JP2012211741A - Dynamic characteristic identification method for sludge incinerator - Google Patents

Dynamic characteristic identification method for sludge incinerator Download PDF

Info

Publication number
JP2012211741A
JP2012211741A JP2011078208A JP2011078208A JP2012211741A JP 2012211741 A JP2012211741 A JP 2012211741A JP 2011078208 A JP2011078208 A JP 2011078208A JP 2011078208 A JP2011078208 A JP 2011078208A JP 2012211741 A JP2012211741 A JP 2012211741A
Authority
JP
Japan
Prior art keywords
flow rate
incinerator
air
amount
circulating fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011078208A
Other languages
Japanese (ja)
Inventor
Kazuhisa Ogasawara
一久 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2011078208A priority Critical patent/JP2012211741A/en
Publication of JP2012211741A publication Critical patent/JP2012211741A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To generate dynamic characteristics of a sludge incinerator in a short time while the sludge incinerator is stabilized.SOLUTION: In a circulating fluidized incinerator 1, manipulated variables of a plurality of operation ends are changed according to operation patterns of the plurality of operation ends from which changes of response amounts of the circulating fluidized incinerator according to change of a manipulated variable of one target operation end among the plurality of operation ends can be extracted, the response amounts of the circulating fluidized incinerator in respective operation patterns are detected, and the response amount of the circulating fluidized incinerator with respect to the change of the manipulated variable of the target operation end is extracted using the detected response amounts of the circulating fluidized incinerator. Thereby, the dynamic characteristics of the circulating fluidized incinerator 1 can be formed in a short time while the circulating fluidized incinerator 1 is stabilized.

Description

本発明は、循環式流動焼却炉や気泡式流動焼却炉等の汚泥焼却炉の動特性を同定する汚泥焼却炉の動特性同定方法に関するものである。   The present invention relates to a method for identifying the dynamic characteristics of a sludge incinerator for identifying the dynamic characteristics of a sludge incinerator such as a circulating fluidized incinerator or a bubble fluidized incinerator.

循環式流動焼却炉は、特許文献1に開示されているように、炉本体に充填された硅砂等からなる流動媒体を流動空気により流動させ、燃焼ガスに同伴されて炉本体から排出された流動媒体をサイクロンで回収して炉本体下部へ循環させながら廃棄物を焼却する共に、後燃焼炉で燃焼ガスを分解する炉である。この循環式流動焼却炉は、含水率や発熱量等の異なる幅広い廃棄物を安定して焼却できるため、下水汚泥等の廃棄物の焼却処理に用いられている。   As disclosed in Patent Document 1, the circulating fluidized incinerator is a flow in which a fluid medium composed of dredged sand or the like filled in the furnace body is caused to flow by flowing air and is discharged from the furnace body accompanied by combustion gas. It is a furnace that incinerates waste while collecting the medium with a cyclone and circulating it to the lower part of the furnace body, and decomposes the combustion gas in the post-combustion furnace. This circulating fluidized incinerator is used for incineration of waste such as sewage sludge because it can stably incinerate a wide variety of wastes having different moisture contents and calorific values.

特開2001−263634号公報JP 2001-263634 A

近年、環境問題に対応するため、汚泥焼却炉から排出されるNO等の温室効果ガスを低減することが要望されている。温度効果ガスの低減を図るためには、後燃焼炉の温度を高め、完全燃焼の度合いを高めることが有効である。例えば、後燃焼炉の温度を800℃から850℃に上げることによって温室効果ガスは約7割低減する。一方、炉本体の温度は、燃焼が保たれるように一定温度以上に維持する必要があり、そのために燃料を増加させる必要がある。 In recent years, in order to cope with environmental problems, there is a demand for reducing greenhouse gases such as N 2 O discharged from a sludge incinerator. In order to reduce the temperature effect gas, it is effective to increase the temperature of the post-combustion furnace and increase the degree of complete combustion. For example, raising the temperature of the post-combustion furnace from 800 ° C. to 850 ° C. reduces the greenhouse gas by about 70%. On the other hand, the temperature of the furnace body needs to be maintained at a certain temperature or higher so that combustion can be maintained, and therefore the fuel needs to be increased.

従来のPID(Proportional Integral Differential)制御では単一の目標値に対してのみしか制御値を制御できない。このため、炉本体の温度を一定温度に維持しながら、後燃焼炉の温度を高温に維持しようとする複数の目標値がある場合、カスケード制御によって温度制御が行われる。しかしながら、カスケード制御によって温度制御を行った場合、燃料の流量と流動空気の風量とが干渉し、過剰な流動空気の供給による燃料の過剰供給が生じ、あるいは炉本体の温度低下による燃焼停止が発生する場合があり、安定した燃焼制御を行うことができないことがあった。   In conventional PID (Proportional Integral Differential) control, a control value can be controlled only for a single target value. For this reason, when there are a plurality of target values for maintaining the temperature of the post-combustion furnace at a high temperature while maintaining the temperature of the furnace body at a constant temperature, the temperature control is performed by cascade control. However, when temperature control is performed by cascade control, the fuel flow rate and the flow rate of flowing air interfere with each other, resulting in an excessive supply of fuel due to an excessive supply of flowing air, or a combustion stop due to a decrease in the temperature of the furnace body. In some cases, stable combustion control cannot be performed.

このような背景から、特許出願人は、多層燃焼制御(モデル予想制御)理論を適用した循環式流動焼却炉の温度制御装置及びその温度制御方法を提案した。この温度制御装置及び温度制御方法によれば、炉本体の温度を目的の一定温度に維持しつつ、後燃焼炉の温度を目的の温度に維持する温度制御を安定して行うことができる。   Against this background, the patent applicant has proposed a temperature control device for a circulating fluidized incinerator and a temperature control method therefor, to which the multilayer combustion control (model predictive control) theory is applied. According to this temperature control device and temperature control method, temperature control for maintaining the temperature of the post-combustion furnace at the target temperature can be stably performed while maintaining the temperature of the furnace body at the target constant temperature.

