JP2012212542A - Paste composition - Google Patents

Paste composition Download PDF

Info

Publication number
JP2012212542A
JP2012212542A JP2011077139A JP2011077139A JP2012212542A JP 2012212542 A JP2012212542 A JP 2012212542A JP 2011077139 A JP2011077139 A JP 2011077139A JP 2011077139 A JP2011077139 A JP 2011077139A JP 2012212542 A JP2012212542 A JP 2012212542A
Authority
JP
Japan
Prior art keywords
paste composition
aluminum
weight
metal oxide
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011077139A
Other languages
Japanese (ja)
Inventor
Yoshitaka Koishi
宜敬 小石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aica Kogyo Co Ltd
Original Assignee
Aica Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aica Kogyo Co Ltd filed Critical Aica Kogyo Co Ltd
Priority to JP2011077139A priority Critical patent/JP2012212542A/en
Publication of JP2012212542A publication Critical patent/JP2012212542A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminium paste composition capable of suppressing generation of a warp at burning and preventing BSF effect contributing to improvement of conversion efficiency from being lost.SOLUTION: The burning paste composition for solar battery silicon wafer including aluminium powder, glass frit and organic vehicle includes nanoparticles of metal oxide and has an average particle diameter of the nanoparticles of metal oxide of 10-50 nm.

Description

本発明は、太陽電池セルに用いられるアルミニウムペースト組成物に関するものである。   The present invention relates to an aluminum paste composition used for solar cells.

従来、太陽電池の低コスト化に向けて、シリコンウエハの薄膜化が進んでいる。この薄膜化に伴ってペースト焼成後の太陽用電池セルの反りが大きくなる。この反りが、次工程のモジュール製造において割れなどの原因となっていた。一方 太陽電池のシリコンウエハのアルミニウム電極は、アルミニウム粉末、ガラスフリットおよび有機質ビヒクルからなるペースト組成物をスクリーン印刷等によって塗布し、乾燥した後、650℃(p型不純物層を得るため)以上の温度にて短時間焼成することによって形成され、焼成の際にアルミニウム原子がp型シリコンウエハの内部に拡散することにより、電子の再結合を防止し、変換効率を向上させるBSF(Back Surface Field)効果が得られる。   Conventionally, silicon wafers have been made thinner in order to reduce the cost of solar cells. With this thinning, the warpage of the solar battery cell after baking the paste increases. This warpage was a cause of cracking in the module manufacturing in the next process. On the other hand, the aluminum electrode of the silicon wafer of the solar cell is applied at a temperature of 650 ° C. (to obtain a p-type impurity layer) after applying a paste composition made of aluminum powder, glass frit and organic vehicle by screen printing or the like and drying BSF (Back Surface Field) effect, which is formed by baking for a short time, and aluminum atoms diffuse into the p-type silicon wafer during baking to prevent recombination of electrons and improve conversion efficiency. Is obtained.

特許文献1には、アルミニウム粉末がレーザー回折法に基づく粒度分布のD50が3μm以下であり且つD10とD90との比(D10/D90)が0.2以上であることを特徴とする小粒径アルミニウム粉末と、D50が小粒径アルミニウム粉末のD50が2〜6倍であり且つD10/D90が0.2以上であることを特徴とする大粒径アルミニウム粉末とを混合することにより調整されたアルミニウム粉末を含むアルミニウムペーストが 裏面電極において少ない塗布量で高いBSF効果を保証しつつ、焼成時にシリコンウエハに反り等の変形を発生するのを防止し得ることが開示されている。   Patent Document 1 discloses that the aluminum powder has a particle size distribution based on a laser diffraction method of D50 of 3 μm or less and a ratio of D10 to D90 (D10 / D90) of 0.2 or more. Aluminum powder was adjusted by mixing D50 with a large particle size aluminum powder characterized in that D50 of the small particle size aluminum powder is 2-6 times and D10 / D90 is 0.2 or more It is disclosed that an aluminum paste containing aluminum powder can prevent deformation such as warpage in a silicon wafer during firing while ensuring a high BSF effect with a small coating amount on the back electrode.

