JP2012212393A - Design method, design program, and design support device for semiconductor integrated circuit - Google Patents

Design method, design program, and design support device for semiconductor integrated circuit Download PDF

Info

Publication number
JP2012212393A
JP2012212393A JP2011078557A JP2011078557A JP2012212393A JP 2012212393 A JP2012212393 A JP 2012212393A JP 2011078557 A JP2011078557 A JP 2011078557A JP 2011078557 A JP2011078557 A JP 2011078557A JP 2012212393 A JP2012212393 A JP 2012212393A
Authority
JP
Japan
Prior art keywords
wiring
antenna
cell
area
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011078557A
Other languages
Japanese (ja)
Inventor
Toshiya Shoji
俊哉 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2011078557A priority Critical patent/JP2012212393A/en
Publication of JP2012212393A publication Critical patent/JP2012212393A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To shorten a design TAT of a semiconductor integrated circuit.SOLUTION: The design method for semiconductor integrated circuits according to the present invention implemented by a computer device 10 comprises: a step for disposing a logic cell 500 and a wiring cell 400 on a chip; a step for adding an antenna rule 122 for a gate 505 in the logic cell 500 to a first antenna library 101 of the wiring cell 400 to change the first antenna library 101 into a second antenna library 201; a step for connecting the wiring cell 400 to another logic cell 510 with a first wire 550; and a first verification step for verifying a ratio of the area of the first wire 550 to the area of the gate 505 according to the antenna rule 122 prescribed in the second antenna library 201.

Description

本発明は、半導体集積回路の設計方法、設計プログラム、及び設計支援装置に関し、特に、半導体集積回路の自動レイアウト設計に関する。   The present invention relates to a semiconductor integrated circuit design method, a design program, and a design support apparatus, and more particularly to an automatic layout design of a semiconductor integrated circuit.

半導体集積回路などの薄膜デバイス製造には、エッチング、アッシング、イオン注入やプラズマCVD(Chemical Vapor Deposition)など多くのプラズマプロセスが用いられている。こうしたプラズマプロセスでは、チャージアップ現象によるゲート絶縁膜の破壊や損傷(プラズマダメージ)が問題となっている。プラズマダメージは、プラズマ中に露出した導電体(例えば金属配線)によって、プラズマ中の荷電粒子が捕獲され、捕獲された電荷がトランジスタのゲート電極に達することで発生する。例えば、信号配線を形成するエッチングプロセスでは、信号配線がプラズマからの電荷を捕獲するアンテナとして作用する。信号配線で捕獲された電荷によるチャージ電流は、ゲート電極を介してゲート絶縁膜に集中し、ゲート絶縁膜を損傷する。   Many plasma processes such as etching, ashing, ion implantation, and plasma CVD (Chemical Vapor Deposition) are used for manufacturing thin film devices such as semiconductor integrated circuits. In such a plasma process, there is a problem of destruction or damage (plasma damage) of the gate insulating film due to a charge-up phenomenon. Plasma damage occurs when charged particles in the plasma are captured by a conductor (for example, metal wiring) exposed in the plasma, and the captured charges reach the gate electrode of the transistor. For example, in an etching process for forming a signal wiring, the signal wiring functions as an antenna that captures charges from plasma. The charge current due to the charges captured by the signal wiring is concentrated on the gate insulating film through the gate electrode, and the gate insulating film is damaged.

プラズマダメージの大きさは、ゲート絶縁膜を流れるチャージ電流の電流密度に応じて決まるため、アンテナとして機能する金属配線の面積や、ゲート電極の面積を制御することによって、製造プロセスにおけるプラズマダメージを軽減することが可能となる。詳細には、半導体集積回路を設計する際、アンテナ比が所定の閾値(アンテナ基準)以下となるようにレイアウトパタンが設計される。ここで、アンテナ比とは、トランジスタにおけるゲート電極の面積(ゲート面積)に対する当該ゲートに接続される信号配線(金属配線)の面積の比率を示す。通常、半導体集積回路のレイアウト設計後のパタン検証において、アンテナ比がアンテナ基準を満たすかどうかが検証される。この際、アンテナ比がアンテナ基準を超える場合(アンテナエラー)、アンテナ比がアンテナ基準を満足するようにレイアウトパタンが修正される。このようなパタン検証及びレイアウト修正により、製造プロセスにおけるプラズマダメージを受けにくい半導体集積回路を設計することができる。   Since the magnitude of plasma damage is determined according to the current density of the charge current flowing through the gate insulating film, plasma damage in the manufacturing process can be reduced by controlling the area of the metal wiring that functions as the antenna and the area of the gate electrode. It becomes possible to do. Specifically, when designing a semiconductor integrated circuit, the layout pattern is designed so that the antenna ratio is equal to or less than a predetermined threshold value (antenna reference). Here, the antenna ratio indicates the ratio of the area of the signal wiring (metal wiring) connected to the gate to the area of the gate electrode (gate area) in the transistor. Usually, in the pattern verification after the layout design of the semiconductor integrated circuit, it is verified whether the antenna ratio satisfies the antenna standard. At this time, when the antenna ratio exceeds the antenna reference (antenna error), the layout pattern is corrected so that the antenna ratio satisfies the antenna reference. By such pattern verification and layout correction, it is possible to design a semiconductor integrated circuit that is less susceptible to plasma damage in the manufacturing process.

プラズマダメージを軽減するために行われるレイアウト修正方法が、例えば、特開2001−15605に記載されている(特許文献1参照)。特許文献1には、アンテナエラーのあるセルに接続する配線を上層に変更するとともに当該セルの端子位置を変更することでアンテナエラーを除去する技術が記載されている。   A layout correction method performed to reduce plasma damage is described in, for example, Japanese Patent Application Laid-Open No. 2001-15605 (see Patent Document 1). Patent Document 1 describes a technique for removing an antenna error by changing a wiring connected to a cell having an antenna error to an upper layer and changing a terminal position of the cell.

一方、一般的なロジック製品における自動レイアウト設計では、配置・配線を自動で行い、素子−素子間のタイミングエラーや、クロストークノイズエラー、アンテナエラー(絶縁破壊)を起こさない様に設計される。しかし、大容量メモリ製品は、メモリセルのロウ/カラムの数が増加するため、自動配置配線領域が横長形状や十字形状といった特殊な形状となる。従って、メモリ製品におけるメタル配線は、一般のロジック製品に比べて長距離配線となり、かつ、長距離配線を介して高速でデータ信号を伝播させる必要がある。このような製品を設計する際、ランダムな自動配線が行われると、多ビットのバス配線のクロストークノイズ収束やタイミング同期を行うことがむずかしくなる。このため、クロストークノイズを考慮した信号順に配線を並べたバス配線や、上層の低抵抗層のみの配線など理想の配線をセル化した配線セルを使用することで、高速動作信号配線、クロストークノイズ対策配線、あるいは、バス配線のタイミング同期が容易化されている。   On the other hand, in an automatic layout design in a general logic product, placement and wiring are automatically performed so that an element-to-element timing error, a crosstalk noise error, and an antenna error (insulation breakdown) do not occur. However, in a large-capacity memory product, since the number of rows / columns of memory cells increases, the automatic placement and wiring area has a special shape such as a horizontally long shape or a cross shape. Therefore, the metal wiring in the memory product is a long distance wiring compared to a general logic product, and it is necessary to propagate the data signal at a high speed through the long distance wiring. When designing such a product, if random automatic wiring is performed, it is difficult to perform crosstalk noise convergence and timing synchronization of multi-bit bus wiring. For this reason, by using bus cells in which wiring is arranged in the order of signals in consideration of crosstalk noise and wiring cells that have idealized cells such as wiring only in the upper low-resistance layer, high-speed operation signal wiring, crosstalk Timing synchronization of noise countermeasure wiring or bus wiring is facilitated.

例えば、特開2005−268437には、クロストーク対策、配線遅延改善を目的とした配線セルを利用した自動配線レイアウト方法が記載されている(特許文献2参照)。特許文献2では、アンテナエラーが発生しない程度の配線を備える配線セルを予め用意し、これを回路セルの間に挿入することで、アンテナエラーのない自動配線を可能としている。   For example, Japanese Patent Laid-Open No. 2005-268437 describes an automatic wiring layout method using wiring cells for the purpose of crosstalk countermeasures and wiring delay improvement (see Patent Document 2). In Patent Document 2, a wiring cell having wiring that does not cause an antenna error is prepared in advance, and this is inserted between circuit cells, thereby enabling automatic wiring without an antenna error.

しかし、配線セルを使用して論理セル間を接続した場合、セルサイズやセルを配置する配線領域の形状によっては、論理セルと配線セルとの間を配線で接続する必要がある。例えば、上述のように特殊な形状の配線領域に、決まった形状の配線セルが配置された場合、当該配線セルと論理セルとの間とを配線する必要がある。特許文献2では、セル間を接続する配線によるアンテナ効果を考慮していないため、配置配線後のアンテナ検証においてアンテナエラーとなり、レイアウト修正が必要となる場合がある。   However, when the logic cells are connected using the wiring cells, it is necessary to connect the logic cells and the wiring cells by wiring depending on the cell size and the shape of the wiring area in which the cells are arranged. For example, when a wiring cell having a fixed shape is arranged in a wiring region having a special shape as described above, it is necessary to wire between the wiring cell and the logic cell. In Patent Document 2, since the antenna effect due to the wiring connecting the cells is not taken into consideration, an antenna error may occur in antenna verification after placement and routing, and layout correction may be required.

配置配線後のレイアウト修正の回数を減少させることで、設計TATを短縮することができる。従って、配置配線後のDRC(Design Rule Checking)においてエラーとなる確率を減らすため、デザインルールや設計制約を満足するように配置配線が可能な自動配置配線ツールが望まれている。   The design TAT can be shortened by reducing the number of layout corrections after placement and routing. Therefore, in order to reduce the probability of an error in DRC (Design Rule Checking) after placement and routing, an automatic placement and routing tool capable of placement and routing that satisfies design rules and design constraints is desired.

例えば、配置配線フェーズにおいて、アンテナ検証やクロストークノイズ検証を行う技術が、特開2004−171363に記載されている(特許文献3参照)。特許文献3では、アンテナ検証対象となるゲートに接続する配線面積が、当該ゲートに設定されたアンテナ基準を満足するようにアンテナ検証を行いながら、セルへの配線が実施される。   For example, a technique for performing antenna verification and crosstalk noise verification in the placement and routing phase is described in Japanese Patent Application Laid-Open No. 2004-171363 (see Patent Document 3). In Patent Document 3, wiring to a cell is performed while performing antenna verification so that a wiring area connected to a gate to be subjected to antenna verification satisfies an antenna standard set for the gate.

特開2001−15605JP2001-15605 特開2005−268437JP 2005-268437 A 特開2004−171363JP 2004-171363 A

特許文献3に記載の技術には、アンテナ効果を考慮して配線を行う技術が記載されているが、アンテナ効果を考慮して配線セルを配置することは記載されていない。特許文献3では、論理セル内のゲートに対してアンテナエラーを起こさないように配線するため、当該ゲートに対するアンテナルール(アンテナ基準)を考慮して配線面積が決められる。例えば、論理セル内のゲートに配線セルを接続する場合、当該論理セルのアンテナ用ライブラリに規定されたアンテナ基準を満足するように、当該ゲートに接続される配線面積を有する配線セルが配置される。又、当該ゲートと当該配線セルとの間に配線する場合も、当該アンテナ基準を考慮した面積で配線される。しかし、配置された配線セルと他の論理セルとの間の配線面積は、当該配線セルのアンテナ用ライブラリに基づいて決められるため、当該ゲートに対してアンテナエラーとなる大きさの配線が成される恐れがある。   The technique described in Patent Document 3 describes a technique of performing wiring in consideration of the antenna effect, but does not describe arranging wiring cells in consideration of the antenna effect. In Patent Document 3, since wiring is performed so as not to cause an antenna error with respect to a gate in a logic cell, a wiring area is determined in consideration of an antenna rule (antenna standard) for the gate. For example, when a wiring cell is connected to a gate in a logic cell, a wiring cell having a wiring area connected to the gate is arranged so as to satisfy the antenna standard defined in the antenna library for the logic cell. . Further, when wiring is performed between the gate and the wiring cell, the wiring is performed with an area in consideration of the antenna reference. However, since the wiring area between the arranged wiring cell and another logic cell is determined based on the antenna library of the wiring cell, wiring having a size that causes an antenna error is formed for the gate. There is a risk.