ところで、多層燃焼制御理論を適用するためには、循環式流動焼却炉の動特性を同定する必要がある。システムの動特性を同定する方法としては、一般に、ステップ応答法が知られている。このステップ応答法とは、操作端の操作量を一つずつ変化させて操作端の操作量の変化に対するシステムの応答量の変化を検出するものである。しかしながら、このようなステップ応答法によれば、操作端の操作量を一つずつ変化させていくために、操作端の数が多くなると実行すべきステップ数が多くなり、システムの動特性を決定するまでに多くの時間を要する。   By the way, in order to apply the multilayer combustion control theory, it is necessary to identify the dynamic characteristics of the circulating fluidized incinerator. A step response method is generally known as a method for identifying the dynamic characteristics of a system. In this step response method, the operation amount at the operation end is changed one by one to detect the change in the response amount of the system with respect to the change in the operation amount at the operation end. However, according to such a step response method, since the operation amount of the operation end is changed one by one, the number of steps to be executed increases as the number of operation ends increases, which determines the dynamic characteristics of the system. It takes a lot of time to do.

また、循環式流動焼却炉では汚泥性状が一定ではなく変化するために、同じ条件でステップ応答テストを実行しても同じ挙動が得られてないことがある。また、循環式流動焼却炉では、ステップ開始条件を形成するために炉を安定化させる必要があり多くの時間を要すると共に、ステップ条件によっては炉を危険な状態にしてしまう可能性がある。同様の問題は、気泡式流動焼却炉においても発生する。このような背景から、汚泥焼却炉を安定させた状態で短時間に汚泥焼却炉の動特性を同定可能な汚泥焼却炉の動特性同定方法の提供が期待されていた。   In addition, since the sludge properties of the circulating fluidized incinerator are not constant and change, the same behavior may not be obtained even if the step response test is executed under the same conditions. Further, in the circulating fluidized incinerator, it is necessary to stabilize the furnace in order to form the step start condition, and it takes a lot of time. Depending on the step condition, the furnace may be in a dangerous state. A similar problem occurs in a bubble fluidized incinerator. From such a background, it has been expected to provide a method for identifying the dynamic characteristics of a sludge incinerator that can identify the dynamic characteristics of the sludge incinerator in a short time with the sludge incinerator stabilized.

本発明は、上記課題に鑑みてなされたものであって、その目的は、汚泥焼却炉を安定させた状態で短時間に汚泥焼却炉の動特性を同定可能な汚泥焼却炉の動特性同定方法を提供することにある。   The present invention has been made in view of the above problems, and its object is to identify the dynamic characteristics of a sludge incinerator capable of identifying the dynamic characteristics of a sludge incinerator in a short time with the sludge incinerator stabilized. Is to provide.

上記課題を解決し、目的を達成するために、本発明に係る汚泥焼却炉の動特性同定方法は、複数の操作端の操作量に対して応答する汚泥焼却炉の動特性同定方法であって、複数の操作端のうちの一つの目的操作端の操作量の変化に伴う汚泥焼却炉の応答量の変化量を抽出可能な複数の操作端の動作パターンに従って前記複数の操作端の操作量を変化させ、各動作パターンにおける汚泥焼却炉の応答量を検出する検出ステップと、前記検出ステップにおいて検出された汚泥焼却炉の応答量を用いて前記目的操作端の操作量の変化に対する汚泥焼却炉の応答量の変化量を抽出する抽出ステップと、を含む。   In order to solve the above-mentioned problems and achieve the object, the sludge incinerator dynamic characteristic identification method according to the present invention is a sludge incinerator dynamic characteristic identification method that responds to the operation amounts of a plurality of operation ends. The amount of operation of the plurality of operation ends is determined according to the operation pattern of the plurality of operation ends that can extract the amount of change in the response amount of the sludge incinerator accompanying the change in the operation amount of one target operation end among the plurality of operation ends. And detecting the response amount of the sludge incinerator in each operation pattern, and using the response amount of the sludge incinerator detected in the detection step, the sludge incinerator And an extraction step for extracting a change amount of the response amount.

本発明に係る汚泥焼却炉の動特性同定方法によれば、汚泥焼却炉を安定させた状態で短時間に汚泥焼却炉の動特性を同定することができる。   According to the method for identifying the dynamic characteristics of a sludge incinerator according to the present invention, the dynamic characteristics of the sludge incinerator can be identified in a short time while the sludge incinerator is stabilized.

図1は、本発明の一実施形態である循環式流動焼却炉の動特性同定方法が適用される循環式流動焼却炉の構成を示す図である。FIG. 1 is a diagram showing a configuration of a circulating fluidized incinerator to which a dynamic characteristic identification method for a circulating fluidized incinerator according to an embodiment of the present invention is applied. 図2は、図1に示す制御装置内におけるモデル予測演算処理の概要を示す図である。FIG. 2 is a diagram showing an outline of model prediction calculation processing in the control device shown in FIG. 図3は、モデル予測演算によるにおける評価関数の行列式を示す図である。FIG. 3 is a diagram showing a determinant of the evaluation function based on the model prediction calculation. 図4は、本発明の一実施形態である循環式流動焼却炉の動特性同定方法を説明するための概念図である。FIG. 4 is a conceptual diagram for explaining a method for identifying dynamic characteristics of a circulating fluidized incinerator according to an embodiment of the present invention. 図5は、本発明の一実施形態である循環式流動焼却炉の動特性同定方法の変形例を説明するための概念図である。FIG. 5 is a conceptual diagram for explaining a modification of the dynamic characteristic identification method for a circulating fluidized incinerator according to an embodiment of the present invention.

以下、図面を参照して、本発明の一実施形態である循環式流動焼却炉の動特性同定方法について説明する。   Hereinafter, a method for identifying the dynamic characteristics of a circulating fluidized incinerator according to an embodiment of the present invention will be described with reference to the drawings.

