JP2012215499A5 - - Google Patents

Download PDF

Info

Publication number
JP2012215499A5
JP2012215499A5 JP2011081807A JP2011081807A JP2012215499A5 JP 2012215499 A5 JP2012215499 A5 JP 2012215499A5 JP 2011081807 A JP2011081807 A JP 2011081807A JP 2011081807 A JP2011081807 A JP 2011081807A JP 2012215499 A5 JP2012215499 A5 JP 2012215499A5
Authority
JP
Japan
Prior art keywords
magnetic field
gas cell
measured
measurement unit
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011081807A
Other languages
Japanese (ja)
Other versions
JP2012215499A (en
JP5799553B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2011081807A priority Critical patent/JP5799553B2/en
Priority claimed from JP2011081807A external-priority patent/JP5799553B2/en
Priority to US13/434,972 priority patent/US9024634B2/en
Publication of JP2012215499A publication Critical patent/JP2012215499A/en
Publication of JP2012215499A5 publication Critical patent/JP2012215499A5/ja
Priority to US14/602,635 priority patent/US9958514B2/en
Application granted granted Critical
Publication of JP5799553B2 publication Critical patent/JP5799553B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明に係るひとつの磁場測定装置は、被測定物が設置される位置に対して第1の方向に配置された第1ガスセルと、前記第1ガスセルに対して前記第1の方向に設置された第2ガスセルと、前記第1ガスセルを通過した第1の光を用いて磁場の測定を行う第1測定部と、前記第2ガスセルを通過した第2の光を用いて磁場の測定を行う第2測定部と、前記第1の方向は第1の軸方向に平行であり、前記被測定物、前記第1ガスセル、および前記第2ガスセルを、前記第1の軸方向において挟むように対向して配置された一対の磁場発生部と、前記第1測定部及び前記第2測定部における所定の成分の測定結果を基にして生成された所定の信号を出力する出力部と、を含み、前記第1の光及び前記第2の光は前記第1の軸方向とは異なる方向から照射され、前記磁場発生部は、前記第2の測定部で計測される前記所定の成分の測定値が、前記第1の測定部で計測される前記所定の成分の測定値よりも小さくなる磁場を発生させることを特徴とする。
上記のひとつの磁場測定装置において、前記所定の成分は、磁場の前記第1の方向の成分であることが好ましい。
本発明に係るひとつの磁場測定システムは、上記のひとつの磁場測定装置を、互いに異なる方向ごとに複数備えることが好ましい。
上記のひとつの磁場測定システムにおいて、前記互いに異なる方向は、前記第1の軸方向に平行な方向と前記第1の軸に直角に交わる方向であるが好ましい。
本発明に係るひとつの磁場測定方法は、第1測定部が、被測定物の設置される位置からみて予め決められた第1の方向に配置された第1ガスセルに光を照射して、当該第1ガスセルにおける磁場の前記方向の成分を測定し、第2測定部が、前記第1ガスセルからみて前記第1の方向に配置された第2ガスセルに光を照射して、当該第2ガスセルにおける磁場の前記第1の方向の成分を測定し、磁場発生手段が、前記被測定物、前記第1ガスセル、および前記第2ガスセルを前記第1の方向に沿って挟み、前記第2測定部により測定された前記成分が小さくなるように、前記第2ガスセルに向けて磁場を発生させ、出力部が、前記第1測定部と前記第2測定部とがそれぞれ測定した前記成分の差に応じた信号を出力することを特徴とする。
本発明は、被測定物が設置される位置からみて予め決められた方向に配置された第1ガスセルと、前記第1ガスセルからみて前記方向に配置された第2ガスセルと、前記第1ガスセルに光を照射して、当該第1ガスセルにおける磁場の前記方向の成分を測定する第1測定部と、前記第2ガスセルに光を照射して、当該第2ガスセルにおける磁場の前記方向の成分を測定する第2測定部と、前記被測定物、前記第1ガスセル、および前記第2ガスセルを前記方向に沿って挟み、前記第2測定部により測定された前記成分が小さくなるように、前記第2ガスセルに向けて磁場を発生させる磁場発生手段と、前記第1測定部と前記第2測定部とがそれぞれ測定した前記成分の差に応じた信号を出力する出力部とを備えることを特徴とする磁場測定装置を提供する。この構成によれば、ガスセルに光を照射してそのガスセルにおける磁場の予め決められた方向の成分を測定する測定部に対し、その測定部が測定可能な範囲を超えた外乱がある場合でも、その外乱に影響されずに被測定物の磁場を測定することができる。
One magnetic field measuring apparatus according to the present invention is installed in a first direction with respect to a first gas cell arranged in a first direction with respect to a position where an object to be measured is installed, and in the first direction with respect to the first gas cell. The second gas cell, the first measurement unit that measures the magnetic field using the first light that has passed through the first gas cell, and the magnetic field that is measured using the second light that has passed through the second gas cell The second measurement unit and the first direction are parallel to the first axial direction, and are opposed to sandwich the object to be measured, the first gas cell, and the second gas cell in the first axial direction. A pair of magnetic field generators arranged in the above, and an output unit that outputs a predetermined signal generated based on a measurement result of a predetermined component in the first measurement unit and the second measurement unit, The first light and the second light are different directions from the first axial direction. The measured value of the predetermined component measured by the second measuring unit is smaller than the measured value of the predetermined component measured by the first measuring unit. A magnetic field is generated.
