向が45°回転し、入射側の楔型複屈折結晶板3に入射する。その際、順方向の場合と偏光が90°回転しているため、出射側の楔型複屈折結晶板5を通過した際に常光として透過した光は、入射側の楔型複屈折結晶板3では異常光として振る舞い、異常光は常光として振る舞う。   On the other hand, as shown in FIG. 2, when light in the reverse direction passes through the polarization-independent optical isolator, the ordinary light and extraordinary light that have passed through the wedge-shaped birefringent crystal plate 5 on the emission side are converted into the Faraday rotator 4. , The polarization direction rotates by 45 ° in the same direction as in the forward direction due to the nonreciprocity of the Faraday rotator 4 and enters the wedge-shaped birefringent crystal plate 3 on the incident side. At this time, since the polarization is rotated by 90 ° in the case of the forward direction, the light transmitted as ordinary light when passing through the wedge-shaped birefringent crystal plate 5 on the emission side is wedge-shaped birefringent crystal plate 3 on the incident side. Then, it behaves as extraordinary light, and extraordinary light behaves as ordinary light.

そして、2つの偏光は有限の角度だけ入射平行光と角度を持つことになり、コリメートレンズ2を通過した後、光ファイバ1に結合しないため、アイソレータとして機能することになる。   Then, the two polarized lights have an angle with the incident parallel light by a finite angle, and after passing through the collimating lens 2, they are not coupled to the optical fiber 1 and function as an isolator.

ところで、偏波無依存型光アイソレータにおいて、順方向で充分高い結合効率を得るためには、一対の楔型複屈折結晶板の楔角度が等しいこと、および、楔面(すなわち、傾斜光透過面)が平行に配置されることが重要となる。   By the way, in a polarization-independent optical isolator, in order to obtain a sufficiently high coupling efficiency in the forward direction, the wedge angles of the pair of wedge-shaped birefringent crystal plates are equal, and the wedge surfaces (that is, inclined light transmission surfaces) ) Are arranged in parallel.

そして、楔型複屈折結晶板の楔角度が大きいほど、また、使用するコリメートレンズの焦点距離が大きくなるほど結合効率に影響する(すなわち、楔型複屈折結晶板の楔角度、コリメートレンズの焦点距離が大きくなると、楔角度、楔面の平行配置からのズレにより結合効率の悪化が大きくなる)。   The larger the wedge angle of the wedge-shaped birefringent crystal plate and the greater the focal length of the collimating lens used, the more the coupling efficiency is affected (that is, the wedge angle of the wedge-shaped birefringent crystal plate and the focal length of the collimating lens). When becomes larger, the deterioration of the coupling efficiency becomes larger due to the wedge angle and the deviation from the parallel arrangement of the wedge surfaces).

そこで、上記影響をなるべく小さくするため、同一研磨ロットの楔型複屈折結晶板を使用することが一般的である。その他、戻り光が光ファイバのコアに戻らない程度に楔角度をなるべく小さく設定した楔型複屈折結晶板を使用することや、コリメートレンズの焦点距離を少しでも短くする方法が採られている。   Therefore, in order to minimize the influence, it is common to use a wedge-type birefringent crystal plate of the same polishing lot. In addition, a wedge-type birefringent crystal plate whose wedge angle is set as small as possible so that return light does not return to the core of the optical fiber, and a method of shortening the focal length of the collimating lens as much as possible are employed.

例えば、楔型複屈折結晶として安価なLiNbOを用いる場合、楔角度は13.5°で、焦点距離1.8mmのレンズを用いるのが一般的であるが、楔型複屈折結晶の楔角度を小さくするために楔角度が8°のYVOを用いる場合もある。 For example, when inexpensive LiNbO 3 is used as the wedge-type birefringent crystal, it is common to use a lens having a wedge angle of 13.5 ° and a focal length of 1.8 mm. YVO 4 having a wedge angle of 8 ° may be used in order to reduce the height.

特開2010−237268号公報JP 2010-237268 A 特開平10−274749号公報Japanese Patent Laid-Open No. 10-274749

ところで、近年注目されている波長1μ付近のファイバレーザー用光アイソレータに、ビスマスが添加された希土類鉄ガーネットをファラデー回転子として適用する場合、ファラデー回転子での光吸収による熱の発生を抑制するため、ファラデー回転子に入射させる光のパワー密度を下げることが有効な手段となる。   By the way, when a rare earth iron garnet doped with bismuth is applied as a Faraday rotator to a fiber laser optical isolator having a wavelength of around 1 μ which has been attracting attention in recent years, in order to suppress the generation of heat due to light absorption by the Faraday rotator. Reducing the power density of light incident on the Faraday rotator is an effective means.