また、特許文献2には、アルミニウム粉末と、有機質ビヒクルと、有機質ビヒクルに不溶解性または難溶解性のウィスカーとを含み、そのウィスカーがアルミニウム粉末および有機質ビヒクルと予め混合されるペースト組成物がシリコン半導体基板を薄くした場合でも、電極の機械的強度と密着性を低下させることがなく、所望のBSF効果を十分達成することができ、かつ焼成後のシリコン半導体基板の変形(反り)を抑制することが可能であることが開示されている。   Patent Document 2 discloses a paste composition containing aluminum powder, an organic vehicle, and a whisker that is insoluble or hardly soluble in the organic vehicle, and the whisker is premixed with the aluminum powder and the organic vehicle. Even when the semiconductor substrate is thinned, the desired BSF effect can be sufficiently achieved without lowering the mechanical strength and adhesion of the electrode, and the deformation (warpage) of the silicon semiconductor substrate after firing is suppressed. It is disclosed that it is possible.

しかしながら、これらのアルミニウムペーストだけではまだ十分に反りを抑制することができなかった。   However, the warpage could not be sufficiently suppressed with these aluminum pastes alone.

特開2009−146578号公報JP 2009-146578 A 特開2006−278071号公報JP 2006-278071 A

この発明の課題は、焼成時反りの発生を抑制し、変換効率の向上に寄与するBSF効果を失うことがないアルミニウムペースト組成物を提供することである。   The subject of this invention is providing the aluminum paste composition which suppresses generation | occurrence | production of the curvature at the time of baking and does not lose the BSF effect which contributes to the improvement of conversion efficiency.

請求項1の発明は、アルミニウム粉末、ガラスフリット、有機ビヒクルとを含む太陽電池シリコンウエハ用焼成ペースト組成物であって、金属酸化物のナノ粒子を含むことを特徴とするアルミニウムペースト組成物で焼成後の反りを抑制し、変換効率の低下がない。   The invention of claim 1 is a baking paste composition for a solar cell silicon wafer containing aluminum powder, glass frit, and an organic vehicle, wherein the baking paste composition contains metal oxide nanoparticles and is fired with the aluminum paste composition. Later warping is suppressed, and conversion efficiency is not reduced.

請求項2の発明は、前記金属酸化物ナノ粒子の平均粒子径が10〜50nmであることを特徴とする請求項1に記載のアルミニウムペースト組成物で焼成後の反りを抑制し、変換効率の低下がない。   The invention according to claim 2 is characterized in that the average particle size of the metal oxide nanoparticles is 10 to 50 nm, and suppresses warping after firing with the aluminum paste composition according to claim 1, and conversion efficiency is improved. There is no decline.

本発明のアルミニウムペースト組成物は焼成時の反りが少なく、BSF効果を低下させない特徴を有する。   The aluminum paste composition of the present invention is characterized by little warping during firing and does not reduce the BSF effect.

太陽電池のウエハの説明図である。It is explanatory drawing of the wafer of a solar cell.

本発明のアルミニウムペースト組成物は、アルミニウム粉末と有機質ビヒクルとガラスフリットと金属酸化物のナノ粒子を含むことを特徴とする。    The aluminum paste composition of the present invention includes aluminum powder, an organic vehicle, glass frit, and metal oxide nanoparticles.

本発明でナノ粒子は一般的にナノメートルオーダーの粒子(1〜100nm)で量子領域、量子効果が支配的な大きさを言う。
本発明の効果発現は金属酸化物ナノ粒子であれば良く。平均粒子径10〜50nmが好ましい。この範囲であれば、短時間焼成でも、反りの抑制効果を発現する。添加量はペースト組成物に対して0.02〜0.1%が好ましい。この範囲であれば、反り抑制効果が得られ、BSF効果を阻害することがない。
In the present invention, a nanoparticle is generally a nanometer-order particle (1 to 100 nm) and has a quantum region and a quantum effect dominant.
The manifestation of the effect of the present invention may be metal oxide nanoparticles. An average particle diameter of 10 to 50 nm is preferable. If it is this range, even if it bakes for a short time, the suppression effect of curvature will be expressed. The addition amount is preferably 0.02 to 0.1% with respect to the paste composition. If it is this range, the curvature suppression effect will be acquired and a BSF effect will not be inhibited.

