JP2012219279A - Method and device for separating and recovering cadmium - Google Patents

Method and device for separating and recovering cadmium Download PDF

Info

Publication number
JP2012219279A
JP2012219279A JP2011082806A JP2011082806A JP2012219279A JP 2012219279 A JP2012219279 A JP 2012219279A JP 2011082806 A JP2011082806 A JP 2011082806A JP 2011082806 A JP2011082806 A JP 2011082806A JP 2012219279 A JP2012219279 A JP 2012219279A
Authority
JP
Japan
Prior art keywords
cadmium
vacuum
heating
separating
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011082806A
Other languages
Japanese (ja)
Inventor
Mitsuo Hirose
充夫 広瀬
Masami Ida
雅巳 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECO FIELDS KK
Original Assignee
ECO FIELDS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECO FIELDS KK filed Critical ECO FIELDS KK
Priority to JP2011082806A priority Critical patent/JP2012219279A/en
Publication of JP2012219279A publication Critical patent/JP2012219279A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for securely separating and recovering metallic cadmium from cadmium-containing waste.SOLUTION: The method for separating and recovering cadmium includes: a pretreatment step of subjecting cadmium-containing waste to prescribed pretreatment so as to form the waste into powdery shape; a mixing-stirring step of performing stirring-mixing while adding a starch suspension or nano-bubble water or after its addition to obtain kneaded matter in which fine bubbles are dispersed; a molding step of molding the kneaded matter to obtain a molded body having strength to a degree to hold its external shape; a vacuum heating step of heating the molded body in a vacuum atmosphere to volatilize a cadmium simple substance, and discharging the same; and a separating-recovering step of cooling the exhaust gas to precipitate metallic cadmium. The device is used for implementing the method.

Description

本発明は、重金属、特にカドミウムを含有する廃棄物(以下、カドミウム含有廃棄物という。)から金属カドミウムを分離除去し回収する技術に関する。   The present invention relates to a technique for separating and recovering metal cadmium from waste containing heavy metal, particularly cadmium (hereinafter referred to as cadmium-containing waste).

固体状廃棄物や汚染土壌などに含有される重金属、特にカドミウムは、社会的に問題となっていることから、分離除去する必要がある。例えば、ホタテのウロなどの魚介類の加工残滓は、通常、処理施設に貯蔵されるが、貯蔵中におけるアンモニアガスの発生などに起因する悪臭の発生や周辺植物の立ち枯れ現象などの環境問題を引き起こしている。また、このような加工残滓はカドミウムを含有している場合が多く、それが徐々に溶出し、貯蔵施設周辺の土壌を汚染させ、さらには地下水脈や河川水の汚染に発展することが懸念されているところである。そして、他の産業廃棄物の中にもカドミウムを含有するものがあり、処理施設や貯蔵施設の周辺の土壌にカドミウムが流出する事態が生じており、当該他の産業廃棄物だけでなく、土壌についてもカドミウム汚染が発生している。   Heavy metals contained in solid waste and contaminated soil, especially cadmium, have become a social problem and need to be separated and removed. For example, processed residue of seafood such as scallops is usually stored in a processing facility, but it causes environmental problems such as the generation of malodors due to the generation of ammonia gas during storage and the withering phenomenon of surrounding plants. ing. In addition, such processing residues often contain cadmium, which gradually elutes, contaminates the soil around the storage facility, and may develop into groundwater veins and river water contamination. It is in place. Some other industrial wastes contain cadmium, and there is a situation in which cadmium flows out to the soil around treatment facilities and storage facilities. Also, cadmium contamination has occurred.

このような状況にて、前記のホタテウロやその他の魚介類の加工残滓などの産業廃棄物をはじめ、水田や河川などの土壌などのカドミウム含有廃棄物からのカドミウムの分離除去法について種々の提案がなされている(例えば、特許文献1および2参照)。また、近年では、新たに他の物質にカドミウムを吸着させて除去する提案もなされ、実用化されている。しかし、これらの提案に係る技術はいずれもカドミウムを化合物として除去するものであり、カドミウムが吸着された物質はそのまま貯蔵などされているのが現状である。   Under these circumstances, various proposals have been made for the separation and removal of cadmium from cadmium-containing waste such as paddy fields and rivers, including industrial waste such as scallop and other seafood processing residues. (For example, refer to Patent Documents 1 and 2). In recent years, proposals for newly adsorbing and removing cadmium on other substances have been made and put into practical use. However, all of the techniques according to these proposals remove cadmium as a compound, and the present situation is that the substance adsorbed with cadmium is stored as it is.

特開2001−137825号公報JP 2001-137825 A 特開平9−217131号公報JP-A-9-217131

本発明は、前記事情に鑑み、カドミウム含有廃棄物から金属カドミウムを確実に分離、回収する方法および装置を提供することを目的とする。   An object of this invention is to provide the method and apparatus which isolate | separate and collect | recover metal cadmium reliably from a cadmium containing waste material in view of the said situation.

前記目的は、本発明の一局面によれば、カドミウム含有廃棄物に所定の前処理を施し当該廃棄物を粉粒状にする前処理工程と、デンプン懸濁液またはナノバブル水を添加しながらまたはこれを添加した後に撹拌混合して微細な気泡が分散する組織を有する混練物を得る混合撹拌工程と、当該混練物を成形し、その外形形状を保持可能な程度の強度を有する成形体を得る成形工程と、真空雰囲気中で前記成形物を加熱してカドミウム単体を揮発させ、これを排気する真空加熱工程と、当該排気を冷却して金属カドミウムを析出させる分離回収工程とを含むことを特徴とするカドミウムの分離回収方法によって達成される。   According to one aspect of the present invention, the object is to perform a predetermined pretreatment on the cadmium-containing waste to make the waste into a granular state, while adding a starch suspension or nanobubble water or Mixing and stirring step for obtaining a kneaded product having a structure in which fine bubbles are dispersed by stirring and mixing, and forming a kneaded product having a strength sufficient to maintain its outer shape Characterized in that it comprises a step, a vacuum heating step in which the molded article is heated in a vacuum atmosphere to volatilize cadmium alone, and this is exhausted; and a separation and recovery step in which the exhaust is cooled to deposit metal cadmium. This is achieved by a method for separating and recovering cadmium.

また、前記目的は、本発明の別の局面によれば、カドミウム含有廃棄物に所定の前処理を施し当該廃棄物を粉粒状にする前処理装置と、デンプン懸濁液またはナノバブル水を添加しながらまたはこれを添加した後に撹拌混合して微細な気泡が分散する組織を有する混練物を得る混合撹拌装置と、当該混練物を成形し、その外形形状を保持可能な程度の強度を有する成形体を得る成形装置と、真空雰囲気中で前記成形物を加熱してカドミウム単体を揮発させ、これを排気する真空加熱装置と、当該排気を冷却して金属カドミウムを析出させる冷却装置とを含むことを特徴とするカドミウムの分離回収装置によって達成される。   In addition, according to another aspect of the present invention, the object is to add a pretreatment device for subjecting the cadmium-containing waste to a predetermined pretreatment so that the waste is granulated, and starch suspension or nanobubble water. A mixing and stirring device for obtaining a kneaded product having a structure in which fine bubbles are dispersed by stirring and mixing after or after the addition, and a molded body having a strength sufficient to form the kneaded product and maintain its outer shape A vacuum heating device for heating the molded product in a vacuum atmosphere to volatilize cadmium alone and exhausting it, and a cooling device for cooling the exhaust to deposit metal cadmium. This is achieved by the characteristic cadmium separation and recovery device.

