JP2012216845A - Sample inspection device and creation method for absorption current image - Google Patents

Sample inspection device and creation method for absorption current image Download PDF

Info

Publication number
JP2012216845A
JP2012216845A JP2012112054A JP2012112054A JP2012216845A JP 2012216845 A JP2012216845 A JP 2012216845A JP 2012112054 A JP2012112054 A JP 2012112054A JP 2012112054 A JP2012112054 A JP 2012112054A JP 2012216845 A JP2012216845 A JP 2012216845A
Authority
JP
Japan
Prior art keywords
sample
probe
electron beam
signal
absorption current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012112054A
Other languages
Japanese (ja)
Other versions
JP5509255B2 (en
Inventor
Tomoharu Obuki
友晴 尾吹
Hiroshi Toyama
博 遠山
Yasuhiro Mitsui
泰裕 三井
Munetoshi Fukui
宗利 福井
Yasuhiko Nara
安彦 奈良
Toru Ando
徹 安藤
Katsuo Oki
克夫 大木
Tsutomu Saito
勉 齋藤
Masaaki Komori
正明 古森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2012112054A priority Critical patent/JP5509255B2/en
Publication of JP2012216845A publication Critical patent/JP2012216845A/en
Application granted granted Critical
Publication of JP5509255B2 publication Critical patent/JP5509255B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sample inspection device and a creation method for an absorption current image which can acquire a clear absorption current image from an absorbed current detected by using a plurality of probes without including difference in amplification rate in input, and can improve measurement efficiency.SOLUTION: A plurality of probes 4 are brought into contact with a sample 2, and while irradiating the sample 2 with an electron beam 1, current that flows through the probes 4 is measured, and signals from at least two probes 4 are input into a differential amplifier 6. Output from the differential amplifier 6 is amplified and an absorption current image 7 is created on the basis of the output from the differential amplifier 6 and scanning information of the electron beam 1. Thereby, The clear absorption current image 7 can be obtained without including difference in amplification rate in input, and measurement efficiency in failure analysis of the semiconductor sample 2 can be improved.

Description

本発明は、半導体試料等の解析を行う試料検査装置及び、それを用いた吸収電流像の作成方法に関し、例えば、半導体試料等の配線における電気不良箇所を特定する技術に関する。   The present invention relates to a sample inspection apparatus for analyzing a semiconductor sample or the like and a method for creating an absorption current image using the same, for example, to a technique for identifying an electrical failure location in wiring of a semiconductor sample or the like.

半導体表面に回路が形成された半導体試料において、欠陥箇所の特定はデバイスの微細化にともない困難となってきており、その不良解析には膨大な時間を要している。そのため、OBIRCH(Optical Beam Induced Resistance Change)やEBテスタなど解析装置が現在使われている。   In a semiconductor sample in which a circuit is formed on a semiconductor surface, it is difficult to specify a defective portion as the device is miniaturized, and the failure analysis requires a great deal of time. Therefore, analysis devices such as OBIRCH (Optical Beam Induced Resistance Change) and EB tester are currently used.

上記半導体試料の不良解析において、配線に関する不良解析として、近年電子線を半導体試料表面に照射し、配線から吸収された電流あるいは半導体試料から放出された二次的な信号を解析/画像化する技術が注目されている。   In the semiconductor sample defect analysis, as a defect analysis related to wiring, in recent years, an electron beam is irradiated on the surface of a semiconductor sample, and a current absorbed from the wiring or a secondary signal emitted from the semiconductor sample is analyzed / imaged. Is attracting attention.

例えば、特許文献1には、配線パターンが形成された半導体試料において、配線パターンの両端あるいは片側に探針を接触させ、電子線を上記半導体試料上の配線パターンに走査させ、探針に流れる電流を測定/画像化することにより不良箇所を特定する技術が開示されている。   For example, in Patent Document 1, in a semiconductor sample on which a wiring pattern is formed, a probe is brought into contact with both ends or one side of the wiring pattern, an electron beam is scanned over the wiring pattern on the semiconductor sample, and a current flowing through the probe is detected. A technique for identifying a defective portion by measuring / imaging the image is disclosed.

また、特許文献2には、複数の探針からの信号を増幅させ、それらの信号の差を取り、その差動増幅信号を走査させ像表示させる技術、及び照射電子線を変調させ走査し、前記同様差動増幅信号を走査させ像表示させる技術が開示されている。   Patent Document 2 discloses a technique for amplifying signals from a plurality of probes, taking a difference between the signals, scanning the differential amplified signal to display an image, and modulating and scanning an irradiation electron beam, Similarly to the above, a technique for scanning a differential amplification signal and displaying an image is disclosed.

特開2002−368049号公報JP 2002-368049 A 特開2003−86913号公報JP 2003-86913 A

上記従来技術に記載した通り、探針より入力された電流の測定において、試料に接触させる探針を一方は電流増幅器に、もう一方を接地させる接続とし、その探針からの信号を電流増幅器にて測定した場合、以下のような状況となる。   As described in the above prior art, in the measurement of the current input from the probe, one probe that contacts the sample is connected to the current amplifier and the other is connected to the ground, and the signal from the probe is connected to the current amplifier. When measured, the situation is as follows.