アルミニウム粉末は、ペースト組成物に普く使用されるものでよいが、平均粒子径0.5〜20μmが使うことができる。好ましくは、1〜10μmが好ましい。この範囲では比表面積が大きく、高充填できないこともなく、粉末の溶融が早く電極のふくれやアルミニウムの玉を発生促進させることもない。逆に粘性が低く、それに伴う電極の膜厚が大きくなることによる反りが生じることもない。   The aluminum powder may be one commonly used in paste compositions, but an average particle size of 0.5 to 20 μm can be used. Preferably, 1-10 micrometers is preferable. In this range, the specific surface area is large, high filling is not possible, and the melting of the powder is fast and the occurrence of blistering of electrodes and aluminum balls is not promoted. On the other hand, the viscosity is low, and the warpage due to the increase in the film thickness of the electrode does not occur.

有機質ビヒクルはペースト組成物で普く使用されるもので良く、エチルセルロース樹脂やアクリル樹脂等の結合樹脂を、エステル系やグリコールエーテル系、ターピネオール系などの溶剤で溶解したものを使用することができる。有機質ビヒクル中の結合樹脂の全ペースト中の含有量はアルミニウム粉末配合量等によって適宜選択する。有機質ビヒクル成分が少ないと、概ね2重量%未満になるとペースト組成物の印刷性適性がなくなり、多すぎると、概ね50重量%を超えるとペースト組成物の粘度が増大し、短時間焼成では電極中に樹脂が残って、抵抗率の悪化を引き起こす。   The organic vehicle may be one that is commonly used in a paste composition, and can be obtained by dissolving a binding resin such as an ethyl cellulose resin or an acrylic resin in a solvent such as an ester, glycol ether, or terpineol. The content of the binding resin in the organic vehicle in all pastes is appropriately selected depending on the amount of aluminum powder blended. When the organic vehicle component is small, the printability of the paste composition is lost when it is less than about 2% by weight. Resin remains and causes deterioration of resistivity.

本発明に用いるガラスフリットは、溶融後にアルミニウム粒子を結合する無機バインダーとしての役割とアルミニウムとシリコンとの反応促進やアルミニウム粉末自身の焼結助剤として働く。一方、アルミニウムとシリコンとの反応により、局部的に多量のAl−Si合金が生じ、アルミニウムが溶融し、ふくれやアルミニウムの玉が発生し、不具合を生じ、前記効果と相反する。種類、配合部数を適宜選択する。ガラスフリットは、主成分としてPbO−B−SiO系、PbO−B−Al系、PbO−B系、SiO−B−RO系、B−ZnO系、Bi−B−SiO系およびBi−B−ZnO系等の酸化物を含むものなどがある。これらの組成物に加えて、アルカリ金属が含まれているものが、前記効果が大きく、好ましい。また、このましくは、環境負荷を鑑みて鉛を含まないものが好ましい。 The glass frit used in the present invention serves as an inorganic binder that binds aluminum particles after melting, promotes the reaction between aluminum and silicon, and acts as a sintering aid for the aluminum powder itself. On the other hand, the reaction between aluminum and silicon produces a large amount of Al-Si alloy locally, melting the aluminum, generating blisters and balls of aluminum, causing problems and contradicting the above effects. The type and the number of blending parts are selected as appropriate. Glass frit is mainly composed of PbO—B 2 O 3 —SiO 2 , PbO—B 2 O 3 —Al 2 O 3 , PbO—B 2 O 3 , SiO 2 —B 2 O 3 —R 2 O. And those containing oxides such as B 2 O 3 —ZnO, Bi 2 O 3 —B 2 O 3 —SiO 2, and Bi 2 O 3 —B 2 O 3 —ZnO. In addition to these compositions, those containing an alkali metal are preferable because of the large effect. In addition, in view of environmental load, a lead-free material is preferable.