始めに、図1を参照して、本発明の一実施形態である循環式流動焼却炉の動特性同定方法が適用される循環式流動焼却炉の構成について説明する。図1は、本発明の一実施形態である循環式流動焼却炉の動特性同定方法が適用される循環式流動焼却炉の構成を示す図である。図1に示すように、本発明の一実施形態である循環式流動焼却炉の動特性同定方法が適用される循環式流動焼却炉1は、炉本体(ライザー)10を備えている。ライザー10は、略円筒形状の部材によって構成され、内部には希薄層11及び濃厚層12と称される充填された硅砂等の流動媒体の粒子留まりが形成されている。   First, a configuration of a circulating fluidized incinerator to which a dynamic characteristic identification method for a circulating fluidized incinerator according to an embodiment of the present invention is applied will be described with reference to FIG. FIG. 1 is a diagram showing a configuration of a circulating fluidized incinerator to which a dynamic characteristic identification method for a circulating fluidized incinerator according to an embodiment of the present invention is applied. As shown in FIG. 1, a circulating fluidized incinerator 1 to which a dynamic characteristic identification method for a circulating fluidized incinerator according to an embodiment of the present invention is applied includes a furnace body (riser) 10. The riser 10 is constituted by a substantially cylindrical member, and a particle retention of a fluid medium such as filled sand, which is called a dilute layer 11 and a rich layer 12, is formed inside.

ライザー10の下部に充填された流動媒体(平均粒子径200〜500μm)は、流動空気により炉内で流動され、投入された汚泥を激しく攪拌しつつ800〜900℃で燃焼させる。燃焼ガスは、流動媒体及び焼却灰と共にサイクロン20に送られて固気分離され、ライザー10下部に循環されながら汚泥を焼却する。燃焼ガスは後燃焼炉30で熱分解され、温室効果ガスの削減が行われる。ライザー10の下部には、汚泥供給ポンプ60を介して汚泥が供給され、同じく、バルブ51及び燃料流量検出部71を介して燃料70が供給される。バルブ51は、燃料流量調節器(FIC)41によって、燃料流量検出器71で検出された燃料流量が制御装置100から指示された制御量となるように開度制御される。   The fluid medium (average particle size 200 to 500 μm) filled in the lower part of the riser 10 is fluidized in the furnace by the fluid air, and the introduced sludge is combusted at 800 to 900 ° C. with vigorous stirring. The combustion gas is sent to the cyclone 20 together with the fluid medium and the incineration ash, separated into solid and gas, and incinerated sludge while being circulated to the lower part of the riser 10. The combustion gas is thermally decomposed in the post-combustion furnace 30 to reduce greenhouse gases. Sludge is supplied to the lower portion of the riser 10 via a sludge supply pump 60, and similarly, fuel 70 is supplied via a valve 51 and a fuel flow rate detector 71. The opening degree of the valve 51 is controlled by a fuel flow rate controller (FIC) 41 so that the fuel flow rate detected by the fuel flow rate detector 71 becomes a control amount instructed by the control device 100.

ライザー10の下部には1次空気ブロワ80からバルブ52を介して供給される1次空気が、後燃焼炉30の上部又は中部には、2次空気ブロワ90から供給される2次空気が、後燃焼炉30の中部又は下部には、2次空気から分岐して生成される3次空気がそれぞれ供給される。1次空気温度調節器42は、制御装置10によって指示された制御量の1次空気をライザー10下部の濃厚層12に供給するように、図示しない1次空気風量検出器の検出結果をもとにバルブ52の開度を制御する。2次空気温度調節器43は、制御装置100から指示された制御量の2次空気を、後燃焼炉30の上部又は中部に供給するように、図示しない2次空気風量検出器の検出結果をもとにバルブ53の開度を制御する。3次空気温度調節器44は、制御装置100から指示された制御量の3次空気を後燃焼炉30の中部又は下部に供給するように、図示しない3次空気風量検出器の検出結果をもとにバルブ54の開度を制御する。   Primary air supplied from the primary air blower 80 through the valve 52 is provided at the lower part of the riser 10, and secondary air supplied from the secondary air blower 90 is provided at the upper or middle part of the post-combustion furnace 30. Tertiary air generated by branching from the secondary air is supplied to the middle or lower part of the post-combustion furnace 30. The primary air temperature controller 42 is based on the detection result of a primary air flow rate detector (not shown) so as to supply the control air instructed by the control device 10 to the concentrated layer 12 below the riser 10. In addition, the opening degree of the valve 52 is controlled. The secondary air temperature controller 43 supplies the detection result of a secondary air flow rate detector (not shown) so as to supply the controlled air secondary air instructed from the control device 100 to the upper part or the middle part of the post-combustion furnace 30. Based on this, the opening degree of the valve 53 is controlled. The tertiary air temperature controller 44 also provides a detection result of a tertiary air flow rate detector (not shown) so as to supply a controlled amount of tertiary air instructed by the control device 100 to the middle or lower part of the post-combustion furnace 30. And the opening degree of the valve 54 is controlled.

ライザー10の上部には、複数の熱電対からなる熱電対群13が、また後燃焼炉3には、複数の熱電対33がそれぞれ分散配置され、それぞれの炉内温度が計測されるようになっている。この循環式流動焼却炉1では、ライザー10において、下部に供給された汚泥を同じく下部から供給される燃料及び1次空気によって燃焼させ、後燃焼炉30において、ライザー10から排出される排ガスを上部又は中部に供給される2次空気によって燃焼させ、同じく下部では、ライザー10及び後燃焼炉30上部又は中部で不完全燃焼のものを、3次空気を用いて完全燃焼させるようにしている。   A thermocouple group 13 composed of a plurality of thermocouples is arranged on the upper part of the riser 10, and a plurality of thermocouples 33 are arranged in the post-combustion furnace 3 in a distributed manner so that the respective furnace temperatures can be measured. ing. In the circulating fluidized incinerator 1, the sludge supplied to the lower part is combusted by the fuel and the primary air supplied from the lower part in the riser 10, and the exhaust gas discharged from the riser 10 is sent to the upper part in the post-combustion furnace 30. Alternatively, it is burned by the secondary air supplied to the middle part, and in the lower part, the incompletely burned parts in the upper part or middle part of the riser 10 and the post-combustion furnace 30 are completely burned using the tertiary air.