配線の両端に探針を接触させ、この状態で電子線を半導体試料上に照射/走査させると、配線に入力された電流(吸収電流)は、電子線が当たった点から一端は接地に、もう一端は電流増幅器に向かって電流(吸収電流)が流れる。この際、電子線が当たった点から上記各探針の接触させた点まで、もともと配線が持っている抵抗を分割することになる。電子線から配線に入力された吸収電流はその抵抗値によって分流され、接地側あるいは電流増幅器側に入力される。この測定方法を用いると、配線に異常があった場合、抵抗値の異状による差が観察できるため、不良箇所の特定が可能となる。しかし、配線の抵抗値が電流増幅器の入力インピーダンスと比較し小さいと、電流増幅器よりも接地側に吸収電流が流れる。この差が大きければ両者に流れる吸収電流の差はその分広がることとなり、電流増幅器側に吸収電流が流れ難くなる。このため、抵抗値が小さい配線の測定ができなくなり、不良箇所の特定が出来ない。   When the probe is brought into contact with both ends of the wiring, and the electron beam is irradiated / scanned on the semiconductor sample in this state, the current (absorption current) input to the wiring is grounded from the point where the electron beam hits, At the other end, a current (absorbed current) flows toward the current amplifier. At this time, the resistance inherent in the wiring is divided from the point where the electron beam hits to the point where each of the probes contacts. The absorbed current input from the electron beam to the wiring is shunted by the resistance value and input to the ground side or the current amplifier side. When this measurement method is used, if there is an abnormality in the wiring, a difference due to an abnormality in the resistance value can be observed, so that a defective portion can be specified. However, when the resistance value of the wiring is smaller than the input impedance of the current amplifier, an absorption current flows to the ground side rather than the current amplifier. If this difference is large, the difference between the absorption currents flowing through both of them will increase accordingly, and the absorption current will hardly flow to the current amplifier side. For this reason, it is impossible to measure a wiring having a small resistance value, and it is impossible to specify a defective portion.

同じく2本の探針を使用した測定の場合、従来の構成だと差像増幅器に入力される前段に増幅器が構成されており、探針から入力された電流が、異なる増幅器にて増幅された後に差動増幅器に入力される。この場合、前記差動増幅器の前段の増幅器間機差による増幅率の差を含んだ状態で増幅された信号が差動増幅器に入力されるため、結果各探針より入力された電流がそれぞれ異なった増幅率で増幅された信号間の差信号を差動増幅器にて増幅し、実際の電流と異なる値を測定する結果となる場合がある。   Similarly, in the case of measurement using two probes, an amplifier is configured before the input to the difference image amplifier in the conventional configuration, and the current input from the probe is amplified by different amplifiers. It is input to the differential amplifier later. In this case, since the amplified signal is input to the differential amplifier in a state including the difference in amplification factor due to the difference between the amplifiers in the previous stage of the differential amplifier, the current input from each probe is different as a result. In some cases, the difference signal between the signals amplified at the amplification factor is amplified by a differential amplifier, and a value different from the actual current is measured.

また、差動増幅器への入力信号の内、片側の信号がもう一方に比べて極端に大きく増幅された場合、出力が正負どちらか片方に振切れてしまう場合がある。この状態を回避する為に、それぞれの増幅器を調整する同一増幅率,同一オフセットに正確に調整するという必要があり、測定自体も煩雑なものとなる。   In addition, when the signal on one side of the input signal to the differential amplifier is amplified much larger than the other signal, the output may swing to one of the positive and negative. In order to avoid this state, it is necessary to accurately adjust to the same amplification factor and the same offset for adjusting each amplifier, and the measurement itself becomes complicated.

さらに、差動増幅器を使用する為、探針を配線の両端に接触させると、探針から差動増幅器の入力までの接続ケーブルで、入力端子間にループが出来る。このループが磁場の影響を受けるため、磁場に対する遮蔽をしない場合、探針からの入力電流による信号に、磁場による誘導起電力と配線のインピーダンスによって、ノイズとして直接重畳されてしまう場合がある。   Furthermore, since a differential amplifier is used, when the probe is brought into contact with both ends of the wiring, a loop is formed between the input terminals by a connection cable from the probe to the input of the differential amplifier. Since this loop is affected by the magnetic field, if the magnetic field is not shielded, it may be directly superimposed on the signal due to the input current from the probe as noise due to the induced electromotive force due to the magnetic field and the impedance of the wiring.

本発明の目的は、複数本の探針を用いて検出された吸収電流から、入力間の増幅率の差を含むことなく鮮明な吸収電流像を取得し、測定効率を向上させることに関する。   An object of the present invention relates to improving a measurement efficiency by acquiring a clear absorption current image from an absorption current detected using a plurality of probes without including a difference in amplification factor between inputs.