本発明によれば、前処理によって粉粒状にしたカドミウム含有廃棄物に結合材及び水を添加し所定の気孔率を示しその外形形状を保持する程度の強度を示す成形体を得、これを真空雰囲気中で加熱し、カドミウム単体を揮発させるようにしたので、揮発したカドミウム単体蒸気を冷却することで、金属カドミウムをより確実に分離回収することができる。また、真空雰囲気中で加熱することから、大気圧下で加熱する場合よりも加熱温度を相対的に低く設定できるので、省エネルギーにも貢献するものである。   According to the present invention, a binder and water are added to a cadmium-containing waste powder that has been granulated by pretreatment to obtain a molded body having a predetermined porosity and a strength sufficient to maintain its outer shape, and this is vacuumed. Since the cadmium simple substance is volatilized by heating in the atmosphere, the metal cadmium can be more reliably separated and recovered by cooling the volatilized cadmium simple substance vapor. In addition, since heating is performed in a vacuum atmosphere, the heating temperature can be set relatively lower than in the case of heating under atmospheric pressure, which contributes to energy saving.

本発明のカドミウム分離回収方法の一例を示すフロー図である。It is a flowchart which shows an example of the cadmium separation-and-recovery method of this invention. 本発明における前処理装置の一例を示す図である。It is a figure which shows an example of the pre-processing apparatus in this invention. 本発明における真空加熱装置の一例を示す図である。It is a figure which shows an example of the vacuum heating apparatus in this invention.

以下、添付の図1を参照して本発明の実施形態について説明する。本発明におけるカドミウム含有廃棄物としては、例えば、カドミウムを主に含有するホタテウロやイカなどの魚介類の加工残滓、カドミウムなどの重金属で汚染された汚染土壌、カドミウムを含有する金属廃棄物、カドミウム化合物の付着したフィルターなどの捕集材などの産業廃棄物などが含まれる。なお、以下では、用語「カドミウム含有廃棄物」を単に「廃棄物」ということがある。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. Examples of the cadmium-containing waste in the present invention include, for example, processing residues of seafood such as scallops and squid mainly containing cadmium, contaminated soil contaminated with heavy metals such as cadmium, metal waste containing cadmium, and cadmium compounds. Industrial waste such as collection materials such as filters attached. Hereinafter, the term “cadmium-containing waste” may be simply referred to as “waste”.

[前処理]
本発明においては、まずカドミウム含有廃棄物に対し前処理を施す(S01)。この前処理には、次に示すような方法が採用される。
(1)粉砕、分級
カドミウム含有廃棄物中に塊があれば、粉砕によりこれを粉粒状にするとともに、廃棄物全体として粒度を小さくしてその表面積を大きくし、さらに分級により所定の粒度よりも微細な粉砕産物を抽出するものである。粉砕に使用される粉砕機は、従来公知のものの中からカドミウム含有廃棄物の有姿及び性状、粉砕能力、粉砕処理量などを考慮して適宜選択できる。また、分級には、従来公知の乾式分級機または湿式分級機を用いることができるが、少量の場合などでは、篩を用いることもできる。前記所定の粒度は、例えば篩の場合、12メッシュ篩アンダーか否かを目安にすることができる。
[Preprocessing]
In the present invention, first, cadmium-containing waste is pretreated (S01). For this pretreatment, the following method is adopted.
(1) Crushing and classification If there is a lump in the cadmium-containing waste, it is pulverized and pulverized, the particle size of the whole waste is reduced to increase its surface area, and classification further than the predetermined particle size. Extracts finely pulverized products. The pulverizer used for pulverization can be appropriately selected from conventionally known pulverizers in consideration of the appearance and properties of the cadmium-containing waste, the pulverization ability, the pulverization amount, and the like. In addition, for the classification, a conventionally known dry classifier or wet classifier can be used, but in the case of a small amount, a sieve can also be used. For example, in the case of a sieve, the predetermined particle size can be determined based on whether the mesh is under a 12 mesh sieve.

(2)有機物の分解による減容化
カドミウム含有廃棄物が有機物を主成分とする場合には、これを好気性微生物の存在下に分解して炭酸ガスや水などとして除去して残滓を得ることで、そのボリュームを小さくするものである。この有機物の分解には、それに適した公知の装置を使用することができる。このような装置として、例えば特許第3545731号明細書に記載の生ゴミ処理装置などを好適に使用できる。図2は、この生ゴミ処理装置の外観及び構成を示しており、(a)は側面図、(b)は正面図である。この生ゴミ処理装置は、処理槽11に、回転棒に攪拌翼が取り付けられた所定形状のブレンダー21が2本(うち1本のみ図示し、残りの1本の図示は省略する)平行に互いに反対方向に回転可能に配した構成を備えている。また、処理槽11内には、空気供給口13を通して空気を供給できるとともに、槽内のガスを排気する排気口14が設けられており、槽内の内容物を加温可能なラバーヒータ17が設けられている。
(2) Volume reduction by decomposition of organic matter When cadmium-containing waste is composed mainly of organic matter, it is decomposed in the presence of aerobic microorganisms and removed as carbon dioxide or water to obtain residue. Therefore, the volume is reduced. A known apparatus suitable for the decomposition of the organic substance can be used. As such an apparatus, for example, a garbage disposal apparatus described in Japanese Patent No. 35475731 can be suitably used. FIG. 2 shows the appearance and configuration of the garbage processing apparatus, where (a) is a side view and (b) is a front view. In this garbage disposal apparatus, two blenders 21 of a predetermined shape each having a stirring blade attached to a rotating rod are disposed in a treatment tank 11 (only one of which is shown, and the remaining one is omitted). It has a configuration in which it can rotate in the opposite direction. In addition, the treatment tank 11 is provided with an exhaust port 14 for supplying air through the air supply port 13 and exhausting the gas in the tank, and a rubber heater 17 capable of heating the contents in the tank is provided. Is provided.

この処理槽11内に、カドミウム含有廃棄物とともに、好気性微生物着床用の補材と、好気性微生物担持体を各々所定量投入する。ここで、補材として、例えばチップなどを用いることができる。また、廃棄物と補材との投入量は、処理槽11の大きさによって決定でき、両者の投入割合(重量基準)は、前者1に対して後者1〜5の範囲で適宜設定できる。また、好気性微生物担持体の投入量は、例えば約100〜300g程度の少量で足りる。   A predetermined amount of an aerobic microorganism-implanting auxiliary material and an aerobic microorganism-supporting body are introduced into the treatment tank 11 together with the cadmium-containing waste. Here, for example, a chip or the like can be used as the auxiliary material. Further, the input amounts of waste and auxiliary materials can be determined by the size of the processing tank 11, and the input ratio (weight basis) of both can be appropriately set within the range of the latter 1 to 5 with respect to the former 1. Moreover, the input amount of the aerobic microorganism carrier may be a small amount of about 100 to 300 g, for example.