しかし、ファラデー回転子に入射させる光のパワー密度を下げる場合、上述した焦点距離の短いコリメートレンズを使用することはできず、焦点距離が長いレンズを使用することになる。   However, when reducing the power density of light incident on the Faraday rotator, the above-described collimating lens with a short focal length cannot be used, and a lens with a long focal length is used.

更に、ファイバレーザー用光アイソレータの場合、逆方向の光が順方向入射側に位置する光ファイバのクラッドに戻ると、動作に支障を来たすことがある。   Further, in the case of an optical isolator for a fiber laser, operation may be hindered when light in the reverse direction returns to the cladding of the optical fiber positioned on the forward incidence side.

そこで、逆方向の光を光ファイバのコアだけでなくクラッドにも戻さないようにするため、楔型複屈折結晶板の楔角度を大きくする必要があり、上述した順方向で充分高い結合効率を得る上において「光アイソレータコア」の組立調整に困難を来たすという課題が存在した。   Therefore, in order not to return the light in the reverse direction not only to the core of the optical fiber but also to the cladding, it is necessary to increase the wedge angle of the wedge-shaped birefringent crystal plate, and the above-described forward direction has a sufficiently high coupling efficiency. There was a problem that it was difficult to assemble and adjust the "optical isolator core".

このような技術的背景の下、上記「光アイソレータコア」の組立調整を簡便に行える方法として、特許文献1では、楔型複屈折結晶板の光透過面以外の少なくとも1つの側面についても鏡面加工して光学面とし、この光学面を位置基準として楔角度が高精度にペアリングされた楔型複屈折結晶板を得ている。この方法を使用した楔型複屈折結晶板を用いれば、組立時の調整は容易になるが、楔型複屈折結晶板のコストが増大してしまう。   Under such a technical background, as a method for easily assembling and adjusting the above-mentioned “optical isolator core”, Patent Document 1 discloses that at least one side surface other than the light transmitting surface of the wedge-shaped birefringent crystal plate is mirror-finished As a result, a wedge-type birefringent crystal plate having a wedge angle paired with high accuracy using the optical surface as a position reference is obtained. If a wedge-type birefringent crystal plate using this method is used, adjustment during assembly becomes easy, but the cost of the wedge-type birefringent crystal plate increases.

更に、特許文献2では、金属ホルダを挟んで入射側の楔型複屈折結晶板とファラデー回転子が互いに表・裏となるように配置する構造を採用し、かつ、入射側の楔型複屈折結晶板とファラデー回転子が搭載された上記金属ホルダに対し、出射側の楔型複屈折結晶板が搭載されたケースを組み込むと共に、上記金属ホルダ若しくはケースを回転させて、入射側と出射側の各楔型複屈折結晶板の位置関係を微調整する方法を提案している。   Furthermore, Patent Document 2 adopts a structure in which a wedge-shaped birefringent crystal plate on the incident side and a Faraday rotator are arranged on the front and back with a metal holder interposed therebetween, and a wedge-shaped birefringence on the incident side. Into the metal holder on which the crystal plate and the Faraday rotator are mounted, a case on which the wedge-shaped birefringent crystal plate on the output side is mounted is incorporated, and the metal holder or the case is rotated so that the incident side and the output side are rotated. A method for finely adjusting the positional relationship of each wedge-shaped birefringent crystal plate has been proposed.

しかし、特許文献2で提案された微調整方法は、焦点距離が1.8mmのような短いコリメートレンズを用い、かつ、楔角度が小さい楔型複屈折結晶板を使用するような場合には調整可能であるが、上述した用途の場合、焦点距離が短いコリメートレンズや楔角度が小さい楔型複屈折結晶板を使用することができないため、金属ホルダ等を回転させて調整する精度は(+/−0.5°)程度が要求され、このような精度で回転調整することは実質的に不可能であるか、非常に時間がかかる問題を有する。   However, the fine adjustment method proposed in Patent Document 2 is adjusted when a short collimating lens with a focal length of 1.8 mm is used and a wedge-type birefringent crystal plate with a small wedge angle is used. Although it is possible to use the collimating lens with a short focal length or the wedge-type birefringent crystal plate with a small wedge angle in the above-mentioned application, the accuracy of adjusting the metal holder by rotating (+ / −0.5 °) is required, and it is practically impossible to adjust the rotation with such accuracy, or it takes a very long time.

本発明はこのような問題点に着目してなされたもので、その課題とするところは、楔角度の大きい楔型複屈折結晶板や焦点距離の長いコリメートレンズが適用されても簡便に結合効率の高い偏波無依存光アイソレータを提供することにある。   The present invention has been made paying attention to such problems, and the problem is that the coupling efficiency can be easily achieved even when a wedge type birefringent crystal plate having a large wedge angle or a collimating lens having a long focal length is applied. An object of the present invention is to provide a polarization-independent optical isolator having a high level of polarization.

