JP2012218998A - Microcrystalline zeolite having emt structure, and method for producing the same - Google Patents

Microcrystalline zeolite having emt structure, and method for producing the same Download PDF

Info

Publication number
JP2012218998A
JP2012218998A JP2011088830A JP2011088830A JP2012218998A JP 2012218998 A JP2012218998 A JP 2012218998A JP 2011088830 A JP2011088830 A JP 2011088830A JP 2011088830 A JP2011088830 A JP 2011088830A JP 2012218998 A JP2012218998 A JP 2012218998A
Authority
JP
Japan
Prior art keywords
zeolite
molar ratio
emt
emt structure
hexagonal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011088830A
Other languages
Japanese (ja)
Inventor
Satoshi Yoshida
吉田  智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2011088830A priority Critical patent/JP2012218998A/en
Publication of JP2012218998A publication Critical patent/JP2012218998A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a microcrystalline zeolite having a hexagonal plate-like shape and EMT structure which is expected to be used as a catalyst, an absorbent or the like, and also to provide a method for producing zeolite having such an EMT structure.SOLUTION: The hexagonal plate-like zeolite includes an EMT structure, has an average thickness of ≥0.03 and ≤0.3 μm and preferably has an average bottom diameter of ≥0.1 μm and ≤1.0 μm. Such zeolite is manufactured by crystallizing a reaction mixture having a following composition while stirring. In the reaction mixture, the molar ratio of Si/Alis 9-11, the molar ratio of HO/Si is 12-16, the molar ratio of (18-crown-6)/Si is 0.06-0.10, the molar ratio of Na/Si is 0.43-0.50, and the molar ratio of OH/Si is 0.43-0.50.

Description

本発明は、六角板状の形状、及び、EMT構造を有する微結晶ゼオライト及びその製造方法に関する。   The present invention relates to a microcrystalline zeolite having a hexagonal plate shape and an EMT structure, and a method for producing the same.

EMT構造を有するゼオライトは、国際ゼオライト協会規定の構造コードEMTで表されるゼオライトであり、例えば、物質名「EMC−2」として知られている(非特許文献1)。   The zeolite having the EMT structure is a zeolite represented by the structure code EMT defined by the International Zeolite Association, and is known as, for example, the substance name “EMC-2” (Non-patent Document 1).

これまでに報告されたEMT構造を有するゼオライトは、3μmの六角板状結晶を有するゼオライトや(非特許文献2)、平均径4〜5μm、厚さ0.5〜1.0μmの六角板状結晶を有するゼオライト(非特許文献3)などであり、いずれも比較的大きなEMT構造を有するゼオライトであった。   Zeolite having an EMT structure reported so far is a zeolite having 3 μm hexagonal plate crystals (Non-patent Document 2), hexagonal plate crystals having an average diameter of 4 to 5 μm and a thickness of 0.5 to 1.0 μm. (Non-patent Document 3) and the like, both of which have a relatively large EMT structure.

ATLAS OF ZEOLITE FRAMEWORK TYPES,6th reviced edition,p.122−123,Elsevier(2007)ATLAS OF ZEOLITE FRAMEWORK TYPES, 6th revised edition, p. 122-123, Elsevier (2007) Zeolites,10,p.546(1990)Zeolites, 10, p. 546 (1990) VERIFIED SYNTHESIS OF ZEOLITIC MATERIALS,2nd reviced edition,p.145−146,Elsevier(2001)VERIFEDED SYNTHESIS OF ZEOLITIC MATERIALS, 2nd revised edition, p. 145-146, Elsevier (2001)

ゼオライトは、触媒、吸着剤又はイオン交換剤等として広く利用されている。これらの用途においては、結晶径が小さいゼオライトが必要とされている。しかしながら、これまでに報告されたEMT構造を有するゼオライトは結晶径が大きく、これらの用途において適したものではなかった。   Zeolites are widely used as catalysts, adsorbents or ion exchangers. In these applications, zeolite with a small crystal diameter is required. However, the zeolite having the EMT structure reported so far has a large crystal size and is not suitable for these applications.

