JP2012215499A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2012215499A5 JP2012215499A5 JP2011081807A JP2011081807A JP2012215499A5 JP 2012215499 A5 JP2012215499 A5 JP 2012215499A5 JP 2011081807 A JP2011081807 A JP 2011081807A JP 2011081807 A JP2011081807 A JP 2011081807A JP 2012215499 A5 JP2012215499 A5 JP 2012215499A5
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- gas cell
- measured
- measurement unit
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Description
本発明に係るひとつの磁場測定装置は、被測定物が設置される位置に対して第1の方向に配置された第1ガスセルと、前記第1ガスセルに対して前記第1の方向に設置された第2ガスセルと、前記第1ガスセルを通過した第1の光を用いて磁場の測定を行う第1測定部と、前記第2ガスセルを通過した第2の光を用いて磁場の測定を行う第2測定部と、前記第1の方向は第1の軸方向に平行であり、前記被測定物、前記第1ガスセル、および前記第2ガスセルを、前記第1の軸方向において挟むように対向して配置された一対の磁場発生部と、前記第1測定部及び前記第2測定部における所定の成分の測定結果を基にして生成された所定の信号を出力する出力部と、を含み、前記第1の光及び前記第2の光は前記第1の軸方向とは異なる方向から照射され、前記磁場発生部は、前記第2の測定部で計測される前記所定の成分の測定値が、前記第1の測定部で計測される前記所定の成分の測定値よりも小さくなる磁場を発生させることを特徴とする。
上記のひとつの磁場測定装置において、前記所定の成分は、磁場の前記第1の方向の成分であることが好ましい。
本発明に係るひとつの磁場測定システムは、上記のひとつの磁場測定装置を、互いに異なる方向ごとに複数備えることが好ましい。
上記のひとつの磁場測定システムにおいて、前記互いに異なる方向は、前記第1の軸方向に平行な方向と前記第1の軸に直角に交わる方向であるが好ましい。
本発明に係るひとつの磁場測定方法は、第1測定部が、被測定物の設置される位置からみて予め決められた第1の方向に配置された第1ガスセルに光を照射して、当該第1ガスセルにおける磁場の前記方向の成分を測定し、第2測定部が、前記第1ガスセルからみて前記第1の方向に配置された第2ガスセルに光を照射して、当該第2ガスセルにおける磁場の前記第1の方向の成分を測定し、磁場発生手段が、前記被測定物、前記第1ガスセル、および前記第2ガスセルを前記第1の方向に沿って挟み、前記第2測定部により測定された前記成分が小さくなるように、前記第2ガスセルに向けて磁場を発生させ、出力部が、前記第1測定部と前記第2測定部とがそれぞれ測定した前記成分の差に応じた信号を出力することを特徴とする。
本発明は、被測定物が設置される位置からみて予め決められた方向に配置された第1ガスセルと、前記第1ガスセルからみて前記方向に配置された第2ガスセルと、前記第1ガスセルに光を照射して、当該第1ガスセルにおける磁場の前記方向の成分を測定する第1測定部と、前記第2ガスセルに光を照射して、当該第2ガスセルにおける磁場の前記方向の成分を測定する第2測定部と、前記被測定物、前記第1ガスセル、および前記第2ガスセルを前記方向に沿って挟み、前記第2測定部により測定された前記成分が小さくなるように、前記第2ガスセルに向けて磁場を発生させる磁場発生手段と、前記第1測定部と前記第2測定部とがそれぞれ測定した前記成分の差に応じた信号を出力する出力部とを備えることを特徴とする磁場測定装置を提供する。この構成によれば、ガスセルに光を照射してそのガスセルにおける磁場の予め決められた方向の成分を測定する測定部に対し、その測定部が測定可能な範囲を超えた外乱がある場合でも、その外乱に影響されずに被測定物の磁場を測定することができる。
One magnetic field measuring apparatus according to the present invention is installed in a first direction with respect to a first gas cell arranged in a first direction with respect to a position where an object to be measured is installed, and in the first direction with respect to the first gas cell. The second gas cell, the first measurement unit that measures the magnetic field using the first light that has passed through the first gas cell, and the magnetic field that is measured using the second light that has passed through the second gas cell The second measurement unit and the first direction are parallel to the first axial direction, and are opposed to sandwich the object to be measured, the first gas cell, and the second gas cell in the first axial direction. A pair of magnetic field generators arranged in the above, and an output unit that outputs a predetermined signal generated based on a measurement result of a predetermined component in the first measurement unit and the second measurement unit, The first light and the second light are different directions from the first axial direction. The measured value of the predetermined component measured by the second measuring unit is smaller than the measured value of the predetermined component measured by the first measuring unit. A magnetic field is generated.
