JP2012220266A - Method for measuring surface acidity of silica powder for semiconductor sealing - Google Patents

Method for measuring surface acidity of silica powder for semiconductor sealing Download PDF

Info

Publication number
JP2012220266A
JP2012220266A JP2011084200A JP2011084200A JP2012220266A JP 2012220266 A JP2012220266 A JP 2012220266A JP 2011084200 A JP2011084200 A JP 2011084200A JP 2011084200 A JP2011084200 A JP 2011084200A JP 2012220266 A JP2012220266 A JP 2012220266A
Authority
JP
Japan
Prior art keywords
silica powder
surface acidity
powder
siliceous powder
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011084200A
Other languages
Japanese (ja)
Inventor
Shuji Sasaki
修治 佐々木
Hiroaki Kikkai
浩明 吉開
Takashi Fukuda
貴史 福田
Yoshiyuki Iizuka
慶至 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2011084200A priority Critical patent/JP2012220266A/en
Publication of JP2012220266A publication Critical patent/JP2012220266A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for easily and accurately measuring the degree of surface acidity of silica powder for semiconductor sealing, which allows the silica powder to be colored with a Hammett indicator for the measurement through determination of the digitized degree of coloration.SOLUTION: A method for analyzing the degree of surface acidity of silica powder for semiconductor sealing includes adding a mixed solution of a Hammett indicator and a non-polar solvent to the silica powder, so that the degree of the coloration of the Hammett indicator adsorbed to the silica powder is digitalized in the CIE1976 L*a*b* color system for determination. A method for analyzing the degree of surface acidity of silica powder for semiconductor sealing includes removing water content in the silica powder by heating and subsequently adding a mixed solution of a Hammett indicator and a non-polar solvent to the silica powder, so that the degree of the coloration of the Hammett indicator adsorbed to the silica powder is digitalized in the CIE1976 L*a*b* color system for determination.

Description

本発明は、半導体封止材用シリカ質粉末に関する。   The present invention relates to a siliceous powder for semiconductor encapsulant.

電子機器の小型軽量化、高性能化の要求に対応して半導体パッケージの小型化、薄型化、狭ピッチ化が急速に進展している。また、その実装方法も配線基板などへの高密度実装に好適な表面実装が主流になっている。このように、半導体パッケージ及びその実装方法が進展する中、半導体封止材にも高温環境下における信頼性向上の要求が一段となされている。
特に、自動車用途においては半導体を多用した制御部品、電子機器の搭載が進んでおり、半導体封止材には、環境負荷の大きい難燃剤を用いないで難燃性を付与することや、振動、加速などの機械的外圧に強いこと、過酷な車体内高温環境下での動作保証が要求され、一般の民生機器以上の高温保管信頼性(High Temperature Storage Life、以下、HTSL特性ともいう。)や、高温動作信頼性(High Temperature Operating Life、以下、HTOL特性ともいう。)の付与が求められている。
In response to the demand for smaller and lighter electronic devices and higher performance, semiconductor packages are rapidly becoming smaller, thinner, and narrower in pitch. As the mounting method, surface mounting suitable for high-density mounting on a wiring board or the like is mainly used. As described above, as the semiconductor package and the mounting method thereof advance, the demand for improving the reliability in a high-temperature environment is also increasing for the semiconductor sealing material.
In particular, in automobile applications, mounting of control parts and electronic devices that use a lot of semiconductors is advancing, and semiconductor encapsulants can be provided with flame retardancy without using a flame retardant with a large environmental load, vibration, It must be resistant to mechanical external pressure such as acceleration, and must be guaranteed to operate under severe internal high-temperature environments. High-temperature storage life (High Temperature Storage Life, hereinafter referred to as HTSL characteristics) Therefore, it is required to provide high temperature operating life (hereinafter referred to as HTOL characteristics).