本発明は、触媒や吸着剤等での用途が期待できる、六角板状の形状、及び、EMT構造を有する微結晶ゼオライトを提供するものである。また、当該EMT構造を有するゼオライトの製造方法を提供する。   The present invention provides a microcrystalline zeolite having a hexagonal plate shape and an EMT structure, which can be expected to be used in a catalyst, an adsorbent and the like. Moreover, the manufacturing method of the zeolite which has the said EMT structure is provided.

本発明者は、EMT構造を有する微結晶ゼオライトについて鋭意検討を重ねた結果、本発明を完成するに至った。   As a result of intensive studies on the microcrystalline zeolite having the EMT structure, the present inventors have completed the present invention.

すなわち、本発明は平均厚さが0.03μm以上0.3μm以下であり、EMT構造を有する六角板状ゼオライトである。   That is, the present invention is a hexagonal plate-like zeolite having an average thickness of 0.03 μm or more and 0.3 μm or less and having an EMT structure.

以下、本発明のEMT構造を有する六角板状ゼオライト(以下、「本発明のゼオライト」とする)について説明する。   Hereinafter, the hexagonal plate zeolite having the EMT structure of the present invention (hereinafter referred to as “the zeolite of the present invention”) will be described.

本発明のゼオライトは、その結晶構造がEMT構造である。EMT構造は、COLLECTION OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITES,5th reviced edition,p.146−147,Elsevier(2007)(以下、参考文献1)に記載された粉末X線回折パターンを示す構造である。したがって、EMT構造を有するゼオライトか否かは、参考文献1に示された粉末X線回折パターンとゼオライトの粉末X線回折パターンとを比較することにより確認できる。   The zeolite of the present invention has an EMT structure in crystal structure. The EMT structure is described in COLLECTION OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITES, 5th revised edition, p. 146-147, Elsevier (2007) (hereinafter referred to as Reference Document 1), showing a powder X-ray diffraction pattern. Therefore, whether or not the zeolite has the EMT structure can be confirmed by comparing the powder X-ray diffraction pattern shown in Reference 1 and the zeolite powder X-ray diffraction pattern.

本発明のゼオライトはEMT構造の純相からなる結晶構造を有することが好ましい。なお、EMT構造の純相とは、粉末X線回折パターンにおいて、EMT構造に由来するX線回折ピークしか存在しないことである。   The zeolite of the present invention preferably has a crystal structure composed of a pure phase having an EMT structure. Note that the pure phase of the EMT structure means that only X-ray diffraction peaks derived from the EMT structure exist in the powder X-ray diffraction pattern.

本発明のゼオライトの形状、つまり、本発明のゼオライトの一次粒子の形状は六角板状である。形状が六角板状であり、なおかつ、その結晶面が明瞭であることは、六方晶のEMT構造が高結晶性であることを示している。   The shape of the zeolite of the present invention, that is, the shape of the primary particles of the zeolite of the present invention is a hexagonal plate shape. The shape of the hexagonal plate and the crystal plane being clear indicate that the hexagonal EMT structure is highly crystalline.

本発明のゼオライトは、平均厚さが0.03μm以上0.3μm以下である。平均厚さが0.3μmより大きい場合、触媒として用いた場合において、活性、選択性、及び、耐コーキング性が劣るだけでなく、吸着剤又はイオン交換剤として用いた場合において、十分な吸着速度やイオン交換速度が得られない。そのため、本発明のゼオライトの平均厚さは0.3μm以下であり、0.2μm以下であることが好ましく、0.15μm以下であることがより好ましい。一方、平均厚さが0.03μmより小さいと耐熱性、耐熱水性が低い。そのため、本発明のゼオライトの平均厚さは0.03μm以上であり、0.05μm以上であることが好ましい。   The zeolite of the present invention has an average thickness of 0.03 μm or more and 0.3 μm or less. When the average thickness is larger than 0.3 μm, not only the activity, selectivity and coking resistance are inferior when used as a catalyst, but also a sufficient adsorption rate when used as an adsorbent or ion exchanger. And the ion exchange rate cannot be obtained. Therefore, the average thickness of the zeolite of the present invention is 0.3 μm or less, preferably 0.2 μm or less, and more preferably 0.15 μm or less. On the other hand, when the average thickness is less than 0.03 μm, the heat resistance and hot water resistance are low. Therefore, the average thickness of the zeolite of the present invention is 0.03 μm or more, and preferably 0.05 μm or more.