制御装置100には、燃料流量検出器71、図示しない汚泥流量検出器、1次空気風量検出器、2次空気風量検出器、3次空気風量検出器、流動空気検出器から、それぞれ燃料流量、汚泥流量、1次空気風量、2次空気風量、3次空気風量、流動空気風量が入力されるとともに、熱電対群13、33からそれぞれライザー10の炉内温度及び後燃焼炉30の炉内温度が入力されている。制御装置100には、後燃焼炉30からガスセンサ35により検出されるOやNO等の排ガス成分値も入力されている。制御装置100は、後述するモデル予測演算後、燃料流量調節器41、1次空気風量調節器42、2次空気風量調節器43、3次空気風量調節器44にそれぞれ制御量としての燃料流量、1次空気風量、2次空気風量、3次空気風量を出力する。 The control device 100 includes a fuel flow rate detector 71, a sludge flow rate detector (not shown), a primary air flow rate detector, a secondary air flow rate detector, a tertiary air flow rate detector, and a flowing air detector, respectively. The sludge flow rate, the primary air flow rate, the secondary air flow rate, the tertiary air flow rate, and the flowing air flow rate are input, and the furnace temperature of the riser 10 and the furnace temperature of the post-combustion furnace 30 from the thermocouple groups 13 and 33, respectively. Is entered. An exhaust gas component value such as O 2 or N 2 O detected by the gas sensor 35 from the post-combustion furnace 30 is also input to the control device 100. After the model prediction calculation to be described later, the control device 100 supplies a fuel flow rate as a control amount to the fuel flow rate adjuster 41, the primary air flow rate adjuster 42, the secondary air flow rate adjuster 43, and the tertiary air flow rate adjuster 44, respectively. The primary air volume, the secondary air volume, and the tertiary air volume are output.

制御装置100は、入力されたライザー10の炉内温度と後燃焼炉30の炉内温度がそれぞれ設定された温度に保たれ、燃料流量、1次空気風量、2次空気風量、3次空気風量が少なくなるようにモデル予測制御を行なう。このため、制御装置100は、各流量・風量の制御値を、燃料流量検出器71、図示しない1次空気風量検出器、2次空気風量検出器、3次風量検出器のそれぞれに出力する。燃料流量検出器71、そして図示しない1次空気風量検出器、2次空気風量検出器、3次空気風量検出器は、それぞれ入力された各制御値をもとに、PID制御によるフードバック制御を個別に行う。   The control device 100 maintains the input furnace temperature of the riser 10 and the furnace temperature of the post-combustion furnace 30 at the set temperatures, respectively, and the fuel flow rate, the primary air flow rate, the secondary air flow rate, and the tertiary air flow rate. Model predictive control is performed so that the For this reason, the control apparatus 100 outputs the control value of each flow volume and air volume to each of the fuel flow detector 71, a primary air air volume detector (not shown), a secondary air air volume detector, and a tertiary air volume detector. The fuel flow rate detector 71, a primary air flow rate detector (not shown), a secondary air flow rate detector, and a tertiary air flow rate detector perform hoodback control by PID control based on the input control values. Do it individually.

制御装置100は、図2に示すようにモデル予測演算部100aを有し、このモデル予測演算部100aが上記したモデル予測制御を行う。なお、モデル予測制御とは、システムのモデルをもとに未来の出力や状態を予測し、一定時刻毎に最適制御問題を解き、その時刻での入力を決定する制御である。また、現代制御特有の多入力・多出力制御を可能にし、制御量の干渉を生じさせることがない。特に、このモデル予測制御は、制約条件を容易に記述できることから、制約条件を扱うことができる制御方法として注目されている。   As shown in FIG. 2, the control device 100 includes a model prediction calculation unit 100a, and the model prediction calculation unit 100a performs the model prediction control described above. Note that model predictive control is control that predicts future outputs and states based on a system model, solves an optimal control problem at fixed time intervals, and determines an input at that time. Moreover, the multi-input / multi-output control peculiar to the modern control is enabled, and the interference of the control amount does not occur. In particular, this model predictive control is attracting attention as a control method capable of handling the constraint conditions because the constraint conditions can be easily described.

この循環式流動焼却炉1の制御を行う場合、燃料及び空気の各供給量が、炉のサイズ等に大きく依存する未知の制御量であり、この場合、燃料停止等の問題が生じないような大枠としての制約条件として、燃料及び空気の各供給量を当てはめ、後燃焼炉30の上部、中部及び下部の複数の温度目標値を一定温度に保ちつつ、燃料70及び空気の各供給量を予測制御することができる。   When the control of the circulating fluidized incinerator 1 is performed, the supply amounts of fuel and air are unknown control amounts that largely depend on the size of the furnace, and in this case, problems such as fuel stoppage do not occur. As a general constraint, the fuel and air supply amounts are applied, and the fuel 70 and air supply amounts are predicted while maintaining a plurality of temperature target values at the upper, middle, and lower portions of the post-combustion furnace 30 at a constant temperature. Can be controlled.