本発明のアルミニウムペースト組成物は、必要に応じて、分散剤、界面活性剤、可塑剤、カップリング剤、消泡剤、沈降防止剤、レベリング剤などを配合することができる。調製には、各種の混合、混練、分散機を使用することができる。例えば、2本ロールミル、3本ロールミル、ボールミル、サンドミル、プラネタリーミキサー、高速ミキサー、自公転撹拌機等が挙げられる。   The aluminum paste composition of the present invention can contain a dispersant, a surfactant, a plasticizer, a coupling agent, an antifoaming agent, an anti-settling agent, a leveling agent, and the like as necessary. For the preparation, various mixing, kneading, and dispersing machines can be used. For example, a two-roll mill, a three-roll mill, a ball mill, a sand mill, a planetary mixer, a high-speed mixer, a self-revolving stirrer and the like can be mentioned.

焼成炉条件はアルミニウム粉末の形状、粒径やガラスフリット等の配合により条件は適宜選択し、反り、アルミニウムの玉状析出、膨れなどの欠点が少ない条件で行う。ピーク温度800℃4〜5秒を含む焼成タクトを挙げることができる。   The firing furnace conditions are appropriately selected depending on the shape of the aluminum powder, the particle size, the glass frit and the like, and are performed under the conditions that there are few defects such as warpage, aluminum bead precipitation and swelling. A firing tact including a peak temperature of 800 ° C. for 4 to 5 seconds can be mentioned.

以下に実施例・比較例を記して詳細な説明をする。結果を表1に記した。   Examples and comparative examples are described in detail below. The results are shown in Table 1.

KFA−32(互応化学工業(株)、商品名、アクリル樹脂系有機ビヒクル、固形分30%、ブチルカルビトールアセテート溶液)を15.6重量部、ブチルカルビトールアセテート(山一化学工業(株))を8.2重量部、H−3(VALIMET社、商品名、アルミニウム粉末、平均粒子径4.6μm、球形)74.1重量部、QPZ−19/500(日本電気硝子(株)、商品名、シリカホウ酸系ガラスフリット、粒子径2.2μm)1.2重量部、ルナックO−LL−V(花王(株)、商品名、分散剤、オレイン酸)を0.7重量部、NPC−ST(日産化学工業(株)、商品名、二酸化ケイ素N−プロピルセルソルブ分散体、平均粒子径10〜20nm、固形分30%)0.2重量部を三本ロールミルを用いて均一に混合し、実施例1のペースト組成物とした。   15.6 parts by weight of KFA-32 (Kohyo Chemical Industry Co., Ltd., trade name, acrylic resin-based organic vehicle, solid content 30%, butyl carbitol acetate solution), butyl carbitol acetate (Yamaichi Chemical Industry Co., Ltd.) ) 8.2 parts by weight, H-3 (VALIMET, trade name, aluminum powder, average particle size 4.6 μm, spherical) 74.1 parts by weight, QPZ-19 / 500 (Nippon Electric Glass Co., Ltd., product) Name, silica borate glass frit, particle size 2.2 μm) 1.2 parts by weight, Lunac O-LL-V (Kao Corporation, trade name, dispersant, oleic acid) 0.7 parts by weight, NPC- ST (Nissan Chemical Industry Co., Ltd., trade name, silicon dioxide N-propyl cellosolve dispersion, average particle size 10 to 20 nm, solid content 30%) 0.2 parts by weight were uniformly mixed using a three-roll mill. Example 1 paste It was formed products.

実施例1のNPC−STをNANOBYK−3650(ビックケミー・ジャパン(株)、二酸化ケイ素、平均粒子径20〜25nm、固形分25%、メトキシプロピルアセテート/メトキシプロパノール溶液)を0.24重量部に、ブチルカルビトールアセテートを8.16重量部に変えた以外実施例1と同じに行い、実施例2のペースト組成物とした。   0.24 parts by weight of NPC-ST of Example 1 with NANOBYK-3650 (Big Chemie Japan Co., Ltd., silicon dioxide, average particle size 20 to 25 nm, solid content 25%, methoxypropyl acetate / methoxypropanol solution) A paste composition of Example 2 was obtained in the same manner as in Example 1 except that butyl carbitol acetate was changed to 8.16 parts by weight.