本発明のゼオライトは、平均底面径が0.1μm以上1.0μm以下であることが好ましい。平均底面径が1.0μm以下、好ましくは0.9μm以下であることで、触媒として用いた場合において、活性、選択性、及び、耐コーキング性が高くなりやすい。さらには、本発明のゼオライトを吸着剤又はイオン交換剤として用いた場合、吸着速度やイオン交換速度が速くなりやすい。また、平均底面径が0.1μm以上、好ましくは0.2μm以上、より好ましくは0.4μm以上とすることで、耐熱性、耐熱水性が高くなりやすい。   The zeolite of the present invention preferably has an average bottom diameter of 0.1 μm or more and 1.0 μm or less. When the average bottom diameter is 1.0 μm or less, preferably 0.9 μm or less, when used as a catalyst, activity, selectivity, and coking resistance are likely to increase. Furthermore, when the zeolite of the present invention is used as an adsorbent or ion exchanger, the adsorption rate and ion exchange rate tend to increase. Further, when the average bottom diameter is 0.1 μm or more, preferably 0.2 μm or more, more preferably 0.4 μm or more, heat resistance and hot water resistance are likely to be increased.

このように、本発明のゼオライトは、その形状が六角板状であるだけでなく、その平均厚さ、さらにはその平均底面径が上記の範囲であることで、触媒、吸着剤又はイオン交換剤として適している。   Thus, the zeolite of the present invention is not only a hexagonal plate shape, but also has an average thickness and further an average bottom diameter in the above range, so that the catalyst, adsorbent or ion exchanger Suitable as

なお、本発明のゼオライトの平均厚さ及び平均底面径は、以下の実施例に示した方法などにより測定することができる。   The average thickness and the average bottom diameter of the zeolite of the present invention can be measured by the methods shown in the following examples.

本発明のゼオライトは、そのSiO/Alは特に限定されないが、例えば、SiO/Alがモル比で7〜9であることを挙げることができる。 Zeolites of the present invention, the SiO 2 / Al 2 O 3 is not particularly limited, examples thereof include the SiO 2 / Al 2 O 3 is 7-9 molar ratio.

次に、本発明のゼオライトの製造方法について説明する。   Next, the manufacturing method of the zeolite of this invention is demonstrated.

本発明のEMT構造を有する六角板状ゼオライトは、以下の組成の反応混合物を攪拌しながら結晶化させることにより製造することができる。   The hexagonal plate-like zeolite having the EMT structure of the present invention can be produced by crystallizing a reaction mixture having the following composition while stirring.

Si/Alモル比=9〜11
O/Siモル比=12〜16
(18−クラウン−6)/Siモル比=0.06〜0.10
Na/Siモル比=0.43〜0.50
OH/Siモル比=0.43〜0.50
Si / Al 2 molar ratio = 9-11
H 2 O / Si molar ratio = 12-16
(18-crown-6) / Si molar ratio = 0.06-0.10
Na / Si molar ratio = 0.43 to 0.50
OH / Si molar ratio = 0.43 to 0.50

本発明の製造方法において、シリカ源、アルミナ源、ナトリウム源、有機構造指向剤、及び、水を原料とすることが好ましい。また、反応混合物の結晶化を促進させるため、原料に種晶を添加しても良い。   In the production method of the present invention, it is preferable to use a silica source, an alumina source, a sodium source, an organic structure directing agent, and water as raw materials. In order to promote crystallization of the reaction mixture, seed crystals may be added to the raw material.

シリカ源としては、ケイ酸ソーダ、シリカゾル、ヒュームドシリカ、沈降法シリカ、シリカアルミナゲル又はテトラエトキシランなどが例示できる。   Examples of the silica source include sodium silicate, silica sol, fumed silica, precipitated silica, silica alumina gel, and tetraethoxylane.

アルミナ源としては、アルミン酸ソーダ、水酸化アルミニウム、擬ベーマイト、アルミナゾル、シリカアルミナゲル又はアルミニウムイソプロポキシドなどが例示できる。   Examples of the alumina source include sodium aluminate, aluminum hydroxide, pseudoboehmite, alumina sol, silica alumina gel, and aluminum isopropoxide.