モデル予測演算部100aは、予めこの汚泥熱焼システムの動特性を生成しておく。精密な物理モデルの構築は困難であるため、ここでは、ステップ応答モデルを生成する。ステップ応答モデルは、ステップ入力した場合のステップ応答を飽和するまでの時間と値で表現する。本実施形態では、熱電対群13によって検出されるライザー10内の複数の温度、熱電対群33によって検出される後燃焼炉30の複数の温度、1次空気の風量、2次空気の風量、3次空気の風量、燃料70の流量に対するステップ応答モデルを生成する。ステップ応答モデルの生成方法については後述する。   The model prediction calculation unit 100a generates the dynamic characteristics of the sludge thermal firing system in advance. Since it is difficult to construct a precise physical model, a step response model is generated here. The step response model is expressed by time and value until the step response when the step input is saturated. In the present embodiment, a plurality of temperatures in the riser 10 detected by the thermocouple group 13, a plurality of temperatures of the post-combustion furnace 30 detected by the thermocouple group 33, an air volume of primary air, an air volume of secondary air, A step response model for the air volume of the tertiary air and the flow rate of the fuel 70 is generated. A method of generating the step response model will be described later.

モデル予測演算部100aは、このステップ応答モデルに、空気比の制約条件を記述しておく。上述したように、燃料及び空気の制御量は未知のものであり、この熱料及び空気を制御するにあたり、空気比の制約条件をステップ応答モデルに記述しておく。ここで、空気比とは、燃料を完全燃焼させる必要最低限の理論空気量Aと実際に供給されている空気量Bとの比であり、例えば、空気比AFRは、fair/(ηcake×fcake+ηfuel×ffuel)として示される。ηcakeは、汚泥を完全燃焼させるために必要な汚泥理論空気比であり、fcakeは汚泥の流量であり、ηfuelは燃料を完全燃焼させるに必要な熱量理論空気比であり、ffuelは燃料の流量である。空気比AFRは、上限空気比rmaxと下限空気比fminとの範囲内に収まる制約条件が記載される。   The model prediction calculation unit 100a describes the air ratio constraint condition in the step response model. As described above, the control amounts of fuel and air are unknown, and in controlling the heat charge and air, the constraint condition of the air ratio is described in the step response model. Here, the air ratio is a ratio between a minimum required theoretical air amount A for completely burning the fuel and an actually supplied air amount B. For example, the air ratio AFR is fair / (ηcake × fcake + ηfuel). Xffuel). ηcake is the sludge theoretical air ratio required for complete combustion of sludge, fcake is the sludge flow rate, ηfuel is the calorific value air ratio required for complete combustion of fuel, and fuel is the fuel flow rate. is there. In the air ratio AFR, a constraint condition that falls within the range between the upper limit air ratio rmax and the lower limit air ratio fmin is described.

モデル予測演算部100aは、このモデルをもとに、モデル予測演算を行うが、このモデル予測演算を行うために、図2に示すように、まず、ライザー10の5つの炉内温度、後燃焼炉30の複数の炉内温度の設定温度値101が入力される。また、上記した制約条件の条件値である制約条件102も入力される。例えば、上記した空気比の上限値及び下限値である。ライザー10の上部温度の上限値を制約条件として入力とてもよい。さらに、演算条件103を入力しておく。演算条件とは、実際の演算に必要な設定スケールや演算パラメータであり、例えば演算周期(サンプリング周期)や予測期間等である。   The model prediction calculation unit 100a performs a model prediction calculation based on this model. In order to perform this model prediction calculation, first, as shown in FIG. A set temperature value 101 of a plurality of furnace temperatures of the furnace 30 is input. Further, a constraint condition 102 which is a condition value of the above-described constraint condition is also input. For example, the upper limit value and the lower limit value of the air ratio described above. The upper limit of the upper temperature of the riser 10 is very good as a constraint. Further, the calculation condition 103 is input. The calculation conditions are set scales and calculation parameters necessary for actual calculation, such as a calculation cycle (sampling cycle) and a prediction period.

このような設定処理が施されたモデル予測演算部100aは、熱電対群13、33から現在温度110を取得し、この現在温度110が温度設定値101、排ガス成分であるOやNOの設定値104(例えば、Oの場合5%、NOの場合50〜100ppm等)を維持するための予測演算を行うとともに、燃料の流量及び空気の風量の現在操作量120が、入力され制約条件を満足する範囲内で燃料の流量及び空気の風量の次時刻操作量130を出力する。汚泥の固形分は、固形分=汚泥流量×(1−含水率)で求められ、この固形分の組成分析結果から燃焼分を知ることができる。この燃焼分は、空気量に関係する「汚泥からの必要燃焼空気風量」の演算に関与するため、汚泥流量のステップ応答モデルを生成し、これをモデル予測制御に取り込むことによって、汚泥流量による変動を抑制できる。 The model prediction calculation unit 100a subjected to such setting processing acquires the current temperature 110 from the thermocouple groups 13 and 33, and the current temperature 110 is the temperature set value 101, O 2 or N 2 O which is an exhaust gas component. , And a current manipulated variable 120 of the fuel flow rate and the air flow rate are input, as well as a prediction calculation for maintaining the set value 104 (for example, 5% for O 2 , 50-100 ppm for N 2 O, etc.) Then, the next time manipulated variable 130 of the fuel flow rate and air flow rate is output within a range that satisfies the constraint conditions. The solid content of the sludge is obtained by solid content = sludge flow rate × (1−water content), and the combustion content can be known from the composition analysis result of the solid content. Since this combustion component is involved in the calculation of the “required combustion air volume from sludge” related to the air volume, a step response model of the sludge flow rate is generated and incorporated into the model predictive control. Can be suppressed.

