JP2012218010A - Shape measuring method in hot rolling of steel sheet and steel plate, and hot-rolling method of the same - Google Patents

Shape measuring method in hot rolling of steel sheet and steel plate, and hot-rolling method of the same Download PDF

Info

Publication number
JP2012218010A
JP2012218010A JP2011084015A JP2011084015A JP2012218010A JP 2012218010 A JP2012218010 A JP 2012218010A JP 2011084015 A JP2011084015 A JP 2011084015A JP 2011084015 A JP2011084015 A JP 2011084015A JP 2012218010 A JP2012218010 A JP 2012218010A
Authority
JP
Japan
Prior art keywords
shape
plate
strain
rolling
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011084015A
Other languages
Japanese (ja)
Other versions
JP5621697B2 (en
Inventor
Toru Akashi
透 明石
Shigeru Ogawa
茂 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011084015A priority Critical patent/JP5621697B2/en
Publication of JP2012218010A publication Critical patent/JP2012218010A/en
Application granted granted Critical
Publication of JP5621697B2 publication Critical patent/JP5621697B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a hot steel sheet and a hot steel plate, in which a plate waveform just after completion of rolling of the hot steel sheet and the hot steel plate is precisely measured and the plate wave form is freely made with a rolling mill based on the result.SOLUTION: In a measuring method for measuring the plate waveform after the completion of rolling of the hot steel sheet and the hot steel plate, positions in the sheet passing direction and the sheet width direction and displacement in the height direction are measured on the outlet side of the rolling mill as geometric values, and then, a profile, steepness and elongation strain difference are determined as the featured value of a shape. Further in the method, residual strain which is immanent in the steel plate when measuring is performed in addition to the measured featured value of a shape and it is superimposed on the measured featured value of the shape as the true featured value of the shape imparted from the rolling mill.

Description

本発明は、熱薄鋼板、厚鋼板の圧延終了直後の板波形状を精度よく測定し、その結果をもとに圧延機によって板波形状を自在に作り込む熱薄、厚鋼板の製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a method for producing hot thin and thick steel plates that accurately measure the plate wave shape immediately after the end of rolling of the hot and thin steel plates, and freely create the plate wave shape by a rolling mill based on the results. Is.

鋼板の形状を計測する技術として、例えば特許文献1において開示されるように、複数の光学系距離計から構成される計測装置を鋼板の搬送ライン上に据え付け、この計測装置を通過する鋼板からの光の反射状態から鋼板表面までの距離を求め、鋼板の幅位置と鋼板の通板方向位置に紐付けた鋼板高さとして計測する技術がある。
また、この特許文献1には、厚鋼板の形状制御に、圧延機の後に設置された形状計からのデータをもとに伸び歪差を求め、予め形状不感帯を考慮した計算モデルで求めた伸び歪差の違いを逐次補正し、圧延形状を制御する技術が開示されている。
しかしながら、特許文献1で開示された技術では鋼板の幾何学的な波形状は測定できるが、波形状が発生しても、尚、鋼板に内在する残留歪及び残留応力が存在している情報については把握することが出来ない。
As a technique for measuring the shape of a steel plate, for example, as disclosed in Patent Document 1, a measuring device composed of a plurality of optical distance meters is installed on a steel plate conveyance line, and from a steel plate passing through this measuring device. There is a technique in which a distance from a light reflection state to a steel sheet surface is obtained and measured as a steel sheet height linked to a width position of the steel sheet and a sheet passing direction position of the steel sheet.
In addition, in Patent Document 1, for the shape control of the thick steel plate, an elongation strain difference is obtained based on data from a shape meter installed after the rolling mill, and an elongation obtained in advance by a calculation model in consideration of the shape dead zone. A technique for sequentially correcting a difference in strain difference and controlling a rolling shape is disclosed.
However, although the geometrical wave shape of the steel sheet can be measured with the technique disclosed in Patent Document 1, even if the wave shape is generated, the residual strain and residual stress inherent in the steel sheet are still present. Can not grasp.

また、特許文献2には、圧延機の後に設置された形状計で測定されたデータをもとに伸び歪差を求め、予め形状不感帯を考慮した計算モデルで求めた伸び歪差の違いを逐次補正し、圧延形状を制御する技術が開示されている。
しかし、この形状不感帯の式がどの様に導きだされるのかについては特許文献2に記載されておらず、その定義は明確では無い。また仮に形状不感帯の定義が明らかとなっても、提示されている形状の制御手法では、形状不感帯の歪成分を取り除いたクラウン変化率が制御の対象となっており、非線形性を持つ為、制御が複雑となると言った問題を持っている。
Further, in Patent Document 2, an elongation strain difference is obtained based on data measured by a shape meter installed after a rolling mill, and differences in elongation strain obtained in advance by a calculation model taking into account a shape dead zone are successively determined. A technique for correcting and controlling the rolling shape is disclosed.
However, it is not described in Patent Document 2 how this shape dead zone equation is derived, and its definition is not clear. Even if the definition of the shape dead zone is clarified, the proposed shape control method is controlled by the crown change rate that removes the distortion component of the shape dead zone, and has nonlinearity. Has the problem of becoming complicated.

特許文献3には、鋼板の幅方向歪分布を既知とした際に、座屈方程式を用いて、波形状として幾何学的に変換される歪と座屈後も鋼板内部に内在する歪とに分離して、板形状を予測する技術が開示されている。この特許文献3は、幅方向歪分布を既知として波形状予測をするものであるので、幅方向歪分布が既知とすることができなければ、例えば圧延後などのその後の形状を予測するには不十分である。
一方、非特許文献1には、三角形の残留応力分布(歪)で定式化された座屈のモデルが示されている。特許文献3に開示される予測技術は、この非特許文献1に基づいてモデル化したものである。
In Patent Document 3, when the strain distribution in the width direction of the steel sheet is known, the buckling equation is used to convert the distortion geometrically as a wave shape and the strain inherent in the steel sheet after buckling. A technique for separating and predicting the plate shape is disclosed. Since Patent Document 3 predicts a wave shape with a known width direction strain distribution, if the width direction strain distribution cannot be known, for example, to predict a subsequent shape such as after rolling. It is insufficient.
On the other hand, Non-Patent Document 1 shows a buckling model formulated with a triangular residual stress distribution (strain). The prediction technique disclosed in Patent Document 3 is modeled based on this Non-Patent Document 1.