ナトリウム源としては、水酸化ナトリウム、ケイ酸ソーダ、アルミン酸ソーダが例示できる。   Examples of the sodium source include sodium hydroxide, sodium silicate, and sodium aluminate.

有機構造指向剤として18−クラウン−6(別名18−クラウン−6−エーテル又は1,4,7,10,13,16−ヘキサオキサシクロオクタデカン)を用いることが好ましい。   It is preferable to use 18-crown-6 (also known as 18-crown-6-ether or 1,4,7,10,13,16-hexaoxacyclooctadecane) as the organic structure directing agent.

本発明の製造方法では、反応混合物は以下の組成とする。反応混合物の組成が以下の範囲外であると、本発明のゼオライトは得られない。   In the production method of the present invention, the reaction mixture has the following composition. When the composition of the reaction mixture is outside the following range, the zeolite of the present invention cannot be obtained.

Si/Alモル比=9〜11
O/Siモル比=12〜16
(18−クラウン−6)/Siモル比=0.06〜0.10
Na/Siモル比=0.43〜0.50
OH/Siモル比=0.43〜0.50
Si / Al 2 molar ratio = 9-11
H 2 O / Si molar ratio = 12-16
(18-crown-6) / Si molar ratio = 0.06-0.10
Na / Si molar ratio = 0.43 to 0.50
OH / Si molar ratio = 0.43 to 0.50

本発明の製造方法では、反応混合物を攪拌しながら結晶化させる。これにより、反応混合物が均一に混合されるだけでなく、反応が促進する。さらに、結晶化中で結晶核の生成が促進されるため、得られるEMT構造を有するゼオライトの結晶が微細となる。   In the production method of the present invention, the reaction mixture is crystallized with stirring. Thereby, not only the reaction mixture is uniformly mixed, but also the reaction is accelerated. Furthermore, since the formation of crystal nuclei is promoted during crystallization, the resulting zeolite crystals having an EMT structure become fine.

反応混合物の攪拌は、攪拌羽根やスターラーなどにより行うことができる。また、その際の回転数として10回転/分〜600回転/分が例示できる。   The reaction mixture can be stirred with a stirring blade or a stirrer. Further, examples of the rotation speed at that time include 10 rotations / minute to 600 rotations / minute.

さらに、反応混合物を反応容器に入れ、該反応容器を回転させることで反応混合物を攪拌することが好ましい。反応容器を回転させる場合、回転方法は特に限定されない。反応容器の回転方法として、反応容器内部の点又は軸の回りを回転する自転、反応容器外部の点又は軸の回りを回転する公転の何れでも良い。   Furthermore, it is preferable to stir the reaction mixture by putting the reaction mixture into a reaction vessel and rotating the reaction vessel. When rotating the reaction vessel, the rotation method is not particularly limited. The rotation method of the reaction vessel may be either rotation that rotates around a point or axis inside the reaction vessel, or revolution that rotates around a point or axis outside the reaction vessel.

反応容器を回転させる場合、その回転数として10回転/分〜120回転/分が例示できる。   In the case of rotating the reaction vessel, the number of rotations may be 10 to 120 rotations / minute.

結晶化は、結晶化温度105℃以上115℃以下で行なうことが好ましい。結晶化温度をこの範囲で行うことにより、本発明のゼオライトが生成しやすくなる。   The crystallization is preferably performed at a crystallization temperature of 105 ° C. or higher and 115 ° C. or lower. By performing the crystallization temperature within this range, the zeolite of the present invention is easily formed.

結晶化後の反応混合物は、十分に放冷し、固液分離、十分量の純水で洗浄し、40℃〜300℃の任意の温度で乾燥する。これにより、有機構造指向剤含有のEMT構造を有するゼオライトが得られる。   The reaction mixture after crystallization is sufficiently cooled, solid-liquid separated, washed with a sufficient amount of pure water, and dried at an arbitrary temperature of 40 ° C to 300 ° C. Thereby, the zeolite which has an EMT structure containing an organic structure directing agent is obtained.