このモデル予測演算の概要は、図3に示すように、既知パラメータ201と現在(時刻k)の現在入出力値202を初期値とし、設定パラメータ203を用いて所定サンプリング時刻毎(k+1,k+2,・・・,k+N:Nは整数)の予測入力値204とを表す状態方程式を求め、このうちの予測出力値204を用いて評価関数Jを生成し、この評価関数Jに対する最適解、即ち最小値を求める最適演算を行う。この最適値演算は、空気比等の制約条件102を満足し、温度設定値101と予測温度値との制御誤差の距離を含む各要素の最小値を求め、このときの予測入力値200を次時刻操作量130として出力する。この結果、ライザー10の炉内温度や後燃焼炉30の炉内温度等の温度制御値が複数の目標値に保たれるように制御するとともに、燃料の流量及び空気の風量が所定範囲に収まり、安定した制御を行うことができる。   As shown in FIG. 3, the outline of the model prediction calculation is as follows. The known parameter 201 and the current input / output value 202 at the current time (time k) are set as initial values, and the set parameter 203 is used for every predetermined sampling time (k + 1, k + 2, .., K + N, where N is an integer), a state equation representing the predicted input value 204 is obtained, and an evaluation function J is generated using the predicted output value 204 of these, and an optimal solution for this evaluation function J, ie, a minimum Performs an optimal calculation to obtain a value. This optimum value calculation satisfies the constraint condition 102 such as the air ratio, finds the minimum value of each element including the distance of the control error between the temperature setting value 101 and the predicted temperature value, and calculates the predicted input value 200 at this time as Output as a time operation amount 130. As a result, control is performed so that temperature control values such as the furnace temperature of the riser 10 and the furnace temperature of the post-combustion furnace 30 are maintained at a plurality of target values, and the fuel flow rate and air flow rate are within a predetermined range. , Stable control can be performed.

次に、図4,図5を参照して、ステップ応答モデルの生成方法について説明する。本発明の一実施形態である循環式流動焼却炉1では、各操作端(燃料流量及び1〜3次空気の風量)を同時に変動させ、各ステップ同士の相殺から循環式流動焼却炉1の応答量(ライザー温度及び後燃焼炉温度)に対する目的操作端の影響だけを抽出することによって、循環式流動焼却炉1を安定させた状態で短時間に循環式流動焼却炉1の動特性を生成可能にする。すなわち、このステップ応答モデルの生成方法では、図4に示すように、(1)燃料流量を前ステップより+10%変化させ、1次空気,2次空気,及び3次空気の風量をそれぞれ前ステップより+10%,−10%,+10%変化させるステップ、(2)燃料流量を前ステップより+10%変化させ、1次空気,2次空気,及び3次空気の風量をそれぞれ前ステップより+10%,+10%,−10%変化させるステップ、(3)燃料流量を前ステップより+10%変化させ、1次空気,2次空気,及び3次空気の風量をそれぞれ前ステップより−10%,+10%,+10%変化させるステップ、及び(4)燃料流量を前ステップより+10%変化させ、1次空気,2次空気,及び3次空気をそれぞれ前ステップより−10%,−10%,−10%変化させるステップを順に実行し、各ステップにおけるライザー温度又は後燃焼炉温度の変化量A〜Dを検出する。この時、燃料流量及び1〜3次空気の風量とライザー温度又は後燃焼炉温度の変化量A〜Dとの間には図4に示す行列式のような関係があることから、この行列式を用いることによって、ライザー温度又は後燃焼炉温度の変化量A〜Dに対する燃料流量及び1〜3次空気の風量それぞれの影響を抽出することができる。なお、上記(1)〜(4)の各ステップ終了後に、各ステップの操作量の値を反転させた値を用いて同様のステップを実行することが望ましい。   Next, a method for generating a step response model will be described with reference to FIGS. In the circulating fluidized incinerator 1 according to an embodiment of the present invention, the operating ends (fuel flow rate and primary to primary air flow rate) are simultaneously varied, and the response of the circulating fluidized incinerator 1 is obtained by canceling each step. By extracting only the influence of the target operation end on the quantity (riser temperature and post-combustion furnace temperature), the dynamic characteristics of the circulating fluidized incinerator 1 can be generated in a short time with the circulating fluidized incinerator 1 stabilized. To. That is, in this step response model generation method, as shown in FIG. 4, (1) the fuel flow rate is changed by + 10% from the previous step, and the air volumes of primary air, secondary air, and tertiary air are respectively changed to the previous step. (2) The fuel flow rate is changed by + 10% from the previous step, and the air volumes of primary air, secondary air, and tertiary air are each + 10% from the previous step, and + 10%, −10%, + 10%. + 10%, -10% change step, (3) The fuel flow rate is changed by + 10% from the previous step, and the air volume of primary air, secondary air, and tertiary air is -10%, + 10%, respectively, from the previous step. (4) Change the fuel flow rate by + 10% from the previous step, and change the primary air, secondary air, and tertiary air to -10% and -10% from the previous step, respectively. The step of varying -10% executed sequentially detects a change amount A~D riser temperatures or post combustion furnace temperature in each step. At this time, there is a relationship as shown in the determinant shown in FIG. 4 between the fuel flow rate and the primary air flow rate and the change amounts A to D of the riser temperature or the post-combustion furnace temperature. By using this, it is possible to extract the influence of the fuel flow rate and the primary to tertiary air flow rates on the rise amounts A to D of the riser temperature or the post-combustion furnace temperature. In addition, it is desirable to perform the same step using the value which reversed the value of the operation amount of each step after completion | finish of each step of said (1)-(4).