特開平5−237546号公報JP-A-5-237546 特開平9−295022号公報Japanese Patent Laid-Open No. 9-295022 特許第4262142号Patent No. 4262142

日本塑性加工学会誌:塑性と加工、第28巻第312号(1987−1)p58−66Journal of Japan Society for Technology of Plasticity: Plasticity and Processing, Vol. 28, No. 312 (1987-1) p58-66

本発明は、上記問題点に鑑み、熱薄鋼板、厚鋼板の圧延終了直後の板波形状を精度よく測定し、その結果をもとに圧延機によって板波形状を自在に作り込む熱薄、厚鋼板の製造方法を提供することを目的とする。   In view of the above problems, the present invention accurately measures the sheet wave shape immediately after the end of rolling of the hot and thin steel sheet and the thick steel sheet, and based on the result, the thin sheet is freely formed by the rolling mill, It aims at providing the manufacturing method of a thick steel plate.

上記の目的を達成するため、本発明者は圧延による形状予測について広く研究を行った。これにより以下の知見を得ている。
特許文献3に示されるように、鋼板の板幅方向に分布する塑性歪は座屈し、波形状として幾何学的に変換される歪と座屈後も鋼板内部に内在する歪とに分かれることが知られている。このため、幾何学的な情報のみを得ることができる形状計を圧延機の後に設置し、当該形状計によって取得した形状データに基づいてフィードバック制御をして圧延形状を自在にコントロールしようとしても、鋼板内部に内在する残留歪や残留応力を考慮しない部分は誤差となってしまう為、精度の良い形状制御を実施することは不可能である。
In order to achieve the above object, the present inventor has extensively studied shape prediction by rolling. As a result, the following knowledge has been obtained.
As shown in Patent Document 3, the plastic strain distributed in the plate width direction of the steel plate is buckled, and can be divided into a strain that is geometrically converted as a wave shape and a strain that is inherent in the steel plate even after buckling. Are known. For this reason, even when trying to freely control the rolling shape by installing a shape meter that can obtain only geometric information after the rolling mill and performing feedback control based on the shape data acquired by the shape meter, A portion that does not take into account the residual strain and residual stress inherent in the steel sheet becomes an error, and therefore it is impossible to perform accurate shape control.

特許文献3は、幅方向歪分布を既知としてその値を用いて波形状予測をするものである。したがって、特許文献3に開示された技術では、圧延による幅方向歪分布の測定をする場合、波形状として現れるものは測定できても、鋼板内部に内在する歪はクリープによって減衰してしまい、格子歪等から直接測定するのは困難である。また、この減衰分を推量するにもその値に精度があるかどうか疑問であった。   Japanese Patent Laid-Open No. 2004-228688 assumes that the width direction strain distribution is known and uses the value to predict the wave shape. Therefore, in the technique disclosed in Patent Document 3, when measuring the strain distribution in the width direction by rolling, even though what appears as a wave shape can be measured, the strain inherent in the steel sheet is attenuated by creep, and the lattice It is difficult to measure directly from distortion or the like. In addition, it was questioned whether the value of this attenuation was accurate.

これに対し、本発明者は鋭意研究を加え、圧延によって加えられる残留応力もしくは残留歪の幅方向分布が4次以下の簡単なモデルで精度よく近似できることを発見し、これに基づいて鋼板内部に内在する歪の幅方向分布を解析する方法を開発した。
また、この解析方法と測定値とを比較することで直接の測定値から補正して、鋼板内部に内在する歪の幅方向分布を得ることも可能となった。本発明の要旨は以下の通りである。
On the other hand, the present inventor conducted intensive research and found that the residual stress or residual strain applied by rolling can be accurately approximated with a simple model of the fourth order or less. A method to analyze the widthwise distribution of the inherent strain was developed.
Further, by comparing this analysis method with the measured value, it is possible to obtain a distribution in the width direction of the strain inherent in the steel sheet by correcting from the directly measured value. The gist of the present invention is as follows.

(1)熱薄鋼板、厚鋼板の圧延終了後の板波形状を、幾何学的値として圧延機出側で板通板方向及び板幅方向位置と高さ方向変位を測定し、形状特徴量としてプロフィール、急峻度、伸び歪差を求める測定方法において、測定した形状特徴量に加え、測定時に鋼板に内在する残留歪ないし残留応力を解析または測定によって求めて、前記測定した形状特徴量と重ね合わせをすることによって圧延機から付与された真の形状特徴量を求めることを特徴とする薄鋼板及び厚鋼板の熱間圧延における形状測定方法。 (1) The plate wave shape after the end of rolling of hot and thin steel plates and thick steel plates is measured as the geometric value of the plate feed plate direction, plate width direction position and height direction displacement on the rolling mill delivery side, and the shape feature amount In the measurement method for obtaining the profile, steepness, and elongation strain difference, in addition to the measured shape feature amount, the residual strain or residual stress inherent in the steel sheet at the time of measurement is obtained by analysis or measurement, and the measured shape feature amount is overlaid. A shape measuring method in hot rolling of a thin steel plate and a thick steel plate, characterized in that a true shape feature amount given from a rolling mill is obtained by combining.

(2)前記形状予測方法における測定時に鋼板に内在する前記残留歪ないし残留応力の予測については、鋼板の板厚、板幅、張力と板センターで鋼板を左右に分割し、センター部を原点とした1次〜4次関数或いは台形に2次関数分布の重ね合わせを仮定した残留歪の幅方向分布を平板の座屈方程式またはFEMを用いて、決定される板の座屈歪ないし座屈応力を前記残留歪ないし残留応力とすることを特徴とする前記(1)記載の薄鋼板及び厚鋼板の熱間圧延における形状測定方法。
(3)前記(1)または(2)で求めた真の形状特徴量に基づき、圧延機の形状作り込み機構を用いて、フィードバック制御によって所定の波形状とする薄鋼板及び厚鋼板の熱間圧延方法。
(2) For the prediction of the residual strain or residual stress inherent in the steel plate at the time of measurement in the shape prediction method, the steel plate is divided into left and right by the plate thickness, plate width, tension and plate center of the steel plate, and the center portion is the origin. The residual strain width direction distribution assuming the superposition of the quadratic function distribution on the first to fourth order functions or trapezoids is determined using the buckling equation or FEM of the flat plate, and the buckling strain or buckling stress of the plate determined. Is the residual strain or residual stress, the shape measuring method in hot rolling of the thin steel plate and the thick steel plate according to the above (1).
(3) Based on the true shape feature value obtained in (1) or (2) above, the hot rolling of a thin steel plate and a thick steel plate that has a predetermined corrugated shape by feedback control using the shape forming mechanism of the rolling mill Rolling method.