本発明の製造方法では、有機構造指向剤を除去することが好ましい。有機構造指向剤の除去方法として、焼成、若しくは分解による除去が例示できる。   In the production method of the present invention, it is preferable to remove the organic structure directing agent. Examples of the method for removing the organic structure directing agent include removal by baking or decomposition.

焼成により有機構造指向剤を除去する場合、焼成の条件として、400℃〜800℃、0.5時間〜12時間、酸素を含むガス流れ等の条件が例示できる。分解により有機構造指向剤を除去する場合、分解の条件として、室温以上、1時間以上24時間以下で、10%以上の過酸化水素水水溶液とゼオライトとを接触させる等の条件が例示できる。   When the organic structure directing agent is removed by firing, examples of firing conditions include 400 ° C. to 800 ° C., 0.5 hours to 12 hours, and a gas flow including oxygen. When the organic structure directing agent is removed by decomposition, examples of the conditions for decomposition include a condition in which a 10% or more aqueous hydrogen peroxide solution and zeolite are brought into contact with each other at room temperature or more and 1 hour or more and 24 hours or less.

本発明のゼオライトは、触媒、吸着剤、イオン交換剤としての機能を高めるために、イオン交換、金属担持を行うことができる。イオン交換は、交換イオンの一部又は全部を置換するために行われる。導入するイオンを含む水溶液等を接触させ、固液分離、必要に応じて純水で洗浄して得ることができる。   The zeolite of the present invention can be subjected to ion exchange and metal loading in order to enhance the functions as a catalyst, an adsorbent and an ion exchanger. Ion exchange is performed to replace some or all of the exchange ions. It can be obtained by contacting an aqueous solution containing ions to be introduced, etc., solid-liquid separation, and washing with pure water as necessary.

本発明のEMT構造を有するゼオライトは、触媒として用いた場合において、高活性、高選択性、高耐コーキング性が期待できる。さらに、吸着剤又はイオン交換剤として用いた場合において、速い吸着速度・イオン交換速度が期待できる。   The zeolite having the EMT structure of the present invention can be expected to have high activity, high selectivity, and high coking resistance when used as a catalyst. Furthermore, when it is used as an adsorbent or an ion exchanger, a high adsorption rate / ion exchange rate can be expected.

六角板状のモデル(厚さと底面径)を示す図。The figure which shows a hexagonal plate-shaped model (thickness and bottom face diameter). 実施例1で製造したEMT構造を有する六角板状ゼオライトの粉末X線回折パターンを示す図。The figure which shows the powder X-ray-diffraction pattern of the hexagonal plate-shaped zeolite which has the EMT structure manufactured in Example 1. FIG. 実施例1で製造したEMT構造を有する六角板状ゼオライトの結晶構造を示す走査型電子顕微鏡写真(倍率=50,000倍、図中スケール=0.5μm)。The scanning electron micrograph which shows the crystal structure of the hexagonal plate-shaped zeolite which has the EMT structure manufactured in Example 1 (magnification = 50,000 times, scale = 0.5 micrometer in a figure). 実施例1で製造したEMT構造を有する六角板状ゼオライトの結晶構造を示す走査型電子顕微鏡写真(倍率=10,000倍、図中スケール=1μm)。The scanning electron micrograph which shows the crystal structure of the hexagonal plate-shaped zeolite which has the EMT structure manufactured in Example 1 (magnification = 10,000 times, scale = 1 micrometer in a figure). 比較例1で製造したEMT構造を有する六角板状ゼオライトの粉末X線パターンを示す図。The figure which shows the powder X-ray pattern of the hexagonal plate-shaped zeolite which has the EMT structure manufactured by the comparative example 1. FIG. 比較例1で製造したEMT構造を有する六角板状ゼオライトの結晶構造を示す走査型電子顕微鏡写真(倍率=10,000倍、図中スケール=1μm)。The scanning electron micrograph which shows the crystal structure of the hexagonal plate-shaped zeolite which has the EMT structure manufactured in the comparative example 1 (magnification = 10,000 times, scale = 1 micrometer in a figure). 比較例1で製造したEMT構造を有する六角板状ゼオライトの結晶構造を示す走査型電子顕微鏡写真(倍率=2,000倍、図中スケール=10μm)。The scanning electron micrograph which shows the crystal structure of the hexagonal plate-shaped zeolite which has the EMT structure manufactured by the comparative example 1 (magnification = 2,000 times, scale = 10 micrometers in the figure).

以下の実施例により本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。尚、実施例、比較例における各測定方法は、以下の通りである。
(粉末X線回折)
マックサイエンス製MXP3システムを用いて、X線源CuKα、加速電圧40kV、管電流30mA、操作速度2θ=0.02°/sec、サンプリング間隔0.02sec、発散スリット1deg、散乱スリット1deg、受光スリット0.3mm、モノクロメーター使用、ゴニオ半径185mmで評価した。
(平均厚さ及び平均底面径の測定)
平均厚さ及び平均底面径は、走査型電子顕微鏡(日本電子製,JSM−6390LV)観察から評価した。厚さ及び底面径の評価の模式図を図1に示す。10個以上の一次粒子の厚さ及び底面径を測定し、それを加重平均することによって、平均厚さ及び平均底面径とした。
The present invention will be specifically described by the following examples, but the present invention is not limited to these examples. In addition, each measuring method in an Example and a comparative example is as follows.
(Powder X-ray diffraction)
Using the MXP3 system made by Mac Science, X-ray source CuKα, acceleration voltage 40 kV, tube current 30 mA, operation speed 2θ = 0.02 ° / sec, sampling interval 0.02 sec, divergence slit 1 deg, scattering slit 1 deg, light receiving slit 0 .3 mm, using a monochromator, evaluated with a gonio radius of 185 mm.
(Measurement of average thickness and average bottom diameter)
The average thickness and the average bottom diameter were evaluated from observation with a scanning electron microscope (manufactured by JEOL, JSM-6390LV). A schematic diagram of evaluation of thickness and bottom diameter is shown in FIG. The thickness and bottom diameter of 10 or more primary particles were measured, and the weighted average was used to obtain the average thickness and average bottom diameter.

実施例1
30重量%のシリカゾル(日産化学製,スノーテックスN−30)、液体アルミン酸ソーダ(住友化学製)、18−クラウン−6(東京化成製)、48重量%の水酸化ナトリウム(東ソー製)、純水を原料として用いた。これらの原料を以下の組成となるように混合し、1時間攪拌して反応混合物を得た。
Example 1
30 wt% silica sol (Nissan Chemical, Snowtex N-30), liquid sodium aluminate (Sumitomo Chemical), 18-crown-6 (Tokyo Kasei), 48 wt% sodium hydroxide (Tosoh), Pure water was used as a raw material. These raw materials were mixed so as to have the following composition and stirred for 1 hour to obtain a reaction mixture.

Si/Al=10
O/Si=14
(18−クラウン−6)/Si=0.087
Na/Si=0.44
OH/Si=0.44
Si / Al 2 = 10
H 2 O / Si = 14
(18-crown-6) /Si=0.087
Na / Si = 0.44
OH / Si = 0.44

次に、得られた反応混合物を、容積約200mlのSUS製の反応容器に移し替え、24時間、室温(約25℃)にて静置した。   Next, the obtained reaction mixture was transferred to a reaction vessel made of SUS having a volume of about 200 ml and allowed to stand at room temperature (about 25 ° C.) for 24 hours.

その後、反応容器を公転式反応装置に設置し、50回転/分で反応容器を公転させながら約30分掛けて110℃まで昇温した。昇温後、反応容器を公転させたまま12日間保持した。結晶化後のスラリーは、放熱し、純水で洗浄した後に、110℃乾燥して粉末を得た。   Thereafter, the reaction vessel was installed in a revolution type reactor, and the temperature was raised to 110 ° C. over about 30 minutes while revolving the reaction vessel at 50 rpm. After the temperature increase, the reaction vessel was held for 12 days while revolving. The slurry after crystallization dissipated heat, washed with pure water, and then dried at 110 ° C. to obtain a powder.

得られた粉末の粉末X線回折パターンを図2に、走査型電子顕微鏡写真を図3,4に示す。得られた粉末はEMT構造純相のゼオライトからなる粉末であった。   The powder X-ray diffraction pattern of the obtained powder is shown in FIG. 2, and scanning electron micrographs are shown in FIGS. The obtained powder was a powder composed of zeolite having an EMT structure pure phase.