この装置による前処理では、好気性微生物存在下における有機物の分解反応により生じた水分により内容物の含水率は上昇し、発生する二酸化炭素及び窒素は排気口14を通して大気中に排出され、減容化が進行する。特に有機物のうち蛋白質については、アミノ基が空気(酸素)供給の下、以下に示す微生物による分解反応過程を経て分解され、それに伴い発生する水分は内容物の含水率を上昇させ、窒素は排気口14を通して排出されることになる。
(1)NH +3/2O→NO +2H+HO(アンモニア酸化細菌)
(2)NO +1/2O→NO (亜硝酸酸化細菌)
(3)2NO +10e+12H→N↑+6HO(脱窒菌)
この生ゴミ処理装置を用いた減容化により、カドミウム含有廃棄物の種類にもよるが、通常、カドミウム分などの重金属類、ミネラル分その他の微量物質が含まれる含水率約20%程度の粉末状の残滓が得られる。このように、生ゴミ処理装置を用いることで、カドミウム含有廃棄物中の有機物を分解して減容化が図られ、後工程でのハンドリング性が向上し、効率的かつ確実なカドミウムの分離回収が可能となる。
In the pretreatment by this apparatus, the moisture content of the contents increases due to moisture generated by the decomposition reaction of the organic matter in the presence of aerobic microorganisms, and the generated carbon dioxide and nitrogen are discharged into the atmosphere through the exhaust port 14 to reduce the volume. Progresses. In particular, in the case of proteins among organic substances, amino groups are decomposed through the following microorganism decomposition process under the supply of air (oxygen), and the resulting water increases the moisture content of the contents, while nitrogen is exhausted. It will be discharged through the mouth 14.
(1) NH 4 + + 3 / 2O 2 → NO 2 + 2H + + H 2 O (ammonia oxidizing bacteria)
(2) NO 2 + 1 / 2O 2 → NO 3 (nitrite oxidizing bacteria)
(3) 2NO 3 + 10e + 12H + → N 2 ↑ + 6H 2 O (denitrifying bacteria)
Depending on the type of cadmium-containing waste, volume reduction using this garbage processing device usually involves a powder with a water content of about 20%, which contains heavy metals such as cadmium, minerals and other trace substances. -Like residue is obtained. In this way, by using the garbage disposal device, the organic matter in the cadmium-containing waste is decomposed to reduce the volume, handling in the subsequent process is improved, and cadmium is separated and recovered efficiently and reliably. Is possible.

前記2つの方法は、前記のようにカドミウム含有廃棄物中の有機物含有率の大小によってこれらのうちのいずれかを採用するかを決定できる。また、場合によっては、双方を組み合わせ、当該廃棄物中の有機物を分解した上で、さらに粉砕及び分級を行うようにしてもよい。   In the two methods, as described above, it is possible to determine which one of these is adopted according to the magnitude of the organic matter content in the cadmium-containing waste. In some cases, both may be combined and the organic matter in the waste may be decomposed before further pulverization and classification.

なお、前記した前処理に当たっては、予めカドミウム含有廃棄物を水洗してもよい。特にカドミウム含有廃棄物が主に魚介類の加工残滓などからなる場合には水洗により表面の汚れを洗い落すと同時に海水の塩分を除去するのが好ましい。水洗は、従来公知の方法によって行うことができる。本発明においては、この水洗により、廃棄物中の含水率が高くなっても支障はない。   In the above pretreatment, the cadmium-containing waste may be washed with water in advance. In particular, when the cadmium-containing waste is mainly composed of processed seafood residues, it is preferable to wash off the surface dirt by washing with water and remove the salt from the seawater. Washing with water can be performed by a conventionally known method. In the present invention, there is no problem even if the water content in the waste is increased by this water washing.

[混合撹拌工程]
このようにして前処理を施した廃棄物若しくは補材及び残滓の混合物、又は両者の混合物にデンプン懸濁液又はナノバブル水を添加しながら(所定の時間間隔で複数回に分けて添加する場合も含む)、またはこれを添加した上で攪拌混合して微細な気泡が分散する組織を持つ混練物を得る(S02)。使用するデンプン懸濁液は、デンプンの濃度が1〜30重量%、好ましくは2〜25重量%、さらに好ましくは3〜20重量%の範囲となるように水にデンプンを溶解ないし懸濁させたものである。デンプン懸濁液の濃度が前記範囲を超えた場合には、当該水溶液の粘度が高くなり過ぎ、カドミウム含有残滓との均一な混合が困難になる一方、前記範囲未満の場合には、後述する混合攪拌機を用いたとしても、微細な気泡が均一に分布する組織を持った混練物が得られなくなる。なお、デンプンは、原料となる植物の種類によらず、市販品を使用できるが、デンプン以外にも、水に溶解または懸濁させて有機質結合材として機能する低分子量の素材も使用できる。
[Mixing and stirring process]
While adding the starch suspension or nanobubble water to the waste or the mixture of the pre-treated waste and the residue, or the mixture of both in this way (in the case of adding in multiple times at a predetermined time interval) Or a mixture with stirring and mixing to obtain a kneaded product having a structure in which fine bubbles are dispersed (S02). The starch suspension used is prepared by dissolving or suspending starch in water so that the starch concentration is in the range of 1 to 30% by weight, preferably 2 to 25% by weight, more preferably 3 to 20% by weight. Is. When the concentration of the starch suspension exceeds the above range, the viscosity of the aqueous solution becomes too high, and uniform mixing with the cadmium-containing residue becomes difficult. Even if a stirrer is used, a kneaded product having a structure in which fine bubbles are uniformly distributed cannot be obtained. In addition, although starch can use a commercial item irrespective of the kind of plant used as a raw material, the low molecular weight raw material which functions as an organic binder by dissolving or suspending in water other than starch can also be used.

また、ナノバブル水は、ナノメーターオーダー(200nm以下)の微細な気泡が安定して分散した水であり、例えば、特許第4144669号や特許第4080440号の特許発明によって製造されたものを好適に使用できる。このナノバブル水の添化量は、前記デンプン懸濁液のそれと略同様に設定できる。   Nanobubble water is water in which fine bubbles of nanometer order (200 nm or less) are stably dispersed. For example, water produced by patent inventions of Patent Nos. 4144669 and 4080440 is preferably used. it can. The amount of nanobubble water added can be set substantially the same as that of the starch suspension.

最終的な混練物の含水率は、デンプン懸濁液の添加量を調整することで、約20〜60重量%、好ましくは約30〜50重量%、さらに好ましくは約30〜40重量%の範囲に収まるようにするのがよい。この範囲を超えた場合には、水分過多により成形体の成形が困難になり、前記範囲未満では逆に水分不足により成形が困難になる。   The water content of the final kneaded product is in the range of about 20 to 60% by weight, preferably about 30 to 50% by weight, more preferably about 30 to 40% by weight, by adjusting the amount of starch suspension added. It is good to fit in. When this range is exceeded, it becomes difficult to mold the molded body due to excessive moisture, and when it is less than the above range, molding becomes difficult due to insufficient moisture.

本発明において使用される混合撹拌機としては、この混練により微小な気泡が均一に分散した組織の混練物を得るのに適した装置を使用するのが好ましい。このような混合撹拌機の具体例としては、浅田鉄工社製のせん断型攪拌機(商品名:コーネルデスパ)やプラネタリーミキサー(攪拌混練機、商品名:プラネタリーデスパ)などが挙げられる。このように、デンプン水溶液をカドミウム含有廃棄物に添加し、前記した所定の攪拌機を用いて当該廃棄物を混合攪拌を行うことで、微細な気泡が均一に分布する組織を持った混練物を得ることができる。   As the mixing stirrer used in the present invention, it is preferable to use an apparatus suitable for obtaining a kneaded material having a structure in which minute bubbles are uniformly dispersed by this kneading. Specific examples of such a mixing stirrer include a shear type stirrer (trade name: Cornell Despa) manufactured by Asada Iron Works, a planetary mixer (stir kneader, trade name: Planetary Despa), and the like. In this way, an aqueous starch solution is added to the cadmium-containing waste, and the waste is mixed and stirred using the predetermined stirrer described above to obtain a kneaded product having a structure in which fine bubbles are uniformly distributed. be able to.

[成形工程]
続いて、得られた混練物を所定の金型に流し込んで、加圧成形する(S03)。この成形時には、プレス圧を加減し、成形体内部の微細な気泡を極力圧壊することなく、成形体がその外形形状を保持できる程度の強度を備える程度にするのが好ましい。プレス圧の目安は、通常、このように廃棄物などの粉粒物をデンプン懸濁液をバインダーとして緩く結合した状態で成形することで、その内部で揮発したカドミウム単体蒸気が外部に放散するルートが形成され易いという利点がある。
[Molding process]
Subsequently, the obtained kneaded material is poured into a predetermined mold and pressure-molded (S03). At the time of molding, it is preferable to adjust the press pressure so that the molded body has a strength that can maintain its outer shape without damaging the fine bubbles inside the molded body as much as possible. The guideline for the press pressure is usually the route in which the cadmium vapor that volatilizes inside is diffused to the outside by shaping the granular material such as waste with the starch suspension loosely bound as a binder. There is an advantage that is easily formed.