例えば、図14に示すように、論理セル500においてゲート505と入力端子501とを接続する配線503、論理セル500の入力端子501と配線セル400との間の配線551、及び配線セル400に含まれる配線403の総面積は、ゲート503に対して規定されたアンテナルール(アンテナ基準)を考慮して自動配線時に設定され得る。しかし、配線セル400の入力端子401と他の論理セル510の出力端子512との間を自動配線する場合、配線セル400にゲートが存在しないため、ゲート503に対して規定されたアンテナルールを考慮せずに配線される。このため、自動配置配線後のアンテナ検証の際、配線セル400と他の論理セル510との間の配線800によって、アンテナエラーと判定される可能性がある。   For example, as shown in FIG. 14, the wiring 503 connecting the gate 505 and the input terminal 501 in the logic cell 500, the wiring 551 between the input terminal 501 of the logic cell 500 and the wiring cell 400, and the wiring cell 400 are included. The total area of the wiring 403 to be set can be set at the time of automatic wiring in consideration of an antenna rule (antenna reference) defined for the gate 503. However, when automatic wiring is performed between the input terminal 401 of the wiring cell 400 and the output terminal 512 of the other logic cell 510, the wiring cell 400 does not have a gate, so the antenna rule defined for the gate 503 is taken into consideration. Wired without For this reason, when performing antenna verification after automatic placement and routing, the wiring 800 between the wiring cell 400 and another logic cell 510 may be determined as an antenna error.

上述のように、レイアウト後のDRCにおいてエラーとなる箇所を配置配線フェーズにおいて減じることが望まれている。しかし、短TAT化を図るために配線セルを利用して設計した場合、アンテナエラーとなる箇所を配置配線フェーズにおいて除去できない場合があった。従って、更なる短TAT化のため、配線セルを利用した場合でも、配置配線フェーズにおいてアンテナエラーを排除できる技術が望まれている。   As described above, it is desired to reduce the number of locations that cause errors in the post-layout DRC in the placement and routing phase. However, when designing using a wiring cell in order to achieve a short TAT, there are cases where an antenna error portion cannot be removed in the placement and routing phase. Therefore, for further shortening the TAT, there is a demand for a technique that can eliminate an antenna error in the placement and routing phase even when a wiring cell is used.

上記の課題を解決するために、本発明は、以下に述べられる手段を採用する。その手段を構成する技術的事項の記述には、[特許請求の範囲]の記載と[発明を実施するための形態]の記載との対応関係を明らかにするために、[発明を実施するための形態]で使用される番号・符号が付加されている。ただし、付加された番号・符号は、[特許請求の範囲]に記載されている発明の技術的範囲を限定的に解釈するために用いてはならない。   In order to solve the above problems, the present invention employs the means described below. In the description of technical matters constituting the means, in order to clarify the correspondence between the description of [Claims] and the description of [Mode for Carrying Out the Invention] The number / symbol used in [Form] is added. However, the added numbers and symbols should not be used to limit the technical scope of the invention described in [Claims].

本発明による半導体集積回路の設計方法は、コンピュータ装置(10)によって実行される半導体集積回路の設計方法であって、記憶装置(13)に記録されたネットリスト(100)に従い、論理セル(500)と配線セル(400)をチップ上に配置するステップと、論理セル(500)内のゲート(505)に対するアンテナルール(122)を配線セル(400)の第1アンテナ用ライブラリ(101)に追加することで、第1アンテナ用ライブラリ(101)を第2アンテナ用ライブラリ(201)に変更するステップと、配線セル(400)と他の論理セル(510)を第1配線(550)で接続するステップと、第2アンテナ用ライブラリ(201)に規定されたアンテナルール(122)に従い、ゲート(505)の面積に対する前記第1配線(550)の面積の比を検証する第1検証ステップとを具備する。   A semiconductor integrated circuit design method according to the present invention is a semiconductor integrated circuit design method executed by a computer device (10), and according to a netlist (100) recorded in a storage device (13), a logic cell (500). ) And the wiring cell (400) on the chip, and the antenna rule (122) for the gate (505) in the logic cell (500) is added to the first antenna library (101) of the wiring cell (400). Thus, the step of changing the library for the first antenna (101) to the library for the second antenna (201), and the wiring cell (400) and the other logic cell (510) are connected by the first wiring (550). In accordance with the step and the antenna rule (122) defined in the second antenna library (201), the area of the gate (505) To comprise a first verification step of verifying the ratio of the area of the first wire (550).

上記設計方法は、コンピュータによって実行される設計プログラムによって実現されることが好ましい。   The design method is preferably realized by a design program executed by a computer.

本発明によれば、半導体集積回路の設計TATを短縮することができる。   According to the present invention, the design TAT of a semiconductor integrated circuit can be shortened.

図1は、本発明による半導体集積回路の設計支援装置の構成の一例を示す平面図である。FIG. 1 is a plan view showing an example of the configuration of a design support apparatus for a semiconductor integrated circuit according to the present invention. 図2は、本発明による設計支援装置によって配置される配線セルの構造の一例を示す平面図である。FIG. 2 is a plan view showing an example of the structure of a wiring cell arranged by the design support apparatus according to the present invention. 図3は、本発明による設計支援装置に予め記録された、図2に示す配線セルのアンテナ用ライブラリの一例を示す図である。FIG. 3 is a diagram showing an example of the antenna library for the wiring cell shown in FIG. 2 recorded in advance in the design support apparatus according to the present invention. 図4は、本発明による設計支援装置によって配置される論理セルの構造の一例を示す図である。FIG. 4 is a diagram showing an example of the structure of a logic cell arranged by the design support apparatus according to the present invention. 図5は、図4に示す論理セルのアンテナ用ライブラリの一例を示す図である。FIG. 5 is a diagram showing an example of the antenna library for the logic cell shown in FIG. 図6は、本発明における半導体集積回路の設計動作の一例を示すフロー図である。FIG. 6 is a flowchart showing an example of the design operation of the semiconductor integrated circuit according to the present invention. 図7Aは、自動配置配線中のチップレイアウトの一例を示す平面図である。FIG. 7A is a plan view showing an example of a chip layout during automatic placement and routing. 図7Bは、自動配置配線中のチップレイアウトの一例を示す平面図である。FIG. 7B is a plan view showing an example of a chip layout during automatic placement and routing. 図7Cは、自動配置配線後のチップレイアウトの一例を示す平面図である。FIG. 7C is a plan view showing an example of a chip layout after automatic placement and routing. 図8は、本発明に係る組合せ抽出データの一例を示す図である。FIG. 8 is a diagram showing an example of combination extraction data according to the present invention. 図9は、配置配線中に変更された配線セルのアンテナ用ライブラリの一例を示す図である。FIG. 9 is a diagram illustrating an example of an antenna library of wiring cells changed during placement and routing. 図10Aは、自動配置配線中のチップレイアウトの他の一例を示す平面図である。FIG. 10A is a plan view showing another example of a chip layout during automatic placement and routing. 図10Bは、自動配置配線後のチップレイアウトの他の一例を示す平面図である。FIG. 10B is a plan view showing another example of the chip layout after automatic placement and routing. 図11は、配置配線中に変更された配線セルのアンテナ用ライブラリの他の一例を示す図である。FIG. 11 is a diagram showing another example of a library for antennas of wiring cells changed during placement and routing. 図12は、本発明における半導体集積回路の設計動作の他の一例を示すフロー図である。FIG. 12 is a flowchart showing another example of the design operation of the semiconductor integrated circuit according to the present invention. 図13は、本発明による半導体集積回路の設計支援装置の構成の他の一例を示す図である。FIG. 13 is a diagram showing another example of the configuration of the design support apparatus for a semiconductor integrated circuit according to the present invention. 図14は、従来技術によって配線セルを配置したときのアンテナエラーの発生メカニズムを示す図である。FIG. 14 is a diagram showing an antenna error generation mechanism when wiring cells are arranged according to the prior art.

以下、添付図面を参照しながら本発明の実施の形態を説明する。図面において同一、又は類似の参照符号は、同一、類似、又は等価な構成要素を示している。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the drawings, the same or similar reference numerals indicate the same, similar, or equivalent components.

以下、添付図面を参照して、本発明による半導体集積回路の設計方法、設計プログラム、設計支援装置の実施の形態を説明する。本実施の形態では、セルベースIC(Integrated Circuit)を設計する半導体集積回路設計支援装置を一例に説明する。   Embodiments of a semiconductor integrated circuit design method, a design program, and a design support apparatus according to the present invention will be described below with reference to the accompanying drawings. In the present embodiment, a semiconductor integrated circuit design support apparatus for designing a cell-based IC (Integrated Circuit) will be described as an example.

(構成)
図1から図5を参照して、本発明による半導体集積回路設計支援装置10(以下、設計支援装置10と称す)の実施の形態における構成を説明する。図1は、本発明による設計支援装置10の実施の形態における構成図である。設計支援装置10は、バス16を介して相互に接続されるCPU11、RAM12、記憶装置13、入力装置14、出力装置15を具備する。記憶装置13はハードディスクやメモリ等に例示される外部記憶装置である。又、入力装置14は、キーボードやマウス等のユーザによって操作されることで、各種データをCPU11や記憶装置13に出力する。出力装置15は、モニタやプリンタに例示され、CPU11から出力される半導体装置のレイアウト結果をユーザに対し視認可能に出力する。
(Constitution)
With reference to FIGS. 1 to 5, the configuration of an embodiment of a semiconductor integrated circuit design support apparatus 10 (hereinafter referred to as a design support apparatus 10) according to the present invention will be described. FIG. 1 is a configuration diagram of an embodiment of a design support apparatus 10 according to the present invention. The design support apparatus 10 includes a CPU 11, a RAM 12, a storage device 13, an input device 14, and an output device 15 that are connected to each other via a bus 16. The storage device 13 is an external storage device exemplified by a hard disk and a memory. The input device 14 outputs various data to the CPU 11 and the storage device 13 by being operated by a user such as a keyboard and a mouse. The output device 15 is exemplified by a monitor and a printer, and outputs the layout result of the semiconductor device output from the CPU 11 so as to be visible to the user.

記憶装置13は、配置配線データ100、アンテナ用ライブラリ101(以下、アンテナ用ライブラリ101と称す)、設計プログラム300を格納する。CPU11は、入力装置14からの入力に応答して、記憶装置13内の設計プログラム300を実行し、セルレイアウトやチップレイアウトを行なう。この際、記憶装置13からの各種データやプログラムはRAM12に一時格納され、CPU11は、RAM12内のデータを用いて各種処理を実行する。   The storage device 13 stores the placement and routing data 100, the antenna library 101 (hereinafter referred to as the antenna library 101), and the design program 300. In response to the input from the input device 14, the CPU 11 executes the design program 300 in the storage device 13 to perform cell layout and chip layout. At this time, various data and programs from the storage device 13 are temporarily stored in the RAM 12, and the CPU 11 executes various processes using the data in the RAM 12.

配置配線データ100は、論理回路設計結果であるネットリストを含む。詳細には、配置配線データ100は、セル(回路)を構成する素子や配線の接続関係や種類、サイズ(素子数)等に関する素子情報と、当該回路を構成する素子のうちで、ダイオードやトランジスタなどの非線形能動素子の動作条件に関する素子情報を含む。   The placement and routing data 100 includes a net list that is a logic circuit design result. More specifically, the placement and routing data 100 includes element information related to the connection relation, type, size (number of elements), etc. of elements and wirings constituting the cell (circuit), and diodes and transistors among the elements constituting the circuit. Element information relating to the operating conditions of the non-linear active element.