形状計に代表される幾何学的形状測定手段のみをどのように用いても、鋼板に内在している残留歪及び応力を測定することは不可能である。しかし、本発明(1)による形状測定方法によれば、板波形状に表れない波形状発生後も内在する残留歪または残留応力と、形状計で測定した幾何学的形状測定によって求められた形状特徴量としての伸び歪分布または残留応力分布とを重ね合わせることによって誤差の少ない、いわば“真の”伸び歪分布(真の形状特徴量)を決定できるようになる。   It is impossible to measure the residual strain and stress inherent in the steel plate no matter how the geometric shape measuring means represented by the shape meter is used. However, according to the shape measuring method according to the present invention (1), the residual strain or residual stress inherent after the generation of the wave shape that does not appear in the plate wave shape, and the shape obtained by the geometric shape measurement measured by the shape meter By superimposing the elongation strain distribution or the residual stress distribution as the feature amount, it is possible to determine a so-called “true” elongation strain distribution (true shape feature amount) with little error.

また本発明(2)より、残留歪分布をセンター中心に左右に分割し、左右それぞれセンター部を原点とした簡易な分布関数を規定し、板厚、板幅、残留歪分布、張力を入力し、平板の固有座屈歪式により座屈する幅方向歪分布を求めることができる。この幅方向歪分布は、鋼板が波形状発生後も内在する予測残留歪分布であり、形状計で測定した幾何学的形状測定によって求められた形状特徴量としての伸び歪分布と前述の予測残留歪分布を重ね合わせることによって誤差の少ない“真の”伸び歪分布(真の形状特徴量)を決定できるようになる。   Also, according to the present invention (2), the residual strain distribution is divided into left and right with the center as the center, a simple distribution function is defined with the center at the left and right as the origin, and the thickness, width, residual strain distribution, and tension are input. The strain distribution in the width direction that buckles can be obtained by the inherent buckling strain equation of the flat plate. This strain distribution in the width direction is a predicted residual strain distribution inherent in the steel sheet even after the corrugation occurs. The strain distribution as a shape feature obtained by geometric shape measurement measured with a shape meter and the above-mentioned predicted residual strain distribution. By superimposing the strain distributions, it is possible to determine a “true” elongation strain distribution (true shape feature amount) with less error.

また、本発明(1)、(2)により、鋼板に付与された歪分布を高精度に把握することが可能となるので、(1)または(2)で求めた真の形状特徴量を基とする圧延機の形状作り込み機構を用いたフィードバック制御によって、所定の波形状とすることが可能となる。すなわち、本発明(3)は、圧下設定をする際に、当該“真の形状特徴量”で補正された形状制御量を用いるので、所定の板形状を高い精度で得ることができる。   In addition, according to the present invention (1) and (2), it is possible to grasp the strain distribution applied to the steel sheet with high accuracy, and therefore, based on the true shape feature amount obtained in (1) or (2). It is possible to obtain a predetermined wave shape by feedback control using the shape forming mechanism of the rolling mill. That is, according to the present invention (3), the shape control amount corrected with the “true shape feature amount” is used when setting the reduction, so that a predetermined plate shape can be obtained with high accuracy.

本発明請求項1、2、3の好ましい実施形態(リバース圧延)を示した図である。It is the figure which showed preferable embodiment (reverse rolling) of Claims 1, 2, and 3 of this invention. 本発明請求項1、2、3の好ましい実施形態(タンデム圧延)を示した図である。It is the figure which showed preferable embodiment (tandem rolling) of Claims 1, 2, and 3 of this invention. 形状計と演算装置と制御ロジックと形状制御アクチュエータを説明した図である。It is a figure explaining the shape meter, the arithmetic unit, the control logic, and the shape control actuator. 本発明で仮定する残留歪分布の分布例を示した図である。It is the figure which showed the example of distribution of the residual strain distribution assumed by this invention. 固有座屈歪計算を実施する際に設定する条件別の拘束条件を示した図である。It is the figure which showed the constraint conditions according to the conditions set when implementing an intrinsic buckling strain calculation. 形状計で測定された波形状の図である。It is a figure of the wave shape measured with the shape meter. 形状計から得られた形状データを演算して求めたセンター基準の伸び歪差分布を示した図である。It is the figure which showed the center reference | standard elongation-strain difference distribution calculated | required by calculating the shape data obtained from the shape meter.

以下、本発明の実施形態に係る鋼板の形状測定方法及び当該形状測定方法を用いた形状制御方法について、図面を参照しながら説明する。
図1、2に本発明請求項1、2、3の好ましい実施形態を示す。厚鋼板圧延設備には種々の形式のものがあるが、少なくとも図1に示すリバース圧延を行う仕上リバース圧延機1或いは図2に示す仕上タンデム圧延機2を有する設備が本発明の対象となっている。
仕上リバース圧延機1或いは仕上タンデム圧延機2は、通常は一対の作業ロールを一対の補強ロールで支持する機構の4段圧延機が用いられる場合が多いが、2段圧延機や6段以上の多段圧延機であってもよい。また、通常は鋼板を通板する為の通板ロール4が設置される。
Hereinafter, a shape measuring method of a steel sheet and a shape control method using the shape measuring method according to an embodiment of the present invention will be described with reference to the drawings.
1 and 2 show preferred embodiments of claims 1, 2 and 3 of the present invention. There are various types of steel plate rolling equipment, but at least a finishing reverse rolling mill 1 for performing reverse rolling shown in FIG. 1 or a finishing tandem rolling mill 2 shown in FIG. 2 is an object of the present invention. Yes.
As the finishing reverse rolling mill 1 or the finishing tandem rolling mill 2, a four-high rolling mill having a mechanism for supporting a pair of work rolls with a pair of reinforcing rolls is often used. A multi-stage rolling mill may be used. Usually, a sheet passing roll 4 for passing a steel sheet is installed.

圧延機出側、例えば圧延ロールの下流側に形状計3を設置し、圧延直後の鋼板の幾何学的な板波形状、即ち、板通板方向及び板幅位置毎の波高さを計測する。尚、リバース圧延の場合は図1では圧延機前後に形状計3を設置した図となっているが、どちらか一方だけに設置し、これにより形状を測定しても良い。またタンデム圧延の場合は最終スタンドの後に形状計3を設置した図となっているが、各スタンド後面に設置することも可能である。   A shape meter 3 is installed on the exit side of the rolling mill, for example, on the downstream side of the rolling roll, and the geometric sheet wave shape of the steel sheet immediately after rolling, that is, the wave height for each sheet passing direction and each sheet width position is measured. In the case of reverse rolling, in FIG. 1, the shape meter 3 is installed before and after the rolling mill, but the shape may be measured by installing only one of them. In the case of tandem rolling, the shape meter 3 is installed after the final stand, but it can also be installed on the rear surface of each stand.