In the one magnetic field measuring apparatus, the predetermined component is preferably a component of the magnetic field in the first direction.
One magnetic field measurement system according to the present invention preferably includes a plurality of the single magnetic field measurement devices in different directions.
In the one magnetic field measurement system, the different directions are preferably a direction parallel to the first axis direction and a direction perpendicular to the first axis.
In one magnetic field measurement method according to the present invention, the first measurement unit irradiates light to the first gas cell arranged in the first direction determined in advance from the position where the object to be measured is installed, and A component in the direction of the magnetic field in the first gas cell is measured, and the second measuring unit irradiates light to the second gas cell arranged in the first direction as viewed from the first gas cell, and the second gas cell A component of the magnetic field in the first direction is measured, and the magnetic field generation unit sandwiches the object to be measured, the first gas cell, and the second gas cell along the first direction, and the second measurement unit A magnetic field is generated toward the second gas cell so that the measured component becomes small, and the output unit corresponds to the difference between the components measured by the first measurement unit and the second measurement unit. A signal is output.
The present invention provides a first gas cell disposed in a predetermined direction as viewed from a position where an object to be measured is installed, a second gas cell disposed in the direction as viewed from the first gas cell, and the first gas cell. A first measurement unit that irradiates light and measures the component in the direction of the magnetic field in the first gas cell; and irradiates the second gas cell with light and measures the component in the direction of the magnetic field in the second gas cell. The second measurement unit, the object to be measured, the first gas cell, and the second gas cell are sandwiched along the direction so that the component measured by the second measurement unit is small. Magnetic field generating means for generating a magnetic field toward the gas cell, and an output unit that outputs a signal corresponding to the difference between the components measured by the first measuring unit and the second measuring unit, respectively. Magnetic field measurement equipment To provide. According to this configuration, for a measurement unit that irradiates light to a gas cell and measures a component in a predetermined direction of the magnetic field in the gas cell, even when there is a disturbance that exceeds the range that the measurement unit can measure, The magnetic field of the object to be measured can be measured without being affected by the disturbance.