アンテナ用ライブラリ101は、セルに含まれる端子や配線の位置や配線面積を示す情報を含む。詳細には、アンテナ用ライブラリ101は、セルに含まれる端子のうち、アンテナとなり得る配線(アンテナ配線)に接続する端子の識別子(端子情報111)、セルに含まれる配線のうちアンテナとなり得る配線が形成される位置(配線層)を特定する情報や、当該配線が形成される領域の面積(配線面積)を含むアンテナ配線情報112を備える。又、ゲートを備える論理セルのアンテナ用ライブラリ101は、端子情報111やアンテナ配線情報112の他に、ゲートが形成される領域の面積(ゲート面積121)や、当該ゲートに対して配線層毎に規定されたアンテナルール122を備える。   The antenna library 101 includes information indicating the positions and wiring areas of terminals and wirings included in the cell. Specifically, the library for antenna 101 includes, among terminals included in a cell, terminal identifiers (terminal information 111) connected to wiring that can be antennas (antenna wiring), and wiring that can be antennas among wirings included in the cell. Antenna wiring information 112 including information for specifying a position (wiring layer) to be formed and an area (wiring area) of a region where the wiring is formed is provided. In addition to the terminal information 111 and the antenna wiring information 112, the logic cell antenna library 101 including the gate has an area of a region where the gate is formed (gate area 121) and a wiring layer with respect to the gate. A prescribed antenna rule 122 is provided.

図2及び図3を参照して、配線セルのアンテナ用ライブラリ101の一例を説明する。図2は、本発明による設計支援装置によって配置される配線セル400の構造の一例を示す図である。図2を参照して、配線セル400は、入力端子401、出力端子402、及び配線403(第2配線)を備える。配線403は、例えばタイミングエラーやクロストークエラーが発生しないような長さや配線間隔でセル内に設けられていることが好ましい。   An example of the wiring cell antenna library 101 will be described with reference to FIGS. FIG. 2 is a diagram showing an example of the structure of the wiring cell 400 arranged by the design support apparatus according to the present invention. Referring to FIG. 2, the wiring cell 400 includes an input terminal 401, an output terminal 402, and a wiring 403 (second wiring). It is preferable that the wiring 403 is provided in the cell with a length and a wiring interval that do not cause, for example, a timing error or a crosstalk error.

図2に示す配線セル400のアンテナ用ライブラリ101の一例を図3に示す。配線セル400のアンテナ用ライブラリ101には、端子情報111として、アンテナ配線となり得る配線403に接続される入力端子401を示す“Pin401”が規定され、アンテナ配線情報112として、アンテナ配線となり得る配線403の配線面積“7”や配線403が形成される第1配線層“M1”を示す情報が規定される。   An example of the antenna library 101 of the wiring cell 400 shown in FIG. 2 is shown in FIG. In the antenna library 101 of the wiring cell 400, “Pin 401” indicating the input terminal 401 connected to the wiring 403 that can be the antenna wiring is defined as the terminal information 111, and the wiring 403 that can be the antenna wiring as the antenna wiring information 112. Information indicating the wiring area “7” and the first wiring layer “M1” in which the wiring 403 is formed is defined.

図4及び図5を参照して、ゲートを有する論理セルのアンテナ用ライブラリ101の一例を説明する。図4は、本発明による設計支援装置によっては位置される論理セル500(インバータセル)の構造の一例を示す平面図である。図4を参照して、論理セル500は、入力端子501、出力端子502、配線503(第3配線)、504、ゲート505、拡散層506、507を備える。ゲート505は、配線503を介して入力端子501に接続される。拡散層506、507は配線504によって出力端子502に接続される。このような構成により、論理セル500は、入力端子501からの入力信号を反転して出力端子502に出力するインバータとして機能する。ここで、ゲート505に接続する配線503や入力端子501に接続される配線(図示なし)は、ゲート505に対するアンテナ配線となり得る。   An example of the logic cell antenna library 101 having a gate will be described with reference to FIGS. FIG. 4 is a plan view showing an example of the structure of a logic cell 500 (inverter cell) positioned by the design support apparatus according to the present invention. Referring to FIG. 4, the logic cell 500 includes an input terminal 501, an output terminal 502, a wiring 503 (third wiring), 504, a gate 505, and diffusion layers 506 and 507. The gate 505 is connected to the input terminal 501 through the wiring 503. The diffusion layers 506 and 507 are connected to the output terminal 502 by a wiring 504. With such a configuration, the logic cell 500 functions as an inverter that inverts an input signal from the input terminal 501 and outputs the inverted signal to the output terminal 502. Here, a wiring 503 connected to the gate 505 or a wiring (not shown) connected to the input terminal 501 can serve as an antenna wiring for the gate 505.

図4に示す論理セル500のアンテナ用ライブラリ101の一例を図5に示す。論理セル500のアンテナ用ライブラリ101には、端子情報111として、ゲート505に接続された入力端子501を示す“Pin501”が規定され、アンテナ配線情報112として、アンテナ配線となり得る配線503の配線面積“2”や配線503が形成される第1配線層“M1”を示す情報が規定される。更に、論理セル500のアンテナ用ライブラリ101には、ゲート面積としてゲート505が形成される領域の面積“2”が規定され、アンテナルール122として、ゲート505の面積に対する、ゲート505に接続する配線の面積の比の基準値が配線層毎に規定される。ここでは、ゲート505のゲート面積に対する第1配線層“M1”の配線面積の比(アンテナ基準)が“500”に規定され、ゲート505のゲート面積に対する第2配線層“M1”の配線面積の比(アンテナ基準)が“500”に規定される。これにより、第1配線層、第2配線層ともに、アンテナエラーなしにゲート505に接続可能な配線の面積は、ゲート面積“2”の500倍“1000”以内と規定される。尚、アンテナルール122によって評価を受けない場合(アンテナ検証の対象とならない配線層には、“0”が設定される。   An example of the antenna library 101 of the logic cell 500 shown in FIG. 4 is shown in FIG. In the antenna library 101 of the logic cell 500, “Pin 501” indicating the input terminal 501 connected to the gate 505 is defined as the terminal information 111, and the wiring area 503 of the wiring 503 that can be an antenna wiring is defined as the antenna wiring information 112. 2 ”and information indicating the first wiring layer“ M1 ”in which the wiring 503 is formed are defined. Further, in the antenna library 101 of the logic cell 500, the area “2” of the region in which the gate 505 is formed is defined as the gate area, and the antenna rule 122 includes the wiring connected to the gate 505 with respect to the area of the gate 505. A reference value of the area ratio is defined for each wiring layer. Here, the ratio of the wiring area of the first wiring layer “M1” to the gate area of the gate 505 (antenna reference) is defined as “500”, and the wiring area of the second wiring layer “M1” with respect to the gate area of the gate 505 is The ratio (antenna reference) is defined as “500”. As a result, the area of the wiring that can be connected to the gate 505 without an antenna error in both the first wiring layer and the second wiring layer is defined to be within 500 times “1000” of the gate area “2”. When the antenna rule 122 does not receive an evaluation (“0” is set for a wiring layer that is not subject to antenna verification).

(動作)
本発明による設計支援装置10は、設計プログラム300を実行することで、図6に示す動作を実行し、半導体集積回路の自動配置配線を行う。以下、図6から図11を参照して、本発明によるレイアウト設計動作(自動配置配線動作)の詳細を説明する。図6は、本発明における半導体集積回路の設計動作の一例を示すフロー図である。
(Operation)
The design support apparatus 10 according to the present invention executes the operation shown in FIG. 6 by executing the design program 300, and performs automatic placement and routing of the semiconductor integrated circuit. Details of the layout design operation (automatic placement and routing operation) according to the present invention will be described below with reference to FIGS. FIG. 6 is a flowchart showing an example of the design operation of the semiconductor integrated circuit according to the present invention.

先ず、設計支援装置10は、配置配線データ100を用いて論理セルや配線セルをチップ上に配置する(ステップS10)。ここでは、図7Aに示すように、論理セル500と論理セル510との間に配線セル400が配置される。ステップS10では、論理セル500、510、配線セル400以外のセル(図示なし)もチップ上に配置されることは言うまでもない。   First, the design support apparatus 10 uses the placement and routing data 100 to place logic cells and wiring cells on the chip (step S10). Here, as shown in FIG. 7A, the wiring cell 400 is arranged between the logic cell 500 and the logic cell 510. In step S10, it goes without saying that cells (not shown) other than the logic cells 500 and 510 and the wiring cell 400 are also arranged on the chip.

図7Aを参照して、論理セル510は、入力端子511、出力端子512、配線513、514、ゲート515、拡散層516、517を備える。ゲート515は、配線513を介して入力端子511に接続される。拡散層516、517は配線514によって出力端子512に接続される。このような構成により、論理セル510は、入力端子511からの入力信号を反転して出力端子512に出力するインバータとして機能する。ここで、ゲート515に接続する配線513や入力端子511に接続される配線(図示なし)は、ゲート515に対するアンテナ配線となり得る。   Referring to FIG. 7A, a logic cell 510 includes an input terminal 511, an output terminal 512, wirings 513 and 514, a gate 515, and diffusion layers 516 and 517. The gate 515 is connected to the input terminal 511 through the wiring 513. Diffusion layers 516 and 517 are connected to output terminal 512 by wiring 514. With such a configuration, the logic cell 510 functions as an inverter that inverts an input signal from the input terminal 511 and outputs the inverted signal to the output terminal 512. Here, a wiring 513 connected to the gate 515 and a wiring (not shown) connected to the input terminal 511 can serve as an antenna wiring for the gate 515.

論理セルや配線セルの配置が完了すると、設計支援装置10は、配置された論理セルの入力端子と配線セルの出力端子との組合せをシリアル(1対1)に抽出する(ステップS11)。詳細には、設計支援装置10は、アンテナ対策配線が必要なゲートを特定し、当該ゲートに接続する端子と、当該端子の接続対象となる配線セルの端子との組合せを、組合せ抽出データ210として抽出する。論理セル内に複数のゲートがある場合、複数のゲートのそれぞれに接続される端子毎に、接続対象となる配線セルの端子との組合せが抽出される。図7Aに示す一例では、先ず、アンテナ対策配線が必要なゲートとして論理セル500のゲート505が選択される。そして、ゲート505に接続する入力端子501と、入力端子501の接続対象となる配線セル400の出力端子402が、組合せ抽出データ210として抽出される。   When the arrangement of the logic cells and the wiring cells is completed, the design support apparatus 10 extracts the combination of the input terminals of the arranged logic cells and the output terminals of the wiring cells serially (one to one) (step S11). Specifically, the design support apparatus 10 identifies a gate that requires antenna countermeasure wiring, and a combination of a terminal connected to the gate and a terminal of a wiring cell to be connected to the terminal is used as the combination extraction data 210. Extract. When there are a plurality of gates in a logic cell, a combination with a terminal of a wiring cell to be connected is extracted for each terminal connected to each of the plurality of gates. In the example shown in FIG. 7A, first, the gate 505 of the logic cell 500 is selected as the gate requiring the antenna countermeasure wiring. Then, the input terminal 501 connected to the gate 505 and the output terminal 402 of the wiring cell 400 to be connected to the input terminal 501 are extracted as the combination extraction data 210.