そしてこの形状データを用いて形状特徴量としてプロフィール、急峻度、伸び歪差を求め、予め板厚、板幅、張力、規格化された残留歪及び応力分布を入力し、鋼板が波座屈後も内部に内在する残留歪及び応力を計算する演算装置5を設ける。
この演算装置5は形状計に持たせても良いし、圧延形状をコントロールするプロコン6に機能を持たせても良い。いずれにしてもこの演算装置5の結果より真の残留歪が判るのでこの結果を受け、所定の形状とする為に荷重、ベンダー、ワークロールシフト、ペアークロス等による形状制御アクチュエータ7を用いて所定の目標形状になるようにフィードバック制御等の公知の形状制御ロジックを用いてコントロールする。この演算装置5の詳細を図3に示す。以下に演算装置5の内容について説明する。
Then, using this shape data, the profile, steepness, and elongation strain difference are obtained as shape features, and the plate thickness, width, tension, standardized residual strain and stress distribution are input in advance. Is also provided with an arithmetic unit 5 for calculating residual strain and stress inherent therein.
The arithmetic unit 5 may be provided in a shape meter, or a function may be provided in the process control 6 that controls the rolling shape. In any case, since the true residual strain is found from the result of the arithmetic unit 5, the result is received, and in order to obtain a predetermined shape, the shape is controlled using a shape control actuator 7 such as a load, a bender, a work roll shift, or a pair cross. Is controlled using a known shape control logic such as feedback control. The details of the arithmetic unit 5 are shown in FIG. The contents of the arithmetic device 5 will be described below.

ステップ1
図4或いは5に示す形状計で計測された幾何学的な形状データは、例えば図6に示すような通板方向、板幅方向位置毎の高さ情報を持った形状データ(xを通板方向、yを幅方向、zを高さ方向と置く)として測定により収集される。
Step 1
The geometric shape data measured by the shape meter shown in FIG. 4 or 5 is, for example, shape data having height information for each position in the plate passing direction and plate width direction as shown in FIG. Direction, y is the width direction, and z is the height direction).

ステップ2
その後、線積分及び歪を定義した下記式(1)、(2)、(3)を使って幾何学的な形状から板幅センター部を原点(基準)とした伸び歪差が演算される。添え字のiは通板方向をN分割したときのi番目の位置を示す。また、添え字のjは板幅方向をM分割したときのj番目の位置を示す。
ε=(Σ(dsij)−Σ(dx))/Σ(dx) (1)
dsij=√(dx +dz ) (2)
Δε‘=ε−εCENTER (3)
Step 2
Thereafter, using the following formulas (1), (2), and (3) that define the line integral and strain, an elongation strain difference is calculated from the geometric shape with the plate width center as the origin (reference). The subscript i indicates the i-th position when the sheet passing direction is divided into N parts. The subscript j indicates the j-th position when the plate width direction is divided into M parts.
ε j = (Σ (ds ij ) −Σ (dx i )) / Σ (dx i ) (1)
ds ij = √ (dx i 2 + dz i 2 ) (2)
Δε j ′ = ε j −ε CENTER (3)

この計算を実行すると図6の形状データは図7に示す伸び歪差に変換される。この図6や図7は板幅方向の分割が細かく測定出来た場合を前提としているが、形状計がセンター部、エッジ部2点の計3点の場合は、精度は落ちるが2次関数による近似としても良い。前述の3点以外にさらにクォータ部WS(ワークサイド)、DS(ドライブサイド)の2点が測定できるならば非対称成分を除いた2次〜4次関数による近似で決定する。   When this calculation is executed, the shape data of FIG. 6 is converted into an elongation strain difference shown in FIG. 6 and 7 are based on the premise that the division in the plate width direction can be measured finely. However, when the shape meter has a total of three points, ie, the center part and the two edge parts, the accuracy is lowered but it depends on the quadratic function. An approximation may be used. In addition to the above-mentioned three points, if two points of the quarter part WS (work side) and DS (drive side) can be measured, it is determined by approximation by a quadratic to quartic function excluding the asymmetric component.

ステップ3
ステップ2で求めた伸び歪においてエッジ部が正の値なら耳波、負の値なら中波と判断し、座屈後も鋼板に内在する残留歪を見積もる為に実施する固有座屈解析の境界条件を決定し、この情報をステップ4に送る。
ここでクォータ波は、基本的に耳波にエッジドロップによる最エッジ部の局所伸びが起因となって発生すると考えられるので固有歪は耳波として扱う。また、この時点で鋼板内部に内在する歪の境界条件は0と置いておく。
Step 3
The boundary of the intrinsic buckling analysis that is performed to estimate the residual strain inherent in the steel plate after buckling, assuming that the edge strain in the elongation obtained in Step 2 is a positive value if the edge is positive, and if it is a negative value, it is a medium wave. Determine the conditions and send this information to step 4.
Here, since the quarter wave is considered to be basically generated due to local elongation of the outermost edge portion due to edge drop to the ear wave, the inherent distortion is treated as an ear wave. At this time, the boundary condition of the strain inherent in the steel sheet is set to 0.

ステップ4
圧延操業で用いるプロコンより予め板厚、板幅、張力情報を収集し、ステップ3で予め求めた圧延形状の特性より、耳波であるのか中波であるのかの情報を元に、最大残留歪で無次元化された残留歪、拘束条件を決定する。おおよその波ピッチが計測できていれば当該ピッチを直接入力しても良い。
ここで、無次元化された残留歪分布は図4に示すようにセンター部を原点に、エッジ部を板の半幅位置とし、最大歪値を1と置く。実線は耳波の場合、破線は中波の条件である。残留歪の分布形状は1次から4次まで示しているが、これまでの本発明者らの鋭意検討によって4次以下でもモデル化で十分精度が良い事が確認されたものである。
なお、鋼板の圧延においては、エッジ部は圧延によってどうしても板幅方向に鋼板が押し出されると言ったエッジドロップ現象が発生するため、エッジドロップが発生している領域は圧延方向に歪が伸びない。その結果、板クラウンが無い場合、台形状の歪分布が発生していると考えられる。そこにロールクラウンや板クラウンが付いて結果として埋め込まれる残留歪を±2次関数分布として重ね合わせた歪分布を用いるとしたものを、台形に2次関数分布の重ね合わせを仮定した残留歪の幅方向分布として用いた。
Step 4
Thickness, width, and tension information is collected in advance from the process control used in the rolling operation, and the maximum residual strain is determined based on the information on whether it is an ear wave or a medium wave based on the characteristics of the rolling shape obtained in Step 3 in advance. To determine the non-dimensional residual strain and constraint conditions. If an approximate wave pitch can be measured, the pitch may be directly input.
Here, as shown in FIG. 4, the dimensionless residual strain distribution has a center portion as the origin, an edge portion as a half-width position of the plate, and a maximum strain value of 1. The solid line is an ear wave, and the broken line is a medium wave condition. Although the distribution shape of the residual strain is shown from the first order to the fourth order, it has been confirmed by modeling so far that the accuracy is sufficiently good even by the fourth order or less by the present inventors.
In the rolling of a steel plate, an edge drop phenomenon occurs in which the steel plate is inevitably pushed out in the plate width direction by rolling at the edge portion, so that the strain in the region where the edge drop is generated does not extend in the rolling direction. As a result, when there is no plate crown, it is considered that a trapezoidal strain distribution is generated. A strain distribution with a roll crown or plate crown attached and the resulting embedded residual strain superimposed as a ± quadratic function distribution is used. It was used as the width direction distribution.