このような問題を解決するため、半導体封止材用セラミックス粉末を改質する手法として、セラミックス粉末の表面酸性度を制御することによって、組成物の安定した硬化特性と高温放置特性の両立を可能にする方法がある(特許文献1参照)。この場合、表面酸性度が低過ぎると、硬化促進剤がセラミックス粉末の表面酸点に捕捉され難く、組成物の高温放置特性(耐熱性)が悪化する恐れがあり、逆に表面酸性度が高すぎると、硬化促進剤がセラミックス粉末の表面酸点に捕捉され過ぎる結果、組成物の硬化速度が遅くなり、成形後にも所望の組成物硬度が得られなくなる恐れがある。このため、セラミックス粉末の表面酸性度を最適に制御すること、及びその表面酸性度の程度を判断する評価法が重要である。   In order to solve such problems, as a method of modifying ceramic powder for semiconductor encapsulants, it is possible to achieve both stable curing characteristics and high-temperature storage characteristics of the composition by controlling the surface acidity of the ceramic powder. (See Patent Document 1). In this case, if the surface acidity is too low, it is difficult for the curing accelerator to be trapped on the surface acid sites of the ceramic powder, which may deteriorate the high temperature storage properties (heat resistance) of the composition. Conversely, the surface acidity is high. If the amount is too high, the curing accelerator is excessively trapped in the surface acid sites of the ceramic powder, resulting in a slow curing rate of the composition, and the desired composition hardness may not be obtained after molding. For this reason, it is important to optimally control the surface acidity of the ceramic powder and to evaluate the degree of the surface acidity.

セラミックス粉末の表面酸性度の測定方法としては、特許文献1にあるように、セラミックス粉末にアンモニアなどの塩基性物質を吸着させ、温度を連続的に上昇させることによって脱離する塩基性物質の量を測定する方法が公知である。この手法は精度のよい測定が可能ではあるが、吸着していない気相アンモニアや物理吸着したアンモニアの除去操作が必要であり、測定時間も要していた。また、特許文献2には、固体酸の表面酸性度をハメット指示薬の変色有無で測定する手法が記載されているが、石油化学分野に適用される触媒の測定であり、高精度での判別が必要とされる半導体封止材用セラミックス粉末に応用された例はなかった。 As a method for measuring the surface acidity of ceramic powder, as disclosed in Patent Document 1, the amount of basic substance desorbed by adsorbing a basic substance such as ammonia to ceramic powder and continuously raising the temperature. Methods for measuring are known. Although this method enables accurate measurement, it requires an operation for removing gas-phase ammonia that has not been adsorbed and physically adsorbed ammonia, and also requires measurement time. Further, Patent Document 2 describes a method for measuring the surface acidity of a solid acid by the presence or absence of discoloration of a Hammett indicator, but is a measurement of a catalyst applied to the petrochemical field, and can be discriminated with high accuracy. There was no example applied to the required ceramic powder for semiconductor encapsulant.

WO/2007/132771号公報WO / 2007/132771 特開平2−282337号公報JP-A-2-282337

本発明の目的は、半導体封止材用シリカ質粉末の表面酸性度の測定において、ハメット指示薬を用いて着色させ、その着色度合いを数値化判定することで、半導体封止材用シリカ質粉末の表面酸性度の程度を簡便かつ精度よく測定できる方法を提供することである。 The purpose of the present invention is to measure the surface acidity of the siliceous powder for semiconductor encapsulating material by coloring with Hammett indicator and numerically determine the degree of coloration of the siliceous powder for semiconductor encapsulating material. It is to provide a method capable of easily and accurately measuring the degree of surface acidity.