Claims (5)

被測定物が設置される位置に対して第1の方向に配置された第1ガスセルと、
前記第1ガスセルに対して前記第1の方向に設置された第2ガスセルと、
前記第1ガスセルを通過した第1の光を用いて磁場の測定を行う第1測定部と、
前記第2ガスセルを通過した第2の光を用いて磁場の測定を行う第2測定部と、
前記第1の方向は第1の軸方向に平行であり、前記被測定物、前記第1ガスセル、および前記第2ガスセルを、前記第1の軸方向においてむように対向して配置された一対の磁場発生と、
前記第1測定部及び前記第2測定部における所定の成分の測定結果を基にして生成された所定の信号を出力する出力部と、を含み、
前記第1の光及び前記第2の光は前記第1の軸方向とは異なる方向から照射され、
前記磁場発生部は、前記第2の測定部で計測される前記所定の成分の測定値が、前記第1の測定部で計測される前記所定の成分の測定値よりも小さくなる磁場を発生させることを特徴とする磁場測定装置。
A first gas cell arranged in a first direction with respect to a position where the object to be measured is installed;
A second gas cell installed in the first direction with respect to the first gas cell;
A first measurement unit that measures a magnetic field using the first light that has passed through the first gas cell;
A second measuring unit for measuring a magnetic field using the second light that has passed through the second gas cell;
The first direction is parallel to the first axis direction, the measured object, the first gas cell, and the second gas cell, a pair of which are arranged to face each other interposed useless in the first axis direction and the magnetic field generating unit,
An output unit that outputs a predetermined signal generated based on a measurement result of a predetermined component in the first measurement unit and the second measurement unit ;
The first light and the second light are irradiated from a direction different from the first axial direction,
The magnetic field generation unit generates a magnetic field in which a measurement value of the predetermined component measured by the second measurement unit is smaller than a measurement value of the predetermined component measured by the first measurement unit. Magnetic field measuring apparatus characterized by the above.
前記所定の成分は、磁場の前記第1の方向の成分であることを特徴とする請求項1に記載の磁場測定装置。The magnetic field measuring apparatus according to claim 1, wherein the predetermined component is a component of the magnetic field in the first direction. 請求項1又は2に記載の磁場測定装置を、互いに異なる方向ごとに複数備える
ことを特徴とする磁場測定システム。
A magnetic field measurement system comprising a plurality of magnetic field measurement devices according to claim 1 or 2 in different directions .
前記互いに異なる方向は、前記第1の軸方向に平行な方向と前記第1の軸に直角に交わる方向である
ことを特徴とする請求項に記載の磁場測定システム。
The magnetic field measurement system according to claim 3 , wherein the different directions are a direction parallel to the first axis direction and a direction perpendicular to the first axis .
第1測定部が、被測定物の設置される位置からみて予め決められた第1の方向に配置された第1ガスセルに光を照射して、当該第1ガスセルにおける磁場の前記方向の成分を測定し、
第2測定部が、前記第1ガスセルからみて前記第1の方向に配置された第2ガスセルに光を照射して、当該第2ガスセルにおける磁場の前記第1の方向の成分を測定し、
磁場発生手段が、前記被測定物、前記第1ガスセル、および前記第2ガスセルを前記
1の方向に沿って挟み、前記第2測定部により測定された前記成分が小さくなるように、前記第2ガスセルに向けて磁場を発生させ、
出力部が、前記第1測定部と前記第2測定部とがそれぞれ測定した前記成分の差に応じた信号を出力する
ことを特徴とする磁場測定方法。
The first measurement unit irradiates light to the first gas cell arranged in the first direction determined in advance from the position where the object to be measured is installed, and the component of the magnetic field in the first gas cell in the direction is applied. Measure and
The second measurement unit irradiates light to the second gas cell arranged in the first direction as viewed from the first gas cell, and measures a component of the magnetic field in the second gas cell in the first direction;
Magnetic field generating means connects the object to be measured, the first gas cell, and the second gas cell to the first
A magnetic field is generated toward the second gas cell so that the component measured by the second measurement unit is reduced along the direction of 1 ;
The output unit outputs a signal corresponding to the difference between the components measured by the first measurement unit and the second measurement unit, respectively.
JP2011081807A 2011-04-01 2011-04-01 Magnetic field measuring apparatus, magnetic field measuring system, and magnetic field measuring method Expired - Fee Related JP5799553B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011081807A JP5799553B2 (en) 2011-04-01 2011-04-01 Magnetic field measuring apparatus, magnetic field measuring system, and magnetic field measuring method
US13/434,972 US9024634B2 (en) 2011-04-01 2012-03-30 Magnetic field measurement apparatus, magnetic field measurement system and magnetic field measurement method
US14/602,635 US9958514B2 (en) 2011-04-01 2015-01-22 Magnetic field measurement apparatus, magnetic field measurement system and magnetic field measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011081807A JP5799553B2 (en) 2011-04-01 2011-04-01 Magnetic field measuring apparatus, magnetic field measuring system, and magnetic field measuring method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015167070A Division JP2015212715A (en) 2015-08-26 2015-08-26 Magnetic field measurement device, magnetic field measurement system, and magnetic field measurement method

Publications (3)

Publication Number Publication Date
JP2012215499A JP2012215499A (en) 2012-11-08
JP2012215499A5 true JP2012215499A5 (en) 2014-05-15
JP5799553B2 JP5799553B2 (en) 2015-10-28

Family

ID=46926357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011081807A Expired - Fee Related JP5799553B2 (en) 2011-04-01 2011-04-01 Magnetic field measuring apparatus, magnetic field measuring system, and magnetic field measuring method

Country Status (2)

Country Link
US (2) US9024634B2 (en)
JP (1) JP5799553B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5223794B2 (en) * 2009-06-26 2013-06-26 セイコーエプソン株式会社 Magnetic sensor
JP5539099B2 (en) * 2010-08-13 2014-07-02 キヤノン株式会社 Magnetic gradient meter and magnetic sensing method
JP6300381B2 (en) * 2013-12-03 2018-04-04 株式会社日立製作所 Magnetic field measuring device
JP2015143669A (en) * 2014-01-31 2015-08-06 セイコーエプソン株式会社 Magnetic field measuring device
JP2016080613A (en) * 2014-10-21 2016-05-16 セイコーエプソン株式会社 Magnetic measuring device, gas cell, manufacturing method of magnetic measuring device, and manufacturing method of gas cell
KR101624482B1 (en) * 2014-10-24 2016-05-26 한국표준과학연구원 Atomic Magnetometer And Operating Method Of The Same
JP2017191040A (en) * 2016-04-14 2017-10-19 セイコーエプソン株式会社 Magnetic field measurement device and magnetic field measurement method
JP6825237B2 (en) * 2016-06-14 2021-02-03 セイコーエプソン株式会社 Magnetic field measuring device, manufacturing method of magnetic field measuring device
JP6825241B2 (en) * 2016-06-21 2021-02-03 セイコーエプソン株式会社 Magnetic field measuring device, manufacturing method of magnetic field measuring device
CN111289924A (en) * 2018-12-10 2020-06-16 中科知影(北京)科技有限公司 Multi-channel atomic magnetic detector