各波の条件に対応した拘束条件を図5に示す。当該図は鋼板のC断面をセンター部からエッジ部までの片側の拘束状態を示しており、破線は座屈時の形状プロフィールのイメージを示している。
ここで耳波条件の場合はセンター部を幅と高さ変位を拘束しエッジ部は拘束無し、中波条件の場合はセンター部を通板方向軸廻りの回転を拘束しエッジ部は高さ方向のみ拘束、クォータ条件の場合はセンター部を幅と高さ変位を拘束しエッジ部も高さ方向に拘束する。
The constraint conditions corresponding to the conditions of each wave are shown in FIG. The said figure has shown the C cross section of the steel plate on the one side restraint state from a center part to an edge part, and the broken line has shown the image of the shape profile at the time of buckling.
Here, in the case of the ear wave condition, the width and height displacement of the center part is restricted and the edge part is not restricted, and in the case of the medium wave condition, the rotation of the center part around the plate direction axis is restricted and the edge part is in the height direction. In the case of only restraint and quota conditions, the center part restrains the width and height displacement, and the edge part also restrains in the height direction.

ステップ5
ステップ4のデータを元にFEM或いは平板の固有座屈解析を実施する。具体的には、特許文献3に示す平板の固有座屈解析や有限要素法を用いた大たわみ解析を実施し、これ以上大きくなると弾性座屈をしてしまう限界の固有座屈歪を求める。そして、この固有歪を座屈後も形状に残留(内在)してしまう歪と決定する。
Step 5
Based on the data of step 4, FEM or flat plate proper buckling analysis is performed. More specifically, the inherent buckling analysis of the flat plate shown in Patent Document 3 and the large deflection analysis using the finite element method are performed, and the limit inherent buckling strain that causes elastic buckling when larger than this is obtained. The inherent strain is determined as a strain that remains (internal) in the shape even after buckling.

平板の固有座屈解析については非特許文献1に示す三角形の残留応力分布(歪)で定式化された座屈のモデルが示されており、任意離散化された分布については特許文献3に従う。特に特許文献3の場合は、残留応力が幅方向に任意に分布した応力分布でも解析が可能なように、また、板幅方向位置毎に離散化された残留応力でも座屈解析が可能なように定式化している。
これらをベースにした座屈方程式により、予め無次元化された長手方向残留歪或いは長手方向残留応力の幅方向分布に対し、幅方向に一様に倍率を掛けて得られた分布で、波ピッチ毎の座屈を開始する応力或いは歪分布を求め、座屈応力或いは歪分布の値が最も低い波ピッチを座屈波ピッチとし、座屈発生の歪或いは応力のクライテリアと決定する。
この形状予測の場合、理論座屈よりも実際は短いピッチで波座屈が発生する場合がある。その場合は、形状計から波座屈ピッチを求め、その波座屈ピッチに対応した座屈発生の歪或いは応力のクライテリアと決定することも可能である。
As for the inherent buckling analysis of a flat plate, a buckling model formulated by a triangular residual stress distribution (strain) shown in Non-Patent Document 1 is shown, and the discretized distribution follows Patent Document 3. In particular, in the case of Patent Document 3, analysis is possible even with a stress distribution in which residual stress is arbitrarily distributed in the width direction, and buckling analysis is also possible with residual stress discretized for each position in the plate width direction. It is formulated into
Based on these buckling equations, a distribution obtained by multiplying the longitudinal residual strain or longitudinal residual stress in the width direction, which has been made dimensionless in advance, by multiplying the width direction uniformly, and the wave pitch The stress or strain distribution for starting buckling is obtained for each time, and the wave pitch with the lowest buckling stress or strain distribution value is defined as the buckling wave pitch and determined as the strain or stress criteria for occurrence of buckling.
In this shape prediction, wave buckling may occur at a pitch that is actually shorter than theoretical buckling. In that case, it is also possible to obtain a wave buckling pitch from a shape meter and determine it as a criterion for strain or stress of occurrence of buckling corresponding to the wave buckling pitch.

ある程度の圧延条件が判っている場合、予め計算して、結果をテーブル化しておき、結果をテーブルに対する内挿関数で決定しても良い。座屈固有歪幅方向分布については1次〜n次までの座屈モードがあるが、基本的に本発明が対象とする熱延、厚鋼板の板厚、板幅の範囲では圧延による座屈モードは対応する固有座屈歪が塑性領域に入ってしまうほど大きくなり、理論上は2次のモードを超えることは無い。従って、計算は1次の結果のみを使用する。   When a certain degree of rolling conditions are known, the results may be calculated in advance, the results may be tabulated, and the results may be determined by an interpolation function for the table. There are buckling modes from the first to the nth order regarding the buckling intrinsic strain width direction distribution, but basically buckling by rolling in the range of the hot rolling, the thickness of the thick steel plate, and the width of the plate which is the object of the present invention. The mode becomes so large that the corresponding intrinsic buckling strain enters the plastic region and theoretically does not exceed the second-order mode. Therefore, the calculation uses only first order results.

ステップ6
ステップ2で求めた伸び歪差分布とステップ5で求めた固有座屈歪分布を重ね合わせし、圧延によって鋼板に加わった正味の残留歪分布(真の形状特徴量)を決定する。これをセンターを中心にWS及びDS毎に計算し実行する。
Step 6
The elongation strain difference distribution obtained in step 2 and the inherent buckling strain distribution obtained in step 5 are overlapped to determine the net residual strain distribution (true shape feature amount) applied to the steel sheet by rolling. This is calculated and executed for each WS and DS around the center.

ステップ7
現在鋼板に加わった正味の残留歪分布(真の形状特徴量)を用いて、所定の圧延形状にする為にどの様に形状制御アクチュエータを動かすかについてPID制御等の制御ロジックを基に制御指令値を決定する。真の形状特徴量が残留歪分布の場合は、これを幅方向伸び率分布やクラウン比率の補正値として用いることができ、真の形状特徴量が残留応力分布の場合は、入側及び/又は出側の張力分布の補正値として用いることができる。
Step 7
Based on the control logic such as PID control, how to move the shape control actuator to achieve a predetermined rolling shape using the net residual strain distribution (true shape feature value) applied to the steel plate Determine the value. When the true shape feature value is a residual strain distribution, this can be used as a correction value for the widthwise elongation distribution or the crown ratio. When the true shape feature value is a residual stress distribution, the entry side and / or It can be used as a correction value for the tension distribution on the delivery side.