実施例1のNPC−STをNANOBYK−3610(ビックケミー・ジャパン(株)、アルミナ、平均粒子径20〜25nm、固形分30%、メトキシプロピルアセテート溶液)を0.2重量部に変えた以外実施例1と同じに行い、実施例3のペースト組成物とした。   Example 1 except that NPC-ST of Example 1 was changed to 0.2 parts by weight of NANOBYK-3610 (BIC Chemie Japan Co., Ltd., alumina, average particle size 20 to 25 nm, solid content 30%, methoxypropyl acetate solution) 1 was performed to obtain a paste composition of Example 3.

実施例1のNPC−STをNANOBYK−3821(ビックケミー・ジャパン(株)、商品名、酸化亜鉛、平均粒子径20nm、固形分40%、溶剤メトキシプロピルアセテート)0.15重量部に、ブチルカルビトールアセテートを8.25重量部に変えた以外実施例1と同じに行い、実施例4のペースト組成物とした。   NPC-ST of Example 1 was added to NONOBYK-3821 (Bic Chemie Japan Co., Ltd., trade name, zinc oxide, average particle size 20 nm, solid content 40%, solvent methoxypropyl acetate) 0.15 parts by weight, butylcarbitol A paste composition of Example 4 was obtained in the same manner as in Example 1 except that the amount of acetate was changed to 8.25 parts by weight.

実施例2のNANOBYK−3650を0.4重量部、ブチルカルビトールアセテートを8.1重量部に変えた以外実施例2と同じに行い、実施例5のペースト組成物とした。   A paste composition of Example 5 was obtained in the same manner as in Example 2 except that NANOBYK-3650 of Example 2 was changed to 0.4 parts by weight and butyl carbitol acetate was changed to 8.1 parts by weight.

実施例2のNANOBYK−3650を0.1重量部に、ブチルカルビトールアセテートを8.3重量部に変えた以外実施例2と同じに行い、実施例6のペースト組成物とした。   The paste composition of Example 6 was obtained in the same manner as in Example 2 except that 0.1 part by weight of NANOBYK-3650 of Example 2 and 8.3 parts by weight of butyl carbitol acetate were changed.

実施例4のNANOBYK−3821をNANOBYK−3841(ビックケミー・ジャパン(株)、商品名、酸化亜鉛、平均粒子径40nm、固形分40%、メトキシプロピルアセテート溶液)に変えた以外実施例4と同じに行い、実施例7のペースト組成物とした。   Same as Example 4 except that NANOBYK-3821 of Example 4 was changed to NANOBYK-3841 (BIC Chemie Japan Co., Ltd., trade name, zinc oxide, average particle size 40 nm, solid content 40%, methoxypropyl acetate solution). The paste composition of Example 7 was obtained.

参考例1
実施例2のNANOBYK−3650を0.8重量部に、ブチルカルビトールアセテートを7.7重量部に変えた以外実施例2と同じに行い、参考例1のペースト組成物とした。
Reference example 1
The paste composition of Reference Example 1 was obtained in the same manner as in Example 2, except that NANOBYK-3650 of Example 2 was changed to 0.8 parts by weight and butyl carbitol acetate was changed to 7.7 parts by weight.

比較例1
実施例1のNPC−STを溶融シリカ(日本フリット(株)、商品名、二酸化ケイ素、平均粒子径2.9μm、固形分100%)0.06重量部に、ブチルカルビトールアセテートを8.2重量部に変えた以外実施例1と同じに行い、比較例1のペースト組成物とした。
Comparative Example 1
NPC-ST of Example 1 was added to 0.06 part by weight of fused silica (Nippon Frit Co., Ltd., trade name, silicon dioxide, average particle size 2.9 μm, solid content 100%), and butyl carbitol acetate 8.2%. A paste composition of Comparative Example 1 was obtained in the same manner as in Example 1 except that the amount was changed to parts by weight.

比較例2
実施例1のNPC−STを無添加に、ブチルカルビトールアセテートを8.26重量部にした以外、実施例1と同じに行い比較例2のペースト組成物とした。
Comparative Example 2
A paste composition of Comparative Example 2 was prepared in the same manner as in Example 1 except that NPC-ST of Example 1 was not added and 8.26 parts by weight of butyl carbitol acetate was used.