本発明では、複数の探針を試料に接触させ、試料に電子線を照射しつつ、探針に流れる電流を測定し、少なくとも2本の探針からの信号を差動増幅器に入力する。そして、差動増幅器からの出力を増幅し、これと電子線の走査情報に基づいて吸収電流像を作成することに関する。   In the present invention, a plurality of probes are brought into contact with a sample, an electron beam is irradiated on the sample, a current flowing through the probe is measured, and signals from at least two probes are input to a differential amplifier. The present invention also relates to amplifying the output from the differential amplifier and creating an absorption current image based on this and the scanning information of the electron beam.

また、本発明では、複数の探針を試料に接触させ、試料に電子線を照射しつつ、探針に流れる電流を測定し、一の探針に流れる電流に依存する信号が増幅器の入力側に入力し、他の探針に流れる電流に依存する信号を増幅器のGNDに入力する。そして、増幅器からの出力と、電子線の走査情報と、に基づいて吸収電流像を作成することに関する。   Further, in the present invention, a plurality of probes are brought into contact with the sample, the current flowing through the probe is measured while irradiating the sample with an electron beam, and a signal depending on the current flowing through the one probe is transmitted to the input side of the amplifier. And a signal depending on the current flowing through the other probe is input to the GND of the amplifier. And it is related with producing an absorption current image based on the output from an amplifier, and the scanning information of an electron beam.

また、本発明は、探針を試料から離し、試料に電子線を照射し、ノイズ情報を作成し、探針を試料に接触させ、試料に電子線を照射し、吸収電流情報を作成し、吸収電流情報とノイズ情報とに基づいて吸収電流像を作成することに関する。   Further, the present invention separates the probe from the sample, irradiates the sample with an electron beam, creates noise information, contacts the probe with the sample, irradiates the sample with an electron beam, creates absorption current information, The present invention relates to creating an absorption current image based on absorption current information and noise information.

本発明により、入力間の増幅率の差を含むことなく鮮明な吸収電流像を取得でき、半導体試料の不良解析の測定効率を向上できる。   According to the present invention, a clear absorption current image can be acquired without including a difference in amplification factor between inputs, and the measurement efficiency of the failure analysis of a semiconductor sample can be improved.

本発明の一実施形態が適用される試料検査装置の概略構成図である。1 is a schematic configuration diagram of a sample inspection apparatus to which an embodiment of the present invention is applied. 図1に示した構成を含んだ本実施の半導体検査装置の構成を示した図である。It is the figure which showed the structure of the semiconductor inspection apparatus of this Embodiment containing the structure shown in FIG. 外乱ノイズによる吸収電流像7への影響を軽減する方法の実施例を示す。An embodiment of a method for reducing the influence of disturbance noise on the absorbed current image 7 will be described.

以下、添付図面を参照して本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明の一実施形態が適用される試料検査装置の概略構成図である。   FIG. 1 is a schematic configuration diagram of a sample inspection apparatus to which an embodiment of the present invention is applied.

一次電子線1が試料2に照射される。試料2の表面には配線パターン3が有り、探針4をこの配線パターン3の両端あるいはパッドに接触させる。この状態で、上記配線パターン3を含めた試料2の表面に、電子線源5より一次電子線1を走査させる。照射された一次電子線1のうち、配線パターン3に入り込んだ電子が電流として探針4から検出され、差動増幅器6に入力され増幅される。差動増幅器6は、この入力された信号に対し、差信号を生成し出力する。この差信号を、一次電子線1の走査に同期させ、吸収電流像7として、表示部8に表示させる。   The primary electron beam 1 is applied to the sample 2. A wiring pattern 3 is provided on the surface of the sample 2, and the probe 4 is brought into contact with both ends or pads of the wiring pattern 3. In this state, the surface of the sample 2 including the wiring pattern 3 is scanned with the primary electron beam 1 from the electron beam source 5. Of the irradiated primary electron beam 1, electrons entering the wiring pattern 3 are detected as current from the probe 4 and input to the differential amplifier 6 for amplification. The differential amplifier 6 generates and outputs a difference signal with respect to the input signal. This difference signal is displayed on the display unit 8 as an absorption current image 7 in synchronization with the scanning of the primary electron beam 1.

配線パターン3より入り探針4で検出された電流は、一次電子線1が当たった箇所から探針4の間での、配線パターン3の抵抗値によって分流され、差動増幅器6の+入力、あるいは−側入力に入力される。このため、配線パターン3において、探針4に接触された間で抵抗値の変化にしたがって、吸収電流像7に明暗の差ができる。配線パターン3上での不具合部では、抵抗値が均一ではない為、他の正常なところと比較し明暗の変化が異なって表示される。この為、配線パターン3上で、他と異なる状態つまり不良箇所が、吸収電流像7として容易に判断することができる。   The current detected by the probe 4 entering from the wiring pattern 3 is shunted by the resistance value of the wiring pattern 3 between the point where the primary electron beam 1 hits and the probe 4, and the + input of the differential amplifier 6, Alternatively, it is input to the negative input. For this reason, in the wiring pattern 3, there is a difference between light and dark in the absorption current image 7 according to the change in resistance value while being in contact with the probe 4. In the defective part on the wiring pattern 3, since the resistance value is not uniform, the change in brightness is displayed differently compared with other normal places. For this reason, a state different from the others, that is, a defective portion on the wiring pattern 3 can be easily determined as the absorbed current image 7.

