JP2012219364A - Method for producing subsidiary material for steel - Google Patents

Method for producing subsidiary material for steel Download PDF

Info

Publication number
JP2012219364A
JP2012219364A JP2011089480A JP2011089480A JP2012219364A JP 2012219364 A JP2012219364 A JP 2012219364A JP 2011089480 A JP2011089480 A JP 2011089480A JP 2011089480 A JP2011089480 A JP 2011089480A JP 2012219364 A JP2012219364 A JP 2012219364A
Authority
JP
Japan
Prior art keywords
dust
specific gravity
fine powder
polymer
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011089480A
Other languages
Japanese (ja)
Other versions
JP5513435B2 (en
Inventor
Takuya Sano
拓也 佐野
Koichi Kobuchi
光一 小渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARBIZ CORP
Original Assignee
ARBIZ CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARBIZ CORP filed Critical ARBIZ CORP
Priority to JP2011089480A priority Critical patent/JP5513435B2/en
Publication of JP2012219364A publication Critical patent/JP2012219364A/en
Application granted granted Critical
Publication of JP5513435B2 publication Critical patent/JP5513435B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a subsidiary material for steel for stably obtaining a subsidiary material for steel having excellent strength and magnetic force transportability compared with the conventional art, when the subsidiary material for steel is produced for the purpose of recycling shredder dust.SOLUTION: In the method for producing the subsidiary material for steel, polymer crushed dust and inorganic fine powder dust sorted and recovered from the shredder dust are mixed, and thereafter, the mixture is subjected to melt extrusion molding to produce the subsidiary material. The polymer crushed dust includes a porous material, further, the inorganic fine powder dust includes iron fine powder or iron oxide fine powder, and the polymer crushed dust and the inorganic fine powder dust are dusted and mixed, and thereafter, the melt extrusion molding is performed.

Description

本発明は、シュレッダーダストおよび無機微粉ダストを再生利用するのに好適な鉄鋼用副資材の製造方法に関する。   The present invention relates to a method for producing a secondary material for steel that is suitable for recycling shredder dust and inorganic fine powder dust.

ここでは、シュレッダーダストとして自動車シュレッダーダスト(ASR:Automobile Shredder Residues)を例に採り説明する。 Here, automotive shredder residue as shredder dust (ASR: A utomobile S hredder R esidues) will be described as an example.

ASRとは、オゾン層を破壊する「フロン類」や爆発の危険がある「エアバッグ類」を除去した廃自動車を破砕して発生するシュレッダーダストから、有価物を除去した後に残る廃棄物のことである。2005年1月から施行された自動車リサイクル法では、これらの「フロン類」、「エアバッグ類」および「ASR」は、自動車メーカーがリサイクルする義務を負うことになっている。   ASR is the waste that remains after removing valuable materials from shredder dust generated by crushing scrap automobiles that have removed "fluorocarbons" that destroy the ozone layer and "airbags" that can explode. It is. According to the Automobile Recycling Law, which came into effect from January 2005, these "CFCs", "Airbags" and "ASR" are obliged to be recycled by automakers.

このため、ASRを再生利用する技術の開発が要望され、例えば、鉄鋼用副資材として有効利用する方法が、特許文献1・2等で提案されている。   For this reason, development of the technique which recycles ASR is requested | required, for example, the method of using effectively as a secondary material for steel is proposed by patent document 1 * 2.

特許文献1には、「シュレッダーダストを金属溶解炉へ装入して処理する方法において、シュレッダーダストとプラスチック廃材の溶融又は半溶融状物とを混在させ、その混在物をプレス成形して、その成形物を金属溶解炉へ装入することを特徴とするシュレッダーダストの処理方法。」が提案されている(請求項1等参照)。   Patent Document 1 states that “in a method of charging shredder dust into a metal melting furnace and mixing shredder dust and molten or semi-molten plastic waste, press the mixture, A processing method for shredder dust, characterized in that the molded product is charged into a metal melting furnace ”(see claim 1).

そして、段落0007には、「プラスチック廃材の溶融又は半溶融状物としては、プラスチック廃材、好ましくは粒径50mm以下に破砕したものと、粉粒状の金属廃材、例えば酸洗スラッジを乾燥して粉砕したもの、金属の研削屑や研磨屑等とを、ロータリーキルンへ定量供給して、該プラスチック廃材を溶融又は半溶融状としたものが好ましい。プラスチック廃材、好ましくは粒径50mm以下に破砕したものをロータリーキルンへ定量供給しつつ、粉粒状の金属廃材を該ロータリーキルンへ定量供給して、間接加熱すると、該プラスチック廃材は溶融又は半溶融状となり、その表面に該粉粒状の金属廃材が付着して、あたかもその表面が該粉粒状の金属廃材で被覆されたものが得られるので、該ロータリーキルン内に該プラスチック廃材の溶融又は半溶融状物が付着して滞留することがなく、誠に都合がよい。」と記載されている。   Paragraph 0007 states that “Plastic waste materials, such as plastic waste materials, preferably those crushed to a particle size of 50 mm or less, and powdered metal waste materials, such as pickled sludge, are crushed by drying. It is preferable to quantitatively supply metal scraps, grinding scraps, etc. to a rotary kiln to melt or semi-melt the plastic waste material.Plastic waste material, preferably one crushed to a particle size of 50 mm or less. While supplying quantitatively to the rotary kiln, supplying the powdered metal waste material to the rotary kiln, and indirectly heating, the plastic waste material becomes molten or semi-molten, and the powdered metal waste material adheres to the surface, Since the surface is coated with the powdered metal waste material, the plastic waste is placed in the rotary kiln. Without melting or semi-molten material in stays attached, it is indeed described as convenient. ".

しかし、上記「粉粒状の金属廃材」は、本発明の「無機微粉ダスト」を開示若しくは示唆するものではない。特許文献1の「粉粒状の金属廃材」は、ロータリーキルン(回転炉)内における溶融プラスチックの付着防止のために配合されるものである。これに対して、本発明では、「無機微粉ダスト」は、押出成形品の比重調整のために配合されるものであり、高分子粗砕ダストへの付着も、溶融によるものではなく、多孔質材への吸着(進入)によるものである。   However, the “powder metal waste material” does not disclose or suggest the “inorganic fine dust” of the present invention. The “powder metal waste material” of Patent Document 1 is blended for preventing adhesion of molten plastic in a rotary kiln (rotary furnace). On the other hand, in the present invention, the “inorganic fine powder dust” is blended for adjusting the specific gravity of the extruded product, and the adhesion to the polymer crushed dust is not caused by melting, but is porous. This is due to adsorption (entrance) to the material.