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3214683A (en) * 1960-03-25 1965-10-26 Trw Inc Optically pumped gyromagnetic apparatus
US3243721A (en) * 1962-10-08 1966-03-29 Trw Inc Temperature controlled filter gas cell in gas cell frequency standard
US3513381A (en) * 1967-07-17 1970-05-19 Varian Associates Off-resonant light as a probe of optically pumped alkali vapors
US5189368A (en) * 1976-09-24 1993-02-23 Lockheed Sanders, Inc. Magnetometer
JPS5925726A (en) * 1982-07-31 1984-02-09 株式会社島津製作所 Diagnostic observation apparatus
US4788428A (en) * 1985-03-04 1988-11-29 The United States Of America As Represented By The Secretary Of The Navy Thermodynamics infrared imaging sensor
FR2663430B1 (en) * 1990-06-14 1992-10-02 Commissariat Energie Atomique RESONANCE MAGNETOMETER WITH OPTICAL PUMPING USING A LIGHT BEAM WITH CONTROLLED POLARIZATION.
US5227722A (en) * 1991-04-08 1993-07-13 Cae Electronics Ltd. Dead-zone free optically pumped MZ magnetometer
JPH0810250B2 (en) 1991-05-13 1996-01-31 大同ほくさん株式会社 Magnetic noise eliminator using SQUID
JP4218128B2 (en) 1999-05-20 2009-02-04 株式会社島津製作所 Magnetic shielding device
US6295834B1 (en) * 1999-06-30 2001-10-02 Medi-Physics, Inc. NMR polarization monitoring coils, hyperpolarizers with same, and methods for determining the polarization level of accumulated hyperpolarized noble gases during production
JP2001051035A (en) 1999-08-10 2001-02-23 Kansai Research Institute Magnetic-field detecting apparatus
JP4377566B2 (en) 2002-05-16 2009-12-02 特許機器株式会社 Active magnetic field canceller
JP2007170880A (en) 2005-12-20 2007-07-05 Yokogawa Electric Corp Magnetic field detecting apparatus
US20100219820A1 (en) * 2007-04-13 2010-09-02 University Of Floarida Research Foundation, Inc. Atomic Magnetometer Sensor Array Magnetoencephalogram Systems and Methods
JP4919873B2 (en) 2007-05-10 2012-04-18 株式会社竹中工務店 Magnetic shield device
JP5178187B2 (en) * 2007-12-28 2013-04-10 キヤノン株式会社 Atomic magnetic sensor and magnetic sensing method
JP5264242B2 (en) * 2008-03-26 2013-08-14 キヤノン株式会社 Atomic magnetometer and magnetic force measurement method
JP5375279B2 (en) * 2008-06-18 2013-12-25 セイコーエプソン株式会社 Atomic oscillator
US8237514B2 (en) * 2009-02-06 2012-08-07 Seiko Epson Corporation Quantum interference device, atomic oscillator, and magnetic sensor
JP5640335B2 (en) * 2009-06-26 2014-12-17 セイコーエプソン株式会社 Magnetic sensor
JP5223794B2 (en) * 2009-06-26 2013-06-26 セイコーエプソン株式会社 Magnetic sensor
JP2011051035A (en) 2009-08-31 2011-03-17 Seiko Epson Corp Signal transmission device for robot and robot including the same
JP5655647B2 (en) * 2011-03-14 2015-01-21 セイコーエプソン株式会社 Gas cell unit, atomic oscillator and electronic device
JP2012191138A (en) * 2011-03-14 2012-10-04 Seiko Epson Corp Gas cell unit, atomic oscillator and electronic apparatus
JP2013030513A (en) * 2011-07-26 2013-02-07 Seiko Epson Corp Gas cell unit and atomic oscillator

Similar Documents

Publication Publication Date Title
JP2012215499A5 (en)
JP5799553B2 (en) Magnetic field measuring apparatus, magnetic field measuring system, and magnetic field measuring method
WO2018025265A3 (en) System and method for performing tear film structure measurement
Inoue et al. Inner-layer intensities for the flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy simulations
IN2015DN01708A (en)
WO2014043592A3 (en) Measurement device for electrical installations and related methods
MX2018009878A (en) Device, system, and method for inspecting crankshaft shape.
MX341497B (en) Non-destructive testing device.
BR112012022014A2 (en) probe indicating boundary boundaries between materials
JP2013031784A5 (en) X-ray imaging device
IN2014DE02347A (en)
BR112014019813A8 (en) OPHTHALMIC DEVICE WAVEFRONT MEASUREMENT METHOD
JP2013176535A5 (en)
Dubyago et al. The method of nondestructive testing and prediction of evolving insulation defect of power line cable
JP2013140846A5 (en)
PL406634A1 (en) System for measuring the properties of soft magnetic materials, preferably sheet metal and strips
WO2014144970A3 (en) System and method for calibration of echo sounding systems and improved seafloor imaging using such systems
GB2552276A (en) Optical element testing methods and systems employing a broadband angle-selective filter
WO2015026406A3 (en) High-resolution methods and systems for optically imaging parts
Trouvilliez et al. Evaluation of FlowCaptTM acoustic sensors for snowdrift measurements
Kawell Combined PSP and PEC Testing
JP2013215352A5 (en)
JP2015212715A (en) Magnetic field measurement device, magnetic field measurement system, and magnetic field measurement method
Towell et al. Beam Monitor Development for Fermilab E1039
Pywell et al. Photodisintegration of Lithium Isotopes