図8は、本発明に係る組合せ抽出データ210の一例を示す図である。組合せ抽出データ210は、配線セル名211、論理セル名212、ネット名213、配線セルサイズ214、配線セル配置座標215、論理セルサイズ216、論理セル配置座標217を含む。論理セル名212は、アンテナ対策配線対象として選択されたゲートを有する論理セルの名称であり、論理セルサイズ216、論理セル配置座標217は、当該論理セルのサイズ及び配置位置を示す。又、配線セル名211は、アンテナ対策配線対象として選択されたゲートに接続する配線セルの名称であり、配線セルサイズ214、配線セル配置座標215は、当該配線セルのサイズ及び配置位置を示す。ネット名213は、組合せとして抽出された端子対を特定する情報である。例えば論理セル500の入力端子501と配線セル400の出力端子402とを対応付けた情報“551”がネット名213として抽出される。   FIG. 8 is a diagram showing an example of the combination extraction data 210 according to the present invention. The combination extraction data 210 includes a wiring cell name 211, a logic cell name 212, a net name 213, a wiring cell size 214, a wiring cell arrangement coordinate 215, a logic cell size 216, and a logic cell arrangement coordinate 217. The logic cell name 212 is the name of the logic cell having the gate selected as the antenna countermeasure wiring target, and the logic cell size 216 and the logic cell arrangement coordinates 217 indicate the size and arrangement position of the logic cell. The wiring cell name 211 is the name of the wiring cell connected to the gate selected as the antenna countermeasure wiring target, and the wiring cell size 214 and the wiring cell arrangement coordinates 215 indicate the size and arrangement position of the wiring cell. The net name 213 is information specifying the terminal pair extracted as a combination. For example, information “551” that associates the input terminal 501 of the logic cell 500 with the output terminal 402 of the wiring cell 400 is extracted as the net name 213.

ステップS11では、アンテナ対策配線対象となるゲートに接続される論理セル内の端子と、当該端子に接続される配線セルの端子との組合せが特定される。あるいは、アンテナ対策配線対象となるゲートを有する論理セルと当該論理セルに接続される配線セルの組合せが特定される。又、組合せ抽出データ210には、アンテナ対策配線対象となるゲートを有する論理セルと、当該ゲートに接続される配線セルのチップ上の位置を特定する情報が含まれる。   In step S11, a combination of a terminal in the logic cell connected to the gate to be antenna countermeasure wiring and a terminal of the wiring cell connected to the terminal is specified. Alternatively, a combination of a logic cell having a gate serving as an antenna countermeasure wiring target and a wiring cell connected to the logic cell is specified. In addition, the combination extraction data 210 includes information specifying a logic cell having a gate to be subjected to antenna countermeasure wiring and a position of the wiring cell connected to the gate on the chip.

ステップS11において組合せ抽出データ210が抽出されると、組合せ抽出データ210が抽出されたことを示す変数Nに“1”が代入される。又、組合せ抽出データ210が抽出されない場合、変数Nに“0”が代入される。すなわち、配置された全てのセルにおいて、アンテナ対策配線が必要なゲートを有する論理セルと当該ゲートに接続される配線セルの組合せの全てが抽出されると、変数Nに“0”が代入される。   When the combination extraction data 210 is extracted in step S11, “1” is substituted into a variable N indicating that the combination extraction data 210 has been extracted. When the combination extraction data 210 is not extracted, “0” is substituted for the variable N. That is, when all the combinations of logic cells having gates that require antenna countermeasure wiring and wiring cells connected to the gates are extracted from all the arranged cells, “0” is assigned to the variable N. .

設計支援装置10は、変数Nが“1”か“0”かで、チップ上に配置されたセルのうち、アンテナ対策配線対象となるゲートを有する論理セルと当該論理セル接続する配線セルの組合せの全てを抽出したか否かを判断する(ステップS12)。詳細には、組合せ抽出工程(ステップS11)において組合せ抽出データ210が抽出される場合(変数Nが“1”)、設計支援装置10は、全てのセルの組合せ(端子の組合せ)の抽出が終了していないと判断し、抽出した組合せ抽出データ210を参照して、抽出された2つのセルが隣接しているか否かを確認する(ステップS15)。一方、組合せ抽出工程(ステップS11)において組合せ抽出データ210が抽出されない場合(変数Nが“0”)、全てのセルの組合せ(端子の組合せ)の抽出が完了したと判断し、ステップS23に移行する。すなわち、セルの配置が完了したチップ上において、アンテナ対策配線が必要なゲートに接続する論理セル内の端子と、配線セルの端子との組合せの全てが抽出された場合、ステップS23に移行する。   The design support apparatus 10 has a variable N of “1” or “0”, and among the cells arranged on the chip, a combination of a logic cell having a gate serving as an antenna countermeasure wiring target and a wiring cell connected to the logic cell It is determined whether all of the above are extracted (step S12). More specifically, when the combination extraction data 210 is extracted in the combination extraction step (step S11) (the variable N is “1”), the design support apparatus 10 finishes extracting all cell combinations (terminal combinations). It is determined that the two extracted cells are adjacent to each other with reference to the extracted combination extraction data 210 (step S15). On the other hand, if the combination extraction data 210 is not extracted in the combination extraction step (step S11) (variable N is “0”), it is determined that the extraction of all cell combinations (terminal combinations) has been completed, and the process proceeds to step S23. To do. That is, when all the combinations of the terminals in the logic cell connected to the gate requiring the antenna countermeasure wiring and the terminals of the wiring cell are extracted on the chip where the cell arrangement is completed, the process proceeds to step S23.

隣接セルの確認工程(ステップS15)では、組合せ抽出データ210の配線セルサイズ214、配線セル配置座標215、論理セルサイズ216、論理セル配置座標217から、論理セルと配線セルとの位置関係が確認される。このとき論理セルと配線セルが隣接している場合、設計支援装置10は変数Mに“1”を代入し、論理セルと配線セルが離隔している場合変数Mに“0”を代入する。図7Aに示す一例では、論理セル500と配線セル400とが、所定の間隔だけ離隔しているため、変数Mに“1”が代入される。尚、隣接セルの確認工程は、後述する配線セルの配線面積抽出工程(ステップS17)の後に行われても良い。   In the adjacent cell confirmation step (step S15), the positional relationship between the logic cell and the wiring cell is confirmed from the wiring cell size 214, the wiring cell arrangement coordinate 215, the logic cell size 216, and the logic cell arrangement coordinate 217 of the combination extraction data 210. Is done. At this time, when the logic cell and the wiring cell are adjacent, the design support apparatus 10 substitutes “1” for the variable M, and substitutes “0” for the variable M when the logic cell and the wiring cell are separated. In the example shown in FIG. 7A, since the logic cell 500 and the wiring cell 400 are separated by a predetermined interval, “1” is assigned to the variable M. In addition, the confirmation process of an adjacent cell may be performed after the wiring area extraction process (step S17) of the wiring cell mentioned later.

設計支援装置10は、ステップS11において特定した論理セルのアンテナ用ライブラリ101から、アンテナ配線情報112、ゲート面積121、アンテナルール122を抽出する(ステップS16)。ここでは一例として、図5に示す論理セル500のアンテナ用ライブラリ101から、第1配線層の配線の面積が“2”であることを示すアンテナ配線情報112と、ゲート面積が“2”であることを示すゲート面積121と、第1配線層のアンテナ基準が“500”、及び第2配線層のアンテナ基準が“500”であることを示すアンテナルール122が、抽出される。   The design support apparatus 10 extracts the antenna wiring information 112, the gate area 121, and the antenna rule 122 from the antenna library 101 of the logic cell specified in step S11 (step S16). Here, as an example, from the antenna library 101 of the logic cell 500 shown in FIG. 5, the antenna wiring information 112 indicating that the wiring area of the first wiring layer is “2” and the gate area is “2”. And an antenna rule 122 indicating that the antenna reference of the first wiring layer is “500” and the antenna reference of the second wiring layer is “500”.

又、設計支援装置10は、ステップS11において抽出した配線セルにおける配線面積を、当該配線セルのアンテナ用ライブラリ101から抽出する(ステップS17)。ここでは一例として、図3に示す配線セル400のアンテナ用ライブラリ101から、第1配線層の配線面積が“7”であることを示すアンテナ配線情報112が抽出される。   The design support apparatus 10 extracts the wiring area in the wiring cell extracted in step S11 from the antenna library 101 of the wiring cell (step S17). Here, as an example, the antenna wiring information 112 indicating that the wiring area of the first wiring layer is “7” is extracted from the antenna library 101 of the wiring cell 400 shown in FIG.

続いて、設計支援装置10は、ステップS15で代入された変数Mが“0”か“1”かによって、論理セルと配線セルとが隣接しているか否かを判定する(ステップS18)。変数Mが“0”に設定されている場合、設計支援装置10は、論理セルと配線セルが離隔していると判定し、当該セルの端子間を配線で接続する処理に移行する(ステップS20)。ここでは一例として、変数Mが“0”に設定されているため、図7Bに示すように、論理セル500の入力端子501と、配線セル400の出力端子402との間を配線551(第4配線)によって接続する。ステップS20の配線工程では、配置配線データ100、アンテナ用ライブラリ101を利用して配線が行われる。詳細には、設計支援装置10は、論理セル500のアンテナ用ライブラリ101を参照して、論理セル500の入力端子501(Pin501)に接続する配線面積が、アンテナルール122に従った面積となるように、出力端子501と配線セル400(出力端子402)との間を配線する。例えば、図5を参照して、端子情報111に示される入力端子“Pin501”に接続するゲート面積“2”とアンテナルール122で規定される配線面積“500”との積“1000”が、当該入力端子“Pin501”に接続可能な配線層毎の配線面積の最大値となる。設計支援装置10は、この最大値を越えないように、当該入力端子“Pin501”と配線セル400の出力端子“Pin402”との間を配線する。尚、ステップS20では、ステップS11において抽出された端子間のみの配線が行われる。   Subsequently, the design support apparatus 10 determines whether the logic cell and the wiring cell are adjacent to each other based on whether the variable M substituted in step S15 is “0” or “1” (step S18). When the variable M is set to “0”, the design support apparatus 10 determines that the logic cell and the wiring cell are separated from each other, and shifts to a process of connecting the terminals of the cell with wiring (step S20). ). Here, as an example, since the variable M is set to “0”, as illustrated in FIG. 7B, the wiring 551 (fourth fourth) is connected between the input terminal 501 of the logic cell 500 and the output terminal 402 of the wiring cell 400. Connect by wiring. In the wiring process of step S20, wiring is performed using the placement and routing data 100 and the antenna library 101. Specifically, the design support apparatus 10 refers to the antenna library 101 of the logic cell 500 so that the wiring area connected to the input terminal 501 (Pin 501) of the logic cell 500 becomes an area according to the antenna rule 122. In addition, the output terminal 501 and the wiring cell 400 (output terminal 402) are wired. For example, referring to FIG. 5, the product “1000” of the gate area “2” connected to the input terminal “Pin 501” indicated by the terminal information 111 and the wiring area “500” defined by the antenna rule 122 is This is the maximum wiring area for each wiring layer connectable to the input terminal “Pin 501”. The design support apparatus 10 performs wiring between the input terminal “Pin 501” and the output terminal “Pin 402” of the wiring cell 400 so as not to exceed the maximum value. In step S20, wiring is performed only between the terminals extracted in step S11.

配線後、設計支援装置10は、セル間を接続した配線の面積を算出する(ステップS21)。ここでは、図7Bに示す配線551の面積が算出される。   After the wiring, the design support device 10 calculates the area of the wiring that connects the cells (step S21). Here, the area of the wiring 551 shown in FIG. 7B is calculated.

続いて、設計支援装置10は、論理セルのアンテナルール等に基づいて配線セルのアンテナ用ライブラリ101を変更する(ステップS22)。詳細には、設計支援装置10は、ステップS16において抽出した、論理セルのアンテナ配線情報112、ゲート面積121、及びアンテナルール122と、ステップS17において抽出した、配線セルのアンテナ配線情報112と、ステップS21で算出した配線面積とを、配線セルのアンテナ用ライブラリ101に追加して、新たなアンテナ用ライブラリ201を生成する。この際、同一の配線層毎に、配線セルの配線面積に対して論理セルの配線面積や、ステップS21で算出された配線面積が加算される。尚、アンテナ用ライブラリ201は、記憶装置13に記録される。   Subsequently, the design support apparatus 10 changes the antenna library 101 of the wiring cell based on the antenna rules of the logic cell (step S22). Specifically, the design support apparatus 10 includes the antenna wiring information 112, the gate area 121, and the antenna rule 122 of the logic cell extracted in step S16, and the antenna wiring information 112 of the wiring cell extracted in step S17. The wiring area calculated in S21 is added to the antenna library 101 of the wiring cell to generate a new antenna library 201. At this time, the wiring area of the logic cell and the wiring area calculated in step S21 are added to the wiring area of the wiring cell for each same wiring layer. The antenna library 201 is recorded in the storage device 13.