(1)シリカ質粉末にハメット指示薬と無極性溶媒の混合溶液を加え、シリカ質粉末に吸着したハメット指示薬の着色度合いをCIE1976L*a*b*表色系で数値化判定する、半導体封止材用シリカ質粉末の表面酸性度分析方法。
(2)シリカ質粉末の水分を加熱除去したのちに、シリカ質粉末にハメット指示薬と無極性溶媒の混合溶液を加え、シリカ質粉末に吸着したハメット指示薬の着色度合いをCIE1976L*a*b*表色系で数値化判定する、半導体封止材用シリカ質粉末の表面酸性度分析方法。
(3)ハメット指示薬にジシンナマルアセトン、無極性溶媒にトルエンを用いる前記(1)又は(2)に記載の半導体封止材用シリカ質粉末の表面酸性度分析方法。
(1) A semiconductor encapsulant that adds a mixed solution of a Hammett indicator and a non-polar solvent to a siliceous powder and numerically determines the degree of coloration of the Hammett indicator adsorbed on the siliceous powder using the CIE 1976 L * a * b * color system. For analyzing the surface acidity of siliceous powder for use.
(2) After removing water from the siliceous powder by heating, a mixed solution of Hammet indicator and nonpolar solvent is added to the siliceous powder, and the degree of coloring of the Hammet indicator adsorbed on the siliceous powder is shown in the CIE 1976 L * a * b * table. A method for analyzing the surface acidity of a siliceous powder for a semiconductor encapsulant, wherein the color system is used for numerical determination.
(3) The method for analyzing the surface acidity of a siliceous powder for a semiconductor encapsulant as described in (1) or (2) above, wherein dicinnamalacetone is used as the Hammett indicator and toluene is used as the nonpolar solvent.

本発明によれば、半導体封止材用シリカ質粉末の表面酸性度の測定において、ハメット指示薬を用いて着色させ、その着色度合いを数値化判定することで、半導体封止材用シリカ質粉末の表面酸性度の程度を簡便かつ精度よく測定できる方法を提供できる。   According to the present invention, in the measurement of the surface acidity of the siliceous powder for semiconductor encapsulating material, it is colored using a Hammett indicator, and the degree of coloration of the siliceous powder for semiconductor encapsulating material is determined numerically. It is possible to provide a method capable of easily and accurately measuring the degree of surface acidity.

以下、本発明を詳細に説明する。
本発明は、シリカ質粉末にハメット指示薬と無極性溶媒の混合溶液を加え、シリカ質粉末に吸着したハメット指示薬の着色度合いをCIE1976L*a*b*表色系で数値化判定する、半導体封止材用シリカ質粉末の表面酸性度分析方法である。本発明で使用するハメット指示薬は、シリカ質粉末の表面酸性度の強さに応じて選択することができる。すなわち、表面酸性度が低いシリカ質粉末に対しては酸解離定数(pKa)が高いハメット指示薬を使用し、逆に表面酸性度が高いシリカ質粉末に対してはpKaが低いハメット指示薬を使用すればよい。半導体封止材用として好適に使用できるシリカ質粉末の表面酸性度の強さの場合、pKaが−8〜3のハメット指示薬が好ましい。例としてはベンザルアセトフェノン、ジシンナマルアセトン、p−ニトロ-ジフェニルアミン、2−アミノ−5−アゾトルエンなどが挙げられ、pKaが−3.0のジシンナマルアセトンが特に好ましい。
Hereinafter, the present invention will be described in detail.
In the present invention, a mixed solution of a Hammett indicator and a nonpolar solvent is added to siliceous powder, and the degree of coloring of the Hammett indicator adsorbed on the siliceous powder is numerically determined using the CIE 1976 L * a * b * color system. It is a surface acidity analysis method of siliceous powder for materials. The Hammett indicator used in the present invention can be selected according to the strength of the surface acidity of the siliceous powder. That is, a Hammett indicator having a high acid dissociation constant (pKa) is used for siliceous powder having a low surface acidity, and a Hammett indicator having a low pKa is used for siliceous powder having a high surface acidity. That's fine. In the case of the strength of the surface acidity of the siliceous powder that can be suitably used for a semiconductor encapsulant, a Hammett indicator having a pKa of −8 to 3 is preferable. Examples include benzalacetophenone, dicinnamalacetone, p-nitro-diphenylamine, 2-amino-5-azotoluene and the like, and dicinnamalacetone having a pKa of −3.0 is particularly preferred.