他方、特許文献2には、「シュレッダーダストを製鋼用電気炉に投入し、製鋼用電気炉の熱源として再利用する方法であり、シュレッダーダストから樹脂類を選別・加工して回収する工程と、回収された樹脂類と鉄類とを混合する工程と、
混合された混合物を加熱圧縮して製鋼用原燃料体を成形する工程と、成形された製鋼用原燃料体を電気炉に投入する工程と、を有し、前記製鋼用原燃料体の(かさ)密度が1.5〜2.5t/m3となるように、樹脂類と鉄類との比率が調整されていることを特徴とするシュレッダーダストの再利用方法。」が提案されている(請求項1等参照)。
On the other hand, Patent Document 2 states that “a method of putting shredder dust into a steelmaking electric furnace and reusing it as a heat source for a steelmaking electric furnace, selecting and processing resins from the shredder dust and collecting them; A step of mixing the recovered resins and irons;
A step of forming a steelmaking raw fuel element by heating and compressing the mixed mixture, and a step of introducing the formed steelmaking raw fuel element into an electric furnace. ) A method for reusing shredder dust, wherein the ratio of resins and irons is adjusted so that the density is 1.5 to 2.5 t / m 3 . Is proposed (see claim 1 etc.).

しかし、特許文献2における「鉄類」は、「鉄屑(例えばプレス屑)」のような「片状体や線状体」を意図している。即ち、特許文献2は、積極的に、本発明の、「鉄類」が、多孔質材の気孔(表面細孔)を介して付着(進入)することを予定していない。   However, “irons” in Patent Document 2 are intended to be “strips or linear bodies” such as “iron scraps (for example, press scraps)”. That is, Patent Document 2 does not actively plan that the “irons” of the present invention adhere (enter) through the pores (surface pores) of the porous material.

したがって、特許文献2では、鉄類の均一分散が期待できず、本発明における強度および磁気搬送の安定性を期待できない。   Therefore, in Patent Document 2, uniform dispersion of irons cannot be expected, and the strength and stability of magnetic conveyance in the present invention cannot be expected.

他方、ショットピーニング、ショットブラスト、研磨等の鉄製品加工では、多量の鉄粉が発生する。そして、それらは他の無機粉体とともに、集塵ダストとして回収されるが、該集塵ダストの用途は、エコセメント原料等に限られており、大半はセメント等の結合剤で固めて、廃棄されているのが現状であった。   On the other hand, in iron product processing such as shot peening, shot blasting, and polishing, a large amount of iron powder is generated. And they are collected as dust collection dust together with other inorganic powders, but the use of dust collection dust is limited to eco-cement raw materials etc., and most of them are solidified with a binder such as cement and discarded. It was the current situation.

特開2005−812号公報JP-A-2005-812 特開2007−21445号公報JP 2007-21445 A

本発明は、上記にかんがみて、シュレッダーダストの再生利用を目的として鉄鋼用副資材を製造するに際して、従来に比して、より強度及び磁力運搬性に優れた鉄鋼用副資材を安定して得ることができる鉄鋼用副資材の製造方法を提供することを目的とする。   In view of the above, the present invention stably obtains a secondary material for steel that is more excellent in strength and magnetic force transportability than the conventional one when manufacturing the secondary material for steel for the purpose of recycling shredder dust. An object of the present invention is to provide a method for producing a secondary material for steel.

本発明者らは、上記課題を解決するために鋭意開発に努力をする過程で、ASRから選別回収した高分子粗砕ダストは、「表面細孔を無数に有する多孔質材」の含有率が高いことに着目した。自動車内装品の大部分がウレタン発泡体等の高分子発泡体(スポンジ)や不織布等で形成されているためである。そして、これに前記ショットブラスト等で発生する鉄類集塵ダスト(無機微粉ダスト)を塗し混合して調製した塗し混合物(鉄粉等付着高分子粗砕ダスト)を、押出成形すれば、鉄粉等が均一分散された成形品(鉄鋼用副資材)が得られることを知見して、下記構成の鉄鋼用副資材の製造方法に想到した。結果的に、本発明の鉄鋼用副資材は、強度的に従来品より優れ、且つ、磁力運搬性にも優れたものとなり、取り扱い性(保管性を含む。)が向上する。   In the process of diligently developing to solve the above-mentioned problems, the inventors of the present invention have a high molecular weight crushing dust collected and collected from ASR, which has a content ratio of “a porous material having countless surface pores”. Focused on high. This is because most of the automobile interior parts are made of a polymer foam (sponge) such as urethane foam or a nonwoven fabric. And if the coating mixture prepared by coating and mixing the iron dust collection dust (inorganic fine powder dust) generated in the shot blasting and the like to this is extruded, Knowing that a molded product (secondary material for steel) in which iron powder and the like are uniformly dispersed can be obtained, the inventors have come up with a method for manufacturing a second material for steel having the following configuration. As a result, the secondary material for steel of the present invention is superior to conventional products in strength and also excellent in magnetic material transportability, and the handleability (including storage properties) is improved.

シュレッダーダストから少なくとも1回の比重差選別を経て、軽量物側から回収した高分子粗砕ダストと、無機微粉ダストとを混合後、溶融押出成形して製造する鉄鋼用副資材の製造方法であって、
前記高分子粗砕ダストを、多孔質材を含み比重が0.8以下の低比重高分子粗砕ダストとするとともに、前記無機微粉ダストを鉄微粉又は鉄酸化物微粉を含むものとして、
前記低比重高分子粗砕ダストと前記無機微粉ダストとを塗し(マブシ)混合後、前記溶融押出成形をすることを特徴とする。
This is a method for manufacturing secondary materials for steel, which is produced by mixing polymer fine-pulverized dust collected from the lighter material side with inorganic fine powder dust after at least one specific gravity difference selection from shredder dust and then melt-extrusion molding. And
The polymer crushed dust is a low specific gravity polymer crushed dust containing a porous material and having a specific gravity of 0.8 or less, and the inorganic fine powder dust contains iron fine powder or iron oxide fine powder.
The low specific gravity polymer coarse dust and the inorganic fine powder dust are coated (mabushi) and mixed, and then the melt extrusion molding is performed.

そして、上記比重差選別は、通常、浮上又は沈降を利用する風力選別により行なうことが望ましい。装置が簡単で選別動力も少なくて済む。なお、比重差選別としては、遠心分離や静電気分離等を利用することも可能である。   And it is desirable that the above-mentioned specific gravity difference sorting is normally performed by wind sorting using floating or sinking. The device is simple and requires little sorting power. As specific gravity difference sorting, it is also possible to use centrifugation, electrostatic separation or the like.

上記多孔質材としては、高分子発泡体及び/又は高分子不織布とする。   The porous material is a polymer foam and / or a polymer nonwoven fabric.