In the one magnetic field measuring apparatus, the predetermined component is preferably a component of the magnetic field in the first direction.
One magnetic field measurement system according to the present invention preferably includes a plurality of the single magnetic field measurement devices in different directions.
In the one magnetic field measurement system, the different directions are preferably a direction parallel to the first axis direction and a direction perpendicular to the first axis.
In one magnetic field measurement method according to the present invention, the first measurement unit irradiates light to the first gas cell arranged in the first direction determined in advance from the position where the object to be measured is installed, and A component in the direction of the magnetic field in the first gas cell is measured, and the second measuring unit irradiates light to the second gas cell arranged in the first direction as viewed from the first gas cell, and the second gas cell A component of the magnetic field in the first direction is measured, and the magnetic field generation unit sandwiches the object to be measured, the first gas cell, and the second gas cell along the first direction, and the second measurement unit A magnetic field is generated toward the second gas cell so that the measured component becomes small, and the output unit corresponds to the difference between the components measured by the first measurement unit and the second measurement unit. A signal is output.
The present invention provides a first gas cell disposed in a predetermined direction as viewed from a position where an object to be measured is installed, a second gas cell disposed in the direction as viewed from the first gas cell, and the first gas cell. A first measurement unit that irradiates light and measures the component in the direction of the magnetic field in the first gas cell; and irradiates the second gas cell with light and measures the component in the direction of the magnetic field in the second gas cell. The second measurement unit, the object to be measured, the first gas cell, and the second gas cell are sandwiched along the direction so that the component measured by the second measurement unit is small. Magnetic field generating means for generating a magnetic field toward the gas cell, and an output unit that outputs a signal corresponding to the difference between the components measured by the first measuring unit and the second measuring unit, respectively. Magnetic field measurement equipment To provide. According to this configuration, for a measurement unit that irradiates light to a gas cell and measures a component in a predetermined direction of the magnetic field in the gas cell, even when there is a disturbance that exceeds the range that the measurement unit can measure, The magnetic field of the object to be measured can be measured without being affected by the disturbance.
Claims (5)
前記第1ガスセルに対して前記第1の方向に設置された第2ガスセルと、
前記第1ガスセルを通過した第1の光を用いて磁場の測定を行う第1測定部と、
前記第2ガスセルを通過した第2の光を用いて磁場の測定を行う第2測定部と、
前記第1の方向は第1の軸方向に平行であり、前記被測定物、前記第1ガスセル、および前記第2ガスセルを、前記第1の軸方向において挟むように対向して配置された一対の磁場発生部と、
前記第1測定部及び前記第2測定部における所定の成分の測定結果を基にして生成された所定の信号を出力する出力部と、を含み、
前記第1の光及び前記第2の光は前記第1の軸方向とは異なる方向から照射され、
前記磁場発生部は、前記第2の測定部で計測される前記所定の成分の測定値が、前記第1の測定部で計測される前記所定の成分の測定値よりも小さくなる磁場を発生させることを特徴とする磁場測定装置。 A first gas cell arranged in a first direction with respect to a position where the object to be measured is installed;
A second gas cell installed in the first direction with respect to the first gas cell;
A first measurement unit that measures a magnetic field using the first light that has passed through the first gas cell;
A second measuring unit for measuring a magnetic field using the second light that has passed through the second gas cell;
The first direction is parallel to the first axis direction, the measured object, the first gas cell, and the second gas cell, a pair of which are arranged to face each other interposed useless in the first axis direction and the magnetic field generating unit,
An output unit that outputs a predetermined signal generated based on a measurement result of a predetermined component in the first measurement unit and the second measurement unit ;
The first light and the second light are irradiated from a direction different from the first axial direction,
The magnetic field generation unit generates a magnetic field in which a measurement value of the predetermined component measured by the second measurement unit is smaller than a measurement value of the predetermined component measured by the first measurement unit. Magnetic field measuring apparatus characterized by the above.
ことを特徴とする磁場測定システム。 A magnetic field measurement system comprising a plurality of magnetic field measurement devices according to claim 1 or 2 in different directions .
ことを特徴とする請求項3に記載の磁場測定システム。 The magnetic field measurement system according to claim 3 , wherein the different directions are a direction parallel to the first axis direction and a direction perpendicular to the first axis .
第2測定部が、前記第1ガスセルからみて前記第1の方向に配置された第2ガスセルに光を照射して、当該第2ガスセルにおける磁場の前記第1の方向の成分を測定し、
磁場発生手段が、前記被測定物、前記第1ガスセル、および前記第2ガスセルを前記第
1の方向に沿って挟み、前記第2測定部により測定された前記成分が小さくなるように、前記第2ガスセルに向けて磁場を発生させ、
出力部が、前記第1測定部と前記第2測定部とがそれぞれ測定した前記成分の差に応じた信号を出力する
ことを特徴とする磁場測定方法。 The first measurement unit irradiates light to the first gas cell arranged in the first direction determined in advance from the position where the object to be measured is installed, and the component of the magnetic field in the first gas cell in the direction is applied. Measure and
The second measurement unit irradiates light to the second gas cell arranged in the first direction as viewed from the first gas cell, and measures a component of the magnetic field in the second gas cell in the first direction;
Magnetic field generating means connects the object to be measured, the first gas cell, and the second gas cell to the first
A magnetic field is generated toward the second gas cell so that the component measured by the second measurement unit is reduced along the direction of 1 ;
The output unit outputs a signal corresponding to the difference between the components measured by the first measurement unit and the second measurement unit, respectively.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011081807A JP5799553B2 (en) | 2011-04-01 | 2011-04-01 | Magnetic field measuring apparatus, magnetic field measuring system, and magnetic field measuring method |
US13/434,972 US9024634B2 (en) | 2011-04-01 | 2012-03-30 | Magnetic field measurement apparatus, magnetic field measurement system and magnetic field measurement method |
US14/602,635 US9958514B2 (en) | 2011-04-01 | 2015-01-22 | Magnetic field measurement apparatus, magnetic field measurement system and magnetic field measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011081807A JP5799553B2 (en) | 2011-04-01 | 2011-04-01 | Magnetic field measuring apparatus, magnetic field measuring system, and magnetic field measuring method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015167070A Division JP2015212715A (en) | 2015-08-26 | 2015-08-26 | Magnetic field measurement device, magnetic field measurement system, and magnetic field measurement method |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2012215499A JP2012215499A (en) | 2012-11-08 |
JP2012215499A5 true JP2012215499A5 (en) | 2014-05-15 |
JP5799553B2 JP5799553B2 (en) | 2015-10-28 |
Family
ID=46926357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011081807A Expired - Fee Related JP5799553B2 (en) | 2011-04-01 | 2011-04-01 | Magnetic field measuring apparatus, magnetic field measuring system, and magnetic field measuring method |
Country Status (2)
Country | Link |
---|---|
US (2) | US9024634B2 (en) |
JP (1) | JP5799553B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5223794B2 (en) * | 2009-06-26 | 2013-06-26 | セイコーエプソン株式会社 | Magnetic sensor |
JP5539099B2 (en) * | 2010-08-13 | 2014-07-02 | キヤノン株式会社 | Magnetic gradient meter and magnetic sensing method |
US10215816B2 (en) | 2013-12-03 | 2019-02-26 | Hitachi, Ltd. | Magnetic field measuring apparatus |
JP2015143669A (en) * | 2014-01-31 | 2015-08-06 | セイコーエプソン株式会社 | Magnetic field measuring device |
JP2016080613A (en) * | 2014-10-21 | 2016-05-16 | セイコーエプソン株式会社 | Magnetic measuring device, gas cell, manufacturing method of magnetic measuring device, and manufacturing method of gas cell |
KR101624482B1 (en) * | 2014-10-24 | 2016-05-26 | 한국표준과학연구원 | Atomic Magnetometer And Operating Method Of The Same |
JP2017191040A (en) * | 2016-04-14 | 2017-10-19 | セイコーエプソン株式会社 | Magnetic field measurement device and magnetic field measurement method |
JP6825237B2 (en) * | 2016-06-14 | 2021-02-03 | セイコーエプソン株式会社 | Magnetic field measuring device, manufacturing method of magnetic field measuring device |
JP6825241B2 (en) * | 2016-06-21 | 2021-02-03 | セイコーエプソン株式会社 | Magnetic field measuring device, manufacturing method of magnetic field measuring device |
CN111289924A (en) * | 2018-12-10 | 2020-06-16 | 中科知影(北京)科技有限公司 | Multi-channel atomic magnetic detector |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3214683A (en) * | 1960-03-25 | 1965-10-26 | Trw Inc | Optically pumped gyromagnetic apparatus |
US3243721A (en) * | 1962-10-08 | 1966-03-29 | Trw Inc | Temperature controlled filter gas cell in gas cell frequency standard |
US3513381A (en) * | 1967-07-17 | 1970-05-19 | Varian Associates | Off-resonant light as a probe of optically pumped alkali vapors |
US5189368A (en) * | 1976-09-24 | 1993-02-23 | Lockheed Sanders, Inc. | Magnetometer |
JPS5925726A (en) * | 1982-07-31 | 1984-02-09 | 株式会社島津製作所 | Diagnostic observation apparatus |
US4788428A (en) * | 1985-03-04 | 1988-11-29 | The United States Of America As Represented By The Secretary Of The Navy | Thermodynamics infrared imaging sensor |
FR2663430B1 (en) * | 1990-06-14 | 1992-10-02 | Commissariat Energie Atomique | RESONANCE MAGNETOMETER WITH OPTICAL PUMPING USING A LIGHT BEAM WITH CONTROLLED POLARIZATION. |
US5227722A (en) * | 1991-04-08 | 1993-07-13 | Cae Electronics Ltd. | Dead-zone free optically pumped MZ magnetometer |
JPH0810250B2 (en) | 1991-05-13 | 1996-01-31 | 大同ほくさん株式会社 | Magnetic noise eliminator using SQUID |
JP4218128B2 (en) | 1999-05-20 | 2009-02-04 | 株式会社島津製作所 | Magnetic shielding device |
US6295834B1 (en) * | 1999-06-30 | 2001-10-02 | Medi-Physics, Inc. | NMR polarization monitoring coils, hyperpolarizers with same, and methods for determining the polarization level of accumulated hyperpolarized noble gases during production |
JP2001051035A (en) | 1999-08-10 | 2001-02-23 | Kansai Research Institute | Magnetic-field detecting apparatus |
JP4377566B2 (en) | 2002-05-16 | 2009-12-02 | 特許機器株式会社 | Active magnetic field canceller |
JP2007170880A (en) | 2005-12-20 | 2007-07-05 | Yokogawa Electric Corp | Magnetic field detecting apparatus |
US20100219820A1 (en) * | 2007-04-13 | 2010-09-02 | University Of Floarida Research Foundation, Inc. | Atomic Magnetometer Sensor Array Magnetoencephalogram Systems and Methods |
JP4919873B2 (en) | 2007-05-10 | 2012-04-18 | 株式会社竹中工務店 | Magnetic shield device |
JP5178187B2 (en) * | 2007-12-28 | 2013-04-10 | キヤノン株式会社 | Atomic magnetic sensor and magnetic sensing method |