この成形体内部の組織の状態を判定する目安として、気孔率(ポロシティー)を用いることができ、本発明においては、この気孔率測定値は約5〜30%程度、好ましくは約7〜25%、さらに好ましくは約8〜20%程度とすることができる。気孔率が前記範囲を超える場合には、成形体がその外形形状を維持しにくくなり、前記範囲未満の場合には成形体の組織が緻密になり前記カドミウム単体蒸気の放散ルートが形成されにくくなる。また、この成形体の表面には、直径約0.5〜3mm程度、好ましくは約1〜2mm程度の複数の気泡が分散しているのが観察されるのがよく、当該成形体を乾燥後に任意の切断面についても同様に観察されるのが好ましい。なお、前記複数の気泡は、成形体の表面または切断面に均一に分散する状態であることまでは必要ない。   As a measure for determining the state of the structure inside the molded body, porosity can be used. In the present invention, the measured porosity is about 5 to 30%, preferably about 7 to 25. %, More preferably about 8-20%. When the porosity exceeds the above range, it becomes difficult to maintain the outer shape of the molded body, and when the porosity is less than the above range, the structure of the molded body becomes dense and it is difficult to form a diffusion route for the cadmium simple substance vapor. . Further, it is good to observe that a plurality of bubbles having a diameter of about 0.5 to 3 mm, preferably about 1 to 2 mm are dispersed on the surface of the molded body. It is preferable that an arbitrary cut surface is observed in the same manner. The plurality of bubbles are not required to be uniformly dispersed on the surface or cut surface of the molded body.

成形体の外形形状については特に制限されないが、この形状を複雑にすることにより金型製作費が高価となり、成形時に成形体自体が破損する可能性が高くなるなどの問題が生じるため、通常、円板状ないし四角形の板状にするのがよい。また、成形体のサイズは、後述する加熱工程における加熱炉内の収容容積などを考慮して適宜設定できる。通常は、その厚さを約30〜200mm程度の範囲に、また直径ないし1辺の長さを約50〜200mm程度の範囲に設定する。   Although there is no particular limitation on the outer shape of the molded body, the complexity of this shape increases the cost of mold production, and there is a high possibility that the molded body itself will be damaged during molding. It is preferable to use a disk shape or a square plate shape. Further, the size of the molded body can be appropriately set in consideration of the accommodation volume in the heating furnace in the heating step described later. Usually, the thickness is set in the range of about 30 to 200 mm, and the diameter or length of one side is set in the range of about 50 to 200 mm.

本発明においては、加圧成形に用いる成形機の種類や仕様については特に制限されないが、高いプレス圧は必要としないので、得ようとする成形体のサイズなどを考慮して公知の小型プレス成形機(例えば、エアシリンダーを備える小型のプレス機など)を用いることができる。   In the present invention, the type and specifications of the molding machine used for pressure molding are not particularly limited, but a high press pressure is not required, so a known small press molding is considered in consideration of the size of the molded product to be obtained. A machine (for example, a small press machine equipped with an air cylinder) can be used.

なお、成形工程で得られた成形体は、ここで一旦、約120℃程度の温度で乾燥させ、成形体内の水分を蒸発させるようにしてもよい。このように成形体を乾燥させてその含水率を低減することにより当該成形体の強度向上が図れるため、ハンドリング性が向上し、ひいては作業性の向上が図られるという利点がある。   The molded body obtained in the molding process may be once dried at a temperature of about 120 ° C. to evaporate moisture in the molded body. Thus, by drying a molded object and reducing the moisture content, the strength of the molded object can be improved, so that there is an advantage that handling property is improved and workability is improved.

[真空(減圧)加熱工程]
まず、得られた複数の成形体を真空加熱装置における真空室内に収容する(S04)。成形体の収容は、真空加熱装置の種類や機器構成などに応じた通常の方法によって行うことができる。次に、この真空加熱装置に付属する真空ポンプを起動して前記真空室内を減圧していき、JIS Z8126に規定されている低真空ないし高真空の区分内、好ましくは中真空ないし高真空の区分内の真空度(最大値は約10−2〜10−3Paのオーダー程度)となるようにする。この真空度は、レトルト内に収容した成形体について測定した気孔率の大小にかかわらず、例えば高真空または中真空の区分内の真空度に一律に設定してもよく、この測定結果の大小によって真空度の設定値を変更するようにしてもよい。つまり、後者の場合、気孔率の測定結果が前記範囲内で上限寄りの大きい値を示す場合には、低真空ないし中真空の区分内の真空度を設定し、前記範囲内で下限寄りの小さい値を示す場合には、中真空ないし高真空の区分内の真空度を設定することになる。
[Vacuum (reduced pressure) heating process]
First, the obtained plurality of molded bodies are accommodated in a vacuum chamber in a vacuum heating device (S04). The compact can be accommodated by an ordinary method according to the type of vacuum heating device or the equipment configuration. Next, the vacuum pump attached to the vacuum heating device is activated to depressurize the vacuum chamber, and the low vacuum to high vacuum category, preferably the medium vacuum to high vacuum category, defined in JIS Z8126. The degree of vacuum (the maximum value is on the order of about 10 −2 to 10 −3 Pa). This degree of vacuum may be uniformly set to the degree of vacuum in the high vacuum or medium vacuum category, regardless of the porosity measured for the molded body accommodated in the retort, depending on the magnitude of this measurement result. The set value of the degree of vacuum may be changed. That is, in the latter case, when the measurement result of the porosity shows a large value close to the upper limit within the above range, the degree of vacuum in the low vacuum to medium vacuum category is set, and the low limit close to the lower limit within the above range. When the value is shown, the degree of vacuum in the medium vacuum or high vacuum category is set.

その後、この真空雰囲気下で真空室内における成形体の加熱を開始する(S04)。ここで、成形体からの水分の蒸発、デンプンの焼失(水酸基として残留する水分の蒸発を含む)及びカドミウム単体の揮発は、それぞれ異なる温度範囲で生じるので、これらのそれぞれについて3段階に加熱温度を設定し、成形体の加熱温度を段階的に上げて異なる温度で加熱することができる。このとき、各段階における加熱温度は、一般的には、大気圧下でのそれよりも雰囲気の真空度に応じて低く設定できる。しかし、本発明においては、成形体中に含有される蒸発(揮発)物質の種類、含有量及び処理時間などを考慮して、前記3つの段階についての大気圧下における設定温度(表1参照)と雰囲気中の真空度に応じた設定温度(表1参照)との間で適宜調整できるようにすることが好ましい。   Thereafter, heating of the compact in the vacuum chamber is started under this vacuum atmosphere (S04). Here, evaporation of moisture from the molded body, burning of starch (including evaporation of moisture remaining as hydroxyl groups) and volatilization of cadmium alone occur in different temperature ranges, so the heating temperature is set in three stages for each of these. It can be set and heated at different temperatures by gradually increasing the heating temperature of the compact. At this time, the heating temperature in each stage can generally be set lower according to the degree of vacuum of the atmosphere than that at atmospheric pressure. However, in the present invention, in consideration of the type, content, processing time, and the like of the evaporation (volatile) substance contained in the molded body, the set temperatures under atmospheric pressure for the three stages (see Table 1). And a set temperature (see Table 1) corresponding to the degree of vacuum in the atmosphere, it is preferable to be able to adjust appropriately.