また、図5に示すように、(1)燃料流量を前ステップより+10%変化させ、1次空気,2次空気,及び3次空気の風量をそれぞれ前ステップより+10%,−10%,+10%変化させるステップ、(2)燃料流量を前ステップより+10%変化させ、1次空気,2次空気,及び3次空気の風量をそれぞれ前ステップより+10%,+10%,−10%変化させるステップ、(3)燃料流量を前ステップより−10%変化させ、1次空気,2次空気,及び3次空気の風量をそれぞれ前ステップより−10%,+10%,+10%変化させるステップ、(4)燃料流量を前ステップより+10%変化させ、1次空気,2次空気,及び3次空気をそれぞれ前ステップより−10%,−10%,−10%変化させるステップ、及び(5)燃料流量を前ステップより−20%変化させ、1次空気,2次空気,及び3次空気を変化させないステップを順に実行し、各ステップにおけるライザー温度又は後燃焼炉温度の変化量A〜Eを検出してもよい。この時、燃料流量及び1〜3次空気の風量とライザー温度又は後燃焼炉温度の変化量A〜Eとの間には図5に示す行列式のような関係があることから、この行列式を用いることによって、ライザー温度又は後燃焼炉温度の変化量A〜Eに対する燃料流量及び1〜3次空気の風量それぞれの影響を抽出することができる。なお、上記(1)〜(5)の各ステップ終了後に、各ステップの操作量の値を反転させた値を用いて同様のステップを実行することが望ましい。   Further, as shown in FIG. 5, (1) the fuel flow rate is changed by + 10% from the previous step, and the air volumes of primary air, secondary air, and tertiary air are + 10%, −10%, +10 from the previous step, respectively. (2) A step of changing the fuel flow rate by + 10% from the previous step and changing the air volume of primary air, secondary air, and tertiary air by + 10%, + 10%, and -10%, respectively, from the previous step. (3) The fuel flow rate is changed by -10% from the previous step, and the air volumes of primary air, secondary air, and tertiary air are changed by -10%, + 10%, + 10% from the previous step, respectively (4) ) Changing the fuel flow rate by + 10% from the previous step, changing primary air, secondary air, and tertiary air by -10%, -10%, -10% from the previous step, respectively, and (5) fuel flow Is changed by -20% from the previous step, and the steps without changing the primary air, secondary air, and tertiary air are executed in order, and the change amounts A to E of the riser temperature or the post-combustion furnace temperature in each step are detected. May be. At this time, since there is a relationship as shown in the determinant shown in FIG. 5 between the fuel flow rate and the air volume of the primary to tertiary air and the change amounts A to E of the riser temperature or the post-combustion furnace temperature, this determinant By using this, it is possible to extract the influence of the fuel flow rate and the primary to tertiary air flow rates on the rise amounts A to E of the riser temperature or the post-combustion furnace temperature. In addition, it is desirable to perform the same step using the value obtained by inverting the value of the manipulated value in each step after the end of each of the steps (1) to (5).

このように、本発明の一実施形態である循環式流動焼却炉1では、複数の操作端のうちの一つの目的操作端の操作量の変化に伴う循環式流動焼却炉の応答量の変化量を抽出可能な複数の操作端の動作パターンに従って複数の操作端の操作量を変化させ、各動作パターンにおける循環式流動焼却炉の応答量を検出し、検出された循環式流動焼却炉の応答量を用いて目的操作端の操作量の変化に対する循環式流動焼却炉の応答量の変化量を抽出するので、循環式流動焼却炉1を安定させた状態で短時間に循環式流動焼却炉1の動特性を生成することができる。   Thus, in the circulating fluidized incinerator 1 which is one embodiment of the present invention, the amount of change in the response amount of the circulating fluidized incinerator accompanying the change in the manipulated variable at one target operating end among the plurality of operating ends. The operation amount of the plurality of operation ends is changed according to the operation pattern of the plurality of operation ends that can be extracted, the response amount of the circulating fluidized incinerator is detected in each operation pattern, and the detected response amount of the circulating fluidized incinerator is detected Is used to extract the amount of change in the response of the circulating fluidized incinerator with respect to the change in the manipulated variable at the target operating end, so that the circulating fluidized incinerator 1 is stabilized in a short time in a stable state. Dynamic characteristics can be generated.

〔実験例〕
最後に、上記ステップ応答モデルの生成方法の実験例について説明する。本実験例では、以下の表1及び表2に示すステップ条件で循環式流動焼却炉1のステップ応答モデルを生成した。表3は、本実験によって求められた操作端の単位操作量に対する後燃焼炉温度及びライザー温度の応答量を示す。本実験によって求められた操作端の単位操作量に対する後燃焼炉温度及びライザー温度の応答量は、操作端毎にステップ入力する従来手法によって求められた応答量にほぼ近い値となった。このことから、上記ステップ応答モデルの生成方法によれば、循環式流動焼却炉1を安定させた状態で短時間に循環式流動焼却炉1の動特性を生成できることが確認された。
[Experimental example]
Finally, an experimental example of the step response model generation method will be described. In this experimental example, a step response model of the circulating fluidized incinerator 1 was generated under the step conditions shown in Tables 1 and 2 below. Table 3 shows the response amounts of the post-combustion furnace temperature and the riser temperature with respect to the unit operation amount at the operation end obtained by this experiment. The response values of the post-combustion furnace temperature and the riser temperature with respect to the unit operation amount at the operation end obtained by this experiment were values close to the response amounts obtained by the conventional method in which step input is performed for each operation end. From this, it was confirmed that the dynamic characteristics of the circulating fluidized incinerator 1 can be generated in a short time in a state where the circulating fluidized incinerator 1 is stabilized according to the method for generating the step response model.

Figure 2012211741
Figure 2012211741
Figure 2012211741
Figure 2012211741
Figure 2012211741
Figure 2012211741

以上、本発明者によってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。例えば、本実施形態は循環式流動焼却炉の動特性を同定するものであるが、本発明は本実施形態に限定されることはなく、気泡式流動焼却炉等の複数の操作端の操作量に対して応答する汚泥焼却炉全般に適用することができる。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれる。   Although the embodiment to which the invention made by the present inventor is applied has been described above, the present invention is not limited by the description and the drawings that form a part of the disclosure of the present invention according to this embodiment. For example, this embodiment identifies the dynamic characteristics of a circulating fluidized incinerator, but the present invention is not limited to this embodiment, and the operation amount of a plurality of operation ends such as a bubble fluidized incinerator. It can be applied to all sludge incinerators that respond to the above. That is, other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.