すなわち、請求項1に係る発明は、
光路上に設けられた一対の楔型複屈折結晶板と、これ等楔型複屈折結晶板間の光路上に設けられたファラデー回転子とを備え、かつ、一対の楔型複屈折結晶板における傾斜光透過面同士および非傾斜光透過面同士が互いに平行となるように配置された偏波無依存型光アイソレータにおいて、
中央に光路用開口部が設けられた仕切板により内側本体が第一筒状空間部と第二筒状空間部に区画された第一ホルダと、第一ホルダの第二筒状空間部内に外側本体が摺動可能に嵌入されかつ内側本体の一方側が底面部で閉止され他方側が開放されて筒状空間部を形成すると共に上記底面部に光路用開口部が設けられた第二ホルダを備え、
上記第一ホルダにおける第一筒状空間部内に一方の楔型複屈折結晶板がその外周縁近傍部位を仕切板に固定されて収容され、第二ホルダの筒状空間部内に他方の楔型複屈折結晶板がその外周縁近傍部位を底面部に固定されて収容されると共に、上記第一ホルダの仕切板と第二ホルダの底面部との間にファラデー回転子が固定され、かつ、
第二ホルダにおける内側本体の開放縁部に、上記第一ホルダに対し第二ホルダを回転摺動させて一対の楔型複屈折結晶板における傾斜光透過面同士を平行に配置させるための回転調整外部治具を係合させる切欠凹部が設けられ、更に、第二ホルダにおける筒状空間部内の底面部から上記切欠凹部の切欠底部までの距離が、第二ホルダの筒状空間部に収容される楔型複屈折結晶板の厚さ寸法より大きく設定されていることを特徴とする。
That is, the invention according to claim 1
A pair of wedge-shaped birefringent crystal plates and a Faraday rotator provided on the optical path between the wedge-shaped birefringent crystal plates, and a pair of wedge-shaped birefringent crystal plates In the polarization-independent optical isolator arranged such that the inclined light transmitting surfaces and the non-tilted light transmitting surfaces are parallel to each other,
A first holder in which the inner body is partitioned into a first cylindrical space and a second cylindrical space by a partition plate having an optical path opening in the center, and an outer side in the second cylindrical space of the first holder A main body is slidably fitted, and one side of the inner main body is closed at the bottom surface and the other side is opened to form a cylindrical space portion and a second holder provided with an optical path opening on the bottom surface portion,
One wedge-shaped birefringent crystal plate is accommodated in the first cylindrical space portion of the first holder, with the vicinity of the outer peripheral edge thereof being fixed to the partition plate, and the other wedge-shaped double-crystal plate is accommodated in the cylindrical space portion of the second holder. The refractive crystal plate is housed by fixing the vicinity of the outer peripheral edge thereof to the bottom surface portion, and the Faraday rotator is fixed between the partition plate of the first holder and the bottom surface portion of the second holder, and
Rotation adjustment for rotating and sliding the second holder relative to the first holder on the open edge of the inner body of the second holder so that the inclined light transmitting surfaces of the pair of wedge-shaped birefringent crystal plates are arranged in parallel. A notch recess for engaging the external jig is provided, and the distance from the bottom surface in the cylindrical space portion of the second holder to the notch bottom of the notch recess is accommodated in the cylindrical space portion of the second holder. It is characterized by being set larger than the thickness dimension of the wedge-shaped birefringent crystal plate.

また、請求項2に係る発明は、
請求項1に記載の発明に係る偏波無依存型光アイソレータにおいて、
一方の楔型複屈折結晶板が第一ホルダにおける第一筒状空間部の仕切板にエポキシ接着剤を用いて固定され、他方の楔型複屈折結晶板が第二ホルダにおける筒状空間部の底面部にエポキシ接着剤を用いて固定され、かつ、上記ファラデー回転子が第一ホルダの仕切板若しくは第二ホルダの底面部の少なくとも一方にエポキシ接着剤を用いて固定されていることを特徴とし、
請求項3に係る発明は、
二段型の偏波無依存型光アイソレータにおいて、
請求項1または請求項2の偏波無依存型光アイソレータが2段重ねた構造を有していることを特徴とするものである。
The invention according to claim 2
In the polarization independent optical isolator according to claim 1,
One wedge-shaped birefringent crystal plate is fixed to the partition plate in the first cylindrical space portion of the first holder using an epoxy adhesive, and the other wedge-shaped birefringent crystal plate is fixed to the cylindrical space portion of the second holder. The Faraday rotator is fixed to the bottom surface using an epoxy adhesive, and the Faraday rotator is fixed to at least one of the partition plate of the first holder or the bottom surface of the second holder using an epoxy adhesive. ,
The invention according to claim 3
In a two-stage polarization-independent optical isolator,
The polarization-independent optical isolator according to claim 1 or 2 has a structure in which two stages are stacked.