図2は、図1に示した構成を含んだ本実施の半導体検査装置の構成を示した図である。   FIG. 2 is a diagram showing the configuration of the semiconductor inspection apparatus of the present embodiment including the configuration shown in FIG.

図2において、試料検査装置は、電子線を照射できる電子線照射光学系を備える。つまり、電子線源5より照射された一次電子線1が、コンデンサレンズ9,10,絞り11,スキャン偏向器12,イメージシフト偏向器13,対物レンズ14を経由して試料2に照射される。この際、一次電子線1は、スキャン偏向器12等により、試料2の表面上を走査する。   In FIG. 2, the sample inspection apparatus includes an electron beam irradiation optical system that can irradiate an electron beam. That is, the primary electron beam 1 irradiated from the electron beam source 5 is irradiated to the sample 2 via the condenser lenses 9 and 10, the diaphragm 11, the scan deflector 12, the image shift deflector 13, and the objective lens 14. At this time, the primary electron beam 1 scans the surface of the sample 2 by the scan deflector 12 or the like.

一次電子線1を照射された試料2より、二次電子線15が放出され、二次電子線検出器16により検出される。   A secondary electron beam 15 is emitted from the sample 2 irradiated with the primary electron beam 1 and detected by the secondary electron beam detector 16.

試料から発生する二次電子を検出できる検出器である二次電子線検出器16は、SEM制御部17により制御されている。また、SEM制御部17はビデオボード18および記録部19を有している。二次電子線検出器16より入力された信号をビデオボード18にてデジタル信号に変換され、一次電子線1の走査に同期させて表示部8により画像を表示する。走査された一次電子線1に同期して表示部8に表示される為、二次電子線15がSEM像として表示される。また、この信号及びSEM像は記録部19に記録される。なお、試料検査装置全体も、SEM制御部17によって制御されている。   A secondary electron beam detector 16 that is a detector capable of detecting secondary electrons generated from the sample is controlled by the SEM control unit 17. The SEM control unit 17 has a video board 18 and a recording unit 19. A signal input from the secondary electron beam detector 16 is converted into a digital signal by the video board 18, and an image is displayed on the display unit 8 in synchronization with the scanning of the primary electron beam 1. Since it is displayed on the display unit 8 in synchronization with the scanned primary electron beam 1, the secondary electron beam 15 is displayed as an SEM image. The signal and the SEM image are recorded in the recording unit 19. The entire sample inspection apparatus is also controlled by the SEM control unit 17.

試料2は試料ホルダ20に固定され、試料を載置できる試料台である試料ステージ21によってX,Y,Zの3軸方法に移動可能な手段を持つ構造となっている。試料に接触できる探針4は探針ステージ22によって、試料ステージ21と同様X軸,Y軸,Z軸の3軸方法に移動可能な手段を持つ構造となっている。   The sample 2 is fixed to the sample holder 20 and has a structure having means capable of moving in a three-axis method of X, Y, and Z by a sample stage 21 which is a sample stage on which a sample can be placed. The probe 4 that can come into contact with the sample has a structure that can be moved by the probe stage 22 in the three-axis method of the X axis, the Y axis, and the Z axis, like the sample stage 21.

試料ステージ21と探針ステージ22をそれぞれX軸,Y軸,Z軸の3軸方向に移動/制御し、試料2の表面に探針4を接触させる。   The sample stage 21 and the probe stage 22 are moved / controlled in the three axis directions of the X axis, the Y axis, and the Z axis, respectively, and the probe 4 is brought into contact with the surface of the sample 2.

試料2の表面上に形成された配線の一端あるいは両端に探針4を接触させる。この状態で、上記配線パターン3を含めた試料2の表面に、電子線源5より一次電子線1を走査させる。照射された一次電子線1のうち、配線パターン3に入り込んだ電子が電流として探針4から検出される。探針に流れる電流は計測器により計測される。この配線パターン3より入り探針4で検出された電流は、一次電子線1が当たった箇所から探針4の間での、配線パターン3の抵抗値によって分流され、差動増幅器6に入力される。計測器からの信号が入力される差動増幅器6は、この入力された信号に対し、差信号を生成し出力する。この差動増幅器6より出力された差信号を、増幅器23にて探針4からの吸収電流による吸収電流像7の表示に必要な増幅率により増幅し、一次電子線1の走査に同期させ、吸収電流像7として、差動増幅器からの信号と、電子線照射光学系の走査に依存した信号とに基づいて吸収電流像を出力する画像装置である表示部8に表示させる。   The probe 4 is brought into contact with one or both ends of the wiring formed on the surface of the sample 2. In this state, the surface of the sample 2 including the wiring pattern 3 is scanned with the primary electron beam 1 from the electron beam source 5. Of the irradiated primary electron beam 1, electrons entering the wiring pattern 3 are detected from the probe 4 as a current. The current flowing through the probe is measured by a measuring instrument. The current detected by the probe 4 entering from the wiring pattern 3 is shunted by the resistance value of the wiring pattern 3 between the point where the primary electron beam 1 hits and the probe 4 and input to the differential amplifier 6. The The differential amplifier 6 to which the signal from the measuring instrument is input generates and outputs a difference signal with respect to the input signal. The difference signal output from the differential amplifier 6 is amplified by the amplifier 23 with an amplification factor necessary for displaying the absorption current image 7 by the absorption current from the probe 4 and synchronized with the scanning of the primary electron beam 1. The absorption current image 7 is displayed on the display unit 8 which is an image device that outputs an absorption current image based on a signal from the differential amplifier and a signal depending on scanning of the electron beam irradiation optical system.