例えば、図3に示す配線セル400のアンテナ用ライブラリ101に対し、図5に示す論理セル500のアンテナ配線情報112“2(第1配線層)”、ゲート面積121“2”、アンテナルール122“500(第1配線層)”、“500(第2配線層)”が追加されるとともに、図7Bに示す配線551の面積“2”が追加される。ここでは、配線セル400の配線403の配線面積“7(第1配線層)”に対し、配線403と同じ第1配線層の配線503の配線面積“2”が加算される。又、ステップS20において追加された配線553が第1配線層に形成される場合、配線403と配線503の面積の合計“9”に、更に配線553の面積“2”が加算される。このようにして、配線セル400のアンテナ用ライブラリ101が、図9に示すような新たなアンテナ用ライブラリ201として変更される。   For example, for the antenna library 101 of the wiring cell 400 shown in FIG. 3, the antenna wiring information 112 “2 (first wiring layer)” of the logic cell 500 shown in FIG. 5, the gate area 121 “2”, and the antenna rule 122 “ 500 (first wiring layer) ”and“ 500 (second wiring layer) ”are added, and the area“ 2 ”of the wiring 551 shown in FIG. 7B is added. Here, the wiring area “2” of the wiring 503 of the same first wiring layer as the wiring 403 is added to the wiring area “7 (first wiring layer)” of the wiring 403 of the wiring cell 400. When the added wiring 553 is formed in the first wiring layer in step S20, the area “2” of the wiring 553 is further added to the total “9” of the areas of the wiring 403 and the wiring 503. In this way, the antenna library 101 of the wiring cell 400 is changed to a new antenna library 201 as shown in FIG.

図9を参照して、変更後のアンテナ用ライブラリ201には、端子情報111として、入力端子401を示す“Pin401”が規定され、アンテナ配線情報112として、アンテナ配線となり得る配線503、配線553、配線403の配線面積の合計“11”と、配線503、配線553、配線403が形成される第1配線層“M1”を示す情報が規定される。更に、変更後のアンテナ用ライブラリ201には、ゲート面積としてゲート505が形成される領域の面積“2”が規定され、アンテナルール122として、ゲート505の面積に対する、ゲート505に接続する配線の面積の比の基準値が配線層毎に規定される。ここでは、ゲート505のゲート面積に対する第1配線層“M1”の配線面積の比(アンテナ基準)が“500”に規定され、ゲート505のゲート面積に対する第2配線層“M1”の配線面積の比(アンテナ基準)が“500”に規定される。これにより、第1配線層、第2配線層ともに、アンテナエラーなしにゲート505に接続可能な配線の面積は、ゲート面積“2”の500倍“1000”以内と規定される。   Referring to FIG. 9, in the antenna library 201 after the change, “Pin 401” indicating the input terminal 401 is defined as the terminal information 111, and the wiring 503, the wiring 553, which can be the antenna wiring, as the antenna wiring information 112, Information indicating the total wiring area “11” of the wiring 403 and the first wiring layer “M1” in which the wiring 503, the wiring 553, and the wiring 403 are formed is defined. Further, in the antenna library 201 after the change, the area “2” of the region where the gate 505 is formed is defined as the gate area, and the area of the wiring connected to the gate 505 relative to the area of the gate 505 is defined as the antenna rule 122. A reference value for the ratio is defined for each wiring layer. Here, the ratio of the wiring area of the first wiring layer “M1” to the gate area of the gate 505 (antenna reference) is defined as “500”, and the wiring area of the second wiring layer “M1” with respect to the gate area of the gate 505 is The ratio (antenna reference) is defined as “500”. As a result, the area of the wiring that can be connected to the gate 505 without an antenna error in both the first wiring layer and the second wiring layer is defined to be within 500 times “1000” of the gate area “2”.

一方、ステップS11において、図10Aに示される配線セル400の出力端子402と論理セル500の入力端子501との組合せが抽出された場合、設計支援装置10は、ステップS15において配線セル400と論理セル500が隣接しているとして変数Mに“1”を代入する。この場合、ステップS18において、設計支援装置10は、論理セルと配線セルが隣接していると判定し、当該セル間の配線を行わずに、配線セルのアンテナ用ライブラリの変更処理を行う(ステップS19)。   On the other hand, when the combination of the output terminal 402 of the wiring cell 400 and the input terminal 501 of the logic cell 500 shown in FIG. 10A is extracted in step S11, the design support apparatus 10 determines that the wiring cell 400 and the logic cell in step S15. Assuming that 500 is adjacent, “1” is assigned to variable M. In this case, in step S18, the design support apparatus 10 determines that the logic cell and the wiring cell are adjacent to each other, and performs a change process of the antenna library for the wiring cell without performing wiring between the cells (step S18). S19).

ステップS19において設計支援装置10は、ステップS22と同様に、論理セル500のアンテナルール等に基づいて配線セル400のアンテナ用ライブラリ101を変更する。ただし、ここでは、論理セル500と配線セル400との間には配線が形成されないため、ステップS22で行われた追加配線の面積を配線セル400の配線面積に加算する処理は省略される。   In step S19, the design support apparatus 10 changes the antenna library 101 of the wiring cell 400 based on the antenna rule of the logic cell 500 and the like, similarly to step S22. However, since no wiring is formed between the logic cell 500 and the wiring cell 400 here, the process of adding the area of the additional wiring performed in step S22 to the wiring area of the wiring cell 400 is omitted.

例えば、図3に示す配線セル400のアンテナ用ライブラリ101に対し、図5に示す論理セル500のアンテナ配線情報112“2(第1配線層)”、ゲート面積121“2”、アンテナルール122“500(第1配線層)”、“500(第2配線層)”が追加される。ここでは、配線セル400の配線403の配線面積“7(第1配線層)”に対し、配線403と同じ第1配線層の配線503の配線面積“2”が加算される。このようにして、配線セル400のアンテナ用ライブラリ101が、図11に示すような新たなアンテナ用ライブラリ201として変更される。   For example, for the antenna library 101 of the wiring cell 400 shown in FIG. 3, the antenna wiring information 112 “2 (first wiring layer)” of the logic cell 500 shown in FIG. 5, the gate area 121 “2”, and the antenna rule 122 “ 500 (first wiring layer) "and" 500 (second wiring layer) "are added. Here, the wiring area “2” of the wiring 503 of the same first wiring layer as the wiring 403 is added to the wiring area “7 (first wiring layer)” of the wiring 403 of the wiring cell 400. In this way, the antenna library 101 of the wiring cell 400 is changed to a new antenna library 201 as shown in FIG.

図11を参照して、変更後のアンテナ用ライブラリ201には、端子情報111として、入力端子401を示す“Pin401”が規定され、アンテナ配線情報112として、アンテナ配線となり得る配線503、配線403の配線面積の合計“9”と、配線503、配線403が形成される第1配線層“M1”を示す情報が規定される。更に、変更後のアンテナ用ライブラリ201には、ゲート面積としてゲート505が形成される領域の面積“2”が規定され、アンテナルール122として、ゲート505の面積に対する、ゲート505に接続する配線の面積の比の基準値が配線層毎に規定される。ここでは、ゲート505のゲート面積に対する第1配線層“M1”の配線面積の比(アンテナ基準)が“500”に規定され、ゲート505のゲート面積に対する第2配線層“M1”の配線面積の比(アンテナ基準)が“500”に規定される。これにより、第1配線層、第2配線層ともに、アンテナエラーなしにゲート505に接続可能な配線の面積は、ゲート面積“2”の500倍“1000”以内と規定される。   Referring to FIG. 11, in the antenna library 201 after the change, “Pin 401” indicating the input terminal 401 is defined as the terminal information 111, and the antenna wiring information 112 includes the wiring 503 and the wiring 403 that can be the antenna wiring. Information indicating the total wiring area “9” and the first wiring layer “M1” in which the wirings 503 and 403 are formed is defined. Further, in the antenna library 201 after the change, the area “2” of the region where the gate 505 is formed is defined as the gate area, and the area of the wiring connected to the gate 505 relative to the area of the gate 505 is defined as the antenna rule 122. A reference value for the ratio is defined for each wiring layer. Here, the ratio of the wiring area of the first wiring layer “M1” to the gate area of the gate 505 (antenna reference) is defined as “500”, and the wiring area of the second wiring layer “M1” with respect to the gate area of the gate 505 is The ratio (antenna reference) is defined as “500”. As a result, the area of the wiring that can be connected to the gate 505 without an antenna error in both the first wiring layer and the second wiring layer is defined to be within 500 times “1000” of the gate area “2”.

ステップS19やステップS22において配線セルのアンテナ用ライブラリ101が変更されると、ステップS11の組合せ抽出工程に移行し、アンテナ検証対象となるゲートを有する論理セルの端子と当該ゲートに接続する端子を有する配線セルとの組合せが抽出されなくなるまで、上述の処理が繰り返される。尚、ステップS19、S22では、ステップS11において抽出された配線セルのアンテナ用ライブラリ101のみがアンテナ用ライブラリ201として変更され、他のセルのアンテナ用ライブラリ101は、変更されずに後述する配線処理(ステップS24)やアンテナ検証(ステップS25)に利用される。   When the antenna library 101 of the wiring cell is changed in step S19 or step S22, the process proceeds to the combination extraction step in step S11, and has a terminal of a logic cell having a gate to be verified and a terminal connected to the gate. The above process is repeated until no combination with the wiring cell is extracted. Note that in steps S19 and S22, only the antenna library 101 of the wiring cell extracted in step S11 is changed as the antenna library 201, and the antenna library 101 of other cells is not changed, and wiring processing (described later) This is used for step S24) and antenna verification (step S25).

以上のような動作により、論理セル500のアンテナ用ライブラリ101に規定されたゲート面積121やアンテナルール122、及び論理セル500内の配線面積が、配線セル400のアンテナ用ライブラリ101に追加され、アンテナ用ライブラリ201が生成される。   Through the above operation, the gate area 121 and the antenna rule 122 defined in the antenna library 101 of the logic cell 500 and the wiring area in the logic cell 500 are added to the antenna library 101 of the wiring cell 400, and the antenna Library 201 is generated.

組合せ抽出工程(ステップS11)において組合せ抽出データ210が抽出されない場合(変数Nが“0”)、設計支援装置10は、全てのセルの組合せ(端子の組合せ)の抽出が完了したと判断し、ステップS23に移行する。設計支援装置10は、ステップS10からS22において配置されたセルや配線の配置座標を配置配線データ100に追加し、配置配線データ200として出力する(ステップS23)。   When the combination extraction data 210 is not extracted in the combination extraction step (step S11) (the variable N is “0”), the design support apparatus 10 determines that the extraction of all cell combinations (terminal combinations) has been completed, Control goes to step S23. The design support apparatus 10 adds the arrangement coordinates of the cells and wiring arranged in steps S10 to S22 to the arrangement wiring data 100, and outputs them as arrangement wiring data 200 (step S23).

続いて、設計支援装置10は、配置配線データ200、アンテナ用ライブラリ101、201を使用して未配線領域の配線を行い、アンテナ検証を行う(ステップS24、S25)。ここでは、ステップS20において配線した領域以外の配線を必要とする箇所を配線する。例えば、図7Bに示す配線セル400の入力端子401と論理セル510の出力端子513との間が、アンテナ用ライブラリ201の情報に基づいて配線550(第1配線)で接続され、図7Cに示すレイアウトとなる。あるいは、図10Aに示す配線セル400の入力端子401と論理セル510の出力端子513との間が、アンテナ用ライブラリ201の情報に基づいて配線550で接続され、図10Bに示すレイアウトとなる。更に、ステップS11において抽出された端子対以外の端子間が配線される。この際、必要に応じて、ステップS20と同様にアンテナ用ライブラリ101に従った配線面積で配線される。   Subsequently, the design support apparatus 10 performs wiring in the unwired area using the placement and routing data 200 and the antenna libraries 101 and 201, and performs antenna verification (steps S24 and S25). In this case, a portion requiring wiring other than the region wired in step S20 is wired. For example, the input terminal 401 of the wiring cell 400 shown in FIG. 7B and the output terminal 513 of the logic cell 510 are connected by the wiring 550 (first wiring) based on the information in the antenna library 201, and shown in FIG. 7C. It becomes a layout. Alternatively, the input terminal 401 of the wiring cell 400 shown in FIG. 10A and the output terminal 513 of the logic cell 510 are connected by the wiring 550 based on the information in the antenna library 201, resulting in the layout shown in FIG. 10B. Further, the terminals other than the terminal pair extracted in step S11 are wired. At this time, if necessary, wiring is performed with a wiring area according to the antenna library 101 as in step S20.