また、得られたゼオライトは六角板状であり、その平均厚さは0.16μm、平均底面径は0.89μmであった。このように、本発明のゼオライトは微細な結晶であることがわかった。   Moreover, the obtained zeolite was hexagonal plate shape, the average thickness was 0.16 micrometer, and the average bottom face diameter was 0.89 micrometer. Thus, it was found that the zeolite of the present invention was a fine crystal.

又、得られたゼオライトの組成をICP分析で測定した。その結果、当該ゼオライトのSiO/Alモル比は7.8であった。 Further, the composition of the obtained zeolite was measured by ICP analysis. As a result, the zeolite had a SiO 2 / Al 2 O 3 molar ratio of 7.8.

比較例1
結晶化を静置した状態で行った以外は実施例1と同様にして粉末を得た。
Comparative Example 1
A powder was obtained in the same manner as in Example 1 except that the crystallization was performed in a stationary state.

得られた粉末の粉末X線回折パターンを図5に、走査型電子顕微鏡写真を図6,7に示す。粉末X線回折パターンから、得られた粉末は、EMT構造純相のゼオライトからなる粉末であることが分かった。   A powder X-ray diffraction pattern of the obtained powder is shown in FIG. 5, and scanning electron micrographs are shown in FIGS. From the powder X-ray diffraction pattern, it was found that the obtained powder was a powder made of zeolite having an EMT structure pure phase.

また、得られたゼオライトは六角板状であったが、その平均厚さは0.52μm、平均底面径は4.2μmであり、大きな結晶のゼオライトであった。   Moreover, although the obtained zeolite was hexagonal plate shape, the average thickness was 0.52 micrometer and the average bottom face diameter was 4.2 micrometers, and it was a large crystal zeolite.

又、得られたゼオライトの組成をICP分析で測定した。その結果、当該ゼオライトのSiO/Alモル比は7.8であった。 Further, the composition of the obtained zeolite was measured by ICP analysis. As a result, the zeolite had a SiO 2 / Al 2 O 3 molar ratio of 7.8.

本発明のゼオライトは、触媒、吸着剤、イオン交換剤として用いることができる。例えば、石油精製、又は石炭、天然ガス、バイオ原料を用いた精製における、流動接触分解、水素化分解、水素化脱蝋、アルカンの異性化等の触媒として、高活性、高選択性、高耐コーキング性が期待できる。また石油化学、又は石炭、天然ガス、バイオ原料を用いた、芳香族化、アルキル化、水和反応、脱水反応、転移反応等の触媒として高活性、高選択性、高耐コーキング性が期待できる。   The zeolite of the present invention can be used as a catalyst, an adsorbent, and an ion exchanger. For example, as a catalyst for fluid catalytic cracking, hydrocracking, hydrodewaxing, alkane isomerization, etc. in petroleum refining or refining using coal, natural gas, bio-raw materials, high activity, high selectivity, high resistance Caulking properties can be expected. High activity, high selectivity, and high coking resistance can be expected as a catalyst for aromatization, alkylation, hydration reaction, dehydration reaction, transfer reaction, etc. using petrochemical or coal, natural gas, bio raw materials. .

Claims (5)