前記の通り、SEM制御部17はビデオボード18および記録部19を有している。探針4より入力された信号は、ビデオボード18にてデジタル信号に変換され、一次電子線1の走査に同期させて表示部8で表示される。これにより、探針から入力された電流(吸収電流)よりえられた信号(吸収電流信号)の分布を像として表示することが出来る(これを吸収電流像7とする)。また、この信号及び吸収電流像7は、記録部19に記録される。   As described above, the SEM control unit 17 includes the video board 18 and the recording unit 19. The signal input from the probe 4 is converted into a digital signal by the video board 18 and displayed on the display unit 8 in synchronization with the scanning of the primary electron beam 1. Thereby, the distribution of the signal (absorption current signal) obtained from the current (absorption current) input from the probe can be displayed as an image (this is referred to as an absorption current image 7). The signal and the absorption current image 7 are recorded in the recording unit 19.

このため、配線パターン3において、探針4に接触された間で抵抗値の変化にしたがって、吸収電流像7に明暗の差ができる。配線パターン3上での不具合部では、抵抗値が均一ではない為、他の正常なところと比較し明暗の変化が異なって表示される。この為、配線パターン3上で、他と異なる状態つまり不良箇所が、吸収電流像7として容易に判断することができる。   For this reason, in the wiring pattern 3, there is a difference between light and dark in the absorption current image 7 according to the change in resistance value while being in contact with the probe 4. In the defective part on the wiring pattern 3, since the resistance value is not uniform, the change in brightness is displayed differently compared with other normal places. For this reason, a state different from the others, that is, a defective portion on the wiring pattern 3 can be easily determined as the absorbed current image 7.

SEM制御部17は像表示する為の信号入力系統を二次電子線検出器16と、差動増幅器6とに切換える機能を有しており、探針4からの電流による吸収電流像7を表示する際は、探針4を差動増幅器6側に切換える。   The SEM control unit 17 has a function of switching the signal input system for image display to the secondary electron beam detector 16 and the differential amplifier 6, and displays the absorption current image 7 by the current from the probe 4. When doing so, the probe 4 is switched to the differential amplifier 6 side.

入力された吸収電流像7を生成する為の信号を、一次電子線1の走査に同期させて表示部8にて表示させることにより、吸収電流像7が表示される。   The absorption current image 7 is displayed by displaying the input signal for generating the absorption current image 7 on the display unit 8 in synchronization with the scanning of the primary electron beam 1.

差動増幅器6の前に、切換部24が登載されている。一次電子線1が試料2に照射されている間、探針4に対しても一次電子線1は照射されるため、探針4が帯電する可能性がある。帯電した場合、探針4を試料2に近付けると放電する。探針4は直径が数100nm程度と非常に細く、放電によるダメージで破損する可能性がある。また、試料2には静電気に弱いものが多く、放電による破損の可能性がある。つまり、帯電した探針4を試料2に近付けることにより、探針4および試料2が破損する可能性がある。切換部24は、探針4を試料2に接触させるまで接地側に接続するようになっている。そして、探針4が試料2に接触した後に差動増幅器6側に切り替わるようになっている。これにより、探針4は帯電することなく試料2に接触することができる。   A switching unit 24 is mounted in front of the differential amplifier 6. While the primary electron beam 1 is being irradiated onto the sample 2, the probe 4 may be charged because the primary electron beam 1 is also irradiated onto the probe 4. When charged, the probe 4 is discharged when it approaches the sample 2. The probe 4 has a very small diameter of about several hundreds of nanometers and may be broken by damage due to discharge. Further, many of the samples 2 are vulnerable to static electricity, and there is a possibility of damage due to discharge. That is, the probe 4 and the sample 2 may be damaged by bringing the charged probe 4 close to the sample 2. The switching unit 24 is connected to the ground side until the probe 4 is brought into contact with the sample 2. And after the probe 4 contacts the sample 2, it switches to the differential amplifier 6 side. Thereby, the probe 4 can contact the sample 2 without being charged.

また、切換部24は、差動増幅器6へ接続する状態と、電流増幅器25への接続の状態のいずれかを選択可能な構成となっている。   Further, the switching unit 24 is configured to be able to select either a state connected to the differential amplifier 6 or a state connected to the current amplifier 25.