ステップ8
ステップ7で決定された制御指令値に基づきベンダー、荷重、張力、ペアークロス、CRS等の形状制御アクチュエータ7を動かし、所定の形状を作り込む。
以上のステップ(STEP)を正味の残留歪を求める演算を行いながら繰り返すループを実行することによって高精度な形状作り込みが可能となる。
ここで正味の残留歪分布を演算する装置は個別で持たせることも、図1、2破線や二重線のように形状計3や制御ロジックの一部としてプロコン6に持たせても良い。
Step 8
Based on the control command value determined in step 7, the shape control actuator 7 such as a bender, load, tension, pair cross, or CRS is moved to create a predetermined shape.
By executing a loop in which the above steps (STEP) are repeated while calculating net residual strain, a highly accurate shape can be created.
Here, the apparatus for calculating the net residual strain distribution may be provided individually, or may be provided in the process controller 6 as part of the shape meter 3 or control logic as shown in the broken lines and double lines in FIGS.

ここで、特許文献3と本発明の違いについて示す。特許文献3は、評価したい平板の残留応力及び歪分布は既知である。この既知な平板の残留応力及び歪分布を平板の座屈方程式やFEMを用いて、これ以上大きいと座屈してしまう座屈限界残留歪或いは応力分布を求める。そして、評価したい平板の残留応力及び歪分布と比較し、小さければそのまま平板は座屈せず、平板に内在し、大きければ座屈後も平板に内在する残留歪或いは応力と座屈して形状に現れる幾何学的な変位から換算される残留応力及び歪分布に分離して形状を予測するものである。   Here, the difference between Patent Document 3 and the present invention will be described. In Patent Document 3, the residual stress and strain distribution of a flat plate to be evaluated are known. The known residual stress and strain distribution of the flat plate is determined by using the buckling equation of the flat plate and FEM, and the buckling limit residual strain or stress distribution that causes buckling if larger than this is obtained. Compared to the residual stress and strain distribution of the flat plate to be evaluated, if it is small, the flat plate does not buckle as it is, but is present in the flat plate, and if it is large, it buckles with the residual strain or stress present in the flat plate and appears in the shape. The shape is predicted by separating into residual stress and strain distribution converted from geometric displacement.

一方、本発明は評価したい平板の残留応力や歪(真の形状特徴量)は不明であり、これを求めようとしている。しかし、本発明の請求項2において、形状計によって面外変形した幾何学的な変位が把握し、何らかの解析または圧延で加わる残留歪及び応力分布(真の形状特徴量)について板幅センターを0点として予め非対称成分を除いた1次〜4次までの関数式または台形に2次関数を重ねた関数式でモデル化し、FEMや平板の座屈方程式を用いて座屈後も平板に内在する残留歪或いは応力を求めて、形状に現れる幾何学的な変位から換算される残留応力及び歪分布と重ね合わせて評価したい平板の残留応力や歪分布を決定する。   On the other hand, according to the present invention, the residual stress and strain (true shape feature amount) of the flat plate to be evaluated are unknown, and this is being obtained. However, in claim 2 of the present invention, the geometric displacement deformed out of plane by the shape meter is grasped, and the sheet width center is set to 0 for the residual strain and stress distribution (true shape feature amount) applied by some analysis or rolling. It is modeled by a functional expression from the first to fourth order excluding the asymmetric component as a point or a function expression in which a quadratic function is superimposed on a trapezoid, and remains in the flat plate even after buckling using FEM or the buckling equation of the flat plate. The residual strain or stress distribution is obtained, and the residual stress or strain distribution of the flat plate to be evaluated is determined by superimposing the residual stress or strain distribution converted from the geometric displacement appearing in the shape.

また、本発明の請求項1では内在する残留歪或いは応力を求める方法として、解析によって求める方法だけでなく、直接的に測定する方法も認めている。
特許文献3も本発明も、評価したい平板の残留応力及び歪分布は座屈後も鋼板に内在する残留応力及び歪分布(座屈のクライテリオン)と座屈後に形状に現れる幾何学的な変位から換算される残留応力及び歪分布を重ね合わせた関係にある点を用いている点は同じである。
Further, according to the first aspect of the present invention, as a method of obtaining the residual residual strain or stress, not only a method of obtaining by analysis but also a method of directly measuring is recognized.
In both Patent Document 3 and the present invention, the residual stress and strain distribution of the flat plate to be evaluated is based on the residual stress and strain distribution (buckling criterion) inherent in the steel plate after buckling and the geometric displacement that appears in the shape after buckling. The point which uses the point which has the relationship which superposed | superposed the residual stress and strain distribution converted is the same.

しかし、特許文献3は評価すべき残留応力及び歪分布(真の形状特徴量)が温度分布等から求められるので既知であるとするのに対し、本発明は圧延によって生じる真の形状特徴量であるので既知として与えられることができない点で大きく異なる。
また、真の形状特徴量を求める為に形状計を用い形状に現れる幾何学的な変位から換算される残留応力及び歪分布を求め、圧延で加わった残留歪及び応力分布を非対称成分を除いた1次〜4次までの関数式または台形に2次関数を重ねた関数式でモデル化した点等で求める対象及び操作が大きく異なる。
さらに、本発明では真の形状特徴量に基づいて圧延の形状制御をするので、所望の板波形状を得ることができる。
尚、ここで述べた応力分布は、歪分布に幅及び厚みに対し一様なヤング率を掛けたものと等価であるとしている。
However, while Patent Document 3 is known because the residual stress and strain distribution (true shape feature amount) to be evaluated is obtained from the temperature distribution or the like, the present invention is a true shape feature amount generated by rolling. It differs greatly in that it cannot be given as known.
In addition, a residual stress and strain distribution converted from geometric displacement appearing in the shape was obtained using a shape meter to obtain the true shape feature amount, and the asymmetric component was removed from the residual strain and stress distribution applied by rolling. The objects and operations to be obtained differ greatly depending on the first to fourth order function expressions or the points modeled by a function expression in which a quadratic function is superimposed on a trapezoid.
Furthermore, in the present invention, since the rolling shape is controlled based on the true shape feature amount, a desired plate wave shape can be obtained.
The stress distribution described here is equivalent to the strain distribution multiplied by a uniform Young's modulus for the width and thickness.