Figure 2012219279
Figure 2012219279

各段階での加熱時には、水蒸気の発生などにより真空室内の真空度が微小ながら変化するので、これを監視しておき、安定したら次の設定温度に切り換えるようにする。第3段階の設定温度に達した後は、カドミウム単体の揮発に伴って真空度が微小に低下し、揮発量が小さくなることで真空度は元に戻るが、このような真空度の変化とは無関係に、前記設定温度での加熱状態を約1〜2時間程度維持するのが好ましい。この時間経過により、第3段階の加熱完了と判断する。なお、真空乾燥装置に収容する前に、成形体を乾燥している場合には、前記水分の蒸発についての加熱温度設定を省略し、残りの2段階の温度設定を行うようにすればよい。   During heating at each stage, the degree of vacuum in the vacuum chamber changes slightly due to the generation of water vapor, etc., and this is monitored, and when it is stabilized, it is switched to the next set temperature. After reaching the third set temperature, the degree of vacuum slightly decreases with the volatilization of cadmium alone, and the degree of volatilization decreases, so the degree of vacuum is restored. Regardless of this, it is preferable to maintain the heating state at the set temperature for about 1 to 2 hours. Based on the passage of time, it is determined that the third stage of heating is completed. In addition, when the molded body is dried before being accommodated in the vacuum drying apparatus, the heating temperature setting for the evaporation of the water may be omitted, and the remaining two temperature settings may be performed.

本発明における真空加熱装置は、前記の真空条件が得られ、最高約800℃程度まで加熱可能であれば、その種類や機器構成については特に限定されない。例えば、真空加熱装置は、成形体を収容するためのレトルトを備え、その内部を所定の真空条件にした後に、このレトルトごと加熱するようなタイプのものであってもよい。このような装置の場合、レトルトは、前記のような真空条件に耐えるものであることが必要であり、その材質は、例えばステンレス鋼、アルミ合金などであることが好ましい。   The vacuum heating apparatus in the present invention is not particularly limited with respect to the type and the equipment configuration as long as the above vacuum conditions are obtained and heating up to about 800 ° C. is possible. For example, the vacuum heating device may be of a type that includes a retort for accommodating a molded body, and heats the retort together after the inside is set to a predetermined vacuum condition. In the case of such an apparatus, the retort is required to withstand the vacuum conditions as described above, and the material thereof is preferably, for example, stainless steel or aluminum alloy.

レトルトを用いるタイプの真空加熱装置の場合、その中に直接、複数の成形体を収容してもよく、トレー上に一旦載置し、このトレーごと収容するようにしてもよい。いずれの場合であっても、隣り合う2つの成形体の間には適宜の間隔を設けるようにしてレトルト内に複数の成形体を配置し、それぞれの表面が極力真空雰囲気中に晒されるようにするのが好ましい。また、トレーを用いる場合にも、同様の理由から当該トレーは金属製の網などで形成されているのが好ましい。   In the case of a vacuum heating apparatus of a type using a retort, a plurality of molded bodies may be directly accommodated therein, or may be temporarily placed on a tray and accommodated together with the tray. In any case, a plurality of molded bodies are arranged in the retort so that an appropriate interval is provided between two adjacent molded bodies so that each surface is exposed to a vacuum atmosphere as much as possible. It is preferable to do this. Moreover, also when using a tray, it is preferable that the said tray is formed with the metal net | network etc. for the same reason.

真空加熱装置に付属する真空ポンプとしては、前記真空条件を達成する能力を備えたものであれば、その種類に特に限定はなく、例えばダイヤフラム真空ポンプ、ドライポンプ、油回転真空ポンプ、エジェクターポンプ、メカニカルブースターポンプ、油拡散ポンプなどの従来公知のものを使用できる。   The vacuum pump attached to the vacuum heating device is not particularly limited as long as it has the ability to achieve the above vacuum conditions. For example, a diaphragm vacuum pump, a dry pump, an oil rotary vacuum pump, an ejector pump, A conventionally well-known thing, such as a mechanical booster pump and an oil diffusion pump, can be used.

[分離回収工程]
第3段階の加熱中に、成形体から揮発したカドミウム単体の蒸気は真空ポンプの吸引により真空室外に排気される。その排気経路途中に冷却装置を設置しておくことで、カドミウム単体蒸気は排気経路の壁面に金属カドミウムとして析出する。前記冷却装置は、その冷却方式について特に制限されず、水冷、空冷その他の公知の方式を仕様できる。第3段階の加熱完了後、真空加熱装置自体を冷却後、この壁面に析出した金属カドミウムを取り出すことで、カドミウム単体の分離回収を行うことができる(S05)。なお、取り出した金属カドミウムは、公知の方法により鋳造など行うことができる。
[Separation and recovery process]
During the third stage of heating, vapor of cadmium alone volatilized from the compact is exhausted out of the vacuum chamber by suction of a vacuum pump. By installing a cooling device in the middle of the exhaust path, the vapor of cadmium alone is deposited as metal cadmium on the wall surface of the exhaust path. The cooling device is not particularly limited with respect to the cooling method, and water cooling, air cooling and other known methods can be specified. After completion of the third stage of heating, the vacuum heating apparatus itself is cooled, and the metal cadmium deposited on the wall surface is taken out, whereby the cadmium simple substance can be separated and recovered (S05). The extracted metal cadmium can be cast by a known method.

次に、本発明を実施例を挙げてより詳細に説明する。本実施例では、ホタテウロに微量含まれるカドミウムを金属カドミウムとして分離回収している。   Next, the present invention will be described in more detail with reference to examples. In this embodiment, cadmium contained in a small amount in scallopuro is separated and recovered as metal cadmium.

本実施例に用いた装置は、以下の通りである。
A.生ゴミ処理装置
使用した生ゴミ処理装置は、図2に示すように、処理槽11に、回転棒に攪拌翼が取り付けられた所定形状のブレンダー21が2本(うち1本のみ図示し、残りの1本の図示は省略する)平行に互いに反対方向に回転可能に配した基本構成を備えたものである。また、処理槽11内には、空気供給口13を通して空気を供給できるとともに、処理槽11内の排気のための排気口14が設けられている。さらに、処理槽11内には、内容物を加温可能なラバーヒータ17が設けられている。
B.真空加熱装置
本実施例で使用する真空加熱装置は、図3に示すように、フランジ31を一端に備え、他端が閉塞されたステンレス製レトルト30と、フランジ31を除きその全面を覆い隠す位置とレトルト30から離れた位置との間を移動可能であり、電気加熱用ヒーター36を内蔵する電気炉34と、減圧ホース44と、レトルト30内を真空状態にするための真空ポンプ45とから構成されている。レトルト30には、そのフランジ31にフランジ38を介してカドミウム単体を分離回収するのに用いられる水冷方式の冷却筒37が接続され、この冷却筒37の他端に前記減圧ホース44を介して真空ポンプ45が接続されている。冷却筒37は、レトルト30と略同等の配管の外側に、流入口40及び流出口41を備え、冷却水を通水可能なジャケット39が設けられた二重構造を備えたものである。
The apparatus used in this example is as follows.
A. 2. Garbage Disposal Equipment As shown in FIG. 2, the used garbage disposal apparatus has two blenders 21 having a predetermined shape in which a stirring blade is attached to a rotating rod (only one of which is shown, and the rest). (The illustration of one of these is omitted.) A basic configuration is provided in parallel so as to be rotatable in opposite directions. Further, in the processing tank 11, air can be supplied through the air supply port 13, and an exhaust port 14 for exhausting the processing tank 11 is provided. Further, a rubber heater 17 capable of heating the contents is provided in the processing tank 11.
B. Vacuum heating apparatus The vacuum heating apparatus used in the present embodiment is, as shown in FIG. 3, a stainless steel retort 30 having a flange 31 at one end and closed at the other end, and a position covering the entire surface except for the flange 31. And a position remote from the retort 30, and comprises an electric furnace 34 having a built-in heater 36 for electric heating, a decompression hose 44, and a vacuum pump 45 for evacuating the retort 30. Has been. A water cooling type cooling cylinder 37 used for separating and recovering cadmium alone is connected to the flange 31 of the retort 30 via a flange 38, and a vacuum is connected to the other end of the cooling cylinder 37 via the pressure reducing hose 44. A pump 45 is connected. The cooling cylinder 37 is provided with a double structure in which an inlet 40 and an outlet 41 are provided outside a pipe substantially equivalent to the retort 30 and a jacket 39 through which cooling water can flow is provided.