全ての配線が終了すると、設計支援装置10は、ステップS24において接続された配線に対してアンテナ検証を行う(ステップS25)。ここでは、ステップS24の前に配置されたセルや配線、タイミング規格等により置き換えられた配線が、アンテナルールを満足しているか否かが確認される。詳細には、設計支援装置10は、記憶装置13に記録されたアンテナ用ライブラリ101、201から、ステップS24において配線が接続されたセルのアンテナ用ライブラリを抽出し、これを用いて当該配線のアンテナ検証を行う。ここでは、設計支援装置10は、抽出されたアンテナ用ライブラリから、アンテナ検証対象となるゲート及びアンテナルールを特定し、当該ゲートに接続された配線面積が、当該アンテナルールを満足するか否かを、配線層毎に検証する。   When all wiring is completed, the design support apparatus 10 performs antenna verification on the wiring connected in step S24 (step S25). Here, it is confirmed whether or not the cell, the wiring, and the wiring replaced by the timing standard arranged before step S24 satisfy the antenna rule. Specifically, the design support device 10 extracts the antenna library of the cell to which the wiring is connected in step S24 from the antenna libraries 101 and 201 recorded in the storage device 13, and uses this to extract the antenna of the wiring. Perform verification. Here, the design support apparatus 10 identifies the gate and antenna rule to be verified from the extracted antenna library, and determines whether the wiring area connected to the gate satisfies the antenna rule. Verify for each wiring layer.

例えば、ステップS24において第1論理セルと第2論理セルとが配線で接続された場合、第1論理セルのアンテナ用ライブラリ101が抽出され、第1論理セルのゲートがアンテナ検証対象となる。この場合、設計支援装置10は、第1論理セルのアンテナ用ライブラリ101に従って当該配線の面積を検証する。   For example, when the first logic cell and the second logic cell are connected by wiring in step S24, the antenna library 101 of the first logic cell is extracted, and the gate of the first logic cell becomes the antenna verification target. In this case, the design support apparatus 10 verifies the area of the wiring according to the antenna library 101 of the first logic cell.

一方、ステップS24において配線セルに配線が接続された場合、当該配線セルのアンテナ用ライブラリ201が抽出され、アンテナ用ライブラリ201に規定されたゲートがアンテナ検証対象となる。この場合、設計支援装置10は、ステップS19やステップS22によって変更された配線セルのアンテナ用ライブラリ201に従って、ステップS24において接続された配線の面積を検証する。例えば、図7Cに示すゲート505に対するアンテナ検証では、図9に示す配線セル400のアンテナ用ライブラリ201に従って、配線550の面積が検証される。図9に示すアンテナ用ライブラリ201には、ゲート505に接続される第1配線層のアンテナ配線の面積“11”が含まれるため、ゲート面積121“2”に対する、配線550の面積“X”と面積“11”の和の比が、アンテナルール122で規定される“500”以下となるかが検証される。あるいは、図10Bに示すゲート505に対するアンテナ検証では、図11に示す配線セル400のアンテナ用ライブラリ201に従って、配線550の面積が検証される。図11に示すアンテナ用ライブラリ201には、ゲート505に接続される第1配線層のアンテナ配線の面積“9”が含まれるため、ゲート面積121“2”に対する、配線550の面積“Y”と面積“9”の和の比が、アンテナルール122で規定される“500”以下となるかが検証される。   On the other hand, when the wiring is connected to the wiring cell in step S24, the antenna library 201 of the wiring cell is extracted, and the gate defined in the antenna library 201 becomes the antenna verification target. In this case, the design support apparatus 10 verifies the area of the connected wiring in step S24 according to the antenna library 201 of the wiring cell changed in step S19 or step S22. For example, in the antenna verification for the gate 505 shown in FIG. 7C, the area of the wiring 550 is verified according to the antenna library 201 of the wiring cell 400 shown in FIG. Since the antenna library 201 shown in FIG. 9 includes the area “11” of the antenna wiring of the first wiring layer connected to the gate 505, the area “X” of the wiring 550 with respect to the gate area 121 “2” It is verified whether the ratio of the sum of the area “11” is equal to or less than “500” defined by the antenna rule 122. Alternatively, in the antenna verification for the gate 505 shown in FIG. 10B, the area of the wiring 550 is verified according to the antenna library 201 of the wiring cell 400 shown in FIG. Since the antenna library 201 shown in FIG. 11 includes the area “9” of the antenna wiring of the first wiring layer connected to the gate 505, the area “Y” of the wiring 550 with respect to the gate area 121 “2” It is verified whether the ratio of the sum of the area “9” is equal to or less than “500” defined by the antenna rule 122.

ステップS25のアンテナ検証工程において、アンテナエラーを検出した場合、設計支援装置10は、エラー箇所をレポートしてエラー箇所の配線を修正する(ステップS25Yes、ステップS26)。配線の修正後は、再びアンテナ検証工程(ステップS25)に移行する。設計支援装置10は、アンテナエラーが検出されなくなるまで、配線(修正)工程(ステップS24)とアンテナ検証工程(ステップS25)を繰り返し、アンテナエラーが検出されなった時点の配置配線結果を、例えばGDS(Graphic Data System)形式のチップレイアウト情報として記憶装置13に記録する。   If an antenna error is detected in the antenna verification process in step S25, the design support apparatus 10 reports the error location and corrects the wiring of the error location (step S25 Yes, step S26). After the correction of the wiring, the process proceeds to the antenna verification process (step S25) again. The design support apparatus 10 repeats the wiring (correction) process (step S24) and the antenna verification process (step S25) until no antenna error is detected, and the placement and wiring result at the time when the antenna error is not detected is, for example, GDS. This is recorded in the storage device 13 as chip layout information in the form of (Graphic Data System).

例えば、図7Cに示すレイアウトにおいて、ゲート面積121“2”に対する、配線550の面積“X”と面積“11”の和の比“(X+11)/2”が、アンテナルールである“500”より大きい場合、アンテナエラーと判定され、配線550は修正される。又、“(X+11)/2”が“500”以下である場合、アンテナエラーなしと判定される。あるいは、図10Bに示すレイアウトにおいて、ゲート面積121“2”に対する、配線550の面積“Y”と面積“9”の和の比“(Y+9)/2”が、アンテナルールである“500”より大きい場合、アンテナエラーと判定され、配線550は修正される。又、“(Y+9)/2”が“500”以下である場合、アンテナエラーなしと判定される。   For example, in the layout shown in FIG. 7C, the ratio “(X + 11) / 2” of the area “X” and the area “11” of the wiring 550 to the gate area 121 “2” is “500” as the antenna rule. If larger, it is determined as an antenna error, and the wiring 550 is corrected. If “(X + 11) / 2” is “500” or less, it is determined that there is no antenna error. Alternatively, in the layout shown in FIG. 10B, the ratio “(Y + 9) / 2” of the area “Y” and the area “9” of the wiring 550 to the gate area 121 “2” is “500” as the antenna rule. If larger, it is determined as an antenna error, and the wiring 550 is corrected. If “(Y + 9) / 2” is “500” or less, it is determined that there is no antenna error.

従来、配線セルのアンテナ用ライブラリには、アンテナ検証対象となるゲートの面積やアンテナルールが規定されていない。このため、配線セルの入力端子と論理セルの出力端子との間を接続する配線が、アンテナエラーとなるか否かを、配置配線フェーズにおいて検証することはできなかった。しかし、本発明では、配線セルのアンテナ用ライブラリ201に、ゲートに接続された既配線の配線面積(アンテナ配線情報112)、ゲート面積121、アンテナルール122が規定されている。設計支援装置10は、このアンテナ用ライブラリ201を利用することで、配線セルから延設される配線に対するアンテナ検証を実施することができる。すなわち、本発明では、配置配線フェーズにおいて、アンテナルールを満足しながら配線セルの配置及び当該配線セルと他の論理セルとの間の配線を行うことができる。このように、本発明によれば、自動配置配線工程においてアンテナエラーを収束することができるため、GDS出力後のDRCにおいてアンテナエラーによる手戻りは無くなり、設計工数は削減される。   Conventionally, the antenna library of the wiring cell does not define the area of the gate to be verified and the antenna rule. For this reason, it has not been possible to verify in the placement and routing phase whether or not the wiring connecting the input terminal of the wiring cell and the output terminal of the logic cell causes an antenna error. However, according to the present invention, the wiring area of the existing wiring connected to the gate (antenna wiring information 112), the gate area 121, and the antenna rule 122 are defined in the antenna library 201 of the wiring cell. By using the antenna library 201, the design support apparatus 10 can perform antenna verification on the wiring extended from the wiring cell. That is, according to the present invention, in the placement and routing phase, the placement of the wiring cell and the wiring between the wiring cell and another logic cell can be performed while satisfying the antenna rule. As described above, according to the present invention, the antenna error can be converged in the automatic placement and routing process. Therefore, the rework due to the antenna error is eliminated in the DRC after the GDS output, and the design man-hour is reduced.

上述の実施例では、配線セル400や、アンテナ検証対象のゲートと配線セル400とを接続する配線551に対するアンテナ検証は、ステップS24の配線工程の後に、他の配線に対するアンテナ検証と同時に行われているが、これに限らない。例えば、配線セル400や配線551に対するアンテナ検証は、図12に示す設計方法のように、ステップS19やステップS22のアンテナ用ライブラリ変更工程の前に行われても良い。   In the above-described embodiment, the antenna verification for the wiring cell 400 and the wiring 551 that connects the antenna verification target gate and the wiring cell 400 is performed at the same time as the antenna verification for the other wirings after the wiring process in step S24. However, it is not limited to this. For example, the antenna verification for the wiring cell 400 and the wiring 551 may be performed before the antenna library changing step in step S19 or step S22 as in the design method shown in FIG.

図12は、配線セルのアンテナ用ライブラリの変更工程の前にアンテナ検証が行われる場合の設計動作の一例を示すフロー図である。図12を参照して、ステップS10からステップS18までは、図6に示す設計動作と同様であるので、その説明は省略する。   FIG. 12 is a flowchart showing an example of a design operation in the case where antenna verification is performed before the process of changing the antenna library of the wiring cell. Referring to FIG. 12, steps S10 to S18 are the same as the design operation shown in FIG.

ステップS18のセル隣接確認工程において、変数Mが“0”に設定されている場合、設計支援装置10は、論理セルと配線セルが離隔していると判定し、当該セルの端子間を配線で接続する処理に移行する(ステップS20)。ステップS20以降を、図7Aに示すレイアウトに対する処理を一例に説明する。ステップS20の配線工程では、図6に示す一例と同様に、配置配線データ100、アンテナ用ライブラリ101を利用して配線セル400の出力端子402と論理セル500の入力端子501との間が配線551によって接続される。   If the variable M is set to “0” in the cell adjacency confirmation step in step S18, the design support apparatus 10 determines that the logic cell and the wiring cell are separated from each other, and the terminals of the cell are wired. The process proceeds to the connection process (step S20). Steps S20 and after will be described by taking an example of processing for the layout shown in FIG. 7A. In the wiring process of step S20, similarly to the example shown in FIG. 6, the wiring 551 is connected between the output terminal 402 of the wiring cell 400 and the input terminal 501 of the logic cell 500 using the placement and routing data 100 and the antenna library 101. Connected by.