本発明に係る偏波無依存型光アイソレータによれば、
第二ホルダにおける内側本体の開放縁部に切欠凹部が設けられ、この切欠凹部に回転調整外部治具を係合させて第二ホルダを回転摺動させることができるため、1度以内の微細な回転調整が可能となる。
According to the polarization independent optical isolator according to the present invention,
A notch recess is provided in the open edge of the inner body of the second holder, and the second holder can be rotated and slid by engaging a rotation adjusting external jig with the notch recess. The rotation can be adjusted.

従って、楔角度の大きい楔型複屈折結晶板や焦点距離の長いコリメートレンズを適用した場合においても、一対の楔型複屈折結晶板における傾斜光透過面同士を簡便に平行配置させることができるため、結合効率の高い偏波無依存光アイソレータを容易に提供できる効果を有する。   Accordingly, even when a wedge-type birefringent crystal plate having a large wedge angle or a collimating lens having a long focal length is applied, the inclined light transmitting surfaces of the pair of wedge-type birefringent crystal plates can be simply arranged in parallel. The polarization-independent optical isolator with high coupling efficiency can be easily provided.

更に、第二ホルダにおける筒状空間部内の底面部から上記切欠凹部の切欠底部までの距離が、第二ホルダの筒状空間部に収容される楔型複屈折結晶板の厚さ寸法より大きく設定されているため、回転調整外部治具による回転調整の際、第二ホルダの筒状空間部に収容された楔型複屈折結晶板を破損させることも無い効果を有する。   Further, the distance from the bottom surface portion in the cylindrical space portion of the second holder to the notch bottom portion of the notch recess is set larger than the thickness dimension of the wedge-shaped birefringent crystal plate accommodated in the cylindrical space portion of the second holder. Therefore, there is an effect that the wedge-shaped birefringent crystal plate accommodated in the cylindrical space portion of the second holder is not damaged during the rotation adjustment by the rotation adjustment external jig.

偏波無依存光アイソレータに順方向の光が通過した場合の作用説明図。Explanatory drawing of operation when forward light passes through a polarization-independent optical isolator. 偏波無依存光アイソレータに逆方向の光が通過した場合の作用説明図。Action | operation explanatory drawing when the light of a reverse direction passes the polarization-independent optical isolator. 図3(A)は本発明に係る偏波無依存光アイソレータの主要部を構成する「光アイソレータコア」を示す説明図、図3(B)は上記「光アイソレータコア」における第二ホルダの概略斜視図。FIG. 3A is an explanatory view showing an “optical isolator core” constituting the main part of the polarization-independent optical isolator according to the present invention, and FIG. 3B is a schematic diagram of a second holder in the “optical isolator core”. Perspective view. 「光アイソレータコア」における第二ホルダの切欠凹部に回転調整外部治具を係合させて行なう回転調整作業の概略説明斜視図。Schematic explanatory perspective view of rotation adjustment work performed by engaging a rotation adjustment external jig with a notch recess of the second holder in the “optical isolator core”.

以下、本発明の実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図3(A)は本発明の実施の形態に係る偏波無依存光アイソレータの主要部を構成する「光アイソレータコア」を示す説明図、図3(B)は上記「光アイソレータコア」における第二ホルダの概略斜視図である。   FIG. 3A is an explanatory view showing an “optical isolator core” that constitutes a main part of the polarization-independent optical isolator according to the embodiment of the present invention, and FIG. It is a schematic perspective view of a two holder.

まず、図3(A)に示すようにこの実施の形態に係る「光アイソレータコア」は、中央に光路用開口部11が設けられた仕切板12により内側本体が第一筒状空間部10aと第二筒状空間部10bに区画された金属製の第一ホルダ10と、第一ホルダ10の第二筒状空間部10b内に外側本体が摺動可能に嵌入されかつ内側本体の一方側が底面部90で閉止され他方側が開放されて筒状空間部9aを形成すると共に上記底面部90に光路用開口部91が設けられた金属製の第二ホルダ9を備えており、かつ、第一ホルダ10の外側本体には円筒形の磁石8が嵌合されている。   First, as shown in FIG. 3A, the "optical isolator core" according to this embodiment has an inner body that is separated from the first cylindrical space portion 10a by a partition plate 12 provided with an optical path opening 11 in the center. The metal first holder 10 partitioned into the second cylindrical space portion 10b, the outer body is slidably fitted into the second cylindrical space portion 10b of the first holder 10, and one side of the inner body is the bottom surface A second holder 9 made of metal, which is closed by the portion 90 and opened on the other side to form a cylindrical space portion 9a and an opening 91 for the optical path is provided on the bottom portion 90, and the first holder A cylindrical magnet 8 is fitted to the outer body 10.

また、上記第一ホルダ10における第一筒状空間部10a内に、順方向入射側の楔型複屈折結晶板3がその外周縁近傍部位を仕切板12に接着剤を介し固定されて収容され、第二ホルダ9の筒状空間部9a内に出射側の楔型複屈折結晶板5がその外周縁近傍部位を底面部90に接着剤を介し固定されて収容されると共に、上記第一ホルダ10の仕切板12と第二ホルダ9の底面部90との間に、ファラデー回転子4が接着剤を介し上記第一ホルダ10の仕切板12に固定されている。   Further, the wedge-shaped birefringent crystal plate 3 on the forward incidence side is accommodated in the first cylindrical space portion 10a of the first holder 10 by fixing the vicinity of the outer peripheral edge to the partition plate 12 with an adhesive. The exit-side wedge-shaped birefringent crystal plate 5 is housed in the cylindrical space portion 9a of the second holder 9 with the vicinity of the outer peripheral edge thereof being fixed to the bottom surface portion 90 via an adhesive, and the first holder The Faraday rotator 4 is fixed to the partition plate 12 of the first holder 10 between the partition plate 12 and the bottom surface portion 90 of the second holder 9 with an adhesive.

尚、入射側楔型複屈折結晶板3の非傾斜光透過面(楔面でない平坦面)と、出射楔型複屈折結晶板5の非傾斜光透過面、および、ファラデー回転子4の平坦面は互いに平行となるように配置されている。   The incident side wedge-type birefringent crystal plate 3 has a non-tilted light transmission surface (a flat surface that is not a wedge surface), the output wedge-type birefringent crystal plate 5 has a non-tilt light transmission surface, and the Faraday rotator 4 has a flat surface. Are arranged in parallel to each other.

更に、第二ホルダ9における内側本体の開放縁部には図3(A)および図3(B)に示すように切欠凹部95が設けられており、図4に示すように上記切欠凹部95に回転調整外部治具100の凸状部100bが係合し、かつ、回転調整外部治具100の回転操作棒100aを作用させて上記第一ホルダ10に対し第二ホルダ9が回転されるようになっており、この回転操作により、第一ホルダ10の第一筒状空間部10a内に収容された入射側楔型複屈折結晶板3の傾斜光透過面(楔面)と、第二ホルダ9の筒状空間部9a内に収容された出射側楔型複屈折結晶板5の傾斜光透過面同士が平行に配置されるようになっている。尚、上記回転調整外部治具100の回転操作棒100aを用いた調整作業のため、1度以内の微細な回転調整が可能となる。   Furthermore, a notch recess 95 is provided at the open edge of the inner body of the second holder 9 as shown in FIGS. 3 (A) and 3 (B). As shown in FIG. The convex portion 100b of the rotation adjustment external jig 100 is engaged, and the rotation holder 100a of the rotation adjustment external jig 100 is operated to rotate the second holder 9 relative to the first holder 10. By this rotation operation, the inclined light transmitting surface (wedge surface) of the incident-side wedge-shaped birefringent crystal plate 3 accommodated in the first cylindrical space portion 10a of the first holder 10 and the second holder 9 The inclined light transmitting surfaces of the exit-side wedge-shaped birefringent crystal plate 5 accommodated in the cylindrical space portion 9a are arranged in parallel. In addition, since the adjustment operation using the rotation operation rod 100a of the rotation adjustment external jig 100 is performed, a fine rotation adjustment within one degree is possible.

また、図3(A)および図3(B)に示すように第二ホルダ9における筒状空間部9a内の底面部90から上記切欠凹部95の切欠底部までの距離が、第二ホルダ9の筒状空間部9aに収容される出射側楔型複屈折結晶板5の厚さ寸法より大きく設定されているため、上記回転調整外部治具100の回転操作棒100aを用いた調整作業の際、第二ホルダ9の筒状空間9a部に収容された出射側楔型複屈折結晶板5を破損させることも無い。   3A and 3B, the distance from the bottom surface portion 90 in the cylindrical space portion 9a of the second holder 9 to the notch bottom portion of the notch recess 95 is such that the second holder 9 Since it is set larger than the thickness dimension of the exit-side wedge-shaped birefringent crystal plate 5 accommodated in the cylindrical space portion 9a, during the adjustment work using the rotation operation rod 100a of the rotation adjustment external jig 100, The exit-side wedge-shaped birefringent crystal plate 5 accommodated in the cylindrical space 9a of the second holder 9 is not damaged.