配線パターン3の配線に対して探針をその両端に接触させて電流増幅器25による測定を実施する場合、切換部24にて、配線パターン3の両端に接触させた探針の一方を電流増幅器25へ、もう片方を、抵抗を介して電流増幅器の電源GNDへ接続する。この抵抗は選択可能であり、試料の抵抗値にあわせて切換えることが出来る。   When the measurement is performed by the current amplifier 25 with the probe brought into contact with both ends of the wiring of the wiring pattern 3, one of the probes brought into contact with both ends of the wiring pattern 3 is switched by the switching unit 24. The other is connected to the power supply GND of the current amplifier through a resistor. This resistance can be selected and can be switched according to the resistance value of the sample.

探針4を試料2表面上の配線パターン3の両端に接触させると、差動増幅器6の入力を繋いだループを構成する回路を生成する。これにより、外部磁場がこの周辺で発生した場合、差動増幅器6の入力間を接続した配線等のループで誘導起電力が発生する。このループのインピーダンスにより、誘導起電力で電流が流れ、それらが差動増幅器6の入力より入力される。これがノイズとして吸収電流像7に重畳される。本半導体検査装置では、探針4から差動増幅器6の入力の間を磁場シールド26で覆っている。これにより、ループ部が磁場から受ける影響が大幅に軽減され、誘導起電力が軽減ざれる為、重畳されるノイズも大幅に軽減される。   When the probe 4 is brought into contact with both ends of the wiring pattern 3 on the surface of the sample 2, a circuit constituting a loop connecting the inputs of the differential amplifier 6 is generated. As a result, when an external magnetic field is generated in this vicinity, an induced electromotive force is generated in a loop such as a wiring connecting the inputs of the differential amplifier 6. Due to the impedance of this loop, current flows by the induced electromotive force, and these are input from the input of the differential amplifier 6. This is superimposed on the absorption current image 7 as noise. In this semiconductor inspection apparatus, the space between the probe 4 and the input of the differential amplifier 6 is covered with a magnetic field shield 26. Thereby, since the influence which a loop part receives from a magnetic field is reduced significantly and an induced electromotive force is reduced, the superimposed noise is also reduced significantly.

本実施例では、各探針に流れる信号を直接差動増幅器で受けることにより、各入力系統間での信号増幅率の差が発生せず、入力信号そのものの差分を増幅させる事により、増幅/出力の偏りがない出力をえられる為、像質が飛躍的に向上する。また、各入力信号が受ける影響を従来と比較して小さくすることが出来、そのため入力信号自体が従来よりも小さいものに対して吸収電流像が観察できるようになる。この結果、被測定試料の抵抗値が従来よりも小さいものでも吸収電流像が観察できるようになる。また、増幅器の調整は初段の増幅が差動増幅器で、この増幅器によるオフセットへの影響が支配的であることから、各入力系統に対するオフセット調整が不要となり、一括での調整のみとなるため、調整は差動増幅器のみで十分となり、吸収電流像観察における装置調整の煩雑さを軽減でき、利便性が格段に向上する。   In this embodiment, a signal flowing through each probe is directly received by a differential amplifier, so that a difference in signal amplification factor between the input systems does not occur, and the difference between the input signals itself is amplified. Since an output with no output bias can be obtained, the image quality is dramatically improved. In addition, the influence of each input signal can be reduced as compared with the conventional case, so that an absorption current image can be observed for a case where the input signal itself is smaller than the conventional one. As a result, an absorption current image can be observed even when the resistance value of the sample to be measured is smaller than the conventional one. In addition, since the first stage amplification is a differential amplifier and the effect on the offset by this amplifier is dominant, there is no need to adjust the offset for each input system. In this case, only the differential amplifier is sufficient, and it is possible to reduce the complexity of the apparatus adjustment in the observation of the absorption current image, and the convenience is greatly improved.

また、探針の一方を、抵抗を介して接地させ、もう一方の探針を電流増幅器に接続して探針からの入力信号を前記走査手段に同期させて像表示をすることにより、探針から流れ込んだ電流が接地側だけに流れることなく電流増幅器側にも流れる為、対接地間の抵抗値を選択することで測定可能な試料の抵抗値の幅広がり、従来よりも小さい抵抗値の試料の測定が可能になる。   In addition, one of the probes is grounded through a resistor, the other probe is connected to a current amplifier, and an input signal from the probe is displayed in synchronization with the scanning means to display an image of the probe. The current flowing in from the current flows not only on the ground side but also on the current amplifier side, so the resistance value of the sample that can be measured is widened by selecting the resistance value between the ground and the sample with a resistance value smaller than the conventional one Can be measured.

実施例1の検出系では、増幅率を大きくする必要があるため、外乱ノイズ対して敏感な構成となっている。そこで、図3に、外乱ノイズによる吸収電流像7への影響を軽減する実施例を示す。以下、実施例1との主な相違点のみ記載する。   The detection system according to the first embodiment is sensitive to disturbance noise because it is necessary to increase the amplification factor. FIG. 3 shows an embodiment for reducing the influence of disturbance noise on the absorbed current image 7. Only the main differences from the first embodiment will be described below.