続いて、論理セル500のアンテナ用ライブラリ101に従い、配線セル400における配線403、及び配線551に対するアンテナ検証が行われる(ステップS72)。例えば、図5に示す論理セル500のアンテナ用ライブラリ101に従って、配線551と配線403の面積の総和が検証される。ここでは、図5に示すアンテナ用ライブラリ101には、ゲート505に接続される第1配線層のアンテナ配線の面積“7”が含まれるため、ゲート面積121“2”に対する、配線551と配線403の面積の総和“X1”と面積“7”の和の比が、アンテナルール122で規定される“500”以下となるかが検証される。   Subsequently, according to the antenna library 101 of the logic cell 500, antenna verification is performed on the wiring 403 and the wiring 551 in the wiring cell 400 (step S72). For example, the sum of the areas of the wiring 551 and the wiring 403 is verified according to the antenna library 101 of the logic cell 500 shown in FIG. Here, since the antenna library 101 shown in FIG. 5 includes the area “7” of the antenna wiring of the first wiring layer connected to the gate 505, the wiring 551 and the wiring 403 for the gate area 121 “2”. It is verified whether the ratio of the sum of the total area “X1” and the area “7” is equal to or less than “500” defined by the antenna rule 122.

ステップS72のアンテナ検証工程において、アンテナエラーを検出した場合、設計支援装置10は、エラー箇所をレポートしてステップS10の配置工程まで戻り、配線セル400や論理セル500の配置位置の調整や、論理セル500を変更する(ステップS72Yes、ステップS73)。ここで、設計支援装置10は、配線セル400と論理セル500の配置距離を縮めるか、論理セル500を入力ゲート505の面積が大きい論理セルに変更することが好ましい。   When an antenna error is detected in the antenna verification process in step S72, the design support apparatus 10 reports the error location and returns to the arrangement process in step S10, and adjusts the arrangement position of the wiring cell 400 and the logic cell 500, The cell 500 is changed (step S72 Yes, step S73). Here, it is preferable that the design support apparatus 10 shortens the arrangement distance between the wiring cell 400 and the logic cell 500 or changes the logic cell 500 to a logic cell having a large area of the input gate 505.

ステップS72のアンテナ検証工程において、アンテナエラーを検出しない場合、設計支援装置10は、セル間を接続した配線の面積を算出する(ステップS72No、S21)。ここでは、図7Bに示す配線551の面積が算出される。   If no antenna error is detected in the antenna verification process in step S72, the design support apparatus 10 calculates the area of the wiring connecting the cells (No in steps S72 and S21). Here, the area of the wiring 551 shown in FIG. 7B is calculated.

続いて、設計支援装置10は、図6に示す一例と同様に、論理セルのアンテナルール等に基づいて配線セルのアンテナ用ライブラリ101を変更する(ステップS22)。詳細には、設計支援装置10は、ステップS16において抽出した、論理セルのアンテナ配線情報112、ゲート面積121、及びアンテナルール122と、ステップS17において抽出した、配線セルのアンテナ配線情報112と、ステップS21で算出した配線面積とを、配線セルのアンテナ用ライブラリ101に追加して、新たなアンテナ用ライブラリ201を生成する。この際、同一の配線層毎に、配線セルの配線面積に対して論理セルの配線面積や、ステップS21で算出された配線面積が加算される。尚、アンテナ用ライブラリ201は、記憶装置13に記録される。   Subsequently, the design support apparatus 10 changes the antenna library 101 of the wiring cell based on the antenna rule of the logic cell and the like as in the example shown in FIG. 6 (step S22). Specifically, the design support apparatus 10 includes the antenna wiring information 112, the gate area 121, and the antenna rule 122 of the logic cell extracted in step S16, and the antenna wiring information 112 of the wiring cell extracted in step S17. The wiring area calculated in S21 is added to the antenna library 101 of the wiring cell to generate a new antenna library 201. At this time, the wiring area of the logic cell and the wiring area calculated in step S21 are added to the wiring area of the wiring cell for each same wiring layer. The antenna library 201 is recorded in the storage device 13.

一方、ステップS11において、図10Aに示される配線セル400の出力端子402と論理セル500の入力端子501との組合せが抽出された場合、設計支援装置10は、ステップS15において配線セル400と論理セル500が隣接しているとして変数Mに“1”を代入する。この場合、ステップS18において、設計支援装置10は、論理セルと配線セルが隣接していると判定し、当該セル間の配線を行わずに、ゲート505に接続する配線セル400に対してアンテナ検証を行う(ステップS70)。   On the other hand, when the combination of the output terminal 402 of the wiring cell 400 and the input terminal 501 of the logic cell 500 shown in FIG. 10A is extracted in step S11, the design support apparatus 10 determines that the wiring cell 400 and the logic cell in step S15. Assuming that 500 is adjacent, “1” is assigned to variable M. In this case, in step S18, the design support apparatus 10 determines that the logic cell and the wiring cell are adjacent to each other, and performs antenna verification for the wiring cell 400 connected to the gate 505 without performing wiring between the cells. (Step S70).

ステップS70では、例えば、図5に示す論理セル500のアンテナ用ライブラリ101に従って、配線551と配線403の面積の総和が検証される。ここでは、図5に示すアンテナ用ライブラリ101には、ゲート505に接続される第1配線層のアンテナ配線の面積“7”が含まれるため、ゲート面積121“2”に対する、配線403の面積“Y1”と面積“7”の和の比が、アンテナルール122で規定される“500”以下となるかが検証される。   In step S70, for example, the total area of the wiring 551 and the wiring 403 is verified according to the antenna library 101 of the logic cell 500 shown in FIG. Here, since the antenna library 101 shown in FIG. 5 includes the area “7” of the antenna wiring of the first wiring layer connected to the gate 505, the area “of the wiring 403 with respect to the gate area 121“ 2 ”“ It is verified whether the ratio of the sum of Y1 ”and area“ 7 ”is equal to or less than“ 500 ”defined by the antenna rule 122.

ステップS70のアンテナ検証工程において、アンテナエラーを検出した場合、設計支援装置10は、エラー箇所をレポートしてステップS10の配置工程まで戻り、配線面積の小さい配線セル400に変更するか、論理セル500を入力ゲート505の面積が大きい論理セルに変更する(ステップS70Yes、ステップS71)。尚、ここでは、配線セル400や論理セル500の配置位置の調整や、論理セル500のサイズ調整が行われても良い。   If an antenna error is detected in the antenna verification process in step S70, the design support apparatus 10 reports the error location and returns to the placement process in step S10, and changes to the wiring cell 400 having a small wiring area or the logic cell 500. Is changed to a logic cell having a large area of the input gate 505 (step S70 Yes, step S71). Here, adjustment of the arrangement position of the wiring cell 400 and the logic cell 500 and size adjustment of the logic cell 500 may be performed.

一方、ステップS72のアンテナ検証工程において、アンテナエラーを検出しない場合、設計支援装置10は、図6に示す一例と同様に、論理セルのアンテナルール等に基づいて配線セルのアンテナ用ライブラリ101を変更する(ステップS19)。ステップS19において設計支援装置10は、ステップS22と同様に、論理セル500のアンテナルール等に基づいて配線セル400のアンテナ用ライブラリ101を変更する。ただし、ここでは、論理セル500と配線セル400との間には配線が形成されないため、ステップS22で行われた追加配線の面積を配線セル400の配線面積に加算する処理は省略される。   On the other hand, if no antenna error is detected in the antenna verification process in step S72, the design support apparatus 10 changes the antenna library 101 of the wiring cell based on the antenna rules of the logic cell, etc., as in the example shown in FIG. (Step S19). In step S19, the design support apparatus 10 changes the antenna library 101 of the wiring cell 400 based on the antenna rule of the logic cell 500 and the like, similarly to step S22. However, since no wiring is formed between the logic cell 500 and the wiring cell 400 here, the process of adding the area of the additional wiring performed in step S22 to the wiring area of the wiring cell 400 is omitted.

ステップS19やステップS22において配線セルのアンテナ用ライブラリ101が変更されると、ステップS11の組合せ抽出工程に移行し、アンテナ検証対象となるゲートを有する論理セルの端子と当該ゲートに接続する端子を有する配線セルとの組合せが抽出されなくなるまで、上述の処理が繰り返される。尚、ステップS19、S22では、ステップS11において抽出された配線セルのアンテナ用ライブラリ101のみがアンテナ用ライブラリ201として変更され、他のセルのアンテナ用ライブラリ101は、変更されずに後述する配線処理(ステップS24)やアンテナ検証(ステップS25)に利用される。   When the antenna library 101 of the wiring cell is changed in step S19 or step S22, the process proceeds to the combination extraction step in step S11, and has a terminal of a logic cell having a gate to be verified and a terminal connected to the gate. The above process is repeated until no combination with the wiring cell is extracted. Note that in steps S19 and S22, only the antenna library 101 of the wiring cell extracted in step S11 is changed as the antenna library 201, and the antenna library 101 of other cells is not changed, and wiring processing (described later) This is used for step S24) and antenna verification (step S25).

以上のような動作により、論理セル500のアンテナ用ライブラリ101に規定されたゲート面積121やアンテナルール122、及び論理セル500内の配線面積が、配線セル400のアンテナ用ライブラリ101に追加され、アンテナ用ライブラリ201が生成される。本実施例において生成されるアンテナ用ライブラリ201は、アンテナ検証によってアンテナエラーがないと判定された配線面積を含むこととなる。   Through the above operation, the gate area 121 and the antenna rule 122 defined in the antenna library 101 of the logic cell 500 and the wiring area in the logic cell 500 are added to the antenna library 101 of the wiring cell 400, and the antenna Library 201 is generated. The antenna library 201 generated in the present embodiment includes a wiring area determined as having no antenna error by the antenna verification.

組合せ抽出工程(ステップS11)において組合せ抽出データ210が抽出されない場合(変数Nが“0”)、設計支援装置10は、全てのセルの組合せ(端子の組合せ)の抽出が完了したと判断し、ステップS23に移行する。ステップS23以降の処理は、図6に示す一例と同様に行われるが、本実施例では、ステップS24の配線工程の前に、ゲート505から配線セル400に至る配線面積が、当該ゲート505に規定されたアンテナルールを満足するように予め設定されている。このため、ステップS25においてアンテナエラーとなる可能性が低くなる。この結果、ステップS25からステップS25への手戻り回数が少なくなり、設計TATを更に短縮することが可能となる。   When the combination extraction data 210 is not extracted in the combination extraction step (step S11) (the variable N is “0”), the design support apparatus 10 determines that the extraction of all cell combinations (terminal combinations) has been completed, Control goes to step S23. The processing after step S23 is performed in the same manner as the example shown in FIG. 6, but in this embodiment, the wiring area from the gate 505 to the wiring cell 400 is defined in the gate 505 before the wiring process in step S24. Is set in advance so as to satisfy the antenna rule. For this reason, the possibility of an antenna error in step S25 is reduced. As a result, the number of rework from step S25 to step S25 is reduced, and the design TAT can be further shortened.

以上のように本発明によれば、配線セルのアンテナ用ライブラリにゲート面積、アンテナルールが追加されるため、配置配線工程においても配線セルから延設される配線に対し、アンテナ検証を行うことが可能となる。これにより、レイアウト情報(GDSデータ)出力後のDRCにおいてアンテナエラーとなる可能性が低くなり、DRCから配置配線工程への手戻り回数が削減される。   As described above, according to the present invention, since the gate area and the antenna rule are added to the antenna library for the wiring cell, the antenna verification can be performed on the wiring extending from the wiring cell even in the placement and wiring process. It becomes possible. As a result, the possibility of an antenna error in the DRC after the layout information (GDS data) is output is reduced, and the number of reversions from the DRC to the placement and routing process is reduced.

本レイアウト設計後における製造プロセスでは、DRCを終えたレイアウト情報を用いてシリコン基板表面にマスクが形成され、エッチング等の処理を経て半導体集積回路が作製される。   In the manufacturing process after the layout design, a mask is formed on the surface of the silicon substrate using the layout information after the DRC, and a semiconductor integrated circuit is manufactured through a process such as etching.