以下、実施例により本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

金属製の第一ホルダ10と第二ホルダ9を構成する材料としては、微細加工が可能な材質ならば任意であるが、この実施例においてはニッケルメッキが施された銅を用いた。また、入射側楔型複屈折結晶板3と出射側楔型複屈折結晶板5については、2mm角寸法を有し、楔角度が8°で、厚さの一番厚い部分が0.5mmであるYVOを適用し、ファラデー回転子4としては、グラノプト社製のGGG基板付GLB膜(両面対空気無反射コートつき)を用いた。 The material constituting the metal first holder 10 and the second holder 9 is arbitrary as long as it can be finely processed, but in this embodiment, nickel-plated copper was used. In addition, the incident-side wedge-shaped birefringent crystal plate 3 and the exit-side wedge-shaped birefringent crystal plate 5 have a 2 mm square size, the wedge angle is 8 °, and the thickest part is 0.5 mm. A certain YVO 4 was applied, and as the Faraday rotator 4, a GLB film with a GGG substrate (both surfaces with air non-reflective coating) manufactured by Granopt Co., Ltd. was used.

まず、入射側楔型複屈折結晶板3とファラデー回転子4の外周縁近傍部位に予めエポキシ接着剤を塗布し、第一ホルダ10における第一筒状空間部10aの仕切板12に入射側楔型複屈折結晶板3を固定し、かつ、第一ホルダ10における第二筒状空間部10bの仕切板12にファラデー回転子4を固定すると共に、第一ホルダ10の外側本体にエポキシ接着剤を用いて、円筒形磁石8を固定している。尚、入射側楔型複屈折結晶板3とファラデー回転子4の各光透過面を接着剤で覆わないようにした。   First, an epoxy adhesive is applied in advance to the vicinity of the outer peripheral edge of the incident-side wedge-shaped birefringent crystal plate 3 and the Faraday rotator 4, and the incident-side wedge is applied to the partition plate 12 of the first cylindrical space portion 10 a in the first holder 10. The mold birefringent crystal plate 3 is fixed, and the Faraday rotator 4 is fixed to the partition plate 12 of the second cylindrical space 10b in the first holder 10, and an epoxy adhesive is applied to the outer main body of the first holder 10. In use, the cylindrical magnet 8 is fixed. The light transmitting surfaces of the incident-side wedge-shaped birefringent crystal plate 3 and the Faraday rotator 4 were not covered with an adhesive.

他方、第二ホルダ9における筒状空間部9aの底面部90に、エポキシ接着剤を用いて出射側楔型複屈折結晶板5を固定した。尚、出射側楔型複屈折結晶板5についてもその外周縁近傍部位に上記接着剤を塗布し、光透過面が接着剤で覆われないようにした。   On the other hand, the emission-side wedge-shaped birefringent crystal plate 5 was fixed to the bottom surface portion 90 of the cylindrical space portion 9a in the second holder 9 using an epoxy adhesive. Note that the adhesive was also applied to the vicinity of the outer peripheral edge of the exit-side wedge-shaped birefringent crystal plate 5 so that the light transmission surface was not covered with the adhesive.

そして、入射側楔型複屈折結晶板3とファラデー回転子4が収容された第一ホルダ10の第二筒状空間部10b内に、出射側楔型複屈折結晶板5が収容された第二ホルダ9の外側本体を未硬化のエポキシ接着剤を介し挿入して「光アイソレータコア」を組み立てると共に、調整前における「光アイソレータコア」の構造体を、「ファイバコリメータ」(各コリメートレンズのレンズ焦点距離4mm)間に置き、図4に示すように回転調整外部治具100の回転操作棒100aを作用させて挿入損失が最小になるように回転調整した。   Then, in the second cylindrical space portion 10b of the first holder 10 in which the incident-side wedge-shaped birefringent crystal plate 3 and the Faraday rotator 4 are accommodated, the output-side wedge-shaped birefringent crystal plate 5 is accommodated. The outer body of the holder 9 is inserted through an uncured epoxy adhesive to assemble the “optical isolator core”, and the structure of the “optical isolator core” before adjustment is changed to the “fiber collimator” (the lens focus of each collimating lens). 4), and the rotation operation rod 100a of the rotation adjustment external jig 100 was acted to adjust the rotation so that the insertion loss was minimized as shown in FIG.

この様に調整した「光アイソレータコア」を、ヒーターにより温度上昇させてエポキシ接着剤が固化するまで放置し、その後、オーブンで本キュアを実施した。固定後、挿入損失を確認したところ、調整時の挿入損失を維持していることが確認された。このような方法で容易に最大の結合効率を得ることができた。   The “optical isolator core” adjusted in this way was heated with a heater and allowed to stand until the epoxy adhesive solidified, and then this cure was performed in an oven. When the insertion loss was confirmed after fixing, it was confirmed that the insertion loss during adjustment was maintained. The maximum coupling efficiency could be easily obtained by such a method.

本発明に係る偏波無依存型光アイソレータによれば、楔角度の大きい楔型複屈折結晶板や焦点距離の長いコリメートレンズが適用されても高い結合効率を容易に得ることができるため、光通信やレーザー加工等における光アイソレータとして広範に利用することができる産業上の利用可能性を有している。   The polarization-independent optical isolator according to the present invention can easily obtain high coupling efficiency even when a wedge-type birefringent crystal plate having a large wedge angle or a collimating lens having a long focal length is applied. It has industrial applicability that can be widely used as an optical isolator in communications and laser processing.