このような発明を図1に示すような厚鋼板のリバース圧延と、図2に示すような薄鋼板のタンデム圧延で実施した。
リバース圧延では、まず、或る中間のパスの終了後直ちに形状計3で形状を測定し、この形状データに基づいて4次式で幅方向伸び歪み差分布を近似する。
次に、この波形状が中波、耳波、クォータ波いずれの波か判断する。その際、1つだけでなく中波と耳波とか耳波とクォータ波等複数の波の組み合わせが有っても良い。これに基づき演算装置5において座屈方程式を解き、この解である座屈限界を鋼板内部に内在する幅方向残留歪分布または残留応力分布とする。
Such an invention was carried out by reverse rolling of a thick steel plate as shown in FIG. 1 and tandem rolling of a thin steel plate as shown in FIG.
In reverse rolling, first, the shape is measured by the shape meter 3 immediately after the end of a certain intermediate pass, and the width direction elongation strain difference distribution is approximated by a quartic equation based on this shape data.
Next, it is determined whether this wave shape is a medium wave, an ear wave, or a quarter wave. At that time, not only one but also a combination of a plurality of waves such as a medium wave and an ear wave or an ear wave and a quarter wave may be present. Based on this, the arithmetic unit 5 solves the buckling equation, and the buckling limit, which is the solution, is defined as the residual strain distribution or residual stress distribution in the width direction inside the steel plate.

上記した通り、鋼板内部に内在する残留歪分布と鋼板内部に内在する残留応力分布とは一様なヤング率を乗じているかいないかの違いであり、本質的には同じものである。このように得た鋼板内部に内在する残留歪分布(残留応力分布)と形状計3で測定された形状から換算された歪分布(応力分布)とを足し合わせ、真の形状特徴量とする。
この真の形状特徴量で形状制御アクチュエータ7であるワークロールベンダーのベンダー力を次パス以降で補正することにより、厚鋼板の形状的中率が従来の形状計の方式を使ったのに比べ、リバース圧延の厚鋼板で15%改善した。
As described above, the residual strain distribution inherent in the steel sheet and the residual stress distribution inherent in the steel sheet are the difference between whether or not they are multiplied by a uniform Young's modulus, and are essentially the same. The residual strain distribution (residual stress distribution) inherent in the steel plate thus obtained and the strain distribution (stress distribution) converted from the shape measured by the shape meter 3 are added to obtain a true shape feature amount.
By correcting the bender force of the work roll bender, which is the shape control actuator 7, with this true shape feature amount after the next pass, the shape median ratio of the thick steel plate is compared with that using the conventional shape meter method. 15% improvement in reverse rolled thick steel plate.

一方、タンデム圧延では、まず、最終スタンドをトップ部が通過後直ちに形状計3で形状を測定し、この形状データに基づいて4次式で幅方向伸び歪み差分布を近似する。
次に、リバース圧延の時と同様にこの波形状が中波、耳波、クォータ波いずれの波か判断する。その際、1つだけでなく中波と耳波とか耳波とクォータ波等複数の波の組み合わせが有っても良い。これに基づき演算装置5において座屈方程式を解き、この解である座屈限界を鋼板内部に内在する幅方向残留歪分布または残留応力分布とする。
On the other hand, in tandem rolling, first, the shape is measured by the shape meter 3 immediately after the top portion passes through the final stand, and the width direction elongation strain difference distribution is approximated by a quartic equation based on the shape data.
Next, as in the case of reverse rolling, it is determined whether this wave shape is a medium wave, an ear wave, or a quarter wave. At that time, not only one but also a combination of a plurality of waves such as a medium wave and an ear wave or an ear wave and a quarter wave may be present. Based on this, the arithmetic unit 5 solves the buckling equation, and the buckling limit, which is the solution, is defined as the residual strain distribution or residual stress distribution in the width direction inside the steel plate.

また、リバース圧延の時と同様に、このように得た鋼板内部に内在する残留歪分布(残留応力分布)と形状計3で測定された形状から換算された歪分布(応力分布)とを足し合わせ、真の形状特徴量とする。
この真の形状特徴量で形状制御アクチュエータ7であるワークロールベンダーのベンダー力を最終スタンドでリアルタイムに補正することにより、薄鋼板の形状的中率が従来の形状計の方式を使ったのに比べ、熱延鋼板の形状的中率では20%改善した。
Similarly to the reverse rolling, the residual strain distribution (residual stress distribution) inherent in the steel plate thus obtained and the strain distribution (stress distribution) converted from the shape measured by the shape meter 3 are added. Together, the true shape feature value is obtained.
By correcting the bender force of the work roll bender, which is the shape control actuator 7, with this true shape feature value in real time at the final stand, the shape medianity of the thin steel sheet can be compared with the conventional shape meter method. The shape median of the hot-rolled steel sheet was improved by 20%.

1 リバース圧延機
2 タンデム圧延機
3 形状計
4 通板ロール
5 演算装置
6 プロコン
7 形状制御アクチュエータ
DESCRIPTION OF SYMBOLS 1 Reverse rolling mill 2 Tandem rolling mill 3 Shape meter 4 Feeding plate roll 5 Arithmetic device 6 Process control 7 Shape control actuator

Claims (3)

熱薄鋼板、厚鋼板の圧延終了後の板波形状を、幾何学的値として圧延機出側で板通板方向及び板幅方向位置と高さ方向変位を測定し、形状特徴量としてプロフィール、急峻度、伸び歪差を求める測定方法において、測定した形状特徴量に加え、測定時に鋼板に内在する残留歪ないし残留応力を解析または測定によって求めて、前記形状特徴量と重ね合わせをすることによって、圧延機から付与された真の形状特徴量をも同時に求めることを特徴とする薄鋼板及び厚鋼板の熱間圧延における形状測定方法。
The sheet wave shape after the end of rolling of the hot thin steel plate and the thick steel plate is measured as a geometric value on the delivery side of the rolling mill and the plate width direction position and the plate width direction position and the height direction displacement, and is profiled as a shape feature amount. In the measurement method for determining the steepness and the elongation strain difference, in addition to the measured shape feature amount, the residual strain or residual stress inherent in the steel sheet at the time of measurement is obtained by analysis or measurement, and is superposed on the shape feature amount. A shape measuring method in hot rolling of a thin steel plate and a thick steel plate, wherein a true shape feature amount given from a rolling mill is obtained at the same time.
前記形状予測方法における測定時に鋼板に内在する前記残留歪ないし残留応力の予測については、鋼板の板厚、板幅、張力と板センターで鋼板を左右に分割し、センター部を原点とした1次〜4次関数或いは台形に2次関数分布の重ね合わせを仮定した残留歪の幅方向分布を平板の座屈方程式またはFEMを用いて、決定される板の座屈歪ないし座屈応力を残留歪ないし残留応力とすることを特徴とする請求項1記載の薄鋼板及び厚鋼板の熱間圧延における形状測定方法。
Regarding the prediction of the residual strain or residual stress inherent in the steel plate at the time of measurement in the shape prediction method, the steel plate is divided into right and left by the plate thickness, plate width, tension, and plate center of the steel plate, and the primary portion with the center portion as the origin ˜4th order function or trapezoidal quadratic function distribution is assumed to be the residual strain width direction distribution using plate buckling equation or FEM to determine the buckling strain or buckling stress of the plate determined from residual strain. The shape measuring method in hot rolling of a thin steel plate and a thick steel plate according to claim 1, wherein the shape is a residual stress.
請求項1または2で求めた真の形状特徴量に基づき、圧延機の形状作り込み機構を用いて、フィードバック制御によって所定の波形状とする薄鋼板及び厚鋼板の熱間圧延方法。
A hot rolling method for thin steel plates and thick steel plates that have a predetermined corrugated shape by feedback control using a shape-making mechanism of a rolling mill based on the true shape feature amount obtained in claim 1 or 2.
JP2011084015A 2011-04-05 2011-04-05 Shape measuring method in hot rolling of thin steel plate and thick steel plate, and hot rolling method of thin steel plate and thick steel plate Active JP5621697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011084015A JP5621697B2 (en) 2011-04-05 2011-04-05 Shape measuring method in hot rolling of thin steel plate and thick steel plate, and hot rolling method of thin steel plate and thick steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011084015A JP5621697B2 (en) 2011-04-05 2011-04-05 Shape measuring method in hot rolling of thin steel plate and thick steel plate, and hot rolling method of thin steel plate and thick steel plate