探針4を試料2に接触させる前に一旦一次電子線1を照射し、探針4からの吸収電流像を測定する。探針4より入力された信号をビデオボード18にてデジタル信号に変換し、記録部19にて記録する。この信号を、バックグラウンド信号とし、この信号による像はバックグラウンド像27の通りとなる。一度記録部19に記録されたバックグラウンド信号の信号データを、SEM制御部17にて極性を反転させた信号を生成し、記録部19に記録する。この信号を、反転バックグラウンド信号とし、この信号による像は反転バックグラウンド像28の通りとなる。この信号は、サンプルに依存されない周辺からの外乱ノイズの信号成分のみにより構成されることとなる。   Before bringing the probe 4 into contact with the sample 2, the primary electron beam 1 is once irradiated, and an absorption current image from the probe 4 is measured. The signal input from the probe 4 is converted into a digital signal by the video board 18 and recorded by the recording unit 19. This signal is used as a background signal, and an image based on this signal is as shown in the background image 27. A signal whose polarity is inverted by the SEM control unit 17 is generated from the signal data of the background signal once recorded in the recording unit 19 and recorded in the recording unit 19. This signal is used as an inverted background signal, and an image based on this signal is as shown in the inverted background image 28. This signal is composed only of signal components of disturbance noise from the surroundings that do not depend on the sample.

次に、探針4を試料2に接触させ、その際の吸収電流を測定し、その際の探針4からの入力信号を、同様にビデオボード18にてデジタル信号に変換し、記録部19にて記録する。この信号を、吸収電流信号とし、この信号による像は、吸収電流像7の通りとなる。この吸収電流信号には、先に撮影した外乱のノイズも重畳されている。先ほど記録された反転バックグラウンド信号を記録部19より読み出し、吸収電流信号に加算し、一次電子線1の走査に同期させて表示部8に表示する(吸収電流像+反転バックグラウンド像29)。この結果、外乱分となるバックグラウンドが相殺され、外乱ノイズを大幅に軽減する
ことができる。
Next, the probe 4 is brought into contact with the sample 2, the absorption current at that time is measured, and the input signal from the probe 4 at that time is similarly converted into a digital signal by the video board 18, and the recording unit 19 Record at. This signal is used as an absorption current signal, and an image obtained by this signal is as shown in the absorption current image 7. This absorption current signal is also superimposed with the noise of the disturbance imaged earlier. The inverted background signal recorded earlier is read from the recording unit 19, added to the absorption current signal, and displayed on the display unit 8 in synchronization with the scanning of the primary electron beam 1 (absorption current image + inversion background image 29). As a result, the background, which is a disturbance component, is canceled out, and the disturbance noise can be greatly reduced.

本実施例では、吸収電流像のバックグラウンドノイズを差し引くことにより、ノイズによる像質劣化が大幅に改善することが出来る。   In this embodiment, image quality deterioration due to noise can be significantly improved by subtracting the background noise of the absorption current image.

1 一次電子線
2 試料
3 配線パターン
4 探針
5 電子線源
6 差動増幅器
7 吸収電流像
8 表示部
9,10 コンデンサレンズ
11 絞り
12 スキャン偏向器
13 イメージシフト偏向器
14 対物レンズ
15 二次電子線
16 二次電子線検出器
17 SEM制御部
18 ビデオボード
19 記録部
20 試料ホルダ
21 試料ステージ
22 探針ステージ
23 増幅器
24 切換部
25 電流増幅器
26 磁場シールド
27 バックグラウンド像
28 反転バックグラウンド像
29 吸収電流像+反転バックグラウンド像
DESCRIPTION OF SYMBOLS 1 Primary electron beam 2 Sample 3 Wiring pattern 4 Probe 5 Electron beam source 6 Differential amplifier 7 Absorption current image 8 Display part 9, 10 Condenser lens 11 Aperture 12 Scan deflector 13 Image shift deflector 14 Objective lens 15 Secondary electron Line 16 Secondary electron beam detector 17 SEM control unit 18 Video board 19 Recording unit 20 Sample holder 21 Sample stage 22 Probe stage 23 Amplifier 24 Switching unit 25 Current amplifier 26 Magnetic field shield 27 Background image 28 Reversed background image 29 Absorption Current image + inverted background image

Claims (4)