Figure 2012212542
Figure 2012212542

上記の実施例、参考例、比較例のペースト組成物を、厚みが200μm、大きさが156mm×156mmの多結晶P型シリコンウエハに、200メッシュのスクリーン印刷版を用いて154mm×154mmの面積になるように中央に印刷し、熱風乾燥機を使用して150℃30分間で乾燥させた。焼成は、3ゾーンのワイヤー式ベルト炉を使用した。ゾーン1の温度は590℃、ゾーン2の温度は800℃、ゾーン3の温度は380℃とし、タクト時間を約60秒間とした。焼成後の電極層の膜厚は平均で32μmであった。   The paste compositions of the above examples, reference examples and comparative examples were formed on a polycrystalline P-type silicon wafer having a thickness of 200 μm and a size of 156 mm × 156 mm, and an area of 154 mm × 154 mm using a 200-mesh screen printing plate. It printed in the center so that it might become, and was dried at 150 degreeC for 30 minutes using the hot air dryer. Firing was performed using a three-zone wire belt furnace. The temperature of zone 1 was 590 ° C., the temperature of zone 2 was 800 ° C., the temperature of zone 3 was 380 ° C., and the tact time was about 60 seconds. The film thickness of the electrode layer after firing was 32 μm on average.

反り:
上記焼成(直後)後のシリコンウエハの凹面に金尺をあて、最も離れている距離をノギスで測定した。
warp:
A metal scale was applied to the concave surface of the silicon wafer after the baking (immediately after), and the farthest distance was measured with a caliper.

表面抵抗率:
シリコンウエハに形成されたアルミニウム電極層の表面抵抗率をロレスターEP MCP−T360(三菱化学(株)、商品名、四端子四探針方式抵抗率計)を用いて測定した。(表面抵抗率は剥離前の電極抵抗値)
Surface resistivity:
The surface resistivity of the aluminum electrode layer formed on the silicon wafer was measured using a Lorester EP MCP-T360 (Mitsubishi Chemical Corporation, trade name, four-terminal four-probe resistivity meter). (Surface resistivity is the electrode resistance before peeling)

BSF抵抗率(Ω/□):
シリコンウエハに形成されたアルミニウム電極層を10%塩化水素水溶液に15分間浸漬し、アルミニウムの電極部分を除去した。その除去されたウエハ表面のBSF層の表面抵抗率をロレスターEP MCP−T360を用いて測定した。
BSF resistivity (Ω / □):
The aluminum electrode layer formed on the silicon wafer was immersed in a 10% aqueous hydrogen chloride solution for 15 minutes to remove the aluminum electrode portion. The surface resistivity of the removed BSF layer on the wafer surface was measured using a Lorester EP MCP-T360.

評価結果の見解
実施例1〜7、参考例1、比較例1、2は表面抵抗率は全て良好である。金属酸化物のナノ粒子添加によるアルミニウム電極の表面抵抗率には影響ないものである。実施例1〜7、参考例1は金属酸化物のナノ粒子添加は反りを抑制し、ナノ粒子でない比較例1では効果は明確ではない。BSF抵抗率に関しては10〜40Ω/□の範囲で太陽電池の変換効率が良く、実施例ではBSF効果を阻害していることはない。
Opinion of Evaluation Results Examples 1 to 7, Reference Example 1, and Comparative Examples 1 and 2 all have good surface resistivity. The addition of metal oxide nanoparticles does not affect the surface resistivity of the aluminum electrode. In Examples 1 to 7 and Reference Example 1, the addition of metal oxide nanoparticles suppresses warpage, and in Comparative Example 1 which is not nanoparticles, the effect is not clear. Regarding the BSF resistivity, the conversion efficiency of the solar cell is good in the range of 10 to 40Ω / □, and the BSF effect is not hindered in the examples.

本発明のアルミニウムペースト組成物は太陽電池シリコンウエハの裏面電極を形成し、反りが少なく、変換効率も落とすことがないので、ウエハの薄膜化に寄与でき、有用である。   The aluminum paste composition of the present invention forms a back electrode of a solar cell silicon wafer, has little warpage, and does not reduce the conversion efficiency. Therefore, it can contribute to the thinning of the wafer and is useful.