廃棄予定のホタテウロ約250kgを用意し、その全量を水洗して表面の汚れを取り除くと同時に海水の塩分を洗い流した後、約50kgずつ5つに分けた。次に、そのうちの約50kgと、これと略同量の補材(チップ)と、好気性微生物としてのBN菌(明治製菓製)100gとを図2に示した生ゴミ処理装置に投入し、攪拌混合を開始した。翌日からの4日間、毎日残りのホタテウロ約50kgずつを当該装置内に投入し、5日目に装置の攪拌混合を停止した。この5日間でホタテウロは分解され(分解中のホタテウロ内の温度は38±2℃であった。)、発生した二酸化炭素や窒素は外部に飛散し、また発生した水分一部が蒸発し、残りが混練物の含水率を上昇させた。5日目に生ゴミ処理装置から取り出した残滓は、含水率約20重量%の褐色粉末状を呈し、その重量は混合した補材の重量(約50kg)と略同等の重量を示した。このことから、生ゴミ処理装置内に投入したホタテウロのほぼ全量が分解されたことが判明した。   About 250 kg of scallopuro to be disposed of was prepared, and the entire amount was washed with water to remove surface dirt, and at the same time, the salt content of seawater was washed away, and then divided into five portions of about 50 kg each. Next, about 50 kg of them, approximately the same amount of supplement (chip), and 100 g of BN bacteria (manufactured by Meiji Seika) as aerobic microorganisms are put into the garbage processing apparatus shown in FIG. Stirring mixing was started. On the 4th day from the next day, about 50 kg of the remaining scallops were put into the apparatus every day, and the stirring and mixing of the apparatus was stopped on the 5th day. In these 5 days, scallops are decomposed (the temperature inside the scallops during decomposition was 38 ± 2 ° C), and the generated carbon dioxide and nitrogen are scattered to the outside, and part of the generated water is evaporated and remains. However, the water content of the kneaded product was increased. The residue taken out from the garbage processing apparatus on the fifth day was in the form of a brown powder having a water content of about 20% by weight, and the weight thereof was substantially equal to the weight of the mixed auxiliary material (about 50 kg). From this, it was found that almost the entire amount of scallop charged in the garbage processing apparatus was decomposed.

前記残滓約50kgに対して粉末状のデンプン5kg/水10Lの割合で混合して調製したデンプン懸濁液を加えながら、均質な泥濘状の混練物が得られるまで混練した。この混練物を数回サンプリングし、目視にてその表面を観察した結果、約1〜2mm程度の直径の気泡が分散していることを確認した。   While adding a starch suspension prepared by mixing 5 kg of powdered starch / 10 L of water to about 50 kg of the residue, the residue was kneaded until a homogeneous mud-like kneaded product was obtained. This kneaded product was sampled several times and the surface thereof was visually observed. As a result, it was confirmed that bubbles having a diameter of about 1 to 2 mm were dispersed.

次に、この混練物を円筒型の空間を内部に有する金型に流し込み、エアシリンダー式小型プレス成形機によりプレス圧を調整しながら加圧成形し、複数個の成形体5、5、5、・・・を得た。このときのプレス圧は、得られる成形体がその外形形状を保持可能な程度に成形すべく、0.5〜2kg/cmの範囲で調整した。各成形体5、5、5、・・・のサイズ及び形状は、直径約20mm程度、厚さ約50mm程度の円板状である。 Next, this kneaded product is poured into a mold having a cylindrical space inside, and is subjected to pressure molding while adjusting the press pressure by an air cylinder type small press molding machine, and a plurality of molded bodies 5, 5, 5, I got ... The pressing pressure at this time was adjusted in the range of 0.5 to 2 kg / cm 2 so that the obtained molded body could be molded to such an extent that the outer shape could be maintained. The size and shape of each molded body 5, 5, 5,... Is a disk shape having a diameter of about 20 mm and a thickness of about 50 mm.

こうして得られた複数個の成形体25、25、25、・・・を、図3に示すように、ステンレス製の網で形成された断面半円形のボート状トレー27の上に、隣り合う2つの成形体25、25の間に間隔をあけて配置した。隣り合う成形体25同士の間に間隔を設けることにより、後述する真空加熱工程において各成形体25の全面からのカドミウム単体の揮発飛散ルートが確保され、カドミウム単体の揮発促進を図ることができる。   A plurality of molded bodies 25, 25, 25,... Thus obtained are adjacent to each other on a boat-shaped tray 27 having a semicircular cross section formed of a stainless steel net, as shown in FIG. The two molded bodies 25 were arranged with a space between them. By providing an interval between the adjacent molded bodies 25, a volatile scattering route of cadmium alone from the entire surface of each molded body 25 is ensured in a vacuum heating step described later, and volatilization of the cadmium alone can be promoted.

そうして、このボート状トレー27をレトルト30の内部空間32に収容した。このレトルト30のフランジ31にフランジ38を不図示のボルト、ナットで固定し、冷却筒37をレトルト30に取り付け接続した。また、冷却筒37の他端と真空ポンプ45との間を減圧ホース44により密閉状態にて接続した。なお、レトルト30には、適宜の位置に内部の真空度を計測できるように真空計(不図示)が取り付けられている。   Then, this boat-shaped tray 27 was accommodated in the internal space 32 of the retort 30. The flange 38 was fixed to the flange 31 of the retort 30 with bolts and nuts (not shown), and the cooling cylinder 37 was attached and connected to the retort 30. Further, the other end of the cooling cylinder 37 and the vacuum pump 45 were connected in a sealed state by a decompression hose 44. Note that a vacuum gauge (not shown) is attached to the retort 30 so that the internal degree of vacuum can be measured at an appropriate position.

これら一連の操作が終了した後、真空ポンプ45を起動してレトルト30内の空気の吸引を開始した。真空度の目標値は、真空計の計測結果にて10−2Paに設定した。 After these series of operations were completed, the vacuum pump 45 was started and the suction of air in the retort 30 was started. The target value of the degree of vacuum was set to 10 −2 Pa by the measurement result of the vacuum gauge.

所定の真空度に達したところで、電気炉34をレトルト30側に移動させ、当該レトルト30のフランジ31を除くほぼ全面が加熱室35内に隠れる位置にセットした。なお、電気炉34の移動は例えばレール上を走行させるなどの公知の方法によって行うことができる。   When the predetermined degree of vacuum was reached, the electric furnace 34 was moved to the retort 30 side and set to a position where almost the entire surface excluding the flange 31 of the retort 30 was hidden in the heating chamber 35. The electric furnace 34 can be moved by a known method such as running on a rail.

電気炉34をセット後、スイッチを入れこれに通電して加熱を開始した。加熱温度は、段階的に切換えられるように設定し、まず約120℃にて水分を完全に蒸発除去した(第1段階)。水分除去が完全か否かは、真空計の指示が安定したか否かによって判断した。次に、設定温度を約220〜240℃に上げ、デンプン及び水酸基として残留する水分を完全に焼失させ除去した(第2段階)。デンプンなどが完全に除去されたか否かも、真空計の指示が安定したか否かによって判断した。   After setting the electric furnace 34, the switch was turned on to energize this to start heating. The heating temperature was set so as to be switched stepwise, and first, water was completely evaporated and removed at about 120 ° C. (first step). Whether or not moisture removal was complete was judged by whether or not the instruction of the vacuum gauge was stable. Next, the set temperature was raised to about 220 to 240 ° C., and water remaining as starch and hydroxyl groups was completely burned away and removed (second stage). Whether starch or the like was completely removed was also judged by whether or not the indication of the vacuum gauge was stable.