1 入射側光ファイバ
2 入射側コリメートレンズ
3 入射側楔型複屈折結晶板
4 ファラデー回転子
5 出射側楔型複屈折結晶板
6 出射側コリメートレンズ
7 出射側光ファイバ
8 磁石
9 第二ホルダ
9a 筒状空間部
90 底面部
91 光路用開口部
95 切欠凹部
10 第一ホルダ
10a 第一筒状空間部
10b 第二筒状空間部
11 光路用開口部
12 仕切板
100 回転調整外部治具
100a 回転操作棒
100b 凸状部
DESCRIPTION OF SYMBOLS 1 Incident side optical fiber 2 Incident side collimating lens 3 Incident side wedge type birefringent crystal plate 4 Faraday rotator 5 Outgoing side wedge type birefringent crystal plate 6 Outgoing side collimating lens 7 Outgoing side optical fiber 8 Magnet 9 Second holder 9a Tube Shaped space part 90 bottom face part 91 optical path opening part 95 notch recessed part 10 first holder 10a first cylindrical space part 10b second cylindrical space part 11 optical path opening part 12 partition plate 100 rotation adjustment external jig 100a rotation operation rod 100b Convex part

Claims (3)

光路上に設けられた一対の楔型複屈折結晶板と、これ等楔型複屈折結晶板間の光路上に設けられたファラデー回転子とを備え、かつ、一対の楔型複屈折結晶板における傾斜光透過面同士および非傾斜光透過面同士が互いに平行となるように配置された偏波無依存型光アイソレータにおいて、
中央に光路用開口部が設けられた仕切板により内側本体が第一筒状空間部と第二筒状空間部に区画された第一ホルダと、第一ホルダの第二筒状空間部内に外側本体が摺動可能に嵌入されかつ内側本体の一方側が底面部で閉止され他方側が開放されて筒状空間部を形成すると共に上記底面部に光路用開口部が設けられた第二ホルダを備え、
上記第一ホルダにおける第一筒状空間部内に一方の楔型複屈折結晶板がその外周縁近傍部位を仕切板に固定されて収容され、第二ホルダの筒状空間部内に他方の楔型複屈折結晶板がその外周縁近傍部位を底面部に固定されて収容されると共に、上記第一ホルダの仕切板と第二ホルダの底面部との間にファラデー回転子が固定され、かつ、
第二ホルダにおける内側本体の開放縁部に、上記第一ホルダに対し第二ホルダを回転摺動させて一対の楔型複屈折結晶板における傾斜光透過面同士を平行に配置させるための回転調整外部治具を係合させる切欠凹部が設けられ、更に、第二ホルダにおける筒状空間部内の底面部から上記切欠凹部の切欠底部までの距離が、第二ホルダの筒状空間部に収容される楔型複屈折結晶板の厚さ寸法より大きく設定されていることを特徴とする偏波無依存型光アイソレータ。
A pair of wedge-shaped birefringent crystal plates and a Faraday rotator provided on the optical path between the wedge-shaped birefringent crystal plates, and a pair of wedge-shaped birefringent crystal plates In the polarization-independent optical isolator arranged such that the inclined light transmitting surfaces and the non-tilted light transmitting surfaces are parallel to each other,
A first holder in which the inner body is partitioned into a first cylindrical space and a second cylindrical space by a partition plate having an optical path opening in the center, and an outer side in the second cylindrical space of the first holder A main body is slidably fitted, and one side of the inner main body is closed at the bottom surface and the other side is opened to form a cylindrical space portion and a second holder provided with an optical path opening on the bottom surface portion,
One wedge-shaped birefringent crystal plate is accommodated in the first cylindrical space portion of the first holder, with the vicinity of the outer peripheral edge thereof being fixed to the partition plate, and the other wedge-shaped double-crystal plate is accommodated in the cylindrical space portion of the second holder. The refractive crystal plate is housed by fixing the vicinity of the outer peripheral edge thereof to the bottom surface portion, and the Faraday rotator is fixed between the partition plate of the first holder and the bottom surface portion of the second holder, and
Rotation adjustment for rotating and sliding the second holder relative to the first holder on the open edge of the inner body of the second holder so that the inclined light transmitting surfaces of the pair of wedge-shaped birefringent crystal plates are arranged in parallel. A notch recess for engaging the external jig is provided, and the distance from the bottom surface in the cylindrical space portion of the second holder to the notch bottom of the notch recess is accommodated in the cylindrical space portion of the second holder. A polarization-independent optical isolator characterized in that it is set larger than the thickness dimension of the wedge-shaped birefringent crystal plate.
一方の楔型複屈折結晶板が第一ホルダにおける第一筒状空間部の仕切板にエポキシ接着剤を用いて固定され、他方の楔型複屈折結晶板が第二ホルダにおける筒状空間部の底面部にエポキシ接着剤を用いて固定され、かつ、上記ファラデー回転子が第一ホルダの仕切板若しくは第二ホルダの底面部の少なくとも一方にエポキシ接着剤を用いて固定されていることを特徴とする請求項1に記載の偏波無依存型光アイソレータ。   One wedge-shaped birefringent crystal plate is fixed to the partition plate in the first cylindrical space portion of the first holder using an epoxy adhesive, and the other wedge-shaped birefringent crystal plate is fixed to the cylindrical space portion of the second holder. It is fixed to the bottom part using an epoxy adhesive, and the Faraday rotator is fixed to at least one of the partition plate of the first holder or the bottom part of the second holder using an epoxy adhesive. The polarization-independent optical isolator according to claim 1. 請求項1または請求項2の偏波無依存型光アイソレータが2段重ねた構造を有していることを特徴とする二段型の偏波無依存型光アイソレータ。   3. A two-stage polarization-independent optical isolator having a structure in which the polarization-independent optical isolators according to claim 1 or 2 are stacked in two stages.
JP2011088020A 2011-04-12 2011-04-12 Polarization-independent optical isolator Active JP5444555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011088020A JP5444555B2 (en) 2011-04-12 2011-04-12 Polarization-independent optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011088020A JP5444555B2 (en) 2011-04-12 2011-04-12 Polarization-independent optical isolator