1 受光面銀電極
2 n型不純物層
3 ウエハ
4 p型不純物層(BSF関与層)
5 アルミニウム電極層
6 裏面銀電極
DESCRIPTION OF SYMBOLS 1 Light-receiving surface silver electrode 2 N-type impurity layer 3 Wafer 4 P-type impurity layer (BSF participation layer)
5 Aluminum electrode layer 6 Back side silver electrode

Claims (2)

アルミニウム粉末、ガラスフリット、有機ビヒクルとを含む太陽電池シリコンウエハ用焼成ペースト組成物であって、金属酸化物のナノ粒子を含むことを特徴とするアルミニウムペースト組成物。   A fired paste composition for a solar cell silicon wafer, comprising an aluminum powder, a glass frit, and an organic vehicle, wherein the aluminum paste composition comprises metal oxide nanoparticles. 前記金属酸化物ナノ粒子の平均粒子径が10〜50nmであることを特徴とする請求項1に記載のアルミニウムペースト組成物。   2. The aluminum paste composition according to claim 1, wherein the metal oxide nanoparticles have an average particle diameter of 10 to 50 nm.
JP2011077139A 2011-03-31 2011-03-31 Paste composition Withdrawn JP2012212542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011077139A JP2012212542A (en) 2011-03-31 2011-03-31 Paste composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011077139A JP2012212542A (en) 2011-03-31 2011-03-31 Paste composition

Publications (1)

Publication Number Publication Date
JP2012212542A true JP2012212542A (en) 2012-11-01

Family

ID=47266354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011077139A Withdrawn JP2012212542A (en) 2011-03-31 2011-03-31 Paste composition

Country Status (1)

Country Link
JP (1) JP2012212542A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016508286A (en) * 2012-12-06 2016-03-17 サンパワー コーポレイション Solar cell conductive contact seed layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016508286A (en) * 2012-12-06 2016-03-17 サンパワー コーポレイション Solar cell conductive contact seed layer

Similar Documents

Publication Publication Date Title
KR100798255B1 (en) Electroconductive thick film composition, electrode, and solar cell formed therefrom
JP5395995B2 (en) Conductive compositions and methods used in the manufacture of semiconductor devices
US20100269893A1 (en) Metal pastes and use thereof in the production of positive electrodes on p-type silicon surfaces
EP3026674B1 (en) Composition for forming solar cell electrode, and electrode produced from composition
WO2011013469A1 (en) Paste composition and solar cell element using same
US20140373904A1 (en) Paste composition for solar cell electrode and electrode produced therefrom
JP2011523492A (en) Conductive composition and method of use in the manufacture of semiconductor devices
JP2013089600A (en) Thick film silver paste and its use in manufacture of semiconductor devices
JPWO2008078374A1 (en) Conductive paste for solar cell
JP2010526414A (en) Formation of thick film conductor made of silver and nickel, or silver and nickel alloy, and solar cell made therefrom
JP2011501866A (en) Lead-free conductive composition and method of use in the manufacture of semiconductor devices: flux materials
TWI638367B (en) Thick-film composition containing antimony oxides and their use in the manufacture of semiconductor devices
JP2011503772A (en) Conductive composition and method of use in manufacturing semiconductor devices: Mg-containing additive
KR101434167B1 (en) Silver paste composition used in the preparation of an electrode for a solar cell
JP2011519112A (en) Conductive composition and method of use in the manufacture of semiconductor devices: flux materials
JP2013505540A (en) Thick film conductive composition comprising nano-sized zinc additive
JP2011502345A (en) Conductive composition and method of use in the manufacture of semiconductor devices: multiple busbars
WO2007046214A1 (en) Paste composition and solar battery element using the same
KR20120115128A (en) Ag paste composition for forming electrode and preparation method thereof
JP2015506066A (en) Conductive silver paste for metal wrap-through silicon solar cells
TWI651289B (en) Composition for solar cell electrode and electrode fabricated using the same
JP2010087501A (en) Conductive composition and solar cell using the same
JP2016510486A (en) Conductive silver paste for metal wrap-through silicon solar cells
WO2013023181A1 (en) Silver paste with no or poor fire-through capability and use thereof for a solar cell metallisation
TWI655784B (en) Front electrode for solar cell and solar cell comprising the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603