以上、本発明の実施の形態を詳述してきたが、具体的な構成は上記実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の変更があっても本発明に含まれる。例えば、ステップS19、S22、S25、S70、S72におけるアンテナ検証では、配線面積のみならずビアサイズ等も考慮され得る。この場合、アンテナ用ライブラリ201には、ゲート505から配線セル400までに形成されるビアのサイズも追加される。   The embodiment of the present invention has been described in detail above, but the specific configuration is not limited to the above-described embodiment, and changes within a scope not departing from the gist of the present invention are included in the present invention. . For example, in the antenna verification in steps S19, S22, S25, S70, and S72, not only the wiring area but also the via size can be considered. In this case, the size of the via formed from the gate 505 to the wiring cell 400 is also added to the antenna library 201.

又、図13に示すように、設計支援装置10は、インターネット20を介して、記憶装置13を有するサーバ30に接続されていても良い。この場合、設計支援装置10は、サーバ30内の記憶装置13から、配置配線データ100やアンテナ用ライブラリ101を取得して、レイアウト設計を行う。   As illustrated in FIG. 13, the design support apparatus 10 may be connected to a server 30 having a storage device 13 via the Internet 20. In this case, the design support apparatus 10 acquires the placement and routing data 100 and the antenna library 101 from the storage device 13 in the server 30 and performs layout design.

10:設計支援装置
13:記憶装置
14:入力装置
15:出力装置
16:バス
20:インターネット
30:サーバ
100、200:配置配線データ
101、201:アンテナ用ライブラリ
111:端子情報
112:アンテナ配線情報
121:ゲート面積
122:アンテナルール
210:組合せ抽出データ
211:配線セル名
212:論理セル名
213:ネット名
214:配線セルサイズ
215:配線セル配置座標
216:論理セルサイズ
217:論理セル配置座標
300:設計プログラム
400:配線セル
401、501、511:入力端子
402、502、512:出力端子
403、503、504、513、514、550、551::配線
500:論理セル
505、515:ゲート
506、507、516、517:拡散層
10: Design support device 13: Storage device 14: Input device 15: Output device 16: Bus 20: Internet 30: Server 100, 200: Placement and wiring data 101, 201: Library for antenna 111: Terminal information 112: Antenna wiring information 121 : Gate area 122: Antenna rule 210: Combination extraction data 211: Wiring cell name 212: Logic cell name 213: Net name 214: Wiring cell size 215: Wiring cell arrangement coordinates 216: Logic cell arrangement coordinates 217: Logic cell arrangement coordinates 300: Design program 400: wiring cell 401, 501, 511: input terminal 402, 502, 512: output terminal 403, 503, 504, 513, 514, 550, 551: wiring 500: logic cell 505, 515: gate 506, 507 516, 517 : Diffusion layer

Claims (8)

コンピュータ装置によって実行される半導体集積回路の設計方法であって、
記憶装置に記録されたネットリストに従い、論理セルと配線セルをチップ上に配置するステップと、
前記論理セル内のゲートに対するアンテナルールを前記配線セルの第1アンテナ用ライブラリに追加することで、前記第1アンテナ用ライブラリを第2アンテナ用ライブラリに変更するステップと、
前記配線セルと他の論理セルとを第1配線で接続するステップと、
前記第2アンテナ用ライブラリに規定されたアンテナルールに従い、前記ゲートの面積に対する前記第1配線の面積の比を検証する第1検証ステップと
を具備する
半導体集積回路の設計方法。
A method for designing a semiconductor integrated circuit executed by a computer device, comprising:
Placing logic cells and wiring cells on a chip according to a netlist recorded in a storage device;
Changing the first antenna library to a second antenna library by adding an antenna rule for the gate in the logic cell to the first antenna library of the wiring cell;
Connecting the wiring cell and another logic cell with a first wiring;
A method for designing a semiconductor integrated circuit, comprising: a first verification step of verifying a ratio of an area of the first wiring to an area of the gate in accordance with an antenna rule defined in the second antenna library.
請求項1に記載の半導体集積回路の設計方法において、
前記第1アンテナ用ライブラリには、前記配線セル内の第2配線の面積が規定され、
前記論理セルの第3アンテナ用ライブラリには、前記ゲートの面積と、前記論理セル内において前記ゲートに接続される第3配線の面積と、前記アンテナルールが規定され、
前記第2アンテナ用ライブラリに変更するステップは、
前記第1アンテナ用ライブラリに、前記ゲート面積及び前記アンテナルールを追加するステップと、
前記第1アンテナ用ライブラリにおいて、前記第2配線の面積に前記第3配線の面積を加算するステップと
を備え、
前記第1検証ステップは、前記第2アンテナ用ライブラリに規定された配線面積と前記第1面積との和と、前記第2アンテナ用ライブラリに規定されたゲート面積との比が前記アンテナルールを満足するかを検証するステップを備える
半導体集積回路の設計方法。
The method for designing a semiconductor integrated circuit according to claim 1,
In the first antenna library, an area of the second wiring in the wiring cell is defined,
In the third antenna library of the logic cell, the area of the gate, the area of the third wiring connected to the gate in the logic cell, and the antenna rule are defined,
The step of changing to the second antenna library includes:
Adding the gate area and the antenna rule to the first antenna library;
Adding the area of the third wiring to the area of the second wiring in the first antenna library;
In the first verification step, a ratio of the sum of the wiring area defined in the second antenna library and the first area and the gate area defined in the second antenna library satisfies the antenna rule. A method for designing a semiconductor integrated circuit, comprising the step of verifying whether to do so.
請求項2に記載の半導体集積回路の設計方法において、
前記論理セルと前記配線セルとを第4配線によって接続するステップを更に具備し、
前記第2アンテナ用ライブラリに変更するステップは、
前記第4配線の面積を算出するステップと、
前記第1アンテナ用ライブラリにおいて、前記第2配線の面積に前記第3配線の面積及び前記第4配線の面積を加算するステップと
を備える
半導体集積回路の設計方法。
The method of designing a semiconductor integrated circuit according to claim 2,
A step of connecting the logic cell and the wiring cell by a fourth wiring;
The step of changing to the second antenna library includes:
Calculating an area of the fourth wiring;
A method for designing a semiconductor integrated circuit, comprising: adding an area of the third wiring and an area of the fourth wiring to the area of the second wiring in the first antenna library.
請求項3に記載の半導体集積回路の設計方法において、
前記ゲートを備える前記論理セルを特定するステップと、
前記ゲートに接続される前記配線セルを特定するステップと、
前記論理セルと前記配線セルとが離隔しているか否かを判定するステップと
を更に具備し、
前記論理セルと前記配線セルとが離隔している場合、前記ゲートと前記配線セルとを前記第4配線によって接続するステップを備える
半導体集積回路の設計方法。
The method of designing a semiconductor integrated circuit according to claim 3,
Identifying the logic cell comprising the gate;
Identifying the wiring cell connected to the gate;
Determining whether or not the logic cell and the wiring cell are separated from each other; and
A method for designing a semiconductor integrated circuit, comprising: connecting the gate and the wiring cell by the fourth wiring when the logic cell and the wiring cell are separated from each other.
請求項2から4のいずれか1項に記載の半導体集積回路の設計方法において、
前記第2アンテナ用ライブラリに変更するステップの前に、前記第3アンテナ用ライブラリに規定されたアンテナルールに従い、前記ゲートの面積に対する、第2配線と前記第4配線の面積和の比を検証する第2検証ステップを更に具備し、
前記第2検証ステップにおいて、アンテナエラーと判定された場合、前記論理セルと配線セルの少なくとも一方を変更する
半導体集積回路の設計方法。
The method of designing a semiconductor integrated circuit according to any one of claims 2 to 4,
Prior to the step of changing to the second antenna library, the ratio of the area sum of the second wiring and the fourth wiring to the area of the gate is verified according to the antenna rule defined in the third antenna library. Further comprising a second verification step;
A method of designing a semiconductor integrated circuit, wherein, in the second verification step, when it is determined that an antenna error has occurred, at least one of the logic cell and the wiring cell is changed.
請求項2から5のいずれか1項に記載の半導体集積回路の設計方法において、
前記第2アンテナ用ライブラリに変更するステップの前に、前記第3アンテナ用ライブラリに規定されたアンテナルールに従い、前記ゲートの面積に対する第2配線の比を検証する第3検証ステップを更に具備し、
前記第3検証ステップにおいて、アンテナエラーと判定された場合、前記論理セルと配線セルの少なくとも一方を変更する
半導体集積回路の設計方法。
The method for designing a semiconductor integrated circuit according to any one of claims 2 to 5,
Before the step of changing to the second antenna library, further comprising a third verification step of verifying a ratio of the second wiring to the area of the gate according to the antenna rule defined in the third antenna library;
A method of designing a semiconductor integrated circuit, wherein, in the third verification step, when it is determined that an antenna error has occurred, at least one of the logic cell and the wiring cell is changed.
請求項1から6のいずれか1項に記載の半導体集積回路の設計方法をコンピュータに実行させる設計プログラム。   A design program for causing a computer to execute the method for designing a semiconductor integrated circuit according to claim 1. 請求項7に記載の設計プログラムが記録された記憶装置と、
前記設計プログラムを実行するCPUと
を具備する
半導体集積回路の設計支援装置。
A storage device in which the design program according to claim 7 is recorded;
A design support apparatus for a semiconductor integrated circuit, comprising: a CPU that executes the design program.
JP2011078557A 2011-03-31 2011-03-31 Design method, design program, and design support device for semiconductor integrated circuit Withdrawn JP2012212393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011078557A JP2012212393A (en) 2011-03-31 2011-03-31 Design method, design program, and design support device for semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011078557A JP2012212393A (en) 2011-03-31 2011-03-31 Design method, design program, and design support device for semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JP2012212393A true JP2012212393A (en) 2012-11-01

Family

ID=47266268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011078557A Withdrawn JP2012212393A (en) 2011-03-31 2011-03-31 Design method, design program, and design support device for semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP2012212393A (en)

Similar Documents

Publication Publication Date Title
US20060101367A1 (en) Design method of semiconductor device and semiconductor device
US8185856B2 (en) Manufacturing method, manufacturing program and manufacturing system for adjusting signal delay in a semiconductor device
US20080309374A1 (en) Semiconductor integrated circuit, layout design method of semiconductor integrated circuit, and layout program product for same
JP2007305713A (en) Semiconductor device, and method for generating wiring auxiliary pattern
US10599130B2 (en) Method and system for manufacturing an integrated circuit in consideration of a local layout effect
US8484599B2 (en) Performing via array merging and parasitic extraction
JP2007273871A (en) Method and program for generating design data, and manufacturing method of semiconductor device
US8234594B2 (en) Redundant micro-loop structure for use in an integrated circuit physical design process and method of forming the same
KR20170133750A (en) Computer-implemented method for designing integrated circuit
US7949982B2 (en) Semiconductor integrated circuit design system, semiconductor integrated circuit design method, and computer readable medium
US20110165737A1 (en) Method for designing semiconductor integrated circuit which includes metallic wiring connected to gate electrode and satisfies antenna criterion
US7281231B2 (en) Integrated circuit structure and a design method thereof
US8341560B2 (en) Method of designing semiconductor device including adjusting for gate antenna violation
JP2012212393A (en) Design method, design program, and design support device for semiconductor integrated circuit
US8239802B2 (en) Robust method for integration of bump cells in semiconductor device design
JP4333714B2 (en) Semiconductor device design method and semiconductor device design program
US10436841B2 (en) Use of wrapper cells to improve signal routing in integrated circuits
CN112289697A (en) Verification method
US7782086B2 (en) Semiconductor integrated circuit device
JP2008210983A (en) Reliability-design aiding method
US8296689B1 (en) Customizing metal pattern density in die-stacking applications
US11092885B2 (en) Manufacturing methods of semiconductor devices
JP5035434B2 (en) Semiconductor device design support program and semiconductor device design system
JP2009302179A (en) Layout system and layout method for semiconductor integrated circuit
JP2008171399A (en) Semiconductor device design method, semiconductor device design system, and computer program

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603