その後、真空計の読みが10−2Paで安定したところで、温度設定を380±10℃の範囲となるように切り換え、カドミウム単体を揮発させるようにした(第3段階)。この温度設定でカドミウムの揮発飛散が開始されると、真空度は僅かながら低下し、カドミウムが完全に揮発されると、元の値に戻ることが確認された。さらに約1〜2時間程度この状態を維持した後、加熱完了と判断し、加熱用スイッチを切り、電気炉34をレトルト30から遠ざけ、レトルト30を自然放冷した。 Thereafter, when the reading of the vacuum gauge was stabilized at 10 −2 Pa, the temperature setting was switched so as to be in the range of 380 ± 10 ° C. so that the cadmium alone was volatilized (third stage). It was confirmed that when cadmium volatilization and scattering were started at this temperature setting, the degree of vacuum slightly decreased, and when cadmium was completely volatilized, it returned to the original value. Further, after maintaining this state for about 1 to 2 hours, it was determined that the heating was completed, the heating switch was turned off, the electric furnace 34 was moved away from the retort 30, and the retort 30 was allowed to cool naturally.

一方、第3段階の加熱中に、成形体から揮発しレトルト30から排気されたカドミウム単体は、冷却筒37にて冷却され、その配管壁面に析出した。この析出した金属カドミウムを取り出し、鋳造を行った。   On the other hand, during the third stage of heating, the cadmium simple substance volatilized from the compact and exhausted from the retort 30 was cooled by the cooling cylinder 37 and deposited on the pipe wall surface. The deposited metal cadmium was taken out and cast.

鋳造は、還元雰囲気中、サンドバス上で330〜350℃の温度で加熱することにより行った。溶解した金属カドミウムを所定の鋳型に流し込み、冷却することで、金属カドミウムのインゴットを得た。一方、レトルト30内の成形体25を取り出してカドミウムの含有率を測定したところ、検出不能との結果を得た。よって、ホタテウロ中から確実にカドミウムを分離回収できていることが確認できた。   Casting was performed by heating at a temperature of 330 to 350 ° C. on a sand bath in a reducing atmosphere. The molten metal cadmium was poured into a predetermined mold and cooled to obtain a metal cadmium ingot. On the other hand, when the molded body 25 in the retort 30 was taken out and the cadmium content was measured, a result that it was not detectable was obtained. Therefore, it was confirmed that cadmium was reliably separated and recovered from the scallops.

11 処理槽(生ゴミ処理装置)
13 空気供給口
14 排気口
21 ブレンダー
25 成形体
27 ボート型トレー
30 レトルト
31 フランジ
34 電気炉
35 加熱室
36 加熱用ヒーター
37 冷却筒
39 ジャケット
40 冷却水流入口
41 冷却水流出口
44 減圧ホース
45 真空ポンプ
11 treatment tank (garbage disposal equipment)
13 Air supply port 14 Exhaust port 21 Blender 25 Molded body 27 Boat type tray 30 Retort 31 Flange 34 Electric furnace 35 Heating chamber 36 Heating heater 37 Cooling cylinder 39 Jacket 40 Cooling water inlet 41 Cooling water outlet 44 Decompression hose 45 Vacuum pump

Claims (10)

カドミウム含有廃棄物に所定の前処理を施し当該廃棄物を粉粒状にする前処理工程と、デンプン懸濁液またはナノバブル水を添加しながらまたはこれを添加した後に撹拌混合して微細な気泡が分散する組織を有する混練物を得る混合撹拌工程と、当該混練物を成形し、その外形形状を保持可能な程度の強度を有する成形体を得る成形工程と、真空雰囲気中で前記成形物を加熱してカドミウム単体を揮発させ、これを排気する真空加熱工程と、当該排気を冷却して金属カドミウムを析出させる分離回収工程とを含むことを特徴とするカドミウムの分離回収方法。   Pre-treatment process for cadmium-containing wastes and pre-treatment to make the wastes fine, and fine bubbles are dispersed by stirring and mixing with or after adding starch suspension or nanobubble water A mixing and stirring step for obtaining a kneaded product having a texture to form, a molding step for forming the kneaded product and obtaining a molded body having a strength capable of maintaining the outer shape, and heating the molded product in a vacuum atmosphere. A method of separating and recovering cadmium, comprising: a vacuum heating step for volatilizing and exhausting cadmium alone; and a separation and recovery step for cooling the exhaust and precipitating metal cadmium. 前記前処理工程は、前記カドミウム含有廃棄物を粉砕し、分級により所定の粒度よりも微細な粉砕産物を抽出し、および/または前記カドミウム含有材廃棄物中の有機物を好気性微生物の存在下で分解し減容化するものである請求項1に記載のカドミウムの分離回収方法。   In the pretreatment step, the cadmium-containing waste is pulverized, a pulverized product finer than a predetermined particle size is extracted by classification, and / or organic matter in the cadmium-containing material waste is removed in the presence of aerobic microorganisms. The method for separating and recovering cadmium according to claim 1, wherein the method is to decompose and reduce the volume. 前記デンプン水溶液の濃度は、1〜30重量%である請求項1または2に記載のカドミウムの分離回収方法。   The method for separating and recovering cadmium according to claim 1 or 2, wherein the concentration of the aqueous starch solution is 1 to 30% by weight. 前記成形体は、その気孔率が約5〜30%程度である請求項1〜3のいずれか1項に記載のカドミウムの分離回収方法。   The method for separating and recovering cadmium according to any one of claims 1 to 3, wherein the molded body has a porosity of about 5 to 30%. 前記真空加熱工程は、少なくともデンプンの焼失およびカドミウム単体の揮発をそれぞれ生じる異なる加熱温度範囲に設定値を段階的に切換えるように構成されてなる請求項1〜4のいずれか1項に記載のカドミウムの分離回収方法。   5. The cadmium according to any one of claims 1 to 4, wherein the vacuum heating step is configured to switch a set value step by step to different heating temperature ranges that respectively cause at least the burning of starch and the volatilization of cadmium alone. Separation and recovery method. カドミウム含有廃棄物に所定の前処理を施し当該廃棄物を粉粒状にする前処理装置と、デンプン懸濁液またはナノバブル水を添加しながらまたはこれを添加した後に撹拌混合して微細な気泡が分散する組織を有する混練物を得る混合撹拌装置と、当該混練物を成形し、その外形形状を保持可能な程度の強度を有する成形体を得る成形装置と、真空雰囲気中で前記成形物を加熱してカドミウム単体を揮発させ、これを排気する真空加熱装置と、当該排気を冷却して金属カドミウムを析出させる冷却装置とを含むことを特徴とするカドミウムの分離回収装置。   Pretreatment equipment that cadmium-containing waste is pre-treated to make the waste into powder, and fine bubbles are dispersed by mixing with or after adding starch suspension or nanobubble water. A mixing and agitating device for obtaining a kneaded product having a texture to form, a molding device for forming the kneaded product and obtaining a molded body having a strength capable of maintaining the outer shape, and heating the molded product in a vacuum atmosphere. A cadmium separation and recovery device, comprising: a vacuum heating device that volatilizes and discharges cadmium alone; and a cooling device that cools the exhaust and deposits metal cadmium. 前記前処理装置は、前記カドミウム含有廃棄物を粉砕し、分級により所定の粒度よりも微細な粉砕産物を抽出する粉砕分級、若しくは前記カドミウム含有材廃棄物中の有機物を好気性微生物の存在下で分解し減容化する分解減容化を行い、又はこれら双方を行うものである請求項1に記載のカドミウムの分離回収方法。   The pretreatment device pulverizes the cadmium-containing waste, and pulverizes and classifies the pulverized product finer than a predetermined particle size by classification, or the organic matter in the cadmium-containing material waste in the presence of aerobic microorganisms. The method for separating and recovering cadmium according to claim 1, wherein decomposition or volume reduction is performed by decomposing and volume reduction, or both of them are performed. 前記デンプン水溶液の濃度は、1〜30重量%である請求項1または2に記載のカドミウムの分離回収装置。   The cadmium separation and recovery device according to claim 1 or 2, wherein the concentration of the aqueous starch solution is 1 to 30% by weight. 前記成形体は、その気孔率が約5〜30%程度である請求項6〜8のいずれか1項に記載のカドミウムの分離回収装置。   The cadmium separation and recovery apparatus according to any one of claims 6 to 8, wherein the molded body has a porosity of about 5 to 30%. 前記真空加熱装置は、少なくともデンプンの焼失およびカドミウム単体の揮発をそれぞれ生じる異なる加熱温度範囲に設定値を段階的に切換えるように構成されてなる請求項6〜9のいずれか1項に記載のカドミウムの分離回収装置。   The cadmium according to any one of claims 6 to 9, wherein the vacuum heating device is configured to switch a set value stepwise to different heating temperature ranges in which at least starch burns and cadmium vaporization occurs. Separation and recovery equipment.
JP2011082806A 2011-04-04 2011-04-04 Method and device for separating and recovering cadmium Withdrawn JP2012219279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011082806A JP2012219279A (en) 2011-04-04 2011-04-04 Method and device for separating and recovering cadmium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011082806A JP2012219279A (en) 2011-04-04 2011-04-04 Method and device for separating and recovering cadmium