上記低比重高分子粗砕ダストは、一次比重差選別した一次選別軽量物を、粗砕後、更に二次比重差選別してゴム・硬質プラスチック等を除去して、比重を0.5以下とした二次選別軽量物であることが望ましい。   The above-mentioned low specific gravity polymer coarsely pulverized dust is obtained by crushing the first-classified lightweight material selected by primary specific gravity difference, and further selecting secondary specific gravity difference to remove rubber, hard plastic, etc., so that the specific gravity is 0.5 or less. It is desirable to be the next sorted light weight.

より、多孔質材の比率が高くなり、無機微粉ダストとの塗し混合(均一混合)効率が向上することが期待できる。   Therefore, it can be expected that the ratio of the porous material is increased and the efficiency of coating and mixing (uniform mixing) with the inorganic fine powder dust is improved.

前記低比重高分子粗砕ダストは、前記二次選別軽量物を、さらに、ロールスクリーンにより土砂・ガラス微粉等を除去したものであることが望ましい。低比重高分子粗砕ダストに土砂・ガラス微粉等が含まれていると、塗し混合に際して、土砂・ガラス微粉等が低比重高分子粗砕ダストの気孔をふさぎ、鉄微粉や鉄酸化物微粉の気孔への進入が阻止されるおそれがある。   It is desirable that the low specific gravity polymer crushed dust is obtained by removing the secondary sorted light-weight material and further removing earth and sand, glass fine powder and the like with a roll screen. If the low specific gravity polymer coarse dust contains earth and sand / glass fine powder, during coating and mixing, the earth and sand fine glass will block the pores of the low specific gravity polymer coarse dust, resulting in iron fine powder and iron oxide fine powder. May be prevented from entering the pores.

通常、前記低比重高分子粗砕ダストは、50mmアンダーに大きさ揃えの破砕後、磁力選別機で鉄粉が除去されたものとすることが望ましい。   Usually, it is desirable that the low specific gravity polymer coarsely pulverized dust is obtained by removing iron powder with a magnetic separator after crushing to a size of 50 mm or less.

低比重高分子粗砕ダストは、大きさが揃っている方が、無機微粉ダストとの塗し混合性に優れ、鉄片が除去されている方が、鉄片で塞がれている多孔質材の気孔が開き、更に、無機微粉ダストと高分子粗砕ダストとの塗し混合性が向上する。また、鉄片が押出し成形機に混入すると成形機の損傷及び過磨耗につながる。   The low specific gravity polymer crushed dust is better in coating and mixing with the inorganic fine powder dust when the size is uniform, and the one with the iron piece removed is the porous material clogged with the iron piece. The pores are opened, and the coating and mixing properties of the inorganic fine powder dust and the polymer coarse dust are improved. Further, if iron pieces are mixed into the extrusion molding machine, the molding machine is damaged and excessively worn.

そして、上記各製造方法において、前記高分子類粉砕物と前記無機微粉ダストの混合比率を調整して比重1.3〜3.0(望ましくは1.5〜2.5)の押出成形体を溶融押出成形して製造することが望ましい。該押出成形体を所定長に裁断すれば、簡単に鎮静材、ホーミング抑制材、加炭材等とすることができる。   And in each said manufacturing method, the mixing ratio of the said polymer ground material and the said inorganic fine powder dust is adjusted, and the extrusion molding of specific gravity 1.3-3.0 (desirably 1.5-2.5) is carried out. It is desirable to manufacture by melt extrusion. If the extruded product is cut into a predetermined length, a sedative material, a homing suppressing material, a carburized material, or the like can be easily obtained.

上記各構成において、低比重高分子粗砕ダストが、ASR由来の低比重ASRであることが望ましい。ASRは、発泡ウレタンや不織布等の多孔質材を多く含むためである。   In each of the above-described configurations, it is desirable that the low specific gravity polymer coarse dust is ASR-derived low specific gravity ASR. This is because ASR contains many porous materials such as urethane foam and nonwoven fabric.

上記各構成において、無機微粉ダストが、ショットピーニング、ショットブラスト、研磨等の鉄製品加工由来であることが望ましい。鉄製品加工由来の無機微粉ダストは、鉄粉や酸化鉄粉が殆どであり、鉄鋼用副資材とした場合、鉄源として有利であり、磁力を得やすく、更には、他の無機粉体(Cu、Al等)に比して比重が高く比重調製も容易となる(高比重のものを得やすい。)。   In each of the above-mentioned configurations, it is desirable that the inorganic fine powder dust originates from iron product processing such as shot peening, shot blasting, and polishing. Inorganic fine powder dust derived from iron product processing is mostly iron powder and iron oxide powder, and when used as a secondary material for steel, it is advantageous as an iron source, easily obtains magnetic force, and further, other inorganic powder ( Compared to Cu, Al, etc.), the specific gravity is high and the specific gravity can be easily prepared (high specific gravity can be easily obtained).

なお、上記各製造方法において、前記塗し混合を、2本の並列された横型回転軸の周面から所定リードの螺旋に沿って所定間隔をおいて多数の矩形状のパドルが放射方向に突出して配され、各パドルのパドル面が前記螺旋に沿うものとされている塗し混合装置を用いて行なうことが望ましい。   In each of the above manufacturing methods, a large number of rectangular paddles project in the radial direction at predetermined intervals along the spiral of a predetermined lead from the peripheral surfaces of two parallel horizontal rotation shafts. It is preferable to use a coating and mixing apparatus in which the paddle surface of each paddle is along the spiral.

上記構成の横型攪拌装置は、無機微粉ダストの高分子粗砕ダストを部分溶融させず、無機微粉ダストと高分子粗砕ダストとの塗し(まぶし)混合が容易となる。   The horizontal stirrer configured as described above does not partially melt the finely divided polymer dust of the inorganic fine powder dust, and facilitates coating and mixing of the fine inorganic powder dust and the finely divided polymer dust.

本発明の鉄鋼用副資材の製造方法で製造した望ましい構成の鉄鋼用副資材は下記の如くである。   The sub-material for steel having a desirable configuration manufactured by the method for manufacturing the sub-material for steel of the present invention is as follows.

鉄粉及び/又は酸化鉄から実質的になる無機微粉ダストが、比重0.8以下の低比重高分子粗砕ダストの溶融体で結合されて、比重が1.3〜3.0(望ましくは1.5〜2.5)に調整されてなる押出成形体であることを特徴とする。   An inorganic fine powder dust substantially composed of iron powder and / or iron oxide is combined with a melt of low specific gravity polymer coarse dust having a specific gravity of 0.8 or less, and a specific gravity of 1.3 to 3.0 (preferably 1.5 to 2.5), which is an extruded molded product.

廃棄自動車ボディからシュレッダー・選別工程等を経て本発明の原料となる低比重高分子粗砕ダスト(低比重ASR)を得る流れ図である。It is a flowchart which obtains the low specific gravity polymer crushed dust (low specific gravity ASR) used as the raw material of this invention through a shredder, a selection process, etc. from a waste automobile body. 低比重ASRと無機微粉ダスト(鉄粉)との塗し混合後、押出成形する流れ図である。It is a flowchart which extrudes after coating and mixing with low specific gravity ASR and inorganic fine powder dust (iron powder). 図2を装置図で表した流れ図である。FIG. 3 is a flowchart showing the apparatus of FIG. 2. 低比重高分子ダストと無機微粉とを塗し混合するのに好適な塗し混合装置の平面図および攪拌部(混合部)の要部斜視図である。FIG. 2 is a plan view of a coating and mixing apparatus suitable for coating and mixing low specific gravity polymer dust and inorganic fine powder, and a perspective view of essential parts of a stirring unit (mixing unit).

以下、本発明の一実施形態について詳細に説明する。ここでは、高分子粗砕ダストの原料とするシュレッダーダストとして、ASR由来の場合について説明するが、発泡体や不織布等の構成比率が高い廃家電品等のシュレッダーダストも本発明の高分子粗砕ダストの原料とすることができる。さらには、発泡体製品や不織布の加工で発生する、一種のシュレッダーダストである端材(トリミング材)も高分子粗砕ダストの原料とすることができる。   Hereinafter, an embodiment of the present invention will be described in detail. Here, the case where it is derived from ASR as the shredder dust used as the raw material for the polymer crushed dust will be described. However, the shredder dust such as waste home appliances having a high component ratio such as foam and nonwoven fabric is also used for the polymer crushed powder of the present invention. It can be used as a raw material for dust. Furthermore, the end material (trimming material) which is a kind of shredder dust generated by processing a foam product or a nonwoven fabric can also be used as a raw material for the polymer crushed dust.

A.先ず、廃棄自動車ボディからシュレッダー・選別工程等を経て本発明の原料となる低比重高分子粗砕ダスト(低比重ASR)を得る流れを図1・3について説明する。   A. First, the flow of obtaining low specific gravity polymer crushed dust (low specific gravity ASR), which is a raw material of the present invention, through a shredder / sorting process etc. from a discarded automobile body will be described with reference to FIGS.

(1)納入された廃車から、フロンガスやエアバッグ等の一括処理が困難なものを除いた廃自動車ボディをプレシュレッダー12で粗破砕をして破砕物を得る。   (1) A scrap car 12 is roughly crushed with a pre-shredder 12 to obtain a crushed material from a scrap car that has been delivered.

(2)上記(1)で得た破砕物を、シュレッダーマシン(例えば、ハンマータイプ)14でスクリーン(例えば、目開き60mm×120mm)を通過するまで破砕する。   (2) The crushed material obtained in the above (1) is crushed with a shredder machine (for example, hammer type) 14 until it passes through a screen (for example, 60 mm × 120 mm).

シュレッダーマシン14で発生する粉塵は第一サイクロン(集塵機)16で軽量微粉ダスト(高分子・無機微粉ダスト)として回収する。   The dust generated by the shredder machine 14 is collected by the first cyclone (dust collector) 16 as lightweight fine dust (polymer / inorganic fine dust).

(3)シュレッダーマシン14から排出される破砕物(シュレッダーダスト)は、吹き上げ選別機(一次風力選別機)18により、一次選別重量ASR(一次選別重量物)と、一次選別軽量ASR(一次選別軽量物)とに一次風力選別をする。   (3) The crushed material (shredder dust) discharged from the shredder machine 14 is subjected to a primary sorting weight ASR (primary sorting heavy material) and a primary sorting light weight ASR (primary sorting light weight) by a blow-up sorter (primary wind sorter) 18. And primary wind sorting.

例えば、多孔板(孔径Φ6mmの多孔板と、孔径Φ2mmの多孔板との組合わせ板。同一長さで前後に配したもの)の上を通過させる際に、多孔板の下から風を送り込み浮き上がったものを上方から第2サイクロン(第2集塵機)20で吸引して一次選別軽量ASRとして回収し、浮き上がらないものを一次選別重量ASRとして回収する。それらの組成は、下記の如くである。
一次選別重量ASR・・・金属片、ガラス片・ソリッドゴム、硬質プラスチック等。
一次選別軽量ASR・・・低比重プラスチック(PP、低密度PE)、発泡プラスチック(発泡ウレタン)・高発泡ゴム、不織布等。
For example, when passing over a perforated plate (combination plate of a porous plate with a hole diameter of Φ6 mm and a porous plate with a hole diameter of Φ2 mm, arranged in the same length and back and forth), wind is sent from below the perforated plate to float Is collected from the upper part by a second cyclone (second dust collector) 20 and collected as a primary sorting light weight ASR, and a non-floating thing is collected as a primary sorting weight ASR. Their composition is as follows.
Primary sorting weight ASR: Metal pieces, glass pieces / solid rubber, hard plastic, etc.
Primary selection lightweight ASR: Low specific gravity plastic (PP, low density PE), foamed plastic (foamed urethane), high foamed rubber, non-woven fabric, etc.

(4)上記で選別された一次選別軽量ASRを一軸粉砕機(粗砕機)22で80mm以下(望ましくは50mm以下)に破砕(粗砕)する。そして、50mm超、15〜50mmおよび15mm未満の3種類(大・中・小)に、篩選別機24で分級する。可及的に多くの材料を回収するとともに、粗砕物サイズを揃えることにより後工程の処理をしやすくするためである。   (4) The first-sorted lightweight ASR selected above is crushed (crushed) to 80 mm or less (preferably 50 mm or less) with a uniaxial crusher (crusher) 22. And it classifies with the sieve sorter 24 into 3 types (large, medium, and small) of more than 50 mm, 15-50 mm, and less than 15 mm. This is for recovering as much material as possible and making the subsequent process easier by making the size of the coarsely crushed material uniform.

15mm未満の分級品は、ダストとして処分してもよいが、ホーミング抑制材として再資源化してもよい。ホーミング抑制材は、比重に重きをおいているので、土砂、ガラス分が混じっていても、鉄鋼メーカーにてスラグ化され製品化可能である。   A classified product of less than 15 mm may be disposed as dust, but may be recycled as a homing suppression material. Since the homing suppression material places importance on the specific gravity, even if earth and sand and glass are mixed, it can be made into a slag by a steel manufacturer and commercialized.

(5)そして、50mm超(大)、15〜50mm(中)の2種類について、再度、二次選別重量ASR(二次選別重量物)と二次選別軽量ASR(二次選別軽量物)とに、二次風力選別機26、26を用いて2次風力選別をする。本発明に使用する低比重ASRにおける、多孔質材の比率を可及的に高めるためである。   (5) And, for two types of more than 50 mm (large), 15-50 mm (medium), the secondary sorting weight ASR (secondary sorting heavy article) and the secondary sorting lightweight ASR (secondary sorting lightweight article) again In addition, secondary wind sorting is performed using the secondary wind sorters 26 and 26. This is because the ratio of the porous material in the low specific gravity ASR used in the present invention is increased as much as possible.

なお、上記二次風力選別された二次選別軽量ASRは、前記同様、第三・四サイクロン28、30で回収される。それらの組成は、下記の如くである。
二次選別重量ASR(高比重ASR)・・・硬質プラスチック、ワイヤーハーネス等。
二次選別軽量ASR(低比重ASR)・・・多孔質プラスチック(発泡ウレタン)・不織布等。
Note that the secondary sorted lightweight ASR subjected to the secondary wind sorting is collected by the third and fourth cyclones 28 and 30 as described above. Their composition is as follows.
Secondary sorting weight ASR (high specific gravity ASR): Hard plastic, wire harness, etc.
Secondary sorting lightweight ASR (low specific gravity ASR) ... porous plastic (urethane foam), non-woven fabric, etc.

(6)上記第1・3・4サイクロン(集塵機)16、28、30に回収された低比重ASRには、土砂・ガラス微粉も含まれている。これらの土・ガラス微粉は、後の混合・成形工程で、前述の如く、不具合を起こすおそれがある。   (6) The low specific gravity ASR collected in the first, third, and fourth cyclones (dust collectors) 16, 28, and 30 includes earth and sand and fine glass powder. These soil and glass fine powders may cause problems in the subsequent mixing and forming process as described above.

このため、第1・3・4サイクロン16、28、30からの低比重ASRから、ロールスクリーン32で、土砂・ガラス等の粉塵を除去する。ロールスクリーン32は、三角形のおにぎり状のロールが荷物の進行方向に回転し、ロールを連結しているシャフトとおにぎり状のロール先端との隙間から土砂・ガラス等を落とす機構を有する。   For this reason, dust such as earth and sand and glass is removed from the low specific gravity ASR from the first, third and fourth cyclones 16, 28 and 30 by the roll screen 32. The roll screen 32 has a mechanism in which a triangular rice ball-shaped roll rotates in the traveling direction of the load and drops earth, sand, glass, and the like from a gap between the shaft connecting the rolls and the tip of the rice ball-shaped roll.

こうして、本発明の原料となる低比重ASRを回収する。ここで、低比重とは、嵩比重(見掛け比重)で0.8以下、望ましくは、0.5以下、更に望ましくは0.2以下とする。0.8超では、多孔質の比率が小さくなり、鉄粉が均質分散されがたく、強度的に優れ、且つ、磁力運搬性に優れた鉄鋼用副資材を得がたい。   Thus, the low specific gravity ASR that is the raw material of the present invention is recovered. Here, the low specific gravity is a bulk specific gravity (apparent specific gravity) of 0.8 or less, preferably 0.5 or less, and more preferably 0.2 or less. If it exceeds 0.8, the ratio of the porosity becomes small, the iron powder is difficult to be uniformly dispersed, it is difficult to obtain a secondary material for steel that is excellent in strength and excellent in magnetic force transportability.

(7)前記一次風力選別機18で回収した高比重ASR中には、鉄、ゴム、非鉄金属、ガラス、土、等が含まれている。このため、磁力選別機25を用いて、鉄屑を選別回収する。残りは、高比重ASRとして、二次風力選別機26からの高比重ASRとともに、回収する。これらの高比重ASRには、上記ゴム、非鉄金属、ガラス、土に加えて、ワイヤーハーネスやソリッドプラスチックが含まれるので、鉄鋼メーカーにてスラグ化され製品化できる。   (7) The high specific gravity ASR collected by the primary wind sorter 18 includes iron, rubber, non-ferrous metal, glass, soil, and the like. For this reason, iron scraps are sorted and collected using the magnetic separator 25. The rest is recovered as a high specific gravity ASR together with the high specific gravity ASR from the secondary wind sorter 26. These high specific gravity ASRs include wire harnesses and solid plastics in addition to the rubber, non-ferrous metal, glass, and earth, and can be made into slag and commercialized by steel manufacturers.

B.上記のようにして選別回収した低比重ASR(例えば、比重0.5以下)は、鉄微粉又は鉄酸化物微粉を含む無機微粉ダストと混合(塗し混練)後、押出成形をする。   B. The low specific gravity ASR selected and collected as described above (for example, specific gravity of 0.5 or less) is mixed (coated and kneaded) with inorganic fine powder dust containing iron fine powder or iron oxide fine powder, and then extruded.

該無機微粉ダストは、ショットピーニング、ショットブラスト、研磨等の鉄製品加工由来であるものを使用することが、鉄微粉や鉄酸化物微粉の含有率が高いため望ましい。   As the inorganic fine powder dust, it is desirable to use those derived from processing of iron products such as shot peening, shot blasting, and polishing because the content of iron fine powder and iron oxide fine powder is high.

なお、低比重ASRは、再度、粗砕機(一軸粉砕機)36で粗砕後(例えば、50mm)、吊り下げ磁選機(磁力選別機)38で鉄粉を回収(除去)して、前処理しておくことが望ましい。低比重ASRと無機微粉ダストとの塗し混合性及び成形時に機器の損傷や過磨耗を防ぐためである。   The low specific gravity ASR is again pre-treated after coarsely pulverizing (for example, 50 mm) with a pulverizer (uniaxial pulverizer) 36 and then collecting (removing) iron powder with a suspended magnetic separator (magnetic separator) 38. It is desirable to keep it. This is to prevent damage and excessive wear of the equipment during coating and mixing of the low specific gravity ASR and inorganic fine dust.

塗し混合装置40は、図4に示すような、2本の並列された横回転軸42、42の周面から所定リードの螺旋に沿って所定間隔をおいて多数の矩形状のパドル45が放射方向に突出して配され、各パドル45のパドル面45aが前記螺旋に沿うものとされている構成のものが望ましい。具体的には、例えば、軸間距離410mm、リード600mm、回転軸径180mm、パドル旋回外径520mm、パドル大きさ:幅120mm,長さ165mmとする。   As shown in FIG. 4, the coating and mixing device 40 includes a large number of rectangular paddles 45 at predetermined intervals along the spiral of predetermined leads from the peripheral surfaces of the two parallel rotating shafts 42 and 42. A configuration in which the paddle surface 45a of each paddle 45 is arranged so as to extend in the radial direction and is along the spiral is desirable. Specifically, for example, the shaft distance is 410 mm, the lead is 600 mm, the rotation shaft diameter is 180 mm, the paddle rotation outer diameter is 520 mm, and the paddle size is 120 mm and the length is 165 mm.

上記構成の塗し混合装置40は、殆どせん断力が低比重ASRに作用せず、無機微粉ダストとともに、二軸間でパドルにより浮かしながら掻き揚げる。このため、低比重ASRに多孔質表面に対して、無機微粉ダストが、良好に付着(進入)して塗し効率が良好となる。   In the coating and mixing apparatus 40 having the above-described configuration, the shearing force hardly acts on the low specific gravity ASR, and the inorganic powder dust is scraped up together with the inorganic fine powder while being floated by the paddle between the two axes. For this reason, the inorganic fine powder dust adheres (enters) well on the porous surface of the low specific gravity ASR, and the coating efficiency is improved.

この塗し混合装置40の場合、低比重ASRを第1定量供給機46から、無機微粉ダストを第2定量供給機48から、それぞれ、塗し混合装置40の原料投入口50に定量供給し、塗し混合装置40の回転軸42、42を、起動させた電動機52でプーリ54駆動することにより、低比重ASRに無機微粉ダストを塗し混合しながら排出口56側へ送ることにより、両者の混合を行う。   In the case of the coating and mixing device 40, the low specific gravity ASR is supplied from the first fixed amount feeder 46 and the inorganic fine powder dust is supplied from the second fixed amount feeder 48 to the raw material inlet 50 of the coating and mixing device 40, respectively. By driving the rotating shafts 42, 42 of the coating and mixing device 40 with a pulley 54 with the activated electric motor 52, the inorganic powder dust is applied to the low specific gravity ASR and sent to the discharge port 56 side while being mixed. Mix.

ここで、低比重ASRと無機微粉ダストとの混合比率は、要求される鉄鋼用副資材の種類により異なる。通常、比重で1.0以上(望ましくは1.3以上、更に望ましくは、1.5以上)となるように調整する。   Here, the mixing ratio of the low specific gravity ASR and the inorganic fine powder dust differs depending on the type of the required auxiliary material for steel. Usually, the specific gravity is adjusted to 1.0 or more (desirably 1.3 or more, more desirably 1.5 or more).

例えば、両者の混合比率は、無機微粉ダスト/低比重ASR(質量比)=5/95〜80/20(望ましくは、60/40〜80/20)とする。低比重ASRが過剰でも過少でも、強度的に優れ、且つ、磁力運搬性に優れた鉄鋼用副資材を得がたい。   For example, the mixing ratio of both is inorganic fine dust / low specific gravity ASR (mass ratio) = 5/95 to 80/20 (preferably 60/40 to 80/20). Regardless of whether the low specific gravity ASR is excessive or insufficient, it is difficult to obtain a secondary material for steel that is excellent in strength and excellent in magnetic transportability.

そして、上記で調製した混合物を原料として、押出成形機(例えば、2軸押出成形機)58で、押出成形により溶融固化する。このとき押出成形機58としては、汎用のプラスチック用押出成形機を使用することができる。そして、ダイスプレート温度は、原料の種類により異なるが、例えば、原料を低比重ASRとする場合、180〜200℃の範囲で設定して行なう。   Then, the mixture prepared above is used as a raw material and melted and solidified by extrusion molding with an extruder (for example, a biaxial extruder) 58. At this time, as the extruder 58, a general-purpose plastic extruder can be used. The die plate temperature varies depending on the type of raw material. For example, when the raw material has a low specific gravity ASR, the die plate temperature is set in the range of 180 to 200 ° C.

このときの押出成形物の径は、鉄鋼用副資材の種類に応じて、例えば、15〜120mm(望ましくは20〜50mm)の範囲で、適宜設定する。   The diameter of the extruded product at this time is appropriately set, for example, in the range of 15 to 120 mm (desirably 20 to 50 mm) according to the type of the auxiliary material for steel.

通常、押出成形物は、高温であるため、適宜長さ(例えば、30〜200mm)に裁断して、冷却シャワー59等で水冷(図例)及び水槽60内に水中落下させ固体表面に水を付着させた状態で強制空冷して固化させる。高温のままで放置空冷すると、空冷中に裁断押出物(鉄鋼用副資材)が変形したり相互が融着したりするためである。   Usually, since an extrusion molding is high temperature, it cuts into length (for example, 30-200 mm) suitably, is water-cooled with the cooling shower 59 etc. (illustration example), is dropped in water in the water tank 60, and water is put on the solid surface. Solidified by forced air cooling in the attached state. This is because if the air-cooling is allowed to stand at a high temperature, the cut extrudate (secondary material for steel) is deformed or mutually fused during the air-cooling.

こうして製造した、鉄鋼用副資材は、優れた強度を有するとともに磁力運搬性に優れ、更には、鎮静材、ホーミング抑制材、加炭材さらには電気炉用熱源(燃料)としても使用できる。   The sub-material for steel produced in this way has excellent strength and excellent magnetic transportability, and can also be used as a sedative material, a homing suppression material, a carburizing material, and a heat source (fuel) for an electric furnace.

低比重ASRダスト(嵩比重:0.2)と鉄粉ダスト(嵩比重:2.5)とを、前者/後者≒8/2として、前記の如く、前記塗し混合装置を用いて塗し混合後、二軸押出成形機(ノズル孔径:30mm、押出スクリュ径:600mm、長さ:250mm)を用いてダイスプレート設定温度(190±5℃)として押出し後、約80mmの長さで裁断した。該裁断物を水中落下させて冷却固化させて鎮静材(約30mmΦ×80mmL)を製造した。   Apply low-density ASR dust (bulk specific gravity: 0.2) and iron powder dust (bulk specific gravity: 2.5) as the former / the latter ≒ 8/2 using the coating and mixing apparatus as described above. After mixing, extrusion was performed at a die plate set temperature (190 ± 5 ° C.) using a twin screw extruder (nozzle hole diameter: 30 mm, extrusion screw diameter: 600 mm, length: 250 mm), and then cut to a length of about 80 mm. . The cut material was dropped in water to be cooled and solidified to produce a sedative material (about 30 mmΦ × 80 mmL).

該鎮静材の外観は、黒鉛色で表面が滑らかであった。また、比重は1.40±1.0であった。   The appearance of the soothing material was a graphite color and a smooth surface. The specific gravity was 1.40 ± 1.0.

そして、成分分析を行なった結果は、下記のとおりであった。
水分 1.14%
灰分 75.7%
塩素 1.43%
硫黄 0.01%未満
窒素 1.73%
鉄(Fe) 20%
And the result of having conducted component analysis was as follows.
Moisture 1.14%
75.7% ash
Chlorine 1.43%
Sulfur Less than 0.01%
Nitrogen 1.73%
Iron (Fe) 20%

そして、熱量計で高位発熱量を計測し、上記水分に基づく蒸発潜熱を差し引いて求めた低位発熱量は、約5000cal/gであり、鎮静材ばかりでなく、加炭材や燃料としても充分に使用できることが確認できた。   The calorimeter measures the high calorific value, and the low calorific value obtained by subtracting the latent heat of vaporization based on the moisture is about 5000 cal / g, which is sufficient not only as a soothing material but also as a carburizing material and fuel. It was confirmed that it could be used.

12 プレシュレッダー
14 シュレッダーマシン
18 一次風力選別機
26 二次風力選別機
40 塗し混合装置
46 第1定量供給機
48 第2定量供給機
58 押出成形機
DESCRIPTION OF SYMBOLS 12 Pre-shredder 14 Shredder machine 18 Primary wind sorter 26 Secondary wind sorter 40 Coating mixing device 46 1st fixed supply machine 48 2nd fixed supply machine 58 Extruder

Claims (13)

シュレッダーダストから少なくとも1回の比重差選別を経て、軽量物側から回収した高分子粗砕ダストと、無機微粉ダストとを混合後、溶融押出成形して製造する鉄鋼用副資材の製造方法であって、
前記高分子粗砕ダストを、多孔質材を含み比重が0.8以下の低比重高分子粗砕ダストとするとともに、前記無機微粉ダストを鉄微粉又は鉄酸化物微粉を含むものとして、
前記低比重高分子粗砕ダストと前記無機微粉ダストとを塗し(マブシ)混合後、前記溶融押出成形をすることを特徴とする鉄鋼用副資材の製造方法。
This is a method for manufacturing secondary materials for steel, which is produced by mixing polymer fine-pulverized dust collected from the lighter material side with inorganic fine powder dust after at least one specific gravity difference selection from shredder dust and then melt-extrusion molding. And
The polymer crushed dust is a low specific gravity polymer crushed dust containing a porous material and having a specific gravity of 0.8 or less, and the inorganic fine powder dust contains iron fine powder or iron oxide fine powder.
A method for producing a secondary material for steel, wherein the low specific gravity polymer crushed dust and the inorganic fine powder dust are applied (mabushi) and mixed, followed by the melt extrusion molding.
前記比重差選別を、浮上又は沈降を利用する風力選別により行なうことを特徴とする請求項1記載の鉄鋼用副資材の製造方法。   The method for producing a secondary material for steel according to claim 1, wherein the specific gravity difference sorting is performed by wind sorting using floating or sinking. 前記多孔質材が、高分子発泡体及び/又は高分子不織布であることを特徴とする請求項1又は2記載の鉄鋼用副資材の製造方法。   The method for producing a secondary material for steel according to claim 1 or 2, wherein the porous material is a polymer foam and / or a polymer nonwoven fabric. 前記低比重高分子粗砕ダストが、一次比重差選別した一次選別軽量物を、粗砕後、更に二次比重差選別してゴム・硬質プラスチック等を除去して、比重を0.5以下とした二次選別軽量物であることを特徴とする請求項1、2又は3記載の鉄鋼用副資材の製造方法。   The low-density polymer coarsely pulverized dust is subjected to the primary specific gravity difference-sorted light-weighted primary sorting, and after the coarse pulverization, the secondary specific gravity difference is further sorted to remove rubber, hard plastic, etc., and the specific gravity is 0.5 or less. The method for producing a secondary material for steel according to claim 1, wherein the method is a next-sorted lightweight material. 前記低比重高分子粗砕ダストが、前記二次選別軽量物を、さらに、ロールスクリーンにより土砂・ガラス微粉等を除去したものであることを特徴とする請求項4記載の鉄鋼用副資材の製造方法。   5. The secondary material for steel according to claim 4, wherein the low specific gravity polymer crushed dust is obtained by removing the secondary sorted light-weight material and further removing earth and sand, glass fine powder and the like by a roll screen. Method. 前記低比重高分子粗砕ダストが、前記土砂・ガラス微粉等を除去した二次選別軽量物を、さらに、50mmアンダーに大きさ揃えの破砕後、磁力選別機で鉄片を除去したものであることを特徴とする請求項5記載の鉄鋼用副資材の製造方法。   The low specific gravity polymer coarsely pulverized dust is obtained by removing the iron pieces with a magnetic separator after crushing the secondary sorted lightweight material from which the earth and sand, glass fine powder, etc. have been removed, to a size equal to 50 mm under. The method for producing a secondary material for steel according to claim 5. 前記低比重高分子粗砕ダストと前記無機微粉ダストの混合比率を調整して比重1.3〜3.0の押出成形体を溶融押出成形することを特徴とする請求項1〜6いずれか一記載の鉄鋼用副資材の製造方法。   7. An extrusion molded body having a specific gravity of 1.3 to 3.0 is melt-extruded by adjusting a mixing ratio of the low specific gravity polymer coarse dust and the inorganic fine powder dust. The manufacturing method of the auxiliary material for steel of description. 前記塗し混合を、2本の並列された横回転軸の周面から所定リードの螺旋に沿って所定間隔をおいて多数の矩形状のパドルが放射方向に突出して配され、各パドルのパドル面が前記螺旋に沿うものとされている塗し混合装置を用いて行なうことを特徴とする請求項1〜7いずれか一記載の鉄鋼用副資材の製造方法。   In the coating and mixing, a plurality of rectangular paddles are arranged to protrude radially from the peripheral surfaces of two parallel horizontal rotation shafts along a spiral of a predetermined lead so as to protrude radially. The method for producing a secondary material for steel according to any one of claims 1 to 7, wherein the surface is formed by using a coating and mixing apparatus having a surface along the spiral. 前記低比重高分子粗砕ダストが、自動車シュレッダーダスト(ASR:Automobile Shredder Residues)由来の低比重ASRであることを特徴とする請求項1〜8記載の鉄鋼用副資材の製造方法。   The method for producing a secondary material for steel according to claim 1, wherein the low specific gravity polymer crushed dust is low specific gravity ASR derived from Automobile Shredder Residues (ASR). 前記無機微粉ダストが、ショットピーニング、ショットブラスト、研磨等の鉄製品加工由来であることを特徴とする請求項1〜9記載の鉄鋼用副資材の製造方法。   The method for producing a secondary material for steel according to claim 1, wherein the inorganic fine dust is derived from iron product processing such as shot peening, shot blasting, and polishing. 鉄粉及び/又は酸化鉄から実質的になる無機微粉ダストが、比重0.5以下の低比重高分子粗砕ダストの溶融体で結合されて、比重が1.3〜3.0に調整されてなる押出成形体であることを特徴とする鉄鋼用副資材。   Inorganic fine powder dust substantially composed of iron powder and / or iron oxide is combined with a melt of low specific gravity polymer coarse dust having a specific gravity of 0.5 or less, and the specific gravity is adjusted to 1.3 to 3.0. An auxiliary material for steel, characterized by being an extruded product. 前記低比重高分子粗砕ダストが、自動車シュレッダーダスト(ASR:Automobile Shredder Residues)由来の低比重ASRであることを特徴とする請求項11記載の鉄鋼用副資材。   The secondary material for steel according to claim 11, wherein the low specific gravity polymer crushed dust is low specific gravity ASR derived from Automobile Shredder Residues (ASR). 前記無機微粉ダストが、ショットピーニング、ショットブラスト、研磨等の鉄製品加工由来であることを特徴とする請求項11又は12記載の鉄鋼用副資材。   The secondary material for steel according to claim 11 or 12, wherein the inorganic fine powder dust is derived from iron product processing such as shot peening, shot blasting, and polishing.
JP2011089480A 2011-04-13 2011-04-13 Manufacturing method of secondary materials for steel Active JP5513435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011089480A JP5513435B2 (en) 2011-04-13 2011-04-13 Manufacturing method of secondary materials for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011089480A JP5513435B2 (en) 2011-04-13 2011-04-13 Manufacturing method of secondary materials for steel

Publications (2)

Publication Number Publication Date
JP2012219364A true JP2012219364A (en) 2012-11-12
JP5513435B2 JP5513435B2 (en) 2014-06-04

Family

ID=47271210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011089480A Active JP5513435B2 (en) 2011-04-13 2011-04-13 Manufacturing method of secondary materials for steel

Country Status (1)

Country Link
JP (1) JP5513435B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211939A (en) * 2014-05-02 2015-11-26 株式会社エコネコル Recarburizer and method of manufacturing the same
JP2018178171A (en) * 2017-04-06 2018-11-15 株式会社アビヅ Subsidiary material for steel making
GB2573257A (en) * 2018-02-27 2019-10-30 Metaldo Co Ltd Titanium cobble manufacturing method and manufacturing device
JP2020059003A (en) * 2018-10-12 2020-04-16 太平洋セメント株式会社 Processing apparatus and processing method of metal-containing waste
JP7489516B2 (en) 2022-07-08 2024-05-23 株式会社大瀧商店 Steelmaking or ironmaking additives

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11244838A (en) * 1998-03-02 1999-09-14 Echo Tec:Kk Method for recovering shredder dust as resource and device therefor
JP2001116226A (en) * 1999-10-19 2001-04-27 Daido Steel Co Ltd Method of recycling shredder dust
JP2003211139A (en) * 2002-01-25 2003-07-29 Toyota Motor Corp Method and device for treating shredder dust
JP2003236837A (en) * 2002-02-18 2003-08-26 Jfe Engineering Kk Method for recycling shredder dust of scrapped automobile and installation therefor
JP2004035950A (en) * 2002-07-03 2004-02-05 Nippon Steel Corp Method for shaping steelmaking dust utilizing waste synthetic resin powder
JP2005000812A (en) * 2003-06-12 2005-01-06 Daido Steel Co Ltd Method of treating shredder dust
JP2007021445A (en) * 2005-07-20 2007-02-01 Toyota Motor Corp Method for reusing shredder dust and raw material/fuel body for steelmaking

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11244838A (en) * 1998-03-02 1999-09-14 Echo Tec:Kk Method for recovering shredder dust as resource and device therefor
JP2001116226A (en) * 1999-10-19 2001-04-27 Daido Steel Co Ltd Method of recycling shredder dust
JP2003211139A (en) * 2002-01-25 2003-07-29 Toyota Motor Corp Method and device for treating shredder dust
JP2003236837A (en) * 2002-02-18 2003-08-26 Jfe Engineering Kk Method for recycling shredder dust of scrapped automobile and installation therefor
JP2004035950A (en) * 2002-07-03 2004-02-05 Nippon Steel Corp Method for shaping steelmaking dust utilizing waste synthetic resin powder
JP2005000812A (en) * 2003-06-12 2005-01-06 Daido Steel Co Ltd Method of treating shredder dust
JP2007021445A (en) * 2005-07-20 2007-02-01 Toyota Motor Corp Method for reusing shredder dust and raw material/fuel body for steelmaking

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211939A (en) * 2014-05-02 2015-11-26 株式会社エコネコル Recarburizer and method of manufacturing the same
JP2018178171A (en) * 2017-04-06 2018-11-15 株式会社アビヅ Subsidiary material for steel making
GB2573257A (en) * 2018-02-27 2019-10-30 Metaldo Co Ltd Titanium cobble manufacturing method and manufacturing device
US10967386B2 (en) 2018-02-27 2021-04-06 Metaldo Co., Ltd. Method and machine for producing titanium cobbles
GB2573257B (en) * 2018-02-27 2021-04-14 Metaldo Co Ltd Method and machine for producing titanium cobbles
JP2020059003A (en) * 2018-10-12 2020-04-16 太平洋セメント株式会社 Processing apparatus and processing method of metal-containing waste
JP7084840B2 (en) 2018-10-12 2022-06-15 太平洋セメント株式会社 Metal-containing waste treatment equipment and treatment method
JP7489516B2 (en) 2022-07-08 2024-05-23 株式会社大瀧商店 Steelmaking or ironmaking additives

Also Published As

Publication number Publication date
JP5513435B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP5513435B2 (en) Manufacturing method of secondary materials for steel
JP3279732B2 (en) How to Recycle Plastic from Varnished Plastic Parts
JP4686827B2 (en) Reusable plastic production method and apparatus
WO2001032383A1 (en) Molded lump and production method therefor
JP2002537992A (en) Apparatus and method for utilizing shredder waste or equivalent composite material and use of rotor crusher
KR102121874B1 (en) System for sorting automobile shredder residue using trommell and sorting method using the same
JP5060029B2 (en) Recycling method of shredder dust and raw material for steelmaking
ES2280399T3 (en) INSTALLATION AND PROCEDURE OF TREATMENT OF DISMENUZING WASTE AND USE OF A PRODUCED GRANULATE FRACTION.
CN1761524A (en) Mediating electrostatic separations
EP1518652A1 (en) An apparatus for making molded resin products
JP3828461B2 (en) Waste treatment system and waste dry battery treatment method
JP2003236837A (en) Method for recycling shredder dust of scrapped automobile and installation therefor
JP7568646B2 (en) Additive manufacturing method and additive composition for bitumen conglomerates with high mechanical performance
JP2012011611A (en) Method of recycling plastic scrap, recycled plastic molded body and method of manufacturing the same
JP2001116226A (en) Method of recycling shredder dust
JP4522336B2 (en) Recycling method of shredder dust and raw material for steelmaking
JP2011020298A (en) Method for recycling resin-made bumper
JP6450527B2 (en) Carburized material and manufacturing method thereof
JP2006181520A (en) Recycling method for shredder dust and recycling apparatus
JP2006150294A (en) Method and device for recycling shredder dust
JP2001113231A (en) Classifying method of shredder dust
JPH11218388A (en) Utilizing method of metal, discharged out of melting furnace as slag
JP5535744B2 (en) Method for producing resin composition
JP4579671B2 (en) Production method of finely crushed rubber
JP2002028927A (en) Method for recovering resin granular matter and resin granular matter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140327

R150 Certificate of patent or registration of utility model

Ref document number: 5513435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250