Publications (2)

Publication Number Publication Date
JP2012218010A true JP2012218010A (en) 2012-11-12
JP5621697B2 JP5621697B2 (en) 2014-11-12

Family

ID=47270122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011084015A Active JP5621697B2 (en) 2011-04-05 2011-04-05 Shape measuring method in hot rolling of thin steel plate and thick steel plate, and hot rolling method of thin steel plate and thick steel plate

Country Status (1)

Country Link
JP (1) JP5621697B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106623429A (en) * 2016-10-21 2017-05-10 过冬 Rolling forming method for low-oxygen-content aero titanium alloy precision thin sheet
US10307806B2 (en) 2014-09-16 2019-06-04 Nippon Steel & Sumitomo Metal Corporation Rolling control method for metal strip, rolling control apparatus, and manufacturing method for rolled metal strip

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246918A (en) * 1988-08-04 1990-02-16 Showa Alum Corp Automatic control method for rolling foil or the like
JPH05237546A (en) * 1991-12-06 1993-09-17 Yoshikawa Kogyo Co Ltd Straightening device
JPH09295022A (en) * 1996-05-07 1997-11-18 Nkk Corp Shape control method in reverse rolling
JP2002045907A (en) * 2000-08-02 2002-02-12 Nittetsu Plant Designing Corp Method and device for controlling flatness of metallic sheet
JP2002066603A (en) * 2000-08-16 2002-03-05 Nippon Steel Corp Thick steel plate excellent in secondary workability and manufacturing method therefor
JP4262142B2 (en) * 2003-10-28 2009-05-13 新日本製鐵株式会社 Metal plate shape prediction method and metal plate manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246918A (en) * 1988-08-04 1990-02-16 Showa Alum Corp Automatic control method for rolling foil or the like
JPH05237546A (en) * 1991-12-06 1993-09-17 Yoshikawa Kogyo Co Ltd Straightening device
JPH09295022A (en) * 1996-05-07 1997-11-18 Nkk Corp Shape control method in reverse rolling
JP2002045907A (en) * 2000-08-02 2002-02-12 Nittetsu Plant Designing Corp Method and device for controlling flatness of metallic sheet
JP2002066603A (en) * 2000-08-16 2002-03-05 Nippon Steel Corp Thick steel plate excellent in secondary workability and manufacturing method therefor
JP4262142B2 (en) * 2003-10-28 2009-05-13 新日本製鐵株式会社 Metal plate shape prediction method and metal plate manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10307806B2 (en) 2014-09-16 2019-06-04 Nippon Steel & Sumitomo Metal Corporation Rolling control method for metal strip, rolling control apparatus, and manufacturing method for rolled metal strip
CN106623429A (en) * 2016-10-21 2017-05-10 过冬 Rolling forming method for low-oxygen-content aero titanium alloy precision thin sheet

Also Published As

Publication number Publication date
JP5621697B2 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
JP4452323B2 (en) Learning method of rolling load prediction in hot strip rolling.
EP2737963B1 (en) Distortion calculation method and rolling system
JP6172401B2 (en) Rolling control method of metal plate, rolling control device, and manufacturing method of rolled metal plate
JP5621697B2 (en) Shape measuring method in hot rolling of thin steel plate and thick steel plate, and hot rolling method of thin steel plate and thick steel plate
JP2016078057A (en) Slab camber suppression method, camber suppression device, and slab guiding device
JP3844280B2 (en) Reduction leveling setting method in sheet rolling
JP4262142B2 (en) Metal plate shape prediction method and metal plate manufacturing method
JP5903869B2 (en) Mil pacing control method in hot rolling line
JP2007203303A (en) Shape control method in cold rolling
JP6036857B2 (en) Rolling mill control method, rolling mill control device, and rolled material manufacturing method
JP7156317B2 (en) Rolling mill control method, rolling mill control device, and steel plate manufacturing method
JP4423763B2 (en) Steel plate manufacturing method
JP5557719B2 (en) Rolling control method
JP5557576B2 (en) Hot straightening method for steel
JP2003311326A (en) Steel plate manufacturing method
JP6519535B2 (en) Pressure reduction control device and pressure reduction control method
JP2006122980A (en) Method for predicting deformation resistance of rolling material and frictional coefficient between roll and rolling material in tandem cold rolling mill, and tandem cold rolling method
JP4099915B2 (en) Control method of reversible rolling mill
JP7393646B2 (en) Method for controlling meandering of rolled material
JP2002045907A (en) Method and device for controlling flatness of metallic sheet
JP7156318B2 (en) Rolling mill control method, rolling mill control device, and steel plate manufacturing method
JP7052456B2 (en) Manufacturing method of differential thick plate, tandem rolling mill, and rolling equipment
JP3773736B2 (en) Method of predicting buckling limit bending radius, bending method of buckling limit width / thickness ratio, bending method of aluminum alloy profile and recording medium in bending of aluminum alloy profile
JP6562010B2 (en) Control device and control method for rolling mill
JP2003285113A (en) Method for producing metal plate having good plate profile

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R151 Written notification of patent or utility model registration

Ref document number: 5621697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350