Publications (1)

Publication Number Publication Date
JP2012219279A true JP2012219279A (en) 2012-11-12

Family

ID=47271131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011082806A Withdrawn JP2012219279A (en) 2011-04-04 2011-04-04 Method and device for separating and recovering cadmium

Country Status (1)

Country Link
JP (1) JP2012219279A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103250539A (en) * 2013-05-16 2013-08-21 农业部环境保护科研监测所 Method for reducing absorption of cadmium by rape
CN104388696A (en) * 2014-10-20 2015-03-04 河南豫光锌业有限公司 Method for controlling appearance quality of cadmium ingot
KR101513715B1 (en) * 2013-11-18 2015-04-22 한국지질자원연구원 Method for converting iron precipitates formed in bioleach liquors to haematite pigment
KR20150055976A (en) * 2013-11-14 2015-05-22 한국지질자원연구원 Method for converting iron precipitates formed in bioleach liquors to hematite
JP2015145520A (en) * 2014-02-03 2015-08-13 三鷹光器株式会社 Vertically-placed structure of retort
JP2015145519A (en) * 2014-02-03 2015-08-13 三鷹光器株式会社 briquette for magnesium thermal reduction
JP2015155568A (en) * 2014-02-21 2015-08-27 三鷹光器株式会社 Retort for magnesium heat reduction
US10219670B2 (en) 2014-09-05 2019-03-05 Tennant Company Systems and methods for supplying treatment liquids having nanobubbles
CN111057853A (en) * 2019-12-04 2020-04-24 江西一元再生资源有限公司 Method for efficiently recovering multiple valuable substances from waste diamond tool bit raw materials
CN111663040A (en) * 2020-06-22 2020-09-15 中南大学 Method for enhancing oxygen oxidation iron removal in solution by using microbubble generator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103250539A (en) * 2013-05-16 2013-08-21 农业部环境保护科研监测所 Method for reducing absorption of cadmium by rape
KR20150055976A (en) * 2013-11-14 2015-05-22 한국지질자원연구원 Method for converting iron precipitates formed in bioleach liquors to hematite
KR101642296B1 (en) 2013-11-14 2016-07-25 한국지질자원연구원 Method for converting iron precipitates formed in bioleach liquors to hematite
KR101513715B1 (en) * 2013-11-18 2015-04-22 한국지질자원연구원 Method for converting iron precipitates formed in bioleach liquors to haematite pigment
JP2015145520A (en) * 2014-02-03 2015-08-13 三鷹光器株式会社 Vertically-placed structure of retort
JP2015145519A (en) * 2014-02-03 2015-08-13 三鷹光器株式会社 briquette for magnesium thermal reduction
JP2015155568A (en) * 2014-02-21 2015-08-27 三鷹光器株式会社 Retort for magnesium heat reduction
US10219670B2 (en) 2014-09-05 2019-03-05 Tennant Company Systems and methods for supplying treatment liquids having nanobubbles
CN104388696A (en) * 2014-10-20 2015-03-04 河南豫光锌业有限公司 Method for controlling appearance quality of cadmium ingot
CN111057853A (en) * 2019-12-04 2020-04-24 江西一元再生资源有限公司 Method for efficiently recovering multiple valuable substances from waste diamond tool bit raw materials
CN111663040A (en) * 2020-06-22 2020-09-15 中南大学 Method for enhancing oxygen oxidation iron removal in solution by using microbubble generator

Similar Documents

Publication Publication Date Title
JP2012219279A (en) Method and device for separating and recovering cadmium
Shen et al. Can incineration completely eliminate plastic wastes? An investigation of microplastics and heavy metals in the bottom ash and fly ash from an incineration plant
US20220097110A1 (en) Mechanochemical process
Chen et al. Stabilization of heavy metals during co-pyrolysis of sewage sludge and excavated waste
Narayanasamy et al. Extraction and recovery of precious metals from electronic waste printed circuit boards by bioleaching acidophilic fungi
CN106315742B (en) The method of Cr VI in sodium humate/charcoal magnetic composite removal waste water
CN112536036B (en) Carbon-based metal monoatomic composite material and preparation method and application thereof
Kojima et al. Recycling process of WC-Co cermets by hydrothermal treatment
JP5311007B2 (en) Heat treatment system and heat treatment method
Karwowska et al. The influence of metal speciation in combustion waste on the efficiency of Cu, Pb, Zn, Cd, Ni and Cr bioleaching in a mixed culture of sulfur-oxidizing and biosurfactant-producing bacteria
Liu et al. Efficient recovery of rare earth elements from discarded NdFeB magnets
CN109592771A (en) A kind of preparation method handling the anti-oxidant modified Nano iron containing chromium soil
CN113477214B (en) Preparation method and application of green nano iron-based biomass charcoal adsorption material
CN104759462B (en) A kind of Soil leaching upgrading prosthetic device with tail gas treating function
CN106881350A (en) A kind of processing method of BHC contaminated soil
CN101690934A (en) Method for stabilizing fly ash from refuse incineration by combination of complementary type medicaments
KR20010072589A (en) Method for thermally degrading unwanted substances using particulate metal compositions
Wu et al. Enhancing Cu-Zn-Cr-Ni Co-extraction from electroplating sludge in acid leaching process by optimizing Fe3+ addition and redox potential
JP5580650B2 (en) Marine waste recycling plant
JP2011025160A (en) Charcoal-metal complex for water treatment and molding for charcoal-metal complex
CN115785958B (en) Biochar-loaded micro-powder soil conditioner, preparation method and application
CN205537072U (en) Waste slag recycling crushing and drying device in waste water
TWI472356B (en) Method for quickly removing hazardous matters from mswi fly ash
JP5634961B2 (en) Sludge treatment method
Lodo et al. Reusability of Fe-modified MMT nanomembranes and the retrieval of the adsorbed mercury metal

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120814

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701