平均厚さが0.03μm以上0.3μm以下であり、EMT構造を有する六角板状ゼオライト。   A hexagonal plate-like zeolite having an average thickness of 0.03 μm or more and 0.3 μm or less and having an EMT structure. 平均底面径が0.1μm以上1.0μm以下であることを特徴とする請求項1に記載のEMT構造を有する六角板状ゼオライト。   2. The hexagonal plate-like zeolite having an EMT structure according to claim 1, wherein an average bottom diameter is 0.1 μm or more and 1.0 μm or less. 以下の組成の反応混合物を攪拌しながら結晶化させる請求項1又は2に記載のEMT構造を有する六角板状ゼオライトの製造方法。
Si/Alモル比=9〜11
O/Siモル比=12〜16
(18−クラウン−6)/Siモル比=0.06〜0.10
Na/Siモル比=0.43〜0.50
OH/Siモル比=0.43〜0.50
The method for producing a hexagonal plate-like zeolite having an EMT structure according to claim 1 or 2, wherein a reaction mixture having the following composition is crystallized while stirring.
Si / Al 2 molar ratio = 9-11
H 2 O / Si molar ratio = 12-16
(18-crown-6) / Si molar ratio = 0.06-0.10
Na / Si molar ratio = 0.43 to 0.50
OH / Si molar ratio = 0.43 to 0.50
反応混合物を反応容器に入れ、該反応容器を回転させることで反応混合物を攪拌することを特徴とする請求項3に記載の製造方法。   4. The production method according to claim 3, wherein the reaction mixture is put into a reaction vessel and the reaction mixture is stirred by rotating the reaction vessel. 105℃以上115℃以下で結晶化させることを特徴とする請求項3又は4に記載の製造方法。   The method according to claim 3 or 4, wherein the crystallization is performed at 105 ° C or higher and 115 ° C or lower.
JP2011088830A 2011-04-13 2011-04-13 Microcrystalline zeolite having emt structure, and method for producing the same Withdrawn JP2012218998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011088830A JP2012218998A (en) 2011-04-13 2011-04-13 Microcrystalline zeolite having emt structure, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011088830A JP2012218998A (en) 2011-04-13 2011-04-13 Microcrystalline zeolite having emt structure, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2012218998A true JP2012218998A (en) 2012-11-12

Family

ID=47270905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011088830A Withdrawn JP2012218998A (en) 2011-04-13 2011-04-13 Microcrystalline zeolite having emt structure, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2012218998A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014177567A1 (en) 2013-04-30 2014-11-06 IFP Energies Nouvelles Zeolite adsorbents comprising emt zeolite, method for preparing same and uses thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014177567A1 (en) 2013-04-30 2014-11-06 IFP Energies Nouvelles Zeolite adsorbents comprising emt zeolite, method for preparing same and uses thereof
US9707539B2 (en) 2013-04-30 2017-07-18 IFP Energies Nouvelles Zeolite adsorbents comprising zeolite EMT, process for preparing the same and uses thereof

Similar Documents

Publication Publication Date Title
CN106687411B (en) The method for preparing molecular sieve SSZ-98
CN106470944B (en) molecular sieve SSZ-98
CA2548315C (en) Chabazite-containing molecular sieve, its synthesis and its use in the conversion of oxygenates to olefins
JP2016536240A (en) Molecular sieve, its manufacture and its use
Sharma et al. Synthesis and morphological studies of nanocrystalline MOR type zeolite material
WO2015024382A1 (en) Beta molecular sieve having multi-level channel structure, and preparation method thereof
JP7449948B2 (en) Sintering-resistant metal species in zeolite
KR101839195B1 (en) Aromatic transalkylation using uzm-39 aluminosilicate zeolite
BR112020010711B1 (en) GIS TYPE ZEOLIT, ADSORBENT MATERIAL AND SEPARATION METHOD
CN105618106A (en) Hierarchical pore Hbeta molecular sieve catalyst for preparing diphenylamine by condensing aniline as well as preparation method and application thereof
CN106608636A (en) Preparation method for EUO-structured or NES-structured molecular sieve
JP2014526965A (en) Reduction of nitrogen oxides in gas stream using molecular sieve SSZ-23
JP5810967B2 (en) Microcrystalline chabazite-type zeolite, method for producing the same, and use thereof
JP2014043371A (en) Mse type zeolite and method for producing the same
BR122020007784B1 (en) Zeolitic material comprising zeolitic monocrystals
JP2016166124A (en) Aei zeolite containing titanium and method for producing the same
JP2012218998A (en) Microcrystalline zeolite having emt structure, and method for producing the same
CN111712462B (en) EMM-37 material, method and use thereof
WO2014099339A1 (en) Uzm-43 an euo-nes-non zeolite
JP7142005B2 (en) Method for preparing nanometric zeolite Y
JP6442329B2 (en) Production of CHA-type zeolite with high Si / Al ratio
CN107021504A (en) A kind of preparation method of mesoporous IM-5 molecular sieves
JP5760435B2 (en) Microcrystalline and highly crystalline β-type zeolite and method for producing the same
JP2022511672A (en) High siliceous form of zeolite RHO
CN112520755B (en) SCM-28 molecular sieve, and preparation method and application thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701