Publications (2)

Publication Number Publication Date
JP2012220816A true JP2012220816A (en) 2012-11-12
JP5444555B2 JP5444555B2 (en) 2014-03-19

Family

ID=47272364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011088020A Active JP5444555B2 (en) 2011-04-12 2011-04-12 Polarization-independent optical isolator

Country Status (1)

Country Link
JP (1) JP5444555B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021082553A1 (en) * 2019-10-31 2021-05-06 青岛海信宽带多媒体技术有限公司 Optical module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10274749A (en) * 1997-03-31 1998-10-13 Kyocera Corp Polarization-free type optical isolator
JPH11174382A (en) * 1997-12-17 1999-07-02 Shin Etsu Chem Co Ltd Manufacture of polarization-independent type optical isolator
JP2003255137A (en) * 2001-12-26 2003-09-10 Okano Electric Wire Co Ltd Optical component
JP2010061125A (en) * 2008-08-06 2010-03-18 Seikoh Giken Co Ltd Optical isolator and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10274749A (en) * 1997-03-31 1998-10-13 Kyocera Corp Polarization-free type optical isolator
JPH11174382A (en) * 1997-12-17 1999-07-02 Shin Etsu Chem Co Ltd Manufacture of polarization-independent type optical isolator
JP2003255137A (en) * 2001-12-26 2003-09-10 Okano Electric Wire Co Ltd Optical component
JP2010061125A (en) * 2008-08-06 2010-03-18 Seikoh Giken Co Ltd Optical isolator and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021082553A1 (en) * 2019-10-31 2021-05-06 青岛海信宽带多媒体技术有限公司 Optical module

Also Published As

Publication number Publication date
JP5444555B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
US7715664B1 (en) High power optical isolator
US7426325B2 (en) Compact, high power, fiber pigtailed faraday isolators
US11693267B2 (en) Single and multi-stage high power optical isolators using a single polarizing element
TWI724260B (en) Polarized non-dependent optical isolator
JP2011090291A (en) In-line optical isolator
US8565561B2 (en) Polarization independent optical isolator
US8891167B2 (en) Polarization independent optical isolator
JP4797733B2 (en) Polarization-independent optical isolator for high-power lasers
US20150124318A1 (en) High magnetic field-type multi-pass faraday rotator
US10048520B2 (en) Optical isolator
JP5444555B2 (en) Polarization-independent optical isolator
US20230013926A1 (en) Optical isolator with optical fibers arranged on one single side
JP2016138966A (en) Optical isolator module and optical semiconductor module
JP5343222B2 (en) Polarization-dependent inline optical isolator
JP2008310068A (en) In-line optical isolator
JP2004334169A (en) Beam multiplexing element, beam multiplexing method, beam separating element, beam separating method, and exciting light output device
JP5439670B2 (en) Polarization-independent optical isolator
JP6447825B2 (en) Polarization-independent optical isolator
US11768329B2 (en) High isolation optical splitter
US20220357563A1 (en) Small, high power optical isolator
JPH0667118A (en) Optical coupler
JP2015034900A (en) Optical device
JP3075435B2 (en) Optical isolator
JP4956004B2 (en) Optical isolator
JP2004281478A (en) Semiconductor optical amplifier module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130621

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

R150 Certificate of patent or registration of utility model

Ref document number: 5444555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250