JP5264242B2 (en) * | 2008-03-26 | 2013-08-14 | キヤノン株式会社 | Atomic magnetometer and magnetic force measurement method |
JP5375279B2 (en) * | 2008-06-18 | 2013-12-25 | セイコーエプソン株式会社 | Atomic oscillator |
US8237514B2 (en) * | 2009-02-06 | 2012-08-07 | Seiko Epson Corporation | Quantum interference device, atomic oscillator, and magnetic sensor |
JP5640335B2 (en) * | 2009-06-26 | 2014-12-17 | セイコーエプソン株式会社 | Magnetic sensor |
JP5223794B2 (en) * | 2009-06-26 | 2013-06-26 | セイコーエプソン株式会社 | Magnetic sensor |
JP2011051035A (en) | 2009-08-31 | 2011-03-17 | Seiko Epson Corp | Signal transmission device for robot and robot including the same |
JP2012191138A (en) * | 2011-03-14 | 2012-10-04 | Seiko Epson Corp | Gas cell unit, atomic oscillator and electronic apparatus |
JP5655647B2 (en) * | 2011-03-14 | 2015-01-21 | セイコーエプソン株式会社 | Gas cell unit, atomic oscillator and electronic device |
JP2013030513A (en) * | 2011-07-26 | 2013-02-07 | Seiko Epson Corp | Gas cell unit and atomic oscillator |
-
2011
- 2011-04-01 JP JP2011081807A patent/JP5799553B2/en not_active Expired - Fee Related
-
2012
- 2012-03-30 US US13/434,972 patent/US9024634B2/en active Active
-
2015
- 2015-01-22 US US14/602,635 patent/US9958514B2/en not_active Expired - Fee Related
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012215499A5 (en) | ||
JP5799553B2 (en) | Magnetic field measuring apparatus, magnetic field measuring system, and magnetic field measuring method | |
WO2018025265A3 (en) | System and method for performing tear film structure measurement | |
MX341327B (en) | Device for determining the location of mechanical elements. | |
WO2011122007A3 (en) | Imaging apparatus and imaging method | |
IN2015DN01708A (en) | ||
WO2014043592A3 (en) | Measurement device for electrical installations and related methods | |
BR112013027334A2 (en) | Method and apparatus for characterizing coupling integrity of process control equipment | |
MX367538B (en) | Using optical computing devices to determine unknown analytes. | |
IN2014DE02347A (en) | ||
JP2013031784A5 (en) | X-ray imaging device | |
BR112014019813A8 (en) | OPHTHALMIC DEVICE WAVEFRONT MEASUREMENT METHOD | |
JP2013176535A5 (en) | ||
JP2013140846A5 (en) | ||
WO2014144970A3 (en) | System and method for calibration of echo sounding systems and improved seafloor imaging using such systems | |
GB2552276A (en) | Optical element testing methods and systems employing a broadband angle-selective filter | |
MY182683A (en) | Device and method for temperature detection and measurement using integrated computational elements | |
JP2016533496A5 (en) | ||
WO2015026406A3 (en) | High-resolution methods and systems for optically imaging parts | |
Trouvilliez et al. | Evaluation of FlowCaptTM acoustic sensors for snowdrift measurements | |
Dang et al. | Study of capsule position monitoring methods for ITER neutron activation system | |
Kawell | Combined PSP and PEC Testing | |
ES2527261A1 (en) | Device and method of verification of reflective surfaces and calibration method (Machine-translation by Google Translate, not legally binding) | |
JP2015212715A (en) | Magnetic field measurement device, magnetic field measurement system, and magnetic field measurement method | |
Towell et al. | Beam Monitor Development for Fermilab E1039 |