吸収電流像の作成方法であって、
探針を試料から離し、試料に電子線を照射し、探針に流れる電流に依存する信号と、電子線照射の走査に依存する信号と、に基づいてノイズ情報を作成し、
探針を試料に接触させ、試料に電子線を照射し、探針に流れる電流に依存する信号と、電子線照射の走査に依存する信号と、に基づいて吸収電流情報を作成し、
前記ノイズ情報の極性を反転させ、これを前記吸収電流情報に重畳し、吸収電流像を作成することを特徴とする方法。
A method of creating an absorption current image,
Separate the probe from the sample, irradiate the sample with an electron beam, create noise information based on the signal that depends on the current flowing through the probe and the signal that depends on the scanning of the electron beam irradiation,
The probe is brought into contact with the sample, the sample is irradiated with an electron beam, and absorption current information is created based on a signal that depends on the current flowing through the probe and a signal that depends on the scanning of the electron beam irradiation,
A method of reversing the polarity of the noise information and superimposing it on the absorbed current information to create an absorbed current image.
請求項1記載の吸収電流像の作成方法であって、
前記試料が、配線パターンが形成された半導体試料であることを特徴とする方法。
A method of creating an absorption current image according to claim 1,
The method is characterized in that the sample is a semiconductor sample on which a wiring pattern is formed.
試料を載置できる試料台と、
電子線を照射できる電子線照射光学系と、
前記試料から発生する二次電子を検出できる検出器と、
前記試料に接触できる探針と、を備え、
前記探針が前記試料に接触しない状態のときに得られる吸収電流信号の極性を反転させた反転吸収電流信号を記憶する記憶部と、
前記探針が前記試料に接触した状態のときに得られる吸収電流信号と、前記記憶部に記憶された反転吸収電流信号とを加算する画像装置と、を有する試料検査装置。
A sample stage on which a sample can be placed;
An electron beam irradiation optical system capable of emitting an electron beam;
A detector capable of detecting secondary electrons generated from the sample;
A probe capable of contacting the sample,
A storage unit for storing an inverted absorption current signal obtained by inverting the polarity of an absorption current signal obtained when the probe is not in contact with the sample;
A sample inspection apparatus comprising: an imaging device that adds an absorption current signal obtained when the probe is in contact with the sample and an inverted absorption current signal stored in the storage unit.
請求項3において、
前記試料が、配線パターンが形成された半導体試料であることを特徴とする試料検査装置。
In claim 3,
The sample inspection apparatus, wherein the sample is a semiconductor sample on which a wiring pattern is formed.
JP2012112054A 2012-05-16 2012-05-16 Sample inspection apparatus and method of creating absorption current image Expired - Fee Related JP5509255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012112054A JP5509255B2 (en) 2012-05-16 2012-05-16 Sample inspection apparatus and method of creating absorption current image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012112054A JP5509255B2 (en) 2012-05-16 2012-05-16 Sample inspection apparatus and method of creating absorption current image

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010012730A Division JP5156767B2 (en) 2010-01-25 2010-01-25 Sample inspection apparatus and method of creating absorption current image

Publications (2)

Publication Number Publication Date
JP2012216845A true JP2012216845A (en) 2012-11-08
JP5509255B2 JP5509255B2 (en) 2014-06-04

Family

ID=47269266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012112054A Expired - Fee Related JP5509255B2 (en) 2012-05-16 2012-05-16 Sample inspection apparatus and method of creating absorption current image

Country Status (1)

Country Link
JP (1) JP5509255B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481075A (en) * 1977-11-24 1979-06-28 Cho Lsi Gijutsu Kenkyu Kumiai Method of detecting article image using electron beam
JP2002368049A (en) * 2001-06-11 2002-12-20 Hitachi Ltd Method and equipment for inspecting semiconductor device and method for fabricating semiconductor device
JP2004296771A (en) * 2003-03-27 2004-10-21 Renesas Technology Corp Device and method for inspecting semiconductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481075A (en) * 1977-11-24 1979-06-28 Cho Lsi Gijutsu Kenkyu Kumiai Method of detecting article image using electron beam
JP2002368049A (en) * 2001-06-11 2002-12-20 Hitachi Ltd Method and equipment for inspecting semiconductor device and method for fabricating semiconductor device
JP2004296771A (en) * 2003-03-27 2004-10-21 Renesas Technology Corp Device and method for inspecting semiconductor

Also Published As

Publication number Publication date
JP5509255B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
JP4467588B2 (en) Sample inspection apparatus and method of creating absorption current image
JP2006105960A (en) Sample inspection method and device
US7989766B2 (en) Sample inspection apparatus
US8410438B2 (en) Charged particle beam device
JP5276921B2 (en) Inspection device
TWI441231B (en) Movable detector for charged particle beam inspection or review
KR102032071B1 (en) Circuit test method and sample test device
KR101031930B1 (en) Laser beam inspection equipment
JP2008166702A (en) Charged particle beam apparatus
JP2008270632A (en) Testing apparatus and method
JP2004296771A (en) Device and method for inspecting semiconductor
JP5509255B2 (en) Sample inspection apparatus and method of creating absorption current image
JP5156767B2 (en) Sample inspection apparatus and method of creating absorption current image
JP5770528B2 (en) Semiconductor sample inspection equipment
JP2010257883A (en) Annular bright field image observation device
JP5296751B2 (en) Sample inspection apparatus and method of creating absorption current image
JP2006114113A (en) Information recording medium test equipment and method
JP5139248B2 (en) Charged particle beam apparatus and charged particle beam evaluation apparatus
US6411100B1 (en) Apparatus for evaluating magnetoresistive head
JP2007305901A (en) Inspection apparatus and inspection method of semiconductor device
JP2011043346A (en) Method and apparatus for inspecting semiconductor device
JP2010135679A (en) Semiconductor inspection device and inspection method
JPH1038805A (en) Cathode luminescence device
KR19990041630U (en) Line width measuring device using color solid state imaging device
JPH06324123A (en) Electron beam tester

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5509255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees