JP2012214743A - Solid sealing resin composition for compression molding, and semiconductor device - Google Patents

Solid sealing resin composition for compression molding, and semiconductor device Download PDF

Info

Publication number
JP2012214743A
JP2012214743A JP2012070320A JP2012070320A JP2012214743A JP 2012214743 A JP2012214743 A JP 2012214743A JP 2012070320 A JP2012070320 A JP 2012070320A JP 2012070320 A JP2012070320 A JP 2012070320A JP 2012214743 A JP2012214743 A JP 2012214743A
Authority
JP
Japan
Prior art keywords
group
resin composition
compression molding
substituted
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012070320A
Other languages
Japanese (ja)
Inventor
Taku Hasegawa
卓 長谷川
Hidenori Abe
秀則 阿部
Kazuhiko Miyabayashi
和彦 宮林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012070320A priority Critical patent/JP2012214743A/en
Publication of JP2012214743A publication Critical patent/JP2012214743A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Abstract

PROBLEM TO BE SOLVED: To provide a solid sealing resin composition for compression molding which exhibits excellent reactivity even at low temperature and excellent long-term preservation stability, and is suitable for sealing an FO-WLP semiconductor device, and provide a semiconductor device.SOLUTION: The solid sealing resin composition for compression molding is structured by containing an epoxy resin, a curing agent and an addition reactant of a phosphine compound and a quinone compound. It is preferable for the solid sealing resin composition for compression molding that in differential scanning calorimetry, a time it takes a reaction rate of the epoxy resin and the curing agent at 130°C to reach 40% or higher, is 400 seconds or less, or a time it takes the reaction rate of the epoxy resin and the curing agent at 120°C to reach 40% or higher, is 600 seconds or less.

Description

本発明は、圧縮成形用固形封止樹脂組成物及び半導体装置に関する。     The present invention relates to a solid sealing resin composition for compression molding and a semiconductor device.

従来から、トランジスタ、IC等の電子部品装置の素子封止の分野では生産性、コスト等の面から樹脂封止が主流となり、エポキシ樹脂成形材料が広く用いられている。この理由としては、エポキシ樹脂が電気特性、耐湿性、耐熱性、機械特性、インサート品との接着性等の諸特性にバランスがとれているためである。また近年、電子部品のプリント配線板への高密度実装化が進んでいる。これに伴い、半導体装置は従来のピン挿入型のパッケージから、表面実装型のパッケージが主流になっている。   Conventionally, in the field of element sealing of electronic component devices such as transistors and ICs, resin sealing has been the mainstream in terms of productivity and cost, and epoxy resin molding materials have been widely used. This is because the epoxy resin is balanced in various properties such as electrical properties, moisture resistance, heat resistance, mechanical properties, and adhesiveness with inserts. In recent years, high-density mounting of electronic components on printed wiring boards has been progressing. As a result, surface mount packages have become mainstream from conventional pin insertion packages.

表面実装型のIC、LSI等は、実装密度を高くし実装高さを低くするために、薄型、小型のパッケージになっており、素子のパッケージに対する占有体積が大きくなり、パッケージの肉厚は非常に薄くなってきた。また素子の多機能化、大容量化によって、チップ面積の増大、多ピン化が進み、さらにはパッド(電極)数の増大によって、パッドピッチの縮小化とパッド寸法の縮小化、いわゆる狭パッドピッチ化も進んでいる。また、さらなる小型軽量化に対応すべく、パッケージの形態もQFP(Quad Flat Package)、SOP(Small Outline Package)といったものから、より多ピン化に対応しやすく、かつより高密度実装が可能なCSP(Chip Size Package)やBGA(Ball Grid Array)へ移行しつつある。これらのパッケージは、近年、高速化、多機能化を実現するために、フェースダウン型、積層(スタックド)型、フリップチップ型、ウェハーレベル型等、新しい構造のものが開発されている。ウェハーレベル型は、パッケージサイズとチップサイズがほぼ同じであるため、パッケージの小型化に成功している。   Surface-mount ICs, LSIs, etc. are thin and small packages in order to increase the mounting density and reduce the mounting height, and the volume occupied by the device package increases, resulting in a very thick package. It has become thinner. In addition, due to the increased functionality and capacity of the elements, the chip area is increased and the number of pins is increased, and further, the pad pitch is reduced and the pad size is reduced by increasing the number of pads (electrodes), so-called narrow pad pitch. Progress is also being made. In addition, in order to cope with further reduction in size and weight, CSP (Quad Flat Package), SOP (Small Outline Package), and other forms of packages are easy to cope with higher pin count and CSP capable of higher density mounting. (Chip Size Package) and BGA (Ball Grid Array). In recent years, these packages have been developed with new structures such as a face-down type, a stacked (stacked) type, a flip chip type, and a wafer level type in order to realize high speed and multiple functions. Since the wafer level type has almost the same package size and chip size, it has succeeded in miniaturizing the package.

一方で、バンプを搭載可能な領域がチップの面積に制限されるため、パッケージの更なる高集積化は困難であった。近年新しいパッケージとしてFO-WLP(Fan Out Wafer Level Package)というパッケージが提言された(図1参照)。このパッケージの作製方法では、一度チップをキャリアー上に仮止めテープを用いて、仮止めし、その上部を圧縮成形により封止をする手法が取られる。FO-WLPの作製に圧縮成形が採用されるのは、FO-WLPでは大型の一括封止が必要なため、一般的な樹脂封止方法であるトランスファー成形では充填が難しいためである。   On the other hand, since the area where the bumps can be mounted is limited to the area of the chip, it is difficult to further integrate the package. In recent years, a package called FO-WLP (Fan Out Wafer Level Package) has been proposed as a new package (see FIG. 1). In this package manufacturing method, a technique is employed in which a chip is temporarily fixed on a carrier using a temporary fixing tape, and the upper portion thereof is sealed by compression molding. The reason why compression molding is employed in the production of FO-WLP is that FO-WLP requires large-scale batch sealing, and filling is difficult with transfer molding, which is a general resin sealing method.

従って、このような半導体装置を作製するには、樹脂流動速度の低い圧縮成形を用いることが通例となっている。これらによって得られたパッケージでは、従来のWL−CSPではバンプ搭載ができなかったチップの直下以外の周辺領域にも封止材層や再配線層が存在することで、バンプを搭載可能な領域が拡大し、更なる高集積化に成功した(図2参照)。
但し、このとき用いられる仮止めテープの耐熱性が低いことから、一般的な封止温度である175℃でのモールドができず、130℃以下という低温での成形が必要となっている。
Therefore, in order to produce such a semiconductor device, it is customary to use compression molding with a low resin flow rate. In the package obtained by these, the sealing material layer and the rewiring layer exist also in the peripheral region other than directly under the chip where the conventional WL-CSP could not mount the bump, so that there is a region where the bump can be mounted. Expanded and succeeded in further high integration (see Fig. 2).
However, since the heat resistance of the temporary fixing tape used at this time is low, molding at 175 ° C., which is a general sealing temperature, cannot be performed, and molding at a low temperature of 130 ° C. or less is required.

この課題を解決するために、現在では潜在性の高活性触媒を用いた液状封止材での成形が一般的となっている(例えば特許文献1、及び非特許文献1〜3参照)。   In order to solve this problem, molding with a liquid sealing material using a latent highly active catalyst is now common (see, for example, Patent Document 1 and Non-Patent Documents 1 to 3).

国際公開第09/142065号パンフレットWO 09/142065 pamphlet

Embedded Wafer Level Packages with Laterally Placed and Vertically Stacked Thin Dies (ECTC 2009.1537-1545)Embedded Wafer Level Packages with Laterally Placed and Vertically Stacked Thin Dies (ECTC 2009. 1537-1545) Embedded Wafer Level Ball Grid Array (FO-WLP) (ECTC 2006.1−5)Embedded Wafer Level Ball Grid Array (FO-WLP) (ECTC 2006.1-5) Wafer Level Embedding Technology for 3D Wafer Level Embedded Package(ECTC 2009 1289−1296)Wafer Level Embedding Technology for 3D Wafer Level Embedded Package (ECTC 2009 1289-1296)

しかしながら、現在使用されている液状封止材は、封止材自身の保存安定性が十分とは言えず、粘度上昇等の不具合から、常温(25℃)では24h程度の保存安定性、長期的には−20℃以下の冷凍庫の保管でも6ヶ月程度の保存安定性しかない場合があった。
一方で固形封止材の場合、触媒活性の観点から低温での成形には長時間の封止時間が必要となる場合があった。上記のようなパッケージ向けの封止方法の場合、130℃以下にて600秒以下の封止時間が必要とされている。ところが従来の固形封止材の場合、このような低温においての反応性が低く、未硬化となり易く金型からの取り出しが困難になってしまう場合があった。
また高活性の触媒を用いることにより低温においての反応性の向上が可能ではあるが、その場合、常温(25℃)や低温保管中においても、反応活性が高いため保存中に反応が進んでしまい、長期保存安定性が悪化してしまうという場合が存在した。
However, the liquid sealing material currently used cannot be said to have sufficient storage stability of the sealing material itself, and due to problems such as an increase in viscosity, storage stability of about 24 h at room temperature (25 ° C.) In some cases, the storage stability of only about 6 months was stored even in a freezer at -20 ° C or lower.
On the other hand, in the case of a solid sealing material, a long sealing time may be required for molding at a low temperature from the viewpoint of catalytic activity. In the case of the sealing method for a package as described above, a sealing time of not more than 600 seconds at 130 ° C. or less is required. However, in the case of the conventional solid sealing material, the reactivity at such a low temperature is low, and it tends to become uncured, and it may be difficult to take out from the mold.
In addition, it is possible to improve the reactivity at low temperatures by using a highly active catalyst, but in that case, the reaction proceeds during storage because of high reaction activity even at room temperature (25 ° C.) or during low temperature storage. In some cases, long-term storage stability deteriorated.

そのため、FO-WLP用封止材として用いた場合に、低温において十分な反応性を有し、一方で封止材としての長期保存安定性が求められている。
本発明は、低温においても優れた反応性を有し、なおかつ長期保存安定性に優れ、FO-WLP用半導体装置の封止に適した、圧縮成形用固形封止樹脂組成物及びそれによって形成される半導体装置を提供することを目的とする。
Therefore, when it is used as a sealing material for FO-WLP, it has sufficient reactivity at low temperatures, while long-term storage stability as a sealing material is required.
The present invention provides a solid encapsulating resin composition for compression molding, which has excellent reactivity even at low temperatures, has excellent long-term storage stability, and is suitable for encapsulating a semiconductor device for FO-WLP, and is formed thereby. An object of the present invention is to provide a semiconductor device.

発明者らは上記の課題を解決するために鋭意検討を重ねた結果、特定の硬化促進剤を選択することにより、上記目的を達成しえることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the inventors have found that the above object can be achieved by selecting a specific curing accelerator, and have completed the present invention.

すなわち、本発明は以下に関する。
<1> (A)エポキシ樹脂と、(B)硬化剤と、(C)ホスフィン化合物及びキノン化合物の付加反応物とを成分とする圧縮成形用固形封止樹脂組成物。
That is, the present invention relates to the following.
<1> A solid encapsulating resin composition for compression molding comprising (A) an epoxy resin, (B) a curing agent, and (C) an addition reaction product of a phosphine compound and a quinone compound.

<2> 示差走査熱量測定によって測定され、前記(A)エポキシ樹脂と(B)硬化剤との反応率が40%に達するのに要する時間が、130℃の反応温度の場合に400秒以内、又は120℃の反応温度の場合に600秒以内である前記<1>に記載の圧縮成形用固形封止樹脂組成物。 <2> Measured by differential scanning calorimetry, the time required for the reaction rate of the (A) epoxy resin and (B) curing agent to reach 40% is within 400 seconds when the reaction temperature is 130 ° C., Or the solid sealing resin composition for compression molding as described in said <1> which is within 600 second in the case of the reaction temperature of 120 degreeC.

<3> 25℃において48時間経過後の流動性が、経過前の流動性に対して、90%以上である前記<1>又は<2>に記載の圧縮成形用固形封止樹脂組成物。 <3> The solid sealing resin composition for compression molding according to <1> or <2>, wherein the fluidity after 48 hours at 25 ° C. is 90% or more with respect to the fluidity before the passage.

<4> 前記(C)ホスフィン化合物及びキノン化合物の付加反応物は、下記一般式(I)で示されるホスフィン化合物及び下記一般式(II)で示されるキノン化合物との付加反応物である前記<1>〜<3>のいずれか1項に記載の圧縮成形用固形封止樹脂組成物。 <4> The addition reaction product of the (C) phosphine compound and the quinone compound is an addition reaction product of a phosphine compound represented by the following general formula (I) and a quinone compound represented by the following general formula (II). The solid sealing resin composition for compression molding according to any one of 1> to <3>.

(式(I)中のR、R及びRはそれぞれ独立に、水素原子又は炭素数1〜12の炭化水素基を示す。また、式(II)中のR〜Rはそれぞれ独立に、水素原子又は炭素数1〜18の1価の置換基を示し、RとRは互いに結合して環を形成してもよい) (R 1 , R 2 and R 3 in formula (I) each independently represent a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms. In addition, R 4 to R 6 in formula (II) are each Independently, it represents a hydrogen atom or a monovalent substituent having 1 to 18 carbon atoms, and R 4 and R 5 may be bonded to each other to form a ring)

<5> (D)無機充填剤をさらに含有し、その含有率が総体積中に55体積%〜90体積%である前記<1>〜<4>のいずれか1項に記載の圧縮成形用固形封止樹脂組成物。 <5> (D) The compression filler according to any one of <1> to <4>, further including an inorganic filler, the content of which is 55% by volume to 90% by volume in the total volume. Solid encapsulating resin composition.

<6> 前記<1>〜<5>のいずれか1項に記載の圧縮成形用固形封止樹脂組成物により封止された半導体素子を有する半導体装置。 <6> A semiconductor device having a semiconductor element sealed with the solid sealing resin composition for compression molding according to any one of <1> to <5>.

本発明によれば、低温においても優れた反応性を有し、なおかつ長期保存安定性に優れ、FO-WLP用半導体装置の封止に適した、圧縮成形用固形封止樹脂組成物及びそれによって形成される半導体装置を提供することが可能となった。   According to the present invention, a solid encapsulating resin composition for compression molding, which has excellent reactivity even at low temperatures, has excellent long-term storage stability, and is suitable for sealing a semiconductor device for FO-WLP, and thereby It has become possible to provide a semiconductor device to be formed.

FO-WLPの製造工程の一部を示す概略断面図である。It is a schematic sectional drawing which shows a part of manufacturing process of FO-WLP. FO-WLPの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of FO-WLP.

本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。また本明細書において「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。さらに本明細書において組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。   In this specification, the term “process” is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes. . In the present specification, a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. Further, when referring to the amount of each component in the composition in the present specification, when there are a plurality of substances corresponding to each component in the composition, the plurality of the components present in the composition unless otherwise specified. It means the total amount of substance.

本発明の圧縮成形用固形封止樹脂組成物(以下、単に「樹脂組成物」とも表す)は、(A)エポキシ樹脂と、(B)硬化剤と、(C)ホスフィン化合物及びキノン化合物の付加反応物とを含み、必要に応じてその他の成分を含む。
かかる構成であることで、低温においても優れた反応性を有し、なおかつ長期保存安定性に優れ、FO-WLP用半導体装置の封止に適する。
また前記圧縮成形用固形封止樹脂組成物は、常温(25℃)において固形である。
The solid molding resin composition for compression molding of the present invention (hereinafter also simply referred to as “resin composition”) comprises (A) an epoxy resin, (B) a curing agent, and (C) an addition of a phosphine compound and a quinone compound. And other components as necessary.
With such a configuration, it has excellent reactivity even at a low temperature, has excellent long-term storage stability, and is suitable for sealing a semiconductor device for FO-WLP.
The compression-molding solid encapsulating resin composition is solid at room temperature (25 ° C.).

また前記樹脂組成物は、反応温度130℃において、樹脂組成物に含まれる前記エポキシ樹脂と硬化剤との反応率が40%に達する時間が400秒以内、又は反応温度120℃において、前記反応率が40%に達する時間が600秒以内であることが好ましい。
樹脂組成物に含まれる前記エポキシ樹脂と硬化剤の反応率は、一般的に、DSC(示差走査熱量測定)等により測定可能である。具体的な測定方法については後述する。
The resin composition has a reaction temperature of 130 ° C., the reaction rate between the epoxy resin and the curing agent contained in the resin composition reaches 40% within 400 seconds, or the reaction temperature of 120 ° C. It is preferable that the time to reach 40% is within 600 seconds.
The reaction rate between the epoxy resin and the curing agent contained in the resin composition can be generally measured by DSC (differential scanning calorimetry) or the like. A specific measurement method will be described later.

反応温度130℃で400秒以内あるいは反応温度120℃で600秒以内の条件で前記反応率が30%に達すれば金型からの離型性の点では十分であるが、樹脂封止後のハンドリング性の観点からは、前記反応率が40%に達することが好ましく、50%に達することがより好ましい。   If the reaction rate reaches 30% within 400 seconds at a reaction temperature of 130 ° C. or 600 seconds at a reaction temperature of 120 ° C., it is sufficient in terms of releasability from the mold, but handling after resin sealing From the standpoint of sex, the reaction rate preferably reaches 40%, more preferably 50%.

前記反応率が前記条件を満たすようにするには、例えば、樹脂組成物を硬化促進剤として、ホスフィン化合物及びキノン化合物の付加反応物から選ばれる少なくとも1種を含んで構成する方法を挙げることができる。
ホスフィン化合物及びキノン化合物の付加反応物の詳細については後述する。
In order for the reaction rate to satisfy the above-described conditions, for example, a method in which the resin composition is used as a curing accelerator and includes at least one selected from addition products of a phosphine compound and a quinone compound is exemplified. it can.
Details of the addition reaction product of the phosphine compound and the quinone compound will be described later.

(ライフ)
本発明の圧縮成形用固形封止樹脂組成物は、長期保存安定性の観点から、常温(25℃)において48時間経過しても、流動性が、経過前の樹脂組成物の流動性に対して、90%以上であることが好ましく、95%以上であることがより好ましい。より具体的には、圧縮成形用固形封止樹脂組成物を調製した後、24時間以内に測定される樹脂組成物の流動性に対する、前記流動性の測定後、常温(25℃)で48時間放置した後に測定される流動性の比率が90%以上であることが好ましい。
なお、樹脂組成物の流動性は、一般的に、円板フロー等により評価できる。具体的には、円板フローに準拠して樹脂組成物の流動性を測定することができる。
(life)
From the viewpoint of long-term storage stability, the solid encapsulating resin composition for compression molding of the present invention has fluidity with respect to the fluidity of the resin composition before progress even after 48 hours at room temperature (25 ° C.). Therefore, it is preferably 90% or more, and more preferably 95% or more. More specifically, after preparing the solid sealing resin composition for compression molding, 48 hours at room temperature (25 ° C.) after measurement of the fluidity with respect to the fluidity of the resin composition measured within 24 hours. It is preferable that the fluidity ratio measured after being left to stand is 90% or more.
In addition, generally the fluidity | liquidity of a resin composition can be evaluated by a disk flow etc. Specifically, the fluidity of the resin composition can be measured based on the disc flow.

前記樹脂組成物の流動性が前記条件を満たすようにするには、例えば、樹脂組成物を硬化促進剤として、ホスフィン化合物及びキノン化合物の付加反応物から選ばれる少なくとも1種を含んで構成する方法を挙げることができる。   In order for the fluidity of the resin composition to satisfy the above-mentioned conditions, for example, a method comprising a resin composition containing at least one selected from an addition reaction product of a phosphine compound and a quinone compound as a curing accelerator. Can be mentioned.

(A)エポキシ樹脂
本発明において用いられるエポキシ樹脂は、封止用樹脂組成物に一般に使用されているものであれば、特に制限はない。具体的には、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、トリフェニルメタン骨格を有するエポキシ樹脂をはじめとするフェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール類及びα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類からなる群より選ばれる少なくとも1種と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド基を有する化合物を酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したノボラック型エポキシ樹脂;ビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換又は非置換のビフェノール等のジグリシジルエーテルであるエポキシ樹脂;スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂;フタル酸、ダイマー酸等の多塩基酸とエピクロルヒドリンとの反応により得られるグリシジルエステル型エポキシ樹脂;ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂;ジシクロペンタジエンとフェノ−ル類の共縮合樹脂のエポキシ化物;ナフタレン環を有するエポキシ樹脂;フェノール・アラルキル樹脂、ナフトール・アラルキル樹脂等のアラルキル型フェノール樹脂のエポキシ化物;トリメチロールプロパン型エポキシ樹脂;テルペン変性エポキシ樹脂;オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂;脂環族エポキシ樹脂;硫黄原子含有エポキシ樹脂等が挙げられる。
これらは1種を単独で用いても2種以上を組み合わせて用いてもよい。
(A) Epoxy resin If the epoxy resin used in this invention is generally used for the resin composition for sealing, there will be no restriction | limiting in particular. Specifically, phenol novolac type epoxy resins, ortho cresol novolac type epoxy resins, phenol resins such as epoxy resins having a triphenylmethane skeleton, phenols such as cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, and the like At least one selected from the group consisting of naphthols such as α-naphthol, β-naphthol, dihydroxynaphthalene and the like, and a compound having an aldehyde group such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, salicylaldehyde or the like in an acidic catalyst A novolak-type epoxy resin obtained by epoxidizing a novolak resin obtained by cocondensation; bisphenol A, bisphenol F, bisphenol S, alkyl-substituted or non-substituted Epoxy resins that are diglycidyl ethers such as substituted biphenols; stilbene type epoxy resins, hydroquinone type epoxy resins; glycidyl ester type epoxy resins obtained by reaction of polybasic acids such as phthalic acid and dimer acid with epichlorohydrin; diaminodiphenylmethane; Glycidylamine type epoxy resin obtained by reaction of polyamine such as isocyanuric acid and epichlorohydrin; Epoxidation product of co-condensation resin of dicyclopentadiene and phenol; Epoxy resin having naphthalene ring; Phenol aralkyl resin, Naphthol aralkyl resin Epoxidized aralkyl type phenol resin such as trimethylolpropane type epoxy resin; terpene modified epoxy resin; linear fat obtained by oxidizing olefinic bond with peracid such as peracetic acid Epoxy resins; alicyclic epoxy resins; sulfur atom-containing epoxy resins.
These may be used alone or in combination of two or more.

なかでも前記エポキシ樹脂は、充填性及び耐リフロー性の観点から、アルキル置換又は非置換のビフェノールのジグリシジルエーテルであるビフェニル型エポキシ樹脂、ビフェノールFのジグリシジルエーテルであるビスフェノールF型エポキシ樹脂、スチルベン型エポキシ樹脂及び硫黄原子含有エポキシ樹脂からなる群より選ばれる少なくとも1種が好ましく、特に少なくともビスフェノールF型エポキシ樹脂を含み、その比率を高くすることがより好ましい。
また前記エポキシ樹脂は、硬化性の観点からはノボラック型エポキシ樹脂が好ましく、低吸湿性の観点からはジシクロペンタジエン型エポキシ樹脂が好ましく、耐熱性及び低反り性の観点からはナフタレン型エポキシ樹脂及びトリフェニルメタン型エポキシ樹脂が好ましく、これらのエポキシ樹脂の少なくとも1種を含有していることが好ましい。
Among these, from the viewpoint of filling property and reflow resistance, the epoxy resin is a biphenyl type epoxy resin which is a diglycidyl ether of alkyl-substituted or unsubstituted biphenol, a bisphenol F type epoxy resin which is a diglycidyl ether of biphenol F, and stilbene. At least one selected from the group consisting of a type epoxy resin and a sulfur atom-containing epoxy resin is preferable, and it is more preferable to include at least a bisphenol F type epoxy resin and to increase the ratio.
The epoxy resin is preferably a novolak type epoxy resin from the viewpoint of curability, a dicyclopentadiene type epoxy resin is preferable from the viewpoint of low hygroscopicity, and a naphthalene type epoxy resin from the viewpoint of heat resistance and low warpage. Triphenylmethane type epoxy resin is preferable, and it is preferable to contain at least one of these epoxy resins.

ビフェニル型エポキシ樹脂としては、下記一般式(III)で示されるエポキシ樹脂等が挙げられる。またビスフェノールF型エポキシ樹脂としては、下記一般式(IV)で示されるエポキシ樹脂等が挙げられる。またスチルベン型エポキシ樹脂としては、下記一般式(V)で示されるエポキシ樹脂等が挙げられ、硫黄原子含有エポキシ樹脂としては、下記一般式(VI)で示されるエポキシ樹脂等が挙げられる。   Examples of the biphenyl type epoxy resin include an epoxy resin represented by the following general formula (III). Moreover, as a bisphenol F type epoxy resin, the epoxy resin etc. which are shown with the following general formula (IV) are mentioned. Examples of the stilbene type epoxy resin include an epoxy resin represented by the following general formula (V), and examples of the sulfur atom-containing epoxy resin include an epoxy resin represented by the following general formula (VI).

ここで、R〜Rはそれぞれ独立に、水素原子又は炭素数1〜10の置換若しくは非置換の1価の炭化水素基を示す。nは0〜3の整数を示す。
〜Rにおける炭素数1〜10の置換若しくは非置換の1価の炭化水素基としては、メチル基等が挙げられる。
Here, R < 1 > -R < 8 > shows a hydrogen atom or a C1-C10 substituted or unsubstituted monovalent hydrocarbon group each independently. n represents an integer of 0 to 3.
The monovalent hydrocarbon groups of the substituted or unsubstituted 1 to 10 carbon atoms in R 1 to R 8, include methyl group or the like.

ここで、R〜Rはそれぞれ独立に、水素原子、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基、炭素数6〜10のアリール基、又は炭素数6〜10のアラルキル基を示す。nは0〜3の整数を示す。 Here, R < 1 > -R < 8 > is respectively independently a hydrogen atom, a C1-C10 alkyl group, a C1-C10 alkoxy group, a C6-C10 aryl group, or a C6-C10. An aralkyl group is shown. n represents an integer of 0 to 3.

ここで、R〜Rはそれぞれ独立に、水素原子又は炭素数1〜5の置換若しくは非置換の1価の炭化水素基を示す。nは0〜10の整数を示す。
〜Rにおける炭素数1〜5の置換若しくは非置換の1価の炭化水素基としては、メチル基等が挙げられる。
Here, R 1 to R 8 each independently represent a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 5 carbon atoms. n represents an integer of 0 to 10.
Examples of the substituted or unsubstituted monovalent hydrocarbon group having 1 to 5 carbon atoms in R 1 to R 8 include a methyl group.

ここで、R〜Rはそれぞれ独立に、水素原子、置換若しくは非置換の炭素数1〜10のアルキル基又は置換若しくは非置換の炭素数1〜10のアルコキシ基を示す。nは0〜3の整数を示す。
〜Rにおける炭素数1〜10の置換若しくは非置換の1価の炭化水素基としては、メチル基等が挙げられる。
Here, R < 1 > -R < 8 > shows a hydrogen atom, a substituted or unsubstituted C1-C10 alkyl group, or a substituted or unsubstituted C1-C10 alkoxy group each independently. n represents an integer of 0 to 3.
The monovalent hydrocarbon groups of the substituted or unsubstituted 1 to 10 carbon atoms in R 1 to R 8, include methyl group or the like.

上記一般式(III)で示されるビフェニル型エポキシ樹脂としては、例えば、4,4′−ビス(2,3−エポキシプロポキシ)ビフェニル又は4,4′−ビス(2,3−エポキシプロポキシ)−3,3′,5,5′−テトラメチルビフェニルを主成分とするエポキシ樹脂、エピクロルヒドリンと4,4′−ビフェノール又は4,4′−(3,3′,5,5′−テトラメチル)ビフェノールとを反応させて得られるエポキシ樹脂等が挙げられる。なかでも4,4′−ビス(2,3−エポキシプロポキシ)−3,3′,5,5′−テトラメチルビフェニルを主成分とするエポキシ樹脂が好ましい。   Examples of the biphenyl type epoxy resin represented by the general formula (III) include 4,4′-bis (2,3-epoxypropoxy) biphenyl or 4,4′-bis (2,3-epoxypropoxy) -3. , 3 ', 5,5'-tetramethylbiphenyl as the main component, epichlorohydrin and 4,4'-biphenol or 4,4'-(3,3 ', 5,5'-tetramethyl) biphenol An epoxy resin obtained by reacting is used. Among these, an epoxy resin mainly composed of 4,4′-bis (2,3-epoxypropoxy) -3,3 ′, 5,5′-tetramethylbiphenyl is preferable.

上記一般式(IV)で示されるビスフェノールF型エポキシ樹脂としては、例えば、R、R、R及びRがメチル基で、R、R、R及びRが水素原子であり、n=0を主成分とするYSLV−80XY(新日鉄化学株式会社製商品名)が市販品として入手可能である。 Examples of the bisphenol F-type epoxy resin represented by the general formula (IV) include, for example, R 1 , R 3 , R 6 and R 8 are methyl groups, and R 2 , R 4 , R 5 and R 7 are hydrogen atoms. Yes, YSLV-80XY (trade name, manufactured by Nippon Steel Chemical Co., Ltd.) having n = 0 as a main component is available as a commercial product.

上記一般式(V)で示されるスチルベン型エポキシ樹脂は、原料であるスチルベン系フェノール類とエピクロルヒドリンとを塩基性物質存在下で反応させて得ることができる。この原料であるスチルベン系フェノール類としては、例えば、3−t−ブチル−4,4′−ジヒドロキシ−3′,5,5′−トリメチルスチルベン、3−t−ブチル−4,4′−ジヒドロキシ−3′,5′,6−トリメチルスチルベン、4,4′−ジヒドロキシ−3,3′,5,5′−テトラメチルスチルベン、4,4′−ジヒドロキシ−3,3′−ジ−t−ブチル−5,5′−ジメチルスチルベン、4,4′−ジヒドロキシ−3,3′−ジ−t−ブチル−6,6′−ジメチルスチルベン等が挙げられ、なかでも3−t−ブチル−4,4′−ジヒドロキシ−3′,5,5′−トリメチルスチルベン、及び4,4′−ジヒドロキシ−3,3′,5,5′−テトラメチルスチルベンが好ましい。これらのスチルベン型フェノール類は、1種を単独で用いても2種以上を組み合わせて用いてもよい。   The stilbene type epoxy resin represented by the general formula (V) can be obtained by reacting a stilbene phenol as a raw material with epichlorohydrin in the presence of a basic substance. Examples of the raw material stilbene phenols include 3-t-butyl-4,4′-dihydroxy-3 ′, 5,5′-trimethylstilbene, 3-t-butyl-4,4′-dihydroxy- 3 ', 5', 6-trimethylstilbene, 4,4'-dihydroxy-3,3 ', 5,5'-tetramethylstilbene, 4,4'-dihydroxy-3,3'-di-t-butyl- 5,5'-dimethylstilbene, 4,4'-dihydroxy-3,3'-di-t-butyl-6,6'-dimethylstilbene, etc., among which 3-t-butyl-4,4 ' -Dihydroxy-3 ', 5,5'-trimethylstilbene and 4,4'-dihydroxy-3,3', 5,5'-tetramethylstilbene are preferred. These stilbene type phenols may be used alone or in combination of two or more.

上記一般式(VI)で示される硫黄原子含有エポキシ樹脂のなかでも、R、R、R及びRが水素原子で、R、R、R及びR8がアルキル基であるエポキシ樹脂が好ましく、R、R、R及びRが水素原子で、R及びRがt−ブチル基で、R及びRがメチル基であるエポキシ樹脂がより好ましい。このような化合物としては、YSLV−120TE(新日鐵化学社製)等が市販品として入手可能である。 Among the sulfur atom-containing epoxy resins represented by the above general formula (VI), R 2 , R 3 , R 6 and R 7 are hydrogen atoms, and R 1 , R 4 , R 5 and R 8 are alkyl groups. A resin is preferable, and an epoxy resin in which R 2 , R 3 , R 6 and R 7 are hydrogen atoms, R 1 and R 8 are t-butyl groups, and R 4 and R 5 are methyl groups is more preferable. As such a compound, YSLV-120TE (manufactured by Nippon Steel Chemical Co., Ltd.) and the like are commercially available.

これらのエポキシ樹脂はいずれか1種を単独で用いても2種以上を組合わせて用いてもよいが、その含有率は、その性能を発揮するためにエポキシ樹脂全量に対して合わせて40質量%以上とすることが好ましく、60質量%以上がより好ましく、80質量%以上とすることがさらに好ましい。   These epoxy resins may be used alone or in combination of two or more, but the content is 40 mass in total with respect to the total amount of the epoxy resin in order to exhibit its performance. % Or more, preferably 60% by mass or more, and more preferably 80% by mass or more.

ノボラック型エポキシ樹脂としては、例えば、下記一般式(VII)で示されるエポキシ樹脂等が挙げられる。   As a novolak-type epoxy resin, the epoxy resin etc. which are shown by the following general formula (VII) are mentioned, for example.

ここで、Rはそれぞれ独立に、水素原子、炭素数1〜10の置換若しくは非置換の1価の炭化水素基、又は炭素数1〜10の置換若しくは非置換のアルコキシ基を示す。nは0〜10の整数を示す。   Here, each R independently represents a hydrogen atom, a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms. n represents an integer of 0 to 10.

上記一般式(VII)で示されるノボラック型エポキシ樹脂は、ノボラック型フェノール樹脂にエピクロルヒドリンを反応させることによって容易に得られる。なかでも、一般式(VII)中のRとしては、水素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基等の炭素数1〜10のアルキル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の炭素数1〜10のアルコキシ基が好ましく、水素原子又はメチル基がより好ましい。
nは0〜3の整数が好ましい。
上記一般式(VII)で示されるノボラック型エポキシ樹脂のなかでも、オルトクレゾールノボラック型エポキシ樹脂が好ましい。
ノボラック型エポキシ樹脂を使用する場合、その配合量は、その性能を発揮するためにエポキシ樹脂全量に対して20質量%以上とすることが好ましく、30質量%以上がより好ましい。
The novolak-type epoxy resin represented by the general formula (VII) can be easily obtained by reacting novolak-type phenol resin with epichlorohydrin. Especially, as R in general formula (VII), as a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, an isobutyl group etc., a C1-C10 alkyl group, a methoxy group, an ethoxy group C1-C10 alkoxy groups, such as a propoxy group and a butoxy group, are preferable, and a hydrogen atom or a methyl group is more preferable.
n is preferably an integer of 0 to 3.
Among the novolak type epoxy resins represented by the general formula (VII), orthocresol novolak type epoxy resins are preferable.
In the case of using a novolac type epoxy resin, the blending amount thereof is preferably 20% by mass or more, more preferably 30% by mass or more, based on the total amount of the epoxy resin in order to exhibit its performance.

ジシクロペンタジエン型エポキシ樹脂としては、たとえば下記一般式(VIII)で示されるエポキシ樹脂等が挙げられる。   Examples of the dicyclopentadiene type epoxy resin include an epoxy resin represented by the following general formula (VIII).

ここで、Rはそれぞれ独立に、水素原子又は炭素数1〜10の置換若しくは非置換の1価の炭化水素基を示す。Rはそれぞれ独立に、炭素数1〜10の置換若しくは非置換の1価の炭化水素基を示す。nは0〜10の整数を示し、mは0〜6の整数を示す。 Here, each R 1 independently represents a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms. R 2 independently represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms. n represents an integer of 0 to 10, and m represents an integer of 0 to 6.

上記式(VIII)中のRとしては、たとえば、水素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、t−ブチル基等のアルキル基、ビニル基、アリル基、ブテニル基等のアルケニル基、ハロゲン化アルキル基、アミノ基置換アルキル基、メルカプト基置換アルキル基等の炭素数1〜5の置換又は非置換の1価の炭化水素基が挙げられる。なかでもメチル基、エチル基等のアルキル基及び水素原子が好ましく、メチル基及び水素原子がより好ましい。
としては、たとえば、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、t−ブチル基等のアルキル基、ビニル基、アリル基、ブテニル基等のアルケニル基、ハロゲン化アルキル基、アミノ基置換アルキル基、メルカプト基置換アルキル基等の炭素数1〜5の置換又は非置換の1価の炭化水素基が挙げられる。
mは0〜6の整数であるが、0であることが好ましい。
R 1 in the above formula (VIII) is, for example, a hydrogen atom, an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, or a t-butyl group, a vinyl group, an allyl group, or a butenyl group. And a substituted or unsubstituted monovalent hydrocarbon group having 1 to 5 carbon atoms such as an alkenyl group, a halogenated alkyl group, an amino group-substituted alkyl group, and a mercapto group-substituted alkyl group. Of these, an alkyl group such as a methyl group or an ethyl group and a hydrogen atom are preferable, and a methyl group and a hydrogen atom are more preferable.
Examples of R 2 include alkyl groups such as methyl, ethyl, propyl, butyl, isopropyl, and t-butyl groups, alkenyl groups such as vinyl, allyl, and butenyl groups, halogenated alkyl groups, and amino groups. Examples thereof include substituted or unsubstituted monovalent hydrocarbon groups having 1 to 5 carbon atoms such as a group-substituted alkyl group and a mercapto group-substituted alkyl group.
m is an integer of 0 to 6, and is preferably 0.

ジシクロペンタジエン型エポキシ樹脂を使用する場合、その配合量は、その性能を発揮するためにエポキシ樹脂全量に対して20質量%以上とすることが好ましく、30質量%以上がより好ましい。   When a dicyclopentadiene type epoxy resin is used, its blending amount is preferably 20% by mass or more, more preferably 30% by mass or more, based on the total amount of the epoxy resin in order to exhibit its performance.

ナフタレン型エポキシ樹脂としては、例えば、下記一般式(IX)で示されるエポキシ樹脂等が挙げられ、トリフェニルメタン型エポキシ樹脂としては、例えば、下記一般式(X)で示されるエポキシ樹脂等が挙げられる。   Examples of the naphthalene type epoxy resin include an epoxy resin represented by the following general formula (IX), and examples of the triphenylmethane type epoxy resin include an epoxy resin represented by the following general formula (X). It is done.

ここで、R〜Rはそれぞれ独立に、置換若しくは非置換の炭素数1〜12の1価の炭化水素基を示す。pは1又は0を示し、l及びmはそれぞれ0〜11の整数であって、(l+m)が1〜11の整数でかつ(l+p)が1〜12の整数となるよう選ばれる。iは0〜3の整数を、jは0〜2の整数を、kは0〜4の整数をそれぞれ示す。
〜Rにおける置換若しくは非置換の炭素数1〜12の1価の炭化水素基としては、メチル基等が挙げられる。
Here, R 1 to R 3 each independently represent a substituted or unsubstituted monovalent hydrocarbon group having 1 to 12 carbon atoms. p represents 1 or 0, and l and m are each an integer of 0 to 11, wherein (l + m) is an integer of 1 to 11 and (l + p) is an integer of 1 to 12. i represents an integer of 0 to 3, j represents an integer of 0 to 2, and k represents an integer of 0 to 4, respectively.
Examples of the substituted or unsubstituted monovalent hydrocarbon group having 1 to 12 carbon atoms in R 1 to R 3 include a methyl group.

上記一般式(IX)で示されるナフタレン型エポキシ樹脂としては、l個の構成単位及びm個の構成単位をランダムに含むランダム共重合体、交互に含む交互共重合体、規則的に含む共重合体、ブロック状に含むブロック共重合体が挙げられ、これらのいずれか1種を単独で用いても、2種以上を組み合わせて用いてもよい。   The naphthalene type epoxy resin represented by the general formula (IX) includes a random copolymer containing 1 constituent unit and m constituent units at random, an alternating copolymer containing alternating units, and a copolymer containing regularly. Examples thereof include block copolymers which are included in a combined or block form, and any one of these may be used alone, or two or more may be used in combination.

ここで、Rはそれぞれ独立に、水素原子又は炭素数1〜10の置換若しくは非置換の1価の炭化水素基を示す。nは1〜10の整数を示す。
Rにおける炭素数1〜10の置換若しくは非置換の1価の炭化水素基としては、メチル基等が挙げられる。
Here, each R independently represents a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms. n shows the integer of 1-10.
A methyl group etc. are mentioned as a C1-C10 substituted or unsubstituted monovalent hydrocarbon group in R.

ナフタレン型エポキシ樹脂及びトリフェニルメタン型エポキシ樹脂は、いずれか1種を単独で用いても両者を組み合わせて用いてもよいが、その含有率は、その性能を発揮するためにエポキシ樹脂全量に対して合わせて20質量%以上とすることが好ましく、30質量%以上がより好ましく、50質量%以上とすることがさらに好ましい。   The naphthalene type epoxy resin and the triphenylmethane type epoxy resin may be used either alone or in combination, but the content is based on the total amount of the epoxy resin in order to exhibit its performance. In total, it is preferably 20% by mass or more, more preferably 30% by mass or more, and further preferably 50% by mass or more.

(B)硬化剤
本発明において用いられる硬化剤は、圧縮成形用固形封止樹脂組成物に一般に使用されているものであれば特に制限はない。具体的には、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類及び/又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類からなる群より選ばれる少なくとも1種とホルムアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂;フェノール類及びナフトール類からなる群より選ばれる少なくとも1種とジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルとから合成されるフェノール・アラルキル樹脂;ナフトール・アラルキル樹脂等のアラルキル型フェノール樹脂;フェノール類及びナフトール類からなる群より選ばれる少なくとも1種とシクロペンタジエンとから共重合により合成されるジクロペンタジエン型フェノールノボラック樹脂;ナフトールノボラック樹脂等のジクロペンタジエン型フェノール樹脂;テルペン変性フェノール樹脂等が挙げられる。
これらは1種を単独で用いても2種以上を組み合わせて用いてもよい。
(B) Curing agent The curing agent used in the present invention is not particularly limited as long as it is generally used in a solid molding resin composition for compression molding. Specifically, selected from the group consisting of phenols such as phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, aminophenol and / or naphthols such as α-naphthol, β-naphthol, dihydroxynaphthalene, etc. At least one selected from the group consisting of phenols and naphthols, obtained by condensing or co-condensing a compound having an aldehyde group such as formaldehyde, benzaldehyde, and salicylaldehyde with an acidic catalyst. Phenol / aralkyl resins synthesized from seeds and dimethoxyparaxylene or bis (methoxymethyl) biphenyl; aralkyl-type phenol resins such as naphthol / aralkyl resins; phenols and naphthols Examples thereof include dichloropentadiene type phenol novolac resins synthesized by copolymerization from at least one selected from the group consisting of tolls and cyclopentadiene; dichloropentadiene type phenol resins such as naphthol novolac resins; terpene-modified phenol resins.
These may be used alone or in combination of two or more.

なかでも、難燃性の観点からはビフェニル型フェノール樹脂が好ましい。また耐リフロー性及び硬化性の観点からはアラルキル型フェノール樹脂が好ましい。また低吸湿性の観点からはジシクロペンタジエン型フェノール樹脂が好ましい。また耐熱性、低膨張率及び低そり性の観点からはトリフェニルメタン型フェノール樹脂が好ましい。また硬化性の観点からはノボラック型フェノール樹脂が好ましい。
前記硬化剤は、これらのフェノール樹脂から選ばれる少なくとも1種を含有していることがより好ましい。
Among these, biphenyl type phenol resins are preferable from the viewpoint of flame retardancy. From the viewpoint of reflow resistance and curability, aralkyl type phenol resins are preferred. From the viewpoint of low hygroscopicity, a dicyclopentadiene type phenol resin is preferred. From the viewpoints of heat resistance, low expansion rate and low warpage, triphenylmethane type phenol resin is preferred. From the viewpoint of curability, a novolac type phenol resin is preferable.
More preferably, the curing agent contains at least one selected from these phenol resins.

ビフェニル型フェノール樹脂としては、たとえば下記一般式(XI)で示されるフェノール樹脂等が挙げられる。   Examples of the biphenyl type phenol resin include a phenol resin represented by the following general formula (XI).

上記式(XI)中のR〜Rはそれぞれ独立に、水素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基及びイソブチル基等の炭素数1〜10のアルキル基、メトキシ基、エトキシ基、プロポキシ基及びブトキシ基等の炭素数1〜10のアルコキシル基、フェニル基、トリル基及びキシリル基等の炭素数6〜10のアリール基、又は、ベンジル基及びフェネチル基等の炭素数6〜10のアラルキル基を示す。なかでも水素原子及びメチル基が好ましい。nは0〜10の整数を示す。 R 1 to R 9 in the formula (XI) are each independently a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, an isobutyl group or other alkyl group having 1 to 10 carbon atoms, or a methoxy group. , Alkoxy groups having 1 to 10 carbon atoms such as ethoxy group, propoxy group and butoxy group, aryl groups having 6 to 10 carbon atoms such as phenyl group, tolyl group and xylyl group, or carbon numbers such as benzyl group and phenethyl group 6-10 aralkyl groups are shown. Of these, a hydrogen atom and a methyl group are preferable. n represents an integer of 0 to 10.

上記一般式(XI)で示されるビフェニル型フェノール樹脂としては、R〜Rが全て水素原子である化合物等が挙げられ、なかでも溶融粘度の観点から、nが1以上の縮合体を50質量%以上含む縮合体の混合物が好ましい。このような化合物としては、MEH−7851(明和化成株式会社製商品名)が市販品として入手可能である。
ビフェニル型フェノール樹脂を使用する場合、その含有率は、その性能を発揮するために硬化剤全量に対して30質量%以上とすることが好ましく、50質量%以上がより好ましく、80質量%以上がさらに好ましい。
Examples of the biphenyl type phenol resin represented by the general formula (XI) include compounds in which R 1 to R 9 are all hydrogen atoms, and in particular, from the viewpoint of melt viscosity, 50 is a condensate having n of 1 or more. A mixture of condensates containing at least mass% is preferred. As such a compound, MEH-7851 (trade name, manufactured by Meiwa Kasei Co., Ltd.) is commercially available.
When using a biphenyl type phenol resin, the content is preferably 30% by mass or more, more preferably 50% by mass or more, and more preferably 80% by mass or more with respect to the total amount of the curing agent in order to exhibit its performance. Further preferred.

アラルキル型フェノール樹脂としては、フェノール・アラルキル樹脂、ナフトール・アラルキル樹脂等が挙げられる。中でも下記一般式(XII)で示されるフェノール・アラルキル樹脂が好ましく、一般式(XII)中のRが水素原子で、nの平均値が0〜8であるフェノール・アラルキル樹脂がより好ましい。具体例としては、p−キシリレン型フェノール・アラルキル樹脂、m−キシリレン型フェノール・アラルキル樹脂等が挙げられる。
これらのアラルキル型フェノール樹脂を用いる場合、その含有率は、その性能を発揮するために硬化剤全量に対して30質量%以上とすることが好ましく、50質量%以上がより好ましい。
Examples of the aralkyl type phenol resin include phenol / aralkyl resin, naphthol / aralkyl resin, and the like. Among them, a phenol / aralkyl resin represented by the following general formula (XII) is preferable, and a phenol / aralkyl resin in which R in the general formula (XII) is a hydrogen atom and the average value of n is 0 to 8 is more preferable. Specific examples include p-xylylene type phenol / aralkyl resins, m-xylylene type phenol / aralkyl resins, and the like.
When using these aralkyl type phenol resins, the content is preferably 30% by mass or more, more preferably 50% by mass or more, based on the total amount of the curing agent in order to exhibit the performance.

ここで、Rはそれぞれ独立に、水素原子又は炭素数1〜10の置換若しくは非置換の1価の炭化水素基を示す。nは0〜10の整数を示す。
Rにおける炭素数1〜10の置換若しくは非置換の1価の炭化水素基としては、メチル基等が挙げられる。
Here, each R independently represents a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms. n represents an integer of 0 to 10.
A methyl group etc. are mentioned as a C1-C10 substituted or unsubstituted monovalent hydrocarbon group in R.

ジシクロペンタジエン型フェノール樹脂としては、下記一般式(XIII)で示されるフェノール樹脂等が挙げられる。   Examples of the dicyclopentadiene type phenol resin include a phenol resin represented by the following general formula (XIII).

ここで、R及びRはそれぞれ独立に、水素原子又は炭素数1〜10の置換若しくは非置換の1価の炭化水素基を示す。Rはそれぞれ独立に、炭素数1〜10の置換若しくは非置換の1価の炭化水素基を示す。nは0〜10の整数を示し、mは0〜6の整数を示す。
及びRにおける炭素数1〜10の置換若しくは非置換の1価の炭化水素基としては、メチル基等が挙げられる。
Here, R 1 and R 2 each independently represent a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms. R 2 independently represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms. n represents an integer of 0 to 10, and m represents an integer of 0 to 6.
Examples of the substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms in R 1 and R 2 include a methyl group.

ジシクロペンタジエン型フェノール樹脂を用いる場合、その含有率は、その性能を発揮するために硬化剤全量に対して30質量%以上とすることが好ましく、50質量%以上がより好ましい。   When a dicyclopentadiene type phenol resin is used, the content is preferably 30% by mass or more, more preferably 50% by mass or more, based on the total amount of the curing agent in order to exhibit its performance.

トリフェニルメタン型フェノール樹脂としては、下記一般式(XIV)で示されるフェノール樹脂等が挙げられる。   Examples of the triphenylmethane type phenol resin include a phenol resin represented by the following general formula (XIV).

ここで、Rはそれぞれ独立に、水素原子又は炭素数1〜10の置換若しくは非置換の1価の炭化水素基を示す。nは0〜10の整数を示す。
Rにおける炭素数1〜10の置換若しくは非置換の1価の炭化水素基としては、メチル基等が挙げられる。
トリフェニルメタン型フェノール樹脂を用いる場合、その含有率は、その性能を発揮するために硬化剤全量に対して30質量%以上とすることが好ましく、50質量%以上がより好ましい。
Here, each R independently represents a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms. n represents an integer of 0 to 10.
A methyl group etc. are mentioned as a C1-C10 substituted or unsubstituted monovalent hydrocarbon group in R.
When using a triphenylmethane type phenol resin, the content is preferably 30% by mass or more, more preferably 50% by mass or more, based on the total amount of the curing agent in order to exhibit its performance.

ノボラック型フェノール樹脂としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂等が挙げられ、なかでもフェノールノボラック樹脂が好ましい。ノボラック型フェノール樹脂を用いる場合、その含有率は、その性能を発揮するために硬化剤全量に対して30質量%以上とすることが好ましく、50質量%以上がより好ましい。   Examples of the novolak type phenol resin include phenol novolak resin, cresol novolak resin, naphthol novolak resin and the like, and phenol novolak resin is preferable. In the case of using a novolac type phenol resin, the content is preferably 30% by mass or more, more preferably 50% by mass or more, based on the total amount of the curing agent in order to exhibit its performance.

上記のビフェニル型フェノール樹脂、アラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、トリフェニルメタン型フェノール樹脂及びノボラック型フェノール樹脂は、いずれか1種を単独で用いても2種以上を組み合わせて用いてもよい。特にビフェニル型フェノール樹脂やアラルキル型フェノール樹脂を含むことで、接触角を小さくすることが出来好ましい。また、それぞれのフェノール樹脂の含有率は硬化剤全量に対して合わせて60質量%以上とすることが好ましく、80質量%以上がより好ましい。   The biphenyl type phenol resin, aralkyl type phenol resin, dicyclopentadiene type phenol resin, triphenylmethane type phenol resin and novolac type phenol resin may be used alone or in combination of two or more. Also good. In particular, the inclusion of a biphenyl type phenol resin or an aralkyl type phenol resin is preferable because the contact angle can be reduced. Moreover, it is preferable that the content rate of each phenol resin shall be 60 mass% or more in total with respect to the hardening agent whole quantity, and 80 mass% or more is more preferable.

(A)エポキシ樹脂と(B)硬化剤との当量比、すなわち、エポキシ樹脂中のエポキシ基数に対する硬化剤中の水酸基数の比(硬化剤中の水酸基数/エポキシ樹脂中のエポキシ基数)は特に制限はない。それぞれの未反応分を少なく抑えるために0.5〜2の範囲に設定されることが好ましく、0.6〜1.3がより好ましい。成形性及び耐リフロー性に優れる圧縮成形用固形封止樹脂組成物を得るためには0.8〜1.2の範囲に設定されることがさらに好ましい。   The equivalent ratio of (A) epoxy resin and (B) curing agent, that is, the ratio of the number of hydroxyl groups in the curing agent to the number of epoxy groups in the epoxy resin (number of hydroxyl groups in curing agent / number of epoxy groups in epoxy resin) is particularly There is no limit. In order to suppress each unreacted component to be small, it is preferably set in the range of 0.5 to 2, and more preferably 0.6 to 1.3. In order to obtain a solid molding resin composition for compression molding excellent in moldability and reflow resistance, it is more preferably set in the range of 0.8 to 1.2.

(C)ホスフィン化合物とキノン化合物との付加反応物
本発明の圧縮成形用固形封止樹脂組成物は、(C)ホスフィン化合物とキノン化合物との付加反応物が、下記一般式(I)で示されるホスフィン化合物と下記一般式(II)で示されるキノン化合物との付加反応物であることが好ましい。なお、(C)ホスフィン化合物とキノン化合物との付加反応物は、一般的に、硬化促進剤として配合される。
(C) Addition reaction product of phosphine compound and quinone compound In the solid molding resin composition for compression molding of the present invention, the addition reaction product of (C) phosphine compound and quinone compound is represented by the following general formula (I). The phosphine compound is preferably an addition reaction product of a quinone compound represented by the following general formula (II). In addition, the (C) addition reaction product of a phosphine compound and a quinone compound is generally blended as a curing accelerator.

ここで、式(I)中のR、R及びRはそれぞれ独立に、水素原子又は炭素数1〜12の炭化水素基を示す。また、式(II)中のR〜Rはそれぞれ独立に、水素原子又は炭素数1〜18の1価の置換基を示し、RとRは互いに結合して環状構造を形成してもよい。 Here, each R 1, R 2 and R 3 in the formula (I) independently represent a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms. R 4 to R 6 in formula (II) each independently represent a hydrogen atom or a monovalent substituent having 1 to 18 carbon atoms, and R 4 and R 5 are bonded to each other to form a cyclic structure. May be.

上記一般式(I)中のR、R及びRはそれぞれ独立に、水素原子又は炭素数1〜12の炭化水素基を示す。炭素数1〜12の炭化水素基としては特に制限はなく、炭素数1〜12の置換又は非置換の脂肪族炭化水素基、炭素数1〜12の置換又は非置換の脂環式炭化水素基、炭素数1〜12の置換又は非置換の芳香族炭化水素基等が挙げられる。
さらに前記炭化水素基は、炭素数が1〜8であることが好ましく、1〜4であることがより好ましい。
なお、前記炭素数1〜12の炭化水素基における炭素数は置換基の炭素数を含まない。
R 1 , R 2 and R 3 in the general formula (I) each independently represent a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms. There is no restriction | limiting in particular as a C1-C12 hydrocarbon group, A C1-C12 substituted or unsubstituted aliphatic hydrocarbon group, a C1-C12 substituted or unsubstituted alicyclic hydrocarbon group And a substituted or unsubstituted aromatic hydrocarbon group having 1 to 12 carbon atoms.
Furthermore, the hydrocarbon group preferably has 1 to 8 carbon atoms, and more preferably 1 to 4 carbon atoms.
In addition, the carbon number in the said C1-C12 hydrocarbon group does not include the carbon number of a substituent.

炭素数1〜12の置換又は非置換の脂肪族炭化水素基としては、炭素数1〜12の置換又は非置換の鎖状脂肪族炭化水素基及び炭素数1〜12の置換又は非置換の脂環式炭化水素基が挙げられる。
炭素数1〜12の置換又は非置換の鎖状脂肪族炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基及びドデシル基等の鎖状アルキル基;ベンジル基等のアリール基置換アルキル基;メトキシ基置換アルキル基、エトキシ基置換アルキル基及びブトキシ基置換アルキル基等のアルコキシ基置換アルキル基;ジメチルアミノ基及びジエチルアミノ基等のアミノ基で置換されたアミノ基置換アルキル基;水酸基置換アルキル基等が挙げられる。
The substituted or unsubstituted aliphatic hydrocarbon group having 1 to 12 carbon atoms includes a substituted or unsubstituted chain aliphatic hydrocarbon group having 1 to 12 carbon atoms and a substituted or unsubstituted fat having 1 to 12 carbon atoms. A cyclic hydrocarbon group is mentioned.
Examples of the substituted or unsubstituted chain aliphatic hydrocarbon group having 1 to 12 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, and pentyl group Chain alkyl groups such as hexyl group, octyl group, decyl group and dodecyl group; aryl group-substituted alkyl groups such as benzyl group; alkoxy groups such as methoxy-substituted alkyl group, ethoxy-substituted alkyl group and butoxy-group-substituted alkyl group A substituted alkyl group; an amino group-substituted alkyl group substituted with an amino group such as a dimethylamino group and a diethylamino group; and a hydroxyl group-substituted alkyl group.

炭素数1〜12の置換又は非置換の脂環式炭水素基としては、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロペンテニル基、シクロヘキセニル基等及びこれらにアルキル基、アルコキシ基、アリール基、水酸基、アミノ基、ハロゲン等が置換したもの等が挙げられる。   Examples of the substituted or unsubstituted alicyclic hydrocarbon group having 1 to 12 carbon atoms include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, and the like, and an alkyl group, an alkoxy group, an aryl group, Examples include those substituted with a hydroxyl group, an amino group, a halogen and the like.

炭素数1〜12の置換又は非置換の芳香族炭化水素基としては、例えば、フェニル基及びナフチル基等のアリール基;トリル基、ジメチルフェニル基、エチルフェニル基、ブチルフェニル基、t-ブチルフェニル基及びジメチルナフチル基等のアルキル基置換アリール基;メトキシフェニル基、エトキシフェニル基、ブトキシフェニル基、t-ブトキシフェニル基及びメトキシナフチル基等のアルコキシ基置換アリール基;ジメチルアミノフェニル基及びジエチルアミノフェニル基等のアミノ基置換アリール基;ヒドロキシフェニル基及びジヒドロキシフェニル基等の水酸基置換アリール基;フェノキシ基及びクレゾキシ基等のアリールオキシ基、フェニルチオ基、トリルチオ基、ジフェニルアミノ基等が置換した置換アリール基、並びにこれらにアミノ基、ハロゲン等が置換したもの等が挙げられる。   Examples of the substituted or unsubstituted aromatic hydrocarbon group having 1 to 12 carbon atoms include aryl groups such as phenyl group and naphthyl group; tolyl group, dimethylphenyl group, ethylphenyl group, butylphenyl group, t-butylphenyl Groups and alkyl group-substituted aryl groups such as dimethylnaphthyl group; alkoxy group-substituted aryl groups such as methoxyphenyl group, ethoxyphenyl group, butoxyphenyl group, t-butoxyphenyl group and methoxynaphthyl group; dimethylaminophenyl group and diethylaminophenyl group An amino group-substituted aryl group such as a hydroxyl group-substituted aryl group such as a hydroxyphenyl group and a dihydroxyphenyl group; an aryloxy group such as a phenoxy group and a crezoxy group; a substituted aryl group substituted by a phenylthio group, a tolylthio group, a diphenylamino group, etc .; And this Amino group, halogen or the like, and the like obtained by substituting a.

なかでも一般式(I)におけるR、R及びRとしては、反応率の観点から、炭素数1〜12の置換又は非置換の脂肪族炭化水素基及び炭素数1〜12の置換又は非置換の芳香族炭化水素基が好ましく、炭素数1〜6の置換又は非置換の鎖状脂肪族炭化水素基、炭素数1〜6の置換又は非置換の脂環式炭水素基、及び炭素数1〜8の置換又は非置換の芳香族炭化水素基がより好ましく、炭素数1〜3の鎖状アルキル基、炭素数1〜7のアリール置換アルキル基、炭素数1〜6の非置換の脂環式炭水素基、及び炭素数1〜6のアリール基がさらに好ましい。 Among these, as R 1 , R 2 and R 3 in the general formula (I), from the viewpoint of the reaction rate, a substituted or unsubstituted aliphatic hydrocarbon group having 1 to 12 carbon atoms and a substituted or substituted group having 1 to 12 carbon atoms can be used. An unsubstituted aromatic hydrocarbon group is preferred, a substituted or unsubstituted chain aliphatic hydrocarbon group having 1 to 6 carbon atoms, a substituted or unsubstituted alicyclic hydrocarbon group having 1 to 6 carbon atoms, and carbon A substituted or unsubstituted aromatic hydrocarbon group having 1 to 8 carbon atoms is more preferable, a chain alkyl group having 1 to 3 carbon atoms, an aryl-substituted alkyl group having 1 to 7 carbon atoms, an unsubstituted alkyl group having 1 to 6 carbon atoms. An alicyclic hydrocarbon group and an aryl group having 1 to 6 carbon atoms are more preferable.

上記一般式(II)中のR〜Rは、水素原子又は炭素数1〜18の1価の置換基を示すが、炭素数1〜18の1価の置換基としては特に制限はない。炭素数1〜18の置換又は非置換の脂肪族炭化水素基、炭素数1〜18の置換又は非置換のアルキルオキシ基、炭素数1〜18の置換又は非置換のアルキルチオ基、炭素数1〜18の置換又は非置換の脂環式炭化水素基、炭素数1〜18の置換又は非置換の芳香族炭化水素基、炭素数1〜18の置換又は非置換のアリールオキシ基、炭素数1〜18の置換又は非置換のアリールチオ基等が挙げられる。
なお、前記炭素数1〜18の1価の置換基における炭素数には、置換基の炭素数は含まない。
R 4 to R 6 in the above general formula (II) represent a hydrogen atom or a monovalent substituent having 1 to 18 carbon atoms, but are not particularly limited as a monovalent substituent having 1 to 18 carbon atoms. . C1-C18 substituted or unsubstituted aliphatic hydrocarbon group, C1-C18 substituted or unsubstituted alkyloxy group, C1-C18 substituted or unsubstituted alkylthio group, C1-C1 18 substituted or unsubstituted alicyclic hydrocarbon groups, 1 to 18 carbon atoms substituted or unsubstituted aromatic hydrocarbon groups, 1 to 18 carbon atoms substituted or unsubstituted aryloxy groups, 1 to carbon atoms 18 substituted or unsubstituted arylthio groups and the like can be mentioned.
The carbon number in the monovalent substituent having 1 to 18 carbon atoms does not include the carbon number of the substituent.

炭素数1〜18の置換又は非置換の脂肪族炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基及びドデシル基等のアルキル基;アリル基;メトキシ基、エトキシ基、プロポキシル基、n-ブトキシ基及びtert-ブトキシ基等のアルコキシ基で置換されたアルキル基;ジメチルアミノ基及びジエチルアミノ基等のアルキルアミノ基で置換されたアルキル基;メチルチオ基、エチルチオ基、ブチルチオ基及びドデシルチオ基等のアルキルチオ基で置換されたアルキル基;アミノ基置換アルキル基、水酸基置換アルキル基、アリール基置換アルキル基等の置換アルキル基が挙げられる。   Examples of the substituted or unsubstituted aliphatic hydrocarbon group having 1 to 18 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, and a pentyl group. Alkyl groups such as hexyl group, octyl group, decyl group and dodecyl group; allyl group; alkyl groups substituted with alkoxy groups such as methoxy group, ethoxy group, propoxyl group, n-butoxy group and tert-butoxy group; Alkyl groups substituted with alkylamino groups such as dimethylamino group and diethylamino group; alkyl groups substituted with alkylthio groups such as methylthio group, ethylthio group, butylthio group and dodecylthio group; amino group-substituted alkyl groups, hydroxyl group-substituted alkyl groups And a substituted alkyl group such as an aryl group-substituted alkyl group.

炭素数1〜18の置換又は非置換のアルキルオキシ基としては、メトキシ基、エトキシ基、プロポキシル基、n-ブトキシ基及びtert-ブトキシ基等のアルコキシ基;アミノ基置換アルコキシ基、水酸基置換アルコキシ基、アリール基置換アルコキシ基等の置換アルコキシ基等が挙げられる。   Examples of the substituted or unsubstituted alkyloxy group having 1 to 18 carbon atoms include alkoxy groups such as methoxy group, ethoxy group, propoxyl group, n-butoxy group and tert-butoxy group; amino group-substituted alkoxy group, hydroxyl group-substituted alkoxy Groups, substituted alkoxy groups such as aryl group-substituted alkoxy groups, and the like.

炭素数1〜18の置換又は非置換のアルキルチオ基としては、メチルチオ基、エチルチオ基、ブチルチオ基及びドデシルチオ基等が挙げられる。   Examples of the substituted or unsubstituted alkylthio group having 1 to 18 carbon atoms include a methylthio group, an ethylthio group, a butylthio group, and a dodecylthio group.

炭素数1〜18の置換又は非置換の脂環式炭化水素基としては、例えば、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロペンテニル基及びシクロヘキセニル基等、並びにこれらにアルキル基、アルコキシ基、アリール基、水酸基、アミノ基、ハロゲン等が置換したもの等が挙げられる。   Examples of the substituted or unsubstituted alicyclic hydrocarbon group having 1 to 18 carbon atoms include, for example, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, and the like, and an alkyl group, an alkoxy group, Examples include those substituted with an aryl group, a hydroxyl group, an amino group, halogen, and the like.

炭素数1〜18の置換又は非置換の芳香族炭化水素基としては、例えば、フェニル基、トリル基等のアリール基、ジメチルフェニル基、エチルフェニル基、ブチルフェニル基、t-ブチルフェニル基等のアルキル基置換アリール基、メトキシフェニル基、エトキシフェニル基、ブトキシフェニル基、t-ブトキシフェニル基等のアルコキシ基置換アリール基、フェノキシ基、クレゾキシ基等のアリールオキシ基、フェニルチオ基、トリルチオ基、ジフェニルアミノ基等が置換したアリール基、及びこれらにアミノ基、ハロゲン等が置換したアリール基等が挙げられる。   Examples of the substituted or unsubstituted aromatic hydrocarbon group having 1 to 18 carbon atoms include aryl groups such as phenyl group and tolyl group, dimethylphenyl group, ethylphenyl group, butylphenyl group, and t-butylphenyl group. Alkyl group-substituted aryl group, alkoxy group-substituted aryl group such as methoxyphenyl group, ethoxyphenyl group, butoxyphenyl group, t-butoxyphenyl group, aryloxy group such as phenoxy group, crezoxy group, phenylthio group, tolylthio group, diphenylamino Examples thereof include an aryl group substituted with a group and the like, and an aryl group substituted with an amino group, halogen and the like.

炭素数1〜18の置換又は非置換のアリールオキシ基としては、フェノキシ基、クレゾキシ基等が挙げられる。
炭素数1〜18の置換又は非置換のアリールチオ基としては、フェニルチオ基、トリルチオ基等が挙げられる。
Examples of the substituted or unsubstituted aryloxy group having 1 to 18 carbon atoms include phenoxy group and crezoxy group.
Examples of the substituted or unsubstituted arylthio group having 1 to 18 carbon atoms include a phenylthio group and a tolylthio group.

なかでもR〜Rは、水素原子、置換又は非置換のアルキル基、置換又は非置換のアルキルオキシ基、置換又は非置換のアリールオキシ基、置換又は非置換のアリール基、置換又は非置換のアルキルチオ基及び置換又は非置換のアリールチオ基が好ましく、水素原子、置換又は非置換のアルキル基、及び置換又は非置換のアリール基がより好ましく、水素原子及び置換又は非置換のアルキル基がさらに好ましい。 Among them, R 4 to R 6 are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkyloxy group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted aryl group, substituted or unsubstituted Are preferably a hydrogen atom, a substituted or unsubstituted alkyl group, and a substituted or unsubstituted aryl group, more preferably a hydrogen atom and a substituted or unsubstituted alkyl group. .

前記(C)ホスフィン化合物とキノン化合物との付加反応物におけるホスフィン化合物とキノン化合物のモル比(ホスフィン化合物/キノン化合物)としては、0.5〜2であることが好ましく、1〜1.5であることがより好ましい   The molar ratio of the phosphine compound to the quinone compound (phosphine compound / quinone compound) in the addition reaction product of the (C) phosphine compound and quinone compound is preferably 0.5 to 2, preferably 1 to 1.5. More preferably

前記(C)ホスフィン化合物とキノン化合物との付加反応物は、常法により調製することができる。例えば、ホスフィン化合物とキノン化合物とを溶媒中で混合して付加反応させることで得ることができる。溶媒としてはホスフィン化合物及びキノン化合物の少なくとも一部を溶解可能であれば特に制限されず、通常用いられる溶媒から適宜選択することができる。付加反応の反応温度は、例えば0〜150℃とすることができ、反応時間は10分〜24時間とすることができる。
また前記(C)ホスフィン化合物とキノン化合物との付加反応物は、市販の化合物を用いてもよい。
The addition reaction product of the (C) phosphine compound and the quinone compound can be prepared by a conventional method. For example, it can be obtained by mixing a phosphine compound and a quinone compound in a solvent to cause an addition reaction. The solvent is not particularly limited as long as at least a part of the phosphine compound and the quinone compound can be dissolved, and can be appropriately selected from commonly used solvents. The reaction temperature of the addition reaction can be, for example, 0 to 150 ° C., and the reaction time can be 10 minutes to 24 hours.
Moreover, a commercially available compound may be used for the addition reaction product of the (C) phosphine compound and the quinone compound.

前記圧縮成形用固形封止樹脂組成物における前記(C)ホスフィン化合物とキノン化合物との付加反応物の含有率は、硬化時間の観点から、前記圧縮成形用固形封止樹脂組成物中に0.3〜0.05質量%とすることができ、0.2〜0.1質量%であることが好ましい。   The content of the addition reaction product of the (C) phosphine compound and the quinone compound in the compression-molding solid encapsulating resin composition is 0. 0 in the compression-molding solid encapsulating resin composition from the viewpoint of curing time. It can be set to 3-0.05 mass%, and it is preferable that it is 0.2-0.1 mass%.

また前記圧縮成形用固形封止樹脂組成物における前記(C)ホスフィン化合物とキノン化合物との付加反応物の含有率は、硬化時間の観点から、前記エポキシ樹脂に対して、5〜0.5質量%であることが好ましく、3〜1質量%であることがより好ましい。   The content of the addition reaction product of the (C) phosphine compound and the quinone compound in the compression-molding solid encapsulating resin composition is 5 to 0.5 mass with respect to the epoxy resin from the viewpoint of curing time. %, And more preferably 3 to 1% by mass.

さらにまた前記圧縮成形用固形封止樹脂組成物は、前記一般式(I)で表されるホスフィン化合物と前記一般式(II)で表されるキノン化合物のモル比1:1の付加反応物を、樹脂組成物の総質量中に5〜0.1質量%含むことが好ましい。
より好ましくは、前記一般式(I)で表され、R〜Rが炭素数1〜7の鎖状アルキル基、炭素数1〜8のアリール置換アルキル基、炭素数1〜8の非置換の脂環式炭水素基、又は炭素数1〜7のアリール基であるホスフィン化合物と、前記一般式(II)で表され、R〜Rが水素原子又は置換又は非置換のアルキル基であるキノン化合物のモル比1:1の付加反応物を、樹脂組成物の総質量中に5〜0.1質量%含むことである。
さらに好ましくは、前記一般式(I)で表され、R〜Rが炭素数1〜4の鎖状アルキル基、炭素数1〜7のアリール置換アルキル基、炭素数1〜6の非置換の脂環式炭水素基、又は炭素数1〜6のアリール基であるホスフィン化合物と、前記一般式(II)で表され、R〜Rが水素原子キノン化合物のモル比1:1の付加反応物を、樹脂組成物の総質量中に5〜0.1質量%含むことである。
Furthermore, the solid molding resin composition for compression molding comprises an addition reaction product having a molar ratio of 1: 1 between the phosphine compound represented by the general formula (I) and the quinone compound represented by the general formula (II). It is preferable to contain 5 to 0.1% by mass in the total mass of the resin composition.
More preferably, it is represented by the general formula (I), and R 1 to R 3 are a chain alkyl group having 1 to 7 carbon atoms, an aryl-substituted alkyl group having 1 to 8 carbon atoms, and an unsubstituted group having 1 to 8 carbon atoms. And a phosphine compound that is an alicyclic hydrocarbon group or an aryl group having 1 to 7 carbon atoms, and represented by the general formula (II), wherein R 4 to R 6 are a hydrogen atom or a substituted or unsubstituted alkyl group. An addition reaction product having a molar ratio of 1: 1 of a certain quinone compound is included in the total mass of the resin composition in an amount of 5 to 0.1% by mass.
More preferably, it is represented by the general formula (I), and R 1 to R 3 are a chain alkyl group having 1 to 4 carbon atoms, an aryl-substituted alkyl group having 1 to 7 carbon atoms, and an unsubstituted group having 1 to 6 carbon atoms. A phosphine compound that is an alicyclic hydrocarbon group or an aryl group having 1 to 6 carbon atoms and the general formula (II), wherein R 4 to R 6 are in a molar ratio of the hydrogen atom quinone compound of 1: 1. It is to contain 5 to 0.1% by mass of the addition reaction product in the total mass of the resin composition.

(D)無機充填剤
本発明の圧縮成形用固形封止樹脂組成物は、更に、無機充填剤の少なくとも1種を含むことが好ましい。本発明において用いられる無機充填剤は、吸湿性、線膨張係数低減、熱伝導性向上及び強度向上のために圧縮成形用固形封止樹脂組成物に含まれることが好ましい。無機充填剤としては、溶融シリカ、結晶シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化珪素、窒化アルミ、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア等の粉体又はこれらを球形化したビーズ、ガラス繊維等が挙げられる。
さらに、難燃効果のある無機充填剤としては水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛等が挙げられる。
これらの無機充填剤は単独で用いても2種以上を組み合わせて用いてもよい。なかでも、充填性、線膨張係数の低減の観点からは溶融シリカが、高熱伝導性の観点からはアルミナが好ましく、無機充填剤の形状は充填性及び金型摩耗性の点から球形が好ましい。
(D) Inorganic filler It is preferable that the solid sealing resin composition for compression molding of the present invention further contains at least one inorganic filler. The inorganic filler used in the present invention is preferably contained in the compression-molding solid encapsulating resin composition for hygroscopicity, linear expansion coefficient reduction, thermal conductivity improvement and strength improvement. Inorganic fillers include fused silica, crystalline silica, alumina, zircon, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steatite, Examples thereof include powders such as spinel, mullite, titania, beads formed by spheroidizing these, and glass fibers.
Furthermore, examples of the inorganic filler having a flame retardant effect include aluminum hydroxide, magnesium hydroxide, zinc borate, and zinc molybdate.
These inorganic fillers may be used alone or in combination of two or more. Of these, fused silica is preferable from the viewpoint of filling property and linear expansion coefficient, and alumina is preferable from the viewpoint of high thermal conductivity, and the shape of the inorganic filler is preferably spherical from the viewpoint of filling property and mold wear.

無機充填剤の含有率は、充填性、信頼性の観点から圧縮成形用固形封止樹脂組成物に対して55体積%〜90体積%であることが好ましい。60体積%〜90体積%がより好ましく、70体積%〜85体積%が特に好ましい。
55体積%以上であると耐リフロー性が向上する傾向にあり、90体積%以下であると充填性が向上する傾向にある。
It is preferable that the content rate of an inorganic filler is 55 volume%-90 volume% with respect to the solid sealing resin composition for compression molding from a viewpoint of a filling property and reliability. 60 volume%-90 volume% are more preferable, and 70 volume%-85 volume% are especially preferable.
When it is 55% by volume or more, reflow resistance tends to be improved, and when it is 90% by volume or less, filling property tends to be improved.

(E)カップリング剤
(D)無機充填剤を用いる場合、本発明の圧縮成形用固形封止樹脂組成物には、樹脂成分と無機充填剤との接着性を高めるために、カップリング剤の少なくとも1種をさらに配合することが好ましい。カップリング剤としては、圧縮成形用固形封止樹脂組成物に一般に使用されているもので特に制限はない。たとえば、1級、2級及び3級アミノ基から選ばれる少なくとも1種のアミノ基を有するシラン化合物、エポキシシラン、メルカプトシラン、アルキルシラン、ウレイドシラン、ビニルシラン等の各種シラン系化合物、チタン系化合物、アルミニウムキ
レート類、アルミニウム/ジルコニウム系化合物等が挙げられる。
(E) Coupling agent (D) When an inorganic filler is used, the solid encapsulating resin composition for compression molding of the present invention contains a coupling agent in order to increase the adhesion between the resin component and the inorganic filler. It is preferable to further blend at least one kind. As a coupling agent, there is no restriction | limiting in particular by what is generally used for the solid sealing resin composition for compression molding. For example, silane compounds having at least one amino group selected from primary, secondary and tertiary amino groups, various silane compounds such as epoxy silane, mercapto silane, alkyl silane, ureido silane, vinyl silane, titanium compounds, Examples include aluminum chelates and aluminum / zirconium compounds.

これらを例示すると、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、γ−メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン等の不飽和結合を有するシランカップリング剤、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン等のエポキシ基を有するシランカップリング剤、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−アニリノプロピルトリメトキシシラン、γ−アニリノプロピルトリエトキシシラン、γ−(N,N−ジメチル)アミノプロピルトリメトキシシラン、γ−(N,N−ジエチル)アミノプロピルトリメトキシシラン、γ−(N,N−ジブチル)アミノプロピルトリメトキシシラン、γ−(N−メチル)アニリノプロピルトリメトキシシラン、γ−(N−エチル)アニリノプロピルトリメトキシシラン、γ−(N,N−ジメチル)アミノプロピルトリエトキシシラン、γ−(N,N−ジエチル)アミノプロピルトリエトキシシラン、γ−(N,N−ジブチル)アミノプロピルトリエトキシシラン、γ−(N−メチル)アニリノプロピルトリエトキシシラン、γ−(N−エチル)アニリノプロピルトリエトキシシラン、γ−(N,N−ジメチル)アミノプロピルメチルジメトキシシラン、γ−(N,N−ジエチル)アミノプロピルメチルジメトキシシラン、γ−(N,N−ジブチル)アミノプロピルメチルジメトキシシラン、γ−(N−メチル)アニリノプロピルメチルジメトキシシラン、γ−(N−エチル)アニリノプロピルメチルジメトキシシラン、N−(トリメトキシシリルプロピル)エチレンジアミン、N−(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、γ−クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、ビニルトリメトキシシラン、及びγ−メルカプトプロピルメチルジメトキシシラン等のシラン系カップリング剤;イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N−アミノエチル−アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、及びテトライソプロピルビス(ジオクチルホスファイト)チタネート等のチタネート系カップリング剤;等が挙げられる。これらは1種を単独で用いても2種類以上を組み合わせて用いてもよい。
なかでも充填性の観点からはエポキシ基を有するシランカップリング剤が好ましい。
Illustrative examples include silane coupling agents having unsaturated bonds such as vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, β- Silane coupling agents having an epoxy group such as (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, and γ-mercaptopropyltrimethoxysilane Γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldiethoxysilane, γ-anilinopropyltrimethoxysilane, γ- Nilinopropyltriethoxysilane, γ- (N, N-dimethyl) aminopropyltrimethoxysilane, γ- (N, N-diethyl) aminopropyltrimethoxysilane, γ- (N, N-dibutyl) aminopropyltrimethoxy Silane, γ- (N-methyl) anilinopropyltrimethoxysilane, γ- (N-ethyl) anilinopropyltrimethoxysilane, γ- (N, N-dimethyl) aminopropyltriethoxysilane, γ- (N, N-diethyl) aminopropyltriethoxysilane, γ- (N, N-dibutyl) aminopropyltriethoxysilane, γ- (N-methyl) anilinopropyltriethoxysilane, γ- (N-ethyl) anilinopropyltri Ethoxysilane, γ- (N, N-dimethyl) aminopropylmethyldimethoxysilane, γ- (N, N Diethyl) aminopropylmethyldimethoxysilane, γ- (N, N-dibutyl) aminopropylmethyldimethoxysilane, γ- (N-methyl) anilinopropylmethyldimethoxysilane, γ- (N-ethyl) anilinopropylmethyldimethoxysilane N- (trimethoxysilylpropyl) ethylenediamine, N- (dimethoxymethylsilylisopropyl) ethylenediamine, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, γ-chloropropyltrimethoxysilane, hexamethyldisilane, vinyltrimethoxy Silane and silane coupling agents such as γ-mercaptopropylmethyldimethoxysilane; isopropyl triisostearoyl titanate, isopropyl tris (dioctyl pyrophosphate) ) Titanate, isopropyltri (N-aminoethyl-aminoethyl) titanate, tetraoctylbis (ditridecylphosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (Dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltrioctanoyl titanate, isopropyldimethacrylisostearoyl titanate, isopropyltridodecylbenzenesulfonyl titanate, isopropylisostearoyl diacryl titanate, isopropyltri (dioctylphosphate) ) Titanate, isopropyl tricumyl phenyl titanate, and tetraisopropyl bis (Dioctyl phosphite) titanate coupling agents such as titanate; These may be used alone or in combination of two or more.
Of these, a silane coupling agent having an epoxy group is preferable from the viewpoint of filling properties.

前記圧縮成形用固形封止樹脂組成物がカップリング剤を含む場合、カップリング剤の全含有率は、圧縮成形用固形封止樹脂組成物中に、0.037質量%〜4.75質量%であることが好ましく、0.05質量%〜3質量%であることがより好ましく、0.1質量%〜2.5質量%であることがさらに好ましい。
0.037質量%以上であるとフレームとの接着性が向上する傾向がある。4.75質量%以下であるとパッケージの成形性が向上する傾向がある。
When the compression-molding solid encapsulating resin composition contains a coupling agent, the total content of the coupling agent is 0.037% by mass to 4.75% by mass in the compression-molding solid encapsulating resin composition. It is preferable that it is 0.05 mass%-3 mass%, and it is further more preferable that it is 0.1 mass%-2.5 mass%.
There exists a tendency for adhesiveness with a flame | frame to improve that it is 0.037 mass% or more. There exists a tendency for the moldability of a package to improve that it is 4.75 mass% or less.

(カップリング剤被覆率)
本発明においてカップリング剤を用いる場合、無機充填剤へのカップリング剤の被覆率は0.3〜1.0とすることが好ましく、さらに好ましくは0.4〜0.9、より好ましくは0.5〜0.8の範囲とすることが都合がよい。
カップリング剤の被覆率が1.0以下であると、成形時に発生する揮発分による気泡が減少して、薄肉部のボイドの発生を抑制しやすくなる傾向がある。また、カップリング剤の被覆率が0.3以上であると、樹脂と無機充填剤との接着力が低下するため、成型品強度が低下する傾向がある。
カップリング剤被覆率Xは、(xxx)式のように定義される。
(xxx) X(%)=(S/S)×100
及びSは、それぞれ樹脂組成物における全カップリング剤の総最小被覆面積と全充填材の総表面積を表し、(yyy)式、(zzz)式で定義される。
(yyy) S=A×W+A+×W+…+A×M(nは、使用カップリング剤種数)
(zzz) S=B×W+B×W+…+B×W(lは、使用充填材種数)
ここで、AとMはそれぞれ各カップリング剤の最小被覆面積およびその使用量、BとWは、それぞれ各無機充填剤の比表面積およびその使用量を表す。
(Coupling agent coverage)
When using a coupling agent in this invention, it is preferable that the coverage of the coupling agent to an inorganic filler shall be 0.3-1.0, More preferably, it is 0.4-0.9, More preferably, it is 0. It is convenient to set it in the range of 0.5 to 0.8.
If the coverage of the coupling agent is 1.0 or less, bubbles due to volatile matter generated during molding tend to be reduced, and the generation of voids in the thin portion tends to be suppressed. Moreover, since the adhesive force of resin and an inorganic filler falls that the coverage of a coupling agent is 0.3 or more, there exists a tendency for the strength of a molded product to fall.
The coupling agent coverage X is defined as in the formula (xxx).
(Xxx) X (%) = (S c / S f ) × 100
S c and S f represent the total minimum coating area of all coupling agents and the total surface area of all fillers in the resin composition, respectively, and are defined by the (yyy) formula and the (zzz) formula.
(Yyy) S c = A 1 × W 1 + A 2 + × W 2 + ... + A n × M n (n is used a coupling agent number seeds)
(Zzzz) S f = B 1 × W 1 + B 2 × W 2 +... + B 1 × W 1 (l is the number of fillers used)
Here, A and M represent the minimum coating area of each coupling agent and the amount of use thereof, and B and W represent the specific surface area of each inorganic filler and the amount of use thereof, respectively.

(カップリング剤被覆率の制御方法)
使用する各カップリング剤および無機充填剤それぞれの最小被覆面積および比表面積が既知であれば、(xxx)式、(yyy)式および(zzz)式より、目的のカップリング剤被覆率となるカップリング剤および無機充填剤の使用量を算出することが可能である。
(Coupling agent coverage control method)
If the minimum coating area and specific surface area of each coupling agent and inorganic filler to be used are known, the cup with the desired coupling agent coverage can be obtained from the formula (xxx), (yyy) and (zzz). It is possible to calculate the usage amount of the ring agent and the inorganic filler.

(難燃剤)
本発明には難燃性の観点から、さらに各種難燃剤を添加してもよい。難燃剤は、圧縮成形用固形封止樹脂組成物に一般に使用されているもので特に制限はないが、例えば、テトラブロモビスフェノールAのジグリシジルエーテル化物やブロム化フェノールノボラックエポキシ樹脂等のブロム化エポキシ樹脂。酸化アンチモン、赤リン及び前述のリン酸エステル等の燐化合物、メラミン、メラミンシアヌレート、メラミン変性フェノール樹脂及びグアナミン変性フェノール樹脂等の含窒素化合物、シクロホスファゼン等の燐/窒素含有化合物、酸化亜鉛、酸化鉄、酸化モリブデン、フェロセン、上記水酸化アルミニウム、水酸化マグネシウム及び複合金属水酸化物等の金属化合物等が挙げられる。
近年の環境問題や高温放置特性の観点からは非ハロゲン、非アンチモン系の難燃剤が好ましい。なかでも充填性の観点からはリン酸エステルが好ましく、安全性、耐湿性の観点からは複合金属水酸化物が好ましい。
(Flame retardants)
Various flame retardants may be further added to the present invention from the viewpoint of flame retardancy. The flame retardant is generally used in solid molding resin compositions for compression molding and is not particularly limited. For example, brominated epoxy such as diglycidyl etherified tetrabromobisphenol A or brominated phenol novolac epoxy resin. resin. Phosphorus compounds such as antimony oxide, red phosphorus and the above-mentioned phosphate esters, melamine, melamine cyanurate, nitrogen-containing compounds such as melamine-modified phenol resin and guanamine-modified phenol resin, phosphorus / nitrogen-containing compounds such as cyclophosphazene, zinc oxide, Examples thereof include metal compounds such as iron oxide, molybdenum oxide, ferrocene, the above aluminum hydroxide, magnesium hydroxide, and composite metal hydroxide.
Non-halogen and non-antimony flame retardants are preferred from the viewpoint of environmental problems in recent years and high temperature storage properties. Among these, phosphate esters are preferable from the viewpoint of filling properties, and composite metal hydroxides are preferable from the viewpoints of safety and moisture resistance.

複合金属水酸化物は下記組成式(XX)で示される化合物が好ましい。
p(MaOb)・q(McOd)・r(McOd)・m(HO) (XX)
(ここで、M、M及びMは互いに異なる金属元素を示し、a、b、c、d、p、q及びmは正の数、rは0又は正の数を示す。)
なかでも、上記組成式(XX)中のrが0である化合物、すなわち、下記組成式(XXa)で示される化合物がさらに好ましい。
m(MaOb)・n(McOd)・l(HO) (XXa)
(ここで、M1及びM2は互いに異なる金属元素を示し、a、b、c、d、m、n及びlは正の数を示す。)
The composite metal hydroxide is preferably a compound represented by the following composition formula (XX).
p (M 1 aOb) · q (M 2 cOd) · r (M 3 cOd) · m (H 2 O) (XX)
(Here, M 1 , M 2 and M 3 represent different metal elements, a, b, c, d, p, q and m are positive numbers, and r is 0 or a positive number.)
Especially, the compound whose r in the said composition formula (XX) is 0, ie, the compound shown by the following composition formula (XXa), is further more preferable.
m (M 1 aOb) · n (M 2 cOd) · l (H 2 O) (XXa)
(Here, M1 and M2 represent different metal elements, and a, b, c, d, m, n, and l represent positive numbers.)

上記組成式(XX)及び(XXa)中のM及びMは互いに異なる金属元素であれば特に制限はないが、難燃性の観点からは、MとMが同一とならないようにMが第3周期の金属元素、IIA族のアルカリ土類金属元素、IVB族、IIB族、VIII族、IB族、IIIA族及びIVA族に属する金属元素から選ばれ、MがIIIB〜IIB族の遷移金属元素から選ばれることが好ましく、Mがマグネシウム、カルシウム、アルミニウム、スズ、チタン、鉄、コバルト、ニッケル、銅及び亜鉛から選ばれ、Mが鉄、コバルト、ニッケル、銅及び亜鉛から選ばれることがより好ましい。流動性の観点からは、Mがマグネシウム、Mが亜鉛又はニッケルであることが好ましく、MがマグネシウムでMが亜鉛であることがより好ましい。
上記組成式(XX)中のp、q、rのモル比は本発明の効果が得られれば特に制限はないが、r=0で、p及びqのモル比p/qが99/1〜50/50であることが好ましい。すなわち、上記組成式(XXa)中のm及びnのモル比m/nが99/1〜50/50であることが好ましい。
なお、金属元素の分類は、典型元素をA亜族、遷移元素をB亜族とする長周期型の周期率表(出典:共立出版株式会社発行「化学大辞典4」1987年2月15日縮刷版第30刷)に基づいて行った。
M 1 and M 2 in the composition formulas (XX) and (XXa) are not particularly limited as long as they are different metal elements, but from the viewpoint of flame retardancy, M 1 and M 2 should not be the same. M 1 is selected from metal elements of the third period, Group IIA alkaline earth metal elements, Group IVB, Group IIB, Group VIII, Group IB, Group IIIA and Group IVA, and M 2 is IIIB to IIB is preferably selected from transition metal elements of group, magnesium M 1, calcium, aluminum, chosen tin, titanium, iron, cobalt, nickel, copper and zinc, M 2 is iron, cobalt, nickel, copper and zinc More preferably, it is chosen from. From the viewpoint of fluidity, M 1 is preferably magnesium and M 2 is preferably zinc or nickel, more preferably M 1 is magnesium and M 2 is zinc.
The molar ratio of p, q, and r in the above composition formula (XX) is not particularly limited as long as the effect of the present invention can be obtained, but r = 0, and the molar ratio p / q of p and q is 99/1 to Preferably it is 50/50. That is, the molar ratio m / n of m and n in the composition formula (XXa) is preferably 99/1 to 50/50.
In addition, the classification of metal elements is a long-period type periodic rate table in which the typical element is the A subgroup and the transition element is the B subgroup (Source: Kyoritsu Shuppan Co., Ltd., “Chemical Dictionary 4”, February 15, 1987) (Reduced plate 30th printing).

複合金属水酸化物の形状は特に制限はないが、流動性、充填性の観点からは、平板状より、適度の厚みを有する多面体形状が好ましい。複合金属水酸化物は、金属水酸化物と比較して多面体状の結晶が得られやすい。
複合金属水酸化物の配合量は特に制限はないが、圧縮成形用固形封止樹脂組成物に対して0.5質量%〜20質量%が好ましく、0.7質量%〜15質量%がより好ましく、1.4質量%〜12質量%がさらに好ましい。
0.5質量%以上であると難燃性が十分となる傾向があり、20質量%以下であると充填性及び耐リフロー性が向上する傾向がある。
The shape of the composite metal hydroxide is not particularly limited, but from the viewpoint of fluidity and filling properties, a polyhedral shape having an appropriate thickness is preferable to a flat plate shape. Compared to metal hydroxides, complex metal hydroxides tend to give polyhedral crystals.
Although there is no restriction | limiting in particular in the compounding quantity of a composite metal hydroxide, 0.5 mass%-20 mass% are preferable with respect to the solid sealing resin composition for compression molding, and 0.7 mass%-15 mass% are more. Preferably, 1.4 mass%-12 mass% are more preferable.
When it is 0.5% by mass or more, flame retardancy tends to be sufficient, and when it is 20% by mass or less, filling property and reflow resistance tend to be improved.

また、本発明の圧縮成形用固形封止樹脂組成物には、IC等の半導体素子の耐湿性及び高温放置特性を向上させる観点から陰イオン交換体を添加することもできる。陰イオン交換体としては特に制限はなく、従来公知のものを用いることができるが、たとえば、ハイドロタルサイト類や、マグネシウム、アルミニウム、チタン、ジルコニウム、ビスマス等から選ばれる元素の含水酸化物等が挙げられ、これらを単独又は2種以上を組み合わせて用いることができる。なかでも、下記組成式(XXI)で示されるハイドロタルサイトが好ましい。
Mg1-XAl(OH)(COX/2・mHO・・・(XXI)
(0<X≦0.5、mは正の数)
Moreover, an anion exchanger can also be added to the solid encapsulating resin composition for compression molding of the present invention from the viewpoint of improving the moisture resistance and high temperature storage characteristics of a semiconductor element such as an IC. The anion exchanger is not particularly limited, and conventionally known anion exchangers can be used. For example, hydrotalcites, hydrous oxides of elements selected from magnesium, aluminum, titanium, zirconium, bismuth, etc. These may be used alone or in combination of two or more. Of these, hydrotalcite represented by the following composition formula (XXI) is preferable.
Mg 1-X Al X (OH) 2 (CO 3 ) X / 2 · mH 2 O (XXI)
(0 <X ≦ 0.5, m is a positive number)

さらに、本発明の圧縮成形用固形封止樹脂組成物には、その他の添加剤として、高級脂肪酸、高級脂肪酸金属塩、エステル系ワックス、ポリオレフィン系ワックス、ポリエチレン、酸化ポリエチレン等の離型剤、カーボンブラック等の着色剤、シリコーンオイルやシリコーンゴム粉末等の応力緩和剤等を必要に応じて配合することができる。   Further, in the solid sealing resin composition for compression molding of the present invention, as other additives, a release agent such as higher fatty acid, higher fatty acid metal salt, ester wax, polyolefin wax, polyethylene, polyethylene oxide and the like, carbon A colorant such as black, a stress relaxation agent such as silicone oil and silicone rubber powder, and the like can be blended as necessary.

(調製・使用方法)
本発明の圧縮成形用固形封止樹脂組成物は、各種原材料を均一に分散混合できるのであれば、いかなる手法を用いても調製できるが、一般的な手法として、所定の配合量の原材料をミキサー等によって十分混合した後、ミキシングロール、押出機、らいかい機、プラネタリミキサ等によって混合又は溶融混練した後、冷却し、必要に応じて脱泡、粉砕する方法等を挙げることができる。また、必要に応じて成形条件に合うような寸法及び質量でタブレット化してもよい。
本発明の圧縮成形用固形封止樹脂組成物を封止材として用いて、半導体装置を封止する方法としては、低圧トランスファー成形法が一般的であるが、インジェクション成形法、圧縮成形法等も挙げられる。ディスペンス方式、注型方式、印刷方式等を用いてもよい。一括封止の観点から圧縮成型が好ましい。
(Preparation and usage)
The solid encapsulating resin composition for compression molding of the present invention can be prepared by any method as long as various raw materials can be uniformly dispersed and mixed, but as a general method, a raw material having a predetermined blending amount is mixed. Examples thereof include a method in which the mixture is sufficiently mixed by, etc., then mixed or melt-kneaded by a mixing roll, an extruder, a raking machine, a planetary mixer, etc., then cooled, and defoamed and pulverized as necessary. Moreover, you may tablet by the dimension and mass which meet molding conditions as needed.
As a method of sealing a semiconductor device using the solid molding resin composition for compression molding of the present invention as a sealing material, a low-pressure transfer molding method is generally used, but an injection molding method, a compression molding method, etc. are also used. Can be mentioned. A dispensing method, a casting method, a printing method, or the like may be used. Compression molding is preferable from the viewpoint of collective sealing.

(半導体装置)
続いて本発明の半導体装置について説明する。また、かかる半導体装置の説明を介して本発明の圧縮成形用固形封止樹脂組成物の好適な用途及び使用方法について説明する。
本発明の半導体装置としては、封止用樹脂組成物で圧縮成形によって作製されるFO-WLP用パッケージが挙げられる。ここで、封止用樹脂組成物としては、本発明の圧縮成形用固形封止樹脂組成物を用いる。
(Semiconductor device)
Next, the semiconductor device of the present invention will be described. Moreover, the suitable use and usage method of the solid sealing resin composition for compression molding of this invention are demonstrated through description of this semiconductor device.
Examples of the semiconductor device of the present invention include a package for FO-WLP manufactured by compression molding with a sealing resin composition. Here, the solid sealing resin composition for compression molding of the present invention is used as the sealing resin composition.

このような半導体装置としては、たとえば、圧縮成形用固形封止樹脂組成物で半導体チップ搭載側を封止したBGA(Ball Grid Array)、CSP(Chip Size Package)、MCP(Multi Chip Package)等にも使用が可能である。また、これらの半導体装置は、実装基板上に素子が2個以上重なった形で搭載されたスタックド(積層)型パッケージであっても、2個以上の素子を一度に圧縮成形用固形封止樹脂組成物で封止した一括モールド型パッケージであってもよい。   As such a semiconductor device, for example, BGA (Ball Grid Array), CSP (Chip Size Package), MCP (Multi Chip Package), etc., in which the semiconductor chip mounting side is sealed with a solid molding resin composition for compression molding. Can also be used. In addition, even if these semiconductor devices are a stacked type package in which two or more elements are stacked on a mounting substrate, two or more elements are solid molded resin for compression molding at a time. It may be a collective mold type package sealed with a composition.

本発明の半導体装置の好ましい態様は、図1を参照しながら説明する。尚、本発明の半導体装置はこれらに限られるものではない。
図1には、FO-WLPにおける半導体製造装置の作製例を示す。ダイシングをしたチップ3は仮止めテープ2を用いてキャリアー1に貼り付けられている。チップ3上に圧縮成形によって、圧縮成形用固形封止樹脂組成物を付与して熱硬化することで、チップ3が封止材4で被覆された成形体を得ることができる。
このとき用いられる仮止めテープ2の耐熱性という観点から、圧縮成形用固形封止樹脂組成物を用いた圧縮成形においては、150℃以下でモールドされることが好ましく、140℃以下だとさらに好ましく、反りの観点から130℃以下だと特に好ましい。
A preferred embodiment of the semiconductor device of the present invention will be described with reference to FIG. The semiconductor device of the present invention is not limited to these.
FIG. 1 shows an example of manufacturing a semiconductor manufacturing apparatus in FO-WLP. The diced chip 3 is affixed to the carrier 1 using a temporary fixing tape 2. By applying a solid molding resin composition for compression molding to the chip 3 by compression molding and thermosetting, a molded body in which the chip 3 is coated with the sealing material 4 can be obtained.
From the viewpoint of heat resistance of the temporary fixing tape 2 used at this time, in the compression molding using the solid sealing resin composition for compression molding, it is preferably molded at 150 ° C. or less, more preferably 140 ° C. or less. From the viewpoint of warpage, it is particularly preferably 130 ° C. or lower.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
なお、各圧縮成形用固形封止樹脂組成物の評価は、特記しない限り後に説明する評価方法に基づいて行った。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
In addition, evaluation of each solid sealing resin composition for compression molding was performed based on the evaluation method demonstrated later unless it mentions specially.

(実施例1〜6、比較例1〜3)
表1、表2に示す配合組成となるように、各素材を予備混合(ドライブレンド)した後、ロール表面温度約80℃の二軸ロールで15分間混練し、次いで冷却粉砕して実施例1〜6及び比較例1〜3の各圧縮成形用固形封止樹脂組成物を製造した。なお、表中の組成は、質量部で示した。また表中の空欄は未配合であることを示す。
(Examples 1-6, Comparative Examples 1-3)
Example 1 Each material was premixed (dry blended) so as to have the composition shown in Tables 1 and 2, then kneaded with a biaxial roll having a roll surface temperature of about 80 ° C. for 15 minutes, and then cooled and crushed. To 6 and Comparative Examples 1 to 3 were produced. In addition, the composition in a table | surface was shown by the mass part. Moreover, the blank in a table | surface shows having not mix | blended.

(A)エポキシ樹脂
エポキシ樹脂として、以下を使用した。
・(エポキシ樹脂1):ビフェニレン型エポキシ樹脂として日本化薬株式会社製品名NC−3000(エポキシ当量280)
・(エポキシ樹脂2):ビフェニル骨格型エポキシ樹脂として、三菱化学株式会社製品名YX-4000(エポキシ当量192、融点67℃)
・(エポキシ樹脂3):トリフェニルメタン型エポキシ樹脂として、三菱化学株式会社製品名1032H60(エポキシ当量170、融点60)
(A) Epoxy resin The following was used as an epoxy resin.
-(Epoxy resin 1): Nippon Kayaku Co., Ltd. product name NC-3000 (epoxy equivalent 280) as a biphenylene type epoxy resin
・ (Epoxy resin 2): Mitsubishi Chemical Corporation product name YX-4000 (epoxy equivalent 192, melting point 67 ° C.) as biphenyl skeleton type epoxy resin
-(Epoxy resin 3): As a triphenylmethane type epoxy resin, Mitsubishi Chemical Corporation product name 1032H60 (epoxy equivalent 170, melting point 60)

(B)硬化剤
また、(B)硬化剤として、以下を使用した
・(硬化剤1):水酸基当量199、軟化点80℃の、フェノール系重縮合物(エアウォーターケミカル社製品名HE200C−10)
・(硬化剤2):水酸基当量175、軟化点70℃の、トリフェノール重縮合物(エアウォータウォーターケミカル社製品名HE910−10)
(B) Curing agent In addition, the following were used as (B) curing agent: (Curing agent 1): phenolic polycondensate having a hydroxyl group equivalent of 199 and a softening point of 80 ° C. (product name HE200C-10, Air Water Chemical Company) )
(Curing agent 2): Triphenol polycondensate having a hydroxyl group equivalent of 175 and a softening point of 70 ° C. (product name HE910-10, Air Water Water Chemical)

(C)硬化促進剤
(C)硬化促進剤として、以下を使用した。
・(硬化促進剤1):トリフェニルホスフィンと1,4−ベンゾキノンの付加物
・(硬化促進剤2):トリブチルホスフィンとメチル−1,4−ベンゾキノンとの付加反応物
・(硬化促進剤3):トリシクロヘキシルホスフィンと1,4−ベンゾキノンの付加物
・(硬化促進剤4):トリp−メチルベンジルホスフィンと1,4−ベンゾキノンの付加物
・(硬化促進剤5):トリイソブチルホスフィンと1,4−ベンゾキノンの付加物を使用した。
なお、硬化促進剤1〜5は、ホスフィン化合物とキノン化合物とのモル比1:1の付加反応物である。
・(硬化促進剤A):トリフェニルホスフィン
・(硬化促進剤B):2-エチル4-メチルイミダゾール(四国化成工業株式会社製2E4MZ)
・(硬化促進剤C):2−フェニル4−メチルイミダゾール(四国化成工業株式会社製2P4MZ)
(C) Curing accelerator (C) As the curing accelerator, the following was used.
-(Curing Accelerator 1): Addition product of triphenylphosphine and 1,4-benzoquinone-(Curing Accelerator 2): Addition reaction product of tributylphosphine and methyl-1,4-benzoquinone-(Curing accelerator 3) : Adduct of tricyclohexylphosphine and 1,4-benzoquinone (Curing accelerator 4): Adduct of tri-p-methylbenzylphosphine and 1,4-benzoquinone (Curing accelerator 5): Triisobutylphosphine and 1, An adduct of 4-benzoquinone was used.
The curing accelerators 1 to 5 are addition reaction products having a molar ratio of 1: 1 between the phosphine compound and the quinone compound.
(Curing Accelerator A): Triphenylphosphine (Curing Accelerator B): 2-Ethyl 4-methylimidazole (2E4MZ manufactured by Shikoku Chemicals Co., Ltd.)
-(Curing Accelerator C): 2-Phenyl 4-methylimidazole (2P4MZ manufactured by Shikoku Chemicals Co., Ltd.)

(D)無機充填剤
(D)無機充填剤として、体積平均粒径14.5μm、比表面積2.8m/gの球状溶融シリカを使用した。
(D) Inorganic filler (D) As an inorganic filler, spherical fused silica having a volume average particle diameter of 14.5 μm and a specific surface area of 2.8 m 2 / g was used.

(E)カップリング剤
カップリング剤としては、以下を使用した。
(カップリング剤1):γ−グリシドキシプロピルトリメトキシシラン(エポキシシラン)(東レダウシリコーン株式会社製商品名 A-187)
(カップリング剤2):2級アミノシラン(東レダウシリコーン株式会社製商品名 Y−9669)
(カップリング剤3):シランエステル(信越化学工業社製商品名 KBM−202SS)
(カップリング剤4):メルカプトシラン(信越化学工業社製商品名 KBM-803)
(E) Coupling agent The following was used as a coupling agent.
(Coupling agent 1): γ-glycidoxypropyltrimethoxysilane (epoxysilane) (trade name A-187 manufactured by Toray Dow Silicone Co., Ltd.)
(Coupling agent 2): Secondary aminosilane (trade name Y-9669 manufactured by Toray Dow Silicone Co., Ltd.)
(Coupling agent 3): Silane ester (trade name KBM-202SS manufactured by Shin-Etsu Chemical Co., Ltd.)
(Coupling agent 4): Mercaptosilane (trade name KBM-803, manufactured by Shin-Etsu Chemical Co., Ltd.)

その他添加物として、カーボンブラック(三菱化学株式会社製商品名MA−600MJ―S)を表1〜2に示す質量部で使用した。   As another additive, carbon black (trade name MA-600MJ-S manufactured by Mitsubishi Chemical Corporation) was used in parts by mass shown in Tables 1-2.

作製した各圧縮成形用固形封止樹脂組成物の評価を、以下に示す評価方法に基づいて行った。   Evaluation of each produced solid sealing resin composition for compression molding was performed based on the evaluation method shown below.

(ゲルタイム)
ゲルタイムの測定方法は、175℃に熱した鉄板上で一定量(0.5g)の樹脂組成物をのせ、スパチュラにて攪拌し、流動性を失って固まるまでの時間(秒)を計ることにより評価した。
(Geltime)
The gel time is measured by placing a fixed amount (0.5 g) of a resin composition on an iron plate heated to 175 ° C., stirring with a spatula, and measuring the time (seconds) until it loses fluidity and solidifies. evaluated.

(反応率)
樹脂組成物をDSC(示差走査熱量測定)法で測定し、130℃400秒、及び、120℃600秒での樹脂組成物の反応率を求めた。なお、反応率は、以下のように測定した。
実施例及び比較例で得られた樹脂組成物をアルミ製測定容器に2〜10mg計り取り、パーキンエルマー社製DSC(Differential Scaning Calorimeter)「Pylis1」(商品名)を用いて、昇温速度20℃/分で30〜300℃まで昇温して発熱量を測定し、これを初期発熱量とした。
次いで、130℃400秒、又は、120℃600秒の条件で、樹脂組成物を加熱し、加熱処理が施された状態の樹脂組成物を得た。加熱処理後の樹脂組成物についても同様に発熱量を測定し、これを加熱後の発熱量とした。得られた発熱量から次の式で反応率(%)を算出した。
反応率(%)=[(初期発熱量−加熱後の発熱量)/(初期発熱量)]×100
(Reaction rate)
The resin composition was measured by DSC (Differential Scanning Calorimetry) method, and the reaction rate of the resin composition at 130 ° C. for 400 seconds and 120 ° C. for 600 seconds was determined. The reaction rate was measured as follows.
2-10 mg of resin compositions obtained in Examples and Comparative Examples were weighed in an aluminum measurement container, and the temperature rising rate was 20 ° C. using a Perkin Elmer DSC (Differential Scanning Calorimeter) “Pyris 1” (trade name). The temperature was increased to 30 to 300 ° C./min and the calorific value was measured, and this was defined as the initial calorific value.
Subsequently, the resin composition was heated under conditions of 130 ° C. for 400 seconds or 120 ° C. for 600 seconds to obtain a resin composition in a state where heat treatment was performed. For the resin composition after the heat treatment, the calorific value was similarly measured, and this was defined as the calorific value after heating. The reaction rate (%) was calculated from the obtained calorific value by the following formula.
Reaction rate (%) = [(initial heating value−heating value after heating) / (initial heating value)] × 100

(流動性;ライフ)
金型温度180℃、鉄板8kgを用い、作製した樹脂組成物5gを硬化時間90秒の条件で圧縮成形し、円盤状に成形された樹脂組成物の長径と短径の平均値を測定し、円板フローの初期値とした。
さらに、作製した樹脂組成物を、25℃の恒温槽で48時間経時処理した。経時処理した樹脂組成物の円板フロー測定を、前記同様に行った。処理前後の測定値の割合により、流動性を求めた。なお、円板フローの測定値が、初期値と同じ場合を100%としている。
(Fluidity; life)
Using a mold temperature of 180 ° C. and an iron plate of 8 kg, 5 g of the produced resin composition was compression molded under the condition of a curing time of 90 seconds, and the average value of the major axis and minor axis of the resin composition molded into a disk shape was measured. The initial value of the disk flow was used.
Furthermore, the produced resin composition was treated for 48 hours in a constant temperature bath at 25 ° C. The disk flow measurement of the resin composition treated with time was performed in the same manner as described above. The fluidity was determined by the ratio of the measured values before and after the treatment. The case where the measured value of the disk flow is the same as the initial value is 100%.

表2に示したように、硬化促進剤として(C)ホスフィン化合物とキノン化合物との付加反応物を配合しない、比較例1は、130℃や120℃での反応率が低く、また、比較例2及び3は、流動性(ライフ)が小さく、長期保存安定性に問題があることがわかる。
それに対し、実施例1〜6は、いずれも、130℃や120℃での反応率が高く(40%以上)、また、流動性(ライフ)も大きく(90%以上)、長期保存安定性が優れていることがわかる。
本発明の圧縮成形用固形封止樹脂組成物は、低温成形用として要求される低温時に高い反応性を示し、長期保存安定性に優れた樹脂組成物であり、また、FO-WLPパッケージ用として好適であり、その工業的価値は大である。
As shown in Table 2, Comparative Example 1, which does not contain an addition reaction product of (C) phosphine compound and quinone compound as a curing accelerator, has a low reaction rate at 130 ° C. or 120 ° C., and Comparative Example It can be seen that 2 and 3 have low fluidity (life) and a problem in long-term storage stability.
On the other hand, all of Examples 1 to 6 have a high reaction rate at 130 ° C. or 120 ° C. (40% or more), a large fluidity (life) (90% or more), and long-term storage stability. It turns out that it is excellent.
The solid sealing resin composition for compression molding of the present invention is a resin composition that exhibits high reactivity at low temperatures required for low temperature molding, and has excellent long-term storage stability, and for FO-WLP packages. It is suitable and its industrial value is great.

1:キャリアー、2:仮止めテープ、3:チップ、4:封止材、5:バンプ、6:再配線層。 1: carrier, 2: temporary fixing tape, 3: chip, 4: sealing material, 5: bump, 6: rewiring layer.

Claims (6)

(A)エポキシ樹脂と、(B)硬化剤と、(C)ホスフィン化合物及びキノン化合物の付加反応物とを成分とする圧縮成形用固形封止樹脂組成物。   A solid sealing resin composition for compression molding comprising (A) an epoxy resin, (B) a curing agent, and (C) an addition reaction product of a phosphine compound and a quinone compound. 示差走査熱量測定によって測定され、前記(A)エポキシ樹脂と(B)硬化剤との反応率が40%に達するのに要する時間が、130℃の反応温度の場合に400秒以内、又は120℃の反応温度の場合に600秒以内である請求項1に記載の圧縮成形用固形封止樹脂組成物。   Measured by differential scanning calorimetry, the time required for the reaction rate of the (A) epoxy resin and (B) curing agent to reach 40% is within 400 seconds when the reaction temperature is 130 ° C, or 120 ° C. The solid sealing resin composition for compression molding according to claim 1, wherein the reaction temperature is 600 seconds or less. 25℃において48時間経過後の流動性が、経過前の流動性に対して、90%以上である請求項1又は請求項2に記載の圧縮成形用固形封止樹脂組成物。   The solid sealing resin composition for compression molding according to claim 1 or 2, wherein the fluidity after 48 hours at 25 ° C is 90% or more with respect to the fluidity before the passage. 前記(C)ホスフィン化合物及びキノン化合物の付加反応物は、下記一般式(I)で示されるホスフィン化合物及び下記一般式(II)で示されるキノン化合物との付加反応物である請求項1〜請求項3のいずれか1項に記載の圧縮成形用固形封止樹脂組成物。

(ここで、式(I)中のR、R及びRはそれぞれ独立に、水素原子又は炭素数1〜12の炭化水素基を示す。また、式(II)中のR〜Rはそれぞれ独立に、水素原子又は炭素数1〜18の1価の置換基を示し、RとRは互いに結合して環を形成してもよい)
The (C) addition reaction product of a phosphine compound and a quinone compound is an addition reaction product of a phosphine compound represented by the following general formula (I) and a quinone compound represented by the following general formula (II): Item 6. The solid encapsulating resin composition for compression molding according to any one of Item 3.

(Here, R 1 , R 2 and R 3 in formula (I) each independently represent a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms. Moreover, R 4 to R in formula (II) 6 each independently represents a hydrogen atom or a monovalent substituent having 1 to 18 carbon atoms, and R 4 and R 5 may be bonded to each other to form a ring)
(D)無機充填剤をさらに含有し、その含有率が総体積中に55体積%〜90体積%である請求項1〜請求項4のいずれか1項に記載の圧縮成形用固形封止樹脂組成物。   The solid sealing resin for compression molding according to any one of claims 1 to 4, further comprising (D) an inorganic filler, the content of which is 55% by volume to 90% by volume in the total volume. Composition. 請求項1〜請求項5のいずれか1項に記載の圧縮成形用固形封止樹脂組成物により封止された半導体素子を有する半導体装置。   The semiconductor device which has a semiconductor element sealed with the solid sealing resin composition for compression molding of any one of Claims 1-5.
JP2012070320A 2011-04-01 2012-03-26 Solid sealing resin composition for compression molding, and semiconductor device Pending JP2012214743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012070320A JP2012214743A (en) 2011-04-01 2012-03-26 Solid sealing resin composition for compression molding, and semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011081725 2011-04-01
JP2011081725 2011-04-01
JP2012070320A JP2012214743A (en) 2011-04-01 2012-03-26 Solid sealing resin composition for compression molding, and semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016077623A Division JP6137373B2 (en) 2011-04-01 2016-04-07 Solid sealing resin composition for compression molding and semiconductor device

Publications (1)

Publication Number Publication Date
JP2012214743A true JP2012214743A (en) 2012-11-08

Family

ID=47267823

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2012070320A Pending JP2012214743A (en) 2011-04-01 2012-03-26 Solid sealing resin composition for compression molding, and semiconductor device
JP2016077623A Active JP6137373B2 (en) 2011-04-01 2016-04-07 Solid sealing resin composition for compression molding and semiconductor device
JP2017033271A Active JP6384555B2 (en) 2011-04-01 2017-02-24 Solid sealing resin composition for compression molding and semiconductor device
JP2018149222A Pending JP2018188667A (en) 2011-04-01 2018-08-08 Solid sealing resin composition for compression molding and semiconductor device

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2016077623A Active JP6137373B2 (en) 2011-04-01 2016-04-07 Solid sealing resin composition for compression molding and semiconductor device
JP2017033271A Active JP6384555B2 (en) 2011-04-01 2017-02-24 Solid sealing resin composition for compression molding and semiconductor device
JP2018149222A Pending JP2018188667A (en) 2011-04-01 2018-08-08 Solid sealing resin composition for compression molding and semiconductor device

Country Status (1)

Country Link
JP (4) JP2012214743A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196296A1 (en) * 2013-06-07 2014-12-11 日東電工株式会社 Method for manufacturing semiconductor device
WO2017010403A1 (en) * 2015-07-10 2017-01-19 日立化成株式会社 Epoxy resin molding material, molded product and cured product
JPWO2016098784A1 (en) * 2014-12-15 2017-09-21 日立化成株式会社 Epoxy resin molding material, molded product and molded cured product
JP2019014843A (en) * 2017-07-10 2019-01-31 味の素株式会社 Resin composition
CN113195586A (en) * 2018-12-21 2021-07-30 昭和电工材料株式会社 Sealing composition and semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037865A (en) * 2000-05-16 2002-02-06 Hitachi Chem Co Ltd Epoxy resin composition and electronic device
JP2002302592A (en) * 2000-10-31 2002-10-18 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
JP2007217655A (en) * 2006-01-23 2007-08-30 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and device of electronic part
JP2008121003A (en) * 2006-10-17 2008-05-29 Hitachi Chem Co Ltd Epoxy resin molding material for use in sealing, and electronic component device using the same
JP2010159401A (en) * 2008-12-10 2010-07-22 Sumitomo Bakelite Co Ltd Semiconductor-sealing resin composition, method for producing semiconductor device and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037865A (en) * 2000-05-16 2002-02-06 Hitachi Chem Co Ltd Epoxy resin composition and electronic device
JP2002302592A (en) * 2000-10-31 2002-10-18 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
JP2007217655A (en) * 2006-01-23 2007-08-30 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and device of electronic part
JP2008121003A (en) * 2006-10-17 2008-05-29 Hitachi Chem Co Ltd Epoxy resin molding material for use in sealing, and electronic component device using the same
JP2010159401A (en) * 2008-12-10 2010-07-22 Sumitomo Bakelite Co Ltd Semiconductor-sealing resin composition, method for producing semiconductor device and semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196296A1 (en) * 2013-06-07 2014-12-11 日東電工株式会社 Method for manufacturing semiconductor device
JP2014239154A (en) * 2013-06-07 2014-12-18 日東電工株式会社 Method of manufacturing semiconductor device
JPWO2016098784A1 (en) * 2014-12-15 2017-09-21 日立化成株式会社 Epoxy resin molding material, molded product and molded cured product
WO2017010403A1 (en) * 2015-07-10 2017-01-19 日立化成株式会社 Epoxy resin molding material, molded product and cured product
JPWO2017010403A1 (en) * 2015-07-10 2018-02-15 日立化成株式会社 Epoxy resin molding material, molded product and cured product
JP2019014843A (en) * 2017-07-10 2019-01-31 味の素株式会社 Resin composition
CN113195586A (en) * 2018-12-21 2021-07-30 昭和电工材料株式会社 Sealing composition and semiconductor device

Also Published As

Publication number Publication date
JP6137373B2 (en) 2017-05-31
JP6384555B2 (en) 2018-09-05
JP2018188667A (en) 2018-11-29
JP2017106031A (en) 2017-06-15
JP2016166362A (en) 2016-09-15

Similar Documents

Publication Publication Date Title
JP5400267B2 (en) Epoxy resin composition for sealing and electronic component device
JP6384555B2 (en) Solid sealing resin composition for compression molding and semiconductor device
JP4474113B2 (en) Solid epoxy resin molding material for sealing and semiconductor device
JP6282390B2 (en) Epoxy resin molding material for sealing and semiconductor device using the same
JP6551499B2 (en) Semiconductor molding resin material for compression molding and semiconductor device
JP4822053B2 (en) Epoxy resin composition for sealing and electronic component device
JPWO2020066856A1 (en) Manufacturing method of sealing resin composition, electronic component device and electronic component device
JP2004307650A (en) Epoxy resin molding material for sealing and semiconductor device
JP2007217708A (en) Epoxy resin molding material for sealing and semiconductor device
JP2008045086A (en) Epoxy resin composition for sealant and electronic component device
JP2004307649A (en) Epoxy resin molding material for sealing and semiconductor device
JP4329426B2 (en) Epoxy resin molding material for sealing and electronic component device
JP4418165B2 (en) Epoxy resin molding material for sealing and semiconductor device
JP2013237855A (en) Epoxy resin composition for encapsulation and electronic component device
JP2005036085A (en) Epoxy resin molding material for sealing and electronic part device
JP2008214433A (en) Epoxy resin composition for sealing and electronic part device
JP2004307646A (en) Sealing epoxy resin molding compound and semiconductor device
JP2011207944A (en) Epoxy resin composition and electronic component device
KR102127589B1 (en) Epoxy resin composition and electronic component device
JP2007262385A (en) Epoxy resin composition for encapsulation and electronic part device
JP6849115B2 (en) Epoxy resin composition for mold underfill, semiconductor device and its manufacturing method
JP2017128657A (en) Sealing epoxy resin composition, and semiconductor device and method for manufacturing the same
JP2004300275A (en) Epoxy resin molding material for encapsulation and electronic component device
JP2008115364A (en) Epoxy resin composition and electronic component device
JP2009127036A (en) Epoxy resin composition for sealing and electronic part device equipped with element sealed with the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160906