本発明で使用する溶媒は、無極性溶媒であることが好ましい。極性溶媒を使用すると、極性溶媒とハメット指示薬との相互作用、或いは極性溶媒とシリカ質粉末との相互作用により、測定精度を悪化させる恐れがある。無極性溶媒は、使用するハメット指示薬が溶解するものであれば良い。例えばハメット指示薬としてジシンナマルアセトンを用いる際は、シクロヘキサン、ベンゼン、トルエンなどを使用すれば良い。この場合、安全性の観点から、トルエンを使用することが好ましい。 The solvent used in the present invention is preferably a nonpolar solvent. When a polar solvent is used, the measurement accuracy may be deteriorated due to the interaction between the polar solvent and the Hammett indicator or the interaction between the polar solvent and the siliceous powder. The nonpolar solvent may be any one that dissolves the Hammett indicator used. For example, when dicinnamalacetone is used as a Hammett indicator, cyclohexane, benzene, toluene or the like may be used. In this case, it is preferable to use toluene from the viewpoint of safety.

CIE1976L*a*b*表色系での数値化判定に用いる座標軸は、ハメット指示薬が何色に変色するかで選択すれば良い。a*軸のプラス側は赤領域、マイナス側は緑領域に対応し、b*軸のプラス側は黄領域、マイナス側は青領域に対応している。すなわち、酸性質により赤領域や緑領域に変色する場合はa*値、黄領域や青領域に変色する場合はb*値で判定することが好ましい。例えば、ハメット指示薬としてジシンナマルアセトンを使用する際は、酸性質により黄色から赤色に変色するため、a*値で判定することが好ましい。このCIE1976L*a*b*表色系の測定には、例えば、SE−2000(日本電色工業)などの市販の色彩色差計装置を用いれば容易に測定することが可能である。 The coordinate axis used for the digitization determination in the CIE 1976 L * a * b * color system may be selected depending on the color of the Hammett indicator. The positive side of the a * axis corresponds to the red region, the negative side corresponds to the green region, the positive side of the b * axis corresponds to the yellow region, and the negative side corresponds to the blue region. That is, it is preferable to make a determination based on an a * value when the color changes to a red region or a green region due to acid properties, and a b * value when the color changes to a yellow region or a blue region. For example, when dicinnamalacetone is used as a Hammett indicator, the color changes from yellow to red depending on the acid properties, so it is preferable to determine by a * value. The CIE 1976 L * a * b * color system can be easily measured by using, for example, a commercially available color difference meter device such as SE-2000 (Nippon Denshoku Industries Co., Ltd.).

本発明で測定するシリカ質粉末は、予め加熱処理し、水分を除去したシリカ質粉末を用いることが好ましい。通常、シリカ質粉末の表面には水分が付着しているため、この水分を可能な限り除去してから着色させることで、さらに精度良く測定を行うことができる。加熱温度としては物理的吸着水と水素結合OH基由来の水分が除去される550℃が好ましく、物理的吸着水と水素結合OH基由来の水分に加え、孤立OH基由来の水分が除去される900℃が更に好ましい。 As the siliceous powder to be measured in the present invention, it is preferable to use a siliceous powder that has been heat-treated in advance to remove moisture. Usually, since moisture adheres to the surface of the siliceous powder, it is possible to perform measurement with higher accuracy by coloring after removing the moisture as much as possible. The heating temperature is preferably 550 ° C. from which physically adsorbed water and water derived from hydrogen-bonded OH groups are removed. In addition to physically adsorbed water and water derived from hydrogen-bonded OH groups, water derived from isolated OH groups is removed. 900 ° C. is more preferable.

以下、本発明について、実施例及び比較例により、更に、詳細に説明する。
まず、種々の表面酸性度を有するシリカ質粉末A〜Gを準備した。これらのシリカ質粉末の表面酸性度を確認するため、特許文献1に記載された測定方法でアンモニア吸着量を測定した。結果を表1に示す。
Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples.
First, siliceous powders A to G having various surface acidities were prepared. In order to confirm the surface acidity of these siliceous powders, the ammonia adsorption amount was measured by the measuring method described in Patent Document 1. The results are shown in Table 1.

それぞれのシリカ質粉末5gを石英ガラス容器に精秤し、それを加熱無し、電気炉にて500℃、又は900℃で加熱し、シリカ質粉末の水分を除去したものを準備した。加熱無しのシリカ質粉末はそのまま密閉した。また、電気炉にて加熱したシリカ質粉末は、加熱後200℃まで放冷させた後に直ぐに容器を密閉し、更に室温まで冷却させた。次に、これらのシリカ質粉末にハメット指示薬と溶媒の混合溶液5mlを加えたのちに、1分間振とうさせ、ハメット指示薬をシリカ質粉末に吸着させた。ハメット指示薬としてはジシンナマルアセトン、ベンザルアセトフェノンを用いた。溶媒としてはトルエン、シクロヘキサン、エタノール、アセトンを用いた。なお、いずれの混合溶液もハメット指示薬の濃度は0.06wt%に調製した。それぞれの測定条件を表2に示す。 5 g of each siliceous powder was precisely weighed in a quartz glass container, which was heated without heating and heated in an electric furnace at 500 ° C. or 900 ° C. to remove the siliceous powder from water. The siliceous powder without heating was sealed as it was. Further, the siliceous powder heated in the electric furnace was allowed to cool to 200 ° C. after heating, and the container was immediately sealed and further cooled to room temperature. Next, 5 ml of a mixed solution of Hammet indicator and solvent was added to these siliceous powders, and then shaken for 1 minute to adsorb the Hammet indicators to the siliceous powder. Dicinnamalacetone and benzalacetophenone were used as Hammett indicators. As the solvent, toluene, cyclohexane, ethanol, and acetone were used. In any mixed solution, the Hammett indicator concentration was adjusted to 0.06 wt%. Each measurement condition is shown in Table 2.

ハメット指示薬を吸着させたシリカ質粉末の着色度合いは日本電色工業社製分光式色差計SE−2000を用いて測定した。数値化判定にはa*値を用い、石英ガラス容器を空の状態で測定した時のa*値を差し引いた色差(△a*値)で数値化判定を行った。この操作を各シリカ質粉末につき5回行い、平均値と標準偏差を求めた。また、色差(△a*値)の平均値と、前述したアンモニア吸着量の測定方法と比較し、相関関係Rを求めた。各シリカ質粉末の数値化判定結果を表2に示す。 The degree of coloring of the siliceous powder on which the Hammett indicator was adsorbed was measured using a spectroscopic color difference meter SE-2000 manufactured by Nippon Denshoku Industries Co., Ltd. The a * value was used for the numerical determination, and the numerical determination was performed by the color difference (Δa * value) obtained by subtracting the a * value when the quartz glass container was measured in an empty state. This operation was performed 5 times for each siliceous powder, and the average value and the standard deviation were obtained. Further, the average value of the color difference (Δa * value) was compared with the measurement method of the ammonia adsorption amount described above, and the correlation R 2 was obtained. Table 2 shows the results of the numerical determination of each siliceous powder.

次に、シリカ質粉末A〜Gの半導体封止材の充填材としての特性を評価した(シリカ質粉末の平均粒径はいずれも20μm、比表面積は2.0m/g)。すなわち、各粉末87.2部(質量部、以下同じ)に対し、ビフェニルアラルキル型エポキシ樹脂(日本化薬社製NC−3000P)6.7部、ビフェニルアラルキル型フェノール樹脂(日本化薬社製MEH−7851SS)5.1部、トリフェニルホスフィン0.2部、エポキシシランカップリング剤0.4部、カーボンブラック0.1部、及びカルナバワックス0.3部を加え、ヘンシェルミキサーにてドライブレンドした。その後、同方向噛み合い二軸押出混練機(スクリュー径D=25mm、ニーディングディスク長10Dmm、パドル回転数50〜150rpm、吐出量3.0g/Hr、混練物温度100〜102℃)で加熱混練した。混練物(吐出物)をプレス機にてプレスして冷却した後、粉砕して半導体封止材を製造した。得られた半導体封止材の高温放置特性、成形性(スパイラルフロー)を以下に従って評価した。それらの結果を表3に示す。 Next, the characteristics of the siliceous powders A to G as the filler of the semiconductor sealing material were evaluated (the average particle diameter of the siliceous powder is 20 μm and the specific surface area is 2.0 m 2 / g). That is, 6.7 parts of biphenyl aralkyl type epoxy resin (NC-3000P manufactured by Nippon Kayaku Co., Ltd.), biphenyl aralkyl type phenol resin (MEH manufactured by Nippon Kayaku Co., Ltd.) with respect to 87.2 parts (parts by mass, the same applies hereinafter) of each powder. -7851SS) 5.1 parts, 0.2 parts of triphenylphosphine, 0.4 parts of epoxysilane coupling agent, 0.1 parts of carbon black, and 0.3 parts of carnauba wax were added and dry blended in a Henschel mixer. . Thereafter, the mixture was heated and kneaded in the same-direction meshing twin-screw extrusion kneader (screw diameter D = 25 mm, kneading disk length 10 Dmm, paddle rotation speed 50 to 150 rpm, discharge amount 3.0 g / Hr, kneaded material temperature 100 to 102 ° C.). . The kneaded product (discharged product) was pressed with a press and cooled, and then pulverized to produce a semiconductor encapsulant. The obtained semiconductor encapsulant was evaluated for high temperature storage properties and moldability (spiral flow) according to the following. The results are shown in Table 3.

(1)高温放置特性
トランスファー成型機を用い、SOP-28p(リードフレーム42アロイ製)にTEG-ML1020チップを載せ、リードフレームとチップとを40μmφの金線により8ヶ所接続した後、各種半導体封止材でパッケージングして、175℃で8時間アフターキュアし、模擬半導体を20個作製した。これらの模擬半導体を195℃中に1500時間保管し、室温まで冷却後、通電の有無を測定した。8ヶ所の配線のうち1配線でも導通不良のある模擬半導体の個数を計測した。この値が小さいほど、高温放置特性が良好であることを示す。
(1) High temperature storage characteristics Using a transfer molding machine, TEG-ML1020 chips are placed on SOP-28p (made of lead frame 42 alloy), and the lead frame and the chip are connected to each other at 8 locations with 40 μmφ gold wires. Packaging with a stop material and after-curing at 175 ° C. for 8 hours, 20 simulated semiconductors were produced. These simulated semiconductors were stored at 195 ° C. for 1500 hours, cooled to room temperature, and then the presence or absence of energization was measured. The number of simulated semiconductors with poor continuity in one of the eight wirings was measured. It shows that high temperature leaving property is so favorable that this value is small.

(2)スパイラルフロー
EMMI−I−66(Epoxy Molding Material Institute;Society of Plastic Industry)に準拠したスパイラルフロー測定用金型を取り付けたトランスファー成形機を用い、半導体封止材のスパイラルフロー値を測定した。トランスファー成形条件は、金型温度175℃、成形圧力7.4MPa、保圧時間90秒とした。この値が大きいほど、流動性が良好であることを示す。
(2) Spiral Flow The spiral flow value of the semiconductor encapsulant was measured using a transfer molding machine equipped with a spiral flow measurement mold conforming to EMMI-I-66 (Epoxy Molding Material Institute; Society of Plastic Industry). . The transfer molding conditions were a mold temperature of 175 ° C., a molding pressure of 7.4 MPa, and a pressure holding time of 90 seconds. It shows that fluidity | liquidity is so favorable that this value is large.

(3)バーコル硬度
トランスファー成形機により、金型温度175℃、90秒間成形し、金型の型開き10秒後の硬度をバーコル硬度計935型で測定した。この値が大きいほど、硬化性が良いことを示す。
(3) Barcol hardness
Using a transfer molding machine, molding was performed at a mold temperature of 175 ° C. for 90 seconds, and the hardness 10 seconds after the mold was opened was measured with a Barcol hardness meter 935. It shows that sclerosis | hardenability is so good that this value is large.

Figure 2012220266
Figure 2012220266

Figure 2012220266
Figure 2012220266

Figure 2012220266
Figure 2012220266

表2から明らかなように、本発明の分析方法は、アンモニア吸着量の測定方法と相関性が高いので、半導体封止材用シリカ質粉末の表面酸性度の程度を簡便かつ精度よく測定することができる。さらに、表3から本発明の分析方法を用いて測定した半導体封止材用シリカ質粉末を半導体封止材に適用した場合、色差(△a*値)の平均値と半導体封止材の高温放置特性、流動性には明らかに傾向が認められ、硬化性(バーコル硬度)にも閾値が認められるので、半導体封止材用シリカ質粉末を半導体封止材の充填材に用いた場合の高温放置特性、流動性、硬化特性などの良否を容易に推察することが出来る。   As is clear from Table 2, the analysis method of the present invention has a high correlation with the ammonia adsorption amount measurement method, and therefore, the degree of surface acidity of the siliceous powder for semiconductor encapsulating material should be measured easily and accurately. Can do. Furthermore, when the siliceous powder for semiconductor encapsulant measured using the analysis method of the present invention from Table 3 is applied to the semiconductor encapsulant, the average value of the color difference (Δa * value) and the high temperature of the semiconductor encapsulant There is a clear tendency for neglectability and fluidity, and a threshold is also observed for curability (Bercol hardness), so the high temperature when using siliceous powder for semiconductor encapsulant as a filler for semiconductor encapsulant It is possible to easily infer the quality of leaving characteristics, fluidity, curing characteristics, and the like.

本発明の測定方法は、自動車、携帯電子機器、パソコン、家庭電化製品等に使用される半導体封止材用シリカ質粉末の表面酸性度の測定方法として利用される。   The measuring method of this invention is utilized as a measuring method of the surface acidity of the siliceous powder for semiconductor sealing materials used for a motor vehicle, a portable electronic device, a personal computer, a household appliance, etc.

Claims (3)

シリカ質粉末にハメット指示薬と無極性溶媒の混合溶液を加え、シリカ質粉末に吸着したハメット指示薬の着色度合いをCIE1976L*a*b*表色系で数値化判定する、半導体封止材用シリカ質粉末の表面酸性度分析方法。   Silica powder for semiconductor encapsulant that adds a mixed solution of Hammet indicator and non-polar solvent to siliceous powder and numerically determines the degree of coloration of Hammett indicator adsorbed on siliceous powder by CIE1976L * a * b * color system Method for analyzing surface acidity of powder. シリカ質粉末の水分を加熱除去したのちに、シリカ質粉末にハメット指示薬と無極性溶媒の混合溶液を加え、シリカ質粉末に吸着したハメット指示薬の着色度合いをCIE1976L*a*b*表色系で数値化判定する、半導体封止材用シリカ質粉末の表面酸性度分析方法。   After removing water from the siliceous powder by heating, a mixed solution of Hammet indicator and nonpolar solvent is added to the siliceous powder, and the degree of coloration of the Hammet indicator adsorbed on the siliceous powder is expressed in the CIE 1976 L * a * b * color system. A method for analyzing the surface acidity of a siliceous powder for semiconductor encapsulating material, which is numerically determined. ハメット指示薬にジシンナマルアセトン、無極性溶媒にトルエンを用いる請求項1又は2に記載の半導体封止材用シリカ質粉末の表面酸性度分析方法。
The method for analyzing the surface acidity of a siliceous powder for a semiconductor encapsulant according to claim 1 or 2, wherein dicinnamalacetone is used as the Hammett indicator and toluene is used as the nonpolar solvent.
JP2011084200A 2011-04-06 2011-04-06 Method for measuring surface acidity of silica powder for semiconductor sealing Pending JP2012220266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011084200A JP2012220266A (en) 2011-04-06 2011-04-06 Method for measuring surface acidity of silica powder for semiconductor sealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011084200A JP2012220266A (en) 2011-04-06 2011-04-06 Method for measuring surface acidity of silica powder for semiconductor sealing

Publications (1)

Publication Number Publication Date
JP2012220266A true JP2012220266A (en) 2012-11-12

Family

ID=47271948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011084200A Pending JP2012220266A (en) 2011-04-06 2011-04-06 Method for measuring surface acidity of silica powder for semiconductor sealing

Country Status (1)

Country Link
JP (1) JP2012220266A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254256A (en) * 1985-04-30 1986-11-12 イ−・アイ・デユポン・ドウ・ヌム−ル・アンド・カンパニ− 8-ring zeolite as catalyst converting methanol and ammonia into dimethylamine
WO2007132771A1 (en) * 2006-05-12 2007-11-22 Denki Kagaku Kogyo Kabushiki Kaisha Ceramic powder and method of using the same
WO2010107076A1 (en) * 2009-03-16 2010-09-23 株式会社ジャパンエナジー Catalyst for use in production of para-substituted aromatic hydrocarbon, and process for producing para-substituted aromatic hydrocarbon utilizing the catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254256A (en) * 1985-04-30 1986-11-12 イ−・アイ・デユポン・ドウ・ヌム−ル・アンド・カンパニ− 8-ring zeolite as catalyst converting methanol and ammonia into dimethylamine
US4683334A (en) * 1985-04-30 1987-07-28 E. I. Du Pont De Nemours & Company Modified 8-ring zeolites as catalysts for conversion of methanol and ammonia to dimethylamine
WO2007132771A1 (en) * 2006-05-12 2007-11-22 Denki Kagaku Kogyo Kabushiki Kaisha Ceramic powder and method of using the same
US20090312477A1 (en) * 2006-05-12 2009-12-17 Denki Kagaku Kogyo Kabushiki Kaisha Ceramic powder and applications thereof
WO2010107076A1 (en) * 2009-03-16 2010-09-23 株式会社ジャパンエナジー Catalyst for use in production of para-substituted aromatic hydrocarbon, and process for producing para-substituted aromatic hydrocarbon utilizing the catalyst

Similar Documents

Publication Publication Date Title
KR101593731B1 (en) Tetravalent phosphonium salt, epoxy resin composition for encapsulating semiconductor device comprising the same and semiconductor device encapsulated with the same
JPS6360543B2 (en)
JP5553749B2 (en) Amorphous siliceous powder, production method and use thereof
JP6060541B2 (en) Thermosetting resin composition for semiconductor encapsulation and semiconductor device using the same
JP2018178112A (en) Filler for resin composition, filler-containing slurry composition, and filler-containing resin composition
JP5795168B2 (en) Thermally conductive resin composition and semiconductor package
TW201245322A (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device obtained using the same
JP2012220266A (en) Method for measuring surface acidity of silica powder for semiconductor sealing
JP7363821B2 (en) thermosetting resin composition
KR20130064000A (en) Epoxy resin composition for electronic parts encapsulation and electronic parts-equipped device using the same
TWI576407B (en) Thermosetting resin sheet for electronic component sealing, resin sealing type semiconductor device, and manufacturing method of resin sealed type semiconductor device
JP5991007B2 (en) Thermosetting resin composition and semiconductor device using the same
JP2757938B2 (en) Semiconductor device
CN101925534B (en) Siliceous powder, process for production of the same, and use thereof
JP2000230110A (en) Epoxy resin composition and semiconductor device
JP7263765B2 (en) Encapsulating composition and semiconductor device
CN103579133B (en) The manufacture method of electronic part encapsulation resin sheet, resin molded semiconductor device and resin molded semiconductor device
JP6028356B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP2006257309A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP7274384B2 (en) Resin composition for semiconductor encapsulation, semiconductor device, and method for manufacturing semiconductor device
KR101337247B1 (en) Epoxy resin composition for sealing semiconductor and semiconductor device sealed using the same
KR20190096741A (en) Epoxy resin composition
KR101142300B1 (en) Epoxy resin composition for sealing semiconductor element
JP6335374B2 (en) Epoxy resin composition and use thereof
KR100679491B1 (en) Epoxy resin composition for sealing semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630