1 循環式流動焼却炉
10 炉本体(ライザー)
11 希薄層
12 濃厚層
13、33 熱電対
20 サイクロン
30 後燃焼炉
35 ガスセンサ
41 燃料流量調整器
42〜44 空気温度調整器
51〜54 バルブ
60 汚泥供給ポンプ
70 燃料
71 燃料流量検出部
80 一次空気ブロワ
90 二次空気ブロワ
100 制御装置
100a モデル予測演算部
1 Circulating fluidized incinerator 10 Main body (riser)
DESCRIPTION OF SYMBOLS 11 Dilute layer 12 Rich layer 13, 33 Thermocouple 20 Cyclone 30 Post combustion furnace 35 Gas sensor 41 Fuel flow regulator 42-44 Air temperature regulator 51-54 Valve 60 Sludge supply pump 70 Fuel 71 Fuel flow detector 80 Primary air blower 90 Secondary Air Blower 100 Controller 100a Model Prediction Calculation Unit

Claims (2)

複数の操作端の操作量に対して応答する汚泥焼却炉の動特性同定方法であって、
複数の操作端のうちの一つの目的操作端の操作量の変化に伴う汚泥焼却炉の応答量の変化量を抽出可能な複数の操作端の動作パターンに従って前記複数の操作端の操作量を変化させ、各動作パターンにおける汚泥焼却炉の応答量を検出する検出ステップと、
前記検出ステップにおいて検出された汚泥焼却炉の応答量を用いて前記目的操作端の操作量の変化に対する汚泥焼却炉の応答量の変化量を抽出する抽出ステップと、
を含むことを特徴とする汚泥焼却炉の動特性同定方法。
A method for identifying the dynamic characteristics of a sludge incinerator that responds to the amount of operation at a plurality of operation ends,
The operation amount of the plurality of operation ends is changed according to the operation pattern of the plurality of operation ends capable of extracting the change amount of the response amount of the sludge incinerator accompanying the change of the operation amount of one target operation end among the plurality of operation ends. Detection step of detecting the response amount of the sludge incinerator in each operation pattern,
An extraction step for extracting the amount of change in the response amount of the sludge incinerator to the change in the operation amount of the target operation end using the response amount of the sludge incinerator detected in the detection step;
A method for identifying the dynamic characteristics of a sludge incinerator characterized by comprising
前記汚泥焼却炉は循環式流動焼却炉であり、前記複数の操作端には少なくとも燃料流量、1次空気流量、2次空気流量、及び3次空気流量が含まれ、前記汚泥焼却炉の応答量にはライザー温度及び後燃焼炉温度が含まれることを特徴とする請求項1に記載の汚泥焼却炉の動特性同定方法。
The sludge incinerator is a circulating fluidized incinerator, and the plurality of operation ends include at least a fuel flow rate, a primary air flow rate, a secondary air flow rate, and a tertiary air flow rate, and the response amount of the sludge incinerator The method for identifying the dynamic characteristics of a sludge incinerator according to claim 1, wherein the temperature includes a riser temperature and a post-combustion furnace temperature.
JP2011078208A 2011-03-31 2011-03-31 Dynamic characteristic identification method for sludge incinerator Pending JP2012211741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011078208A JP2012211741A (en) 2011-03-31 2011-03-31 Dynamic characteristic identification method for sludge incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011078208A JP2012211741A (en) 2011-03-31 2011-03-31 Dynamic characteristic identification method for sludge incinerator

Publications (1)

Publication Number Publication Date
JP2012211741A true JP2012211741A (en) 2012-11-01

Family

ID=47265841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011078208A Pending JP2012211741A (en) 2011-03-31 2011-03-31 Dynamic characteristic identification method for sludge incinerator

Country Status (1)

Country Link
JP (1) JP2012211741A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064107A (en) * 1992-06-16 1994-01-14 Matsushita Electric Ind Co Ltd System identifying device
JP2001182926A (en) * 1999-12-28 2001-07-06 Kawasaki Heavy Ind Ltd Method and device of controlling combustion in combustion furnace
JP2001263634A (en) * 2000-03-22 2001-09-26 Ngk Insulators Ltd Method for operating circulation fluidized incinerator, and separate particle size control device for fluid medium used for the same
JP2009139043A (en) * 2007-12-10 2009-06-25 Metawater Co Ltd Sludge incineration equipment and sludge incineration method using it
JP2009199305A (en) * 2008-02-21 2009-09-03 Yamatake Corp Data collection method, data collection apparatus, and modeling device
JP2010113638A (en) * 2008-11-10 2010-05-20 Fuji Electric Systems Co Ltd Plant control system and control method
JP2010230283A (en) * 2009-03-27 2010-10-14 Metawater Co Ltd Device and method of controlling sludge incinerator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064107A (en) * 1992-06-16 1994-01-14 Matsushita Electric Ind Co Ltd System identifying device
JP2001182926A (en) * 1999-12-28 2001-07-06 Kawasaki Heavy Ind Ltd Method and device of controlling combustion in combustion furnace
JP2001263634A (en) * 2000-03-22 2001-09-26 Ngk Insulators Ltd Method for operating circulation fluidized incinerator, and separate particle size control device for fluid medium used for the same
JP2009139043A (en) * 2007-12-10 2009-06-25 Metawater Co Ltd Sludge incineration equipment and sludge incineration method using it
JP2009199305A (en) * 2008-02-21 2009-09-03 Yamatake Corp Data collection method, data collection apparatus, and modeling device
JP2010113638A (en) * 2008-11-10 2010-05-20 Fuji Electric Systems Co Ltd Plant control system and control method
JP2010230283A (en) * 2009-03-27 2010-10-14 Metawater Co Ltd Device and method of controlling sludge incinerator

Similar Documents

Publication Publication Date Title
JP5683338B2 (en) Temperature control device for circulating fluidized incinerator and temperature control method thereof
FI70633C (en) FOERFARANDE FOER REGLERING AV UPPVAERMNINGEN AV EN AONGPANNA
JP2008057935A (en) Stoker type incinerator and its combustion control method
KR102236283B1 (en) Garbage incineration facility and control method of waste incineration facility
JP6779255B2 (en) Waste incinerator
JP6153090B2 (en) Waste incinerator and waste incineration method
JP5411779B2 (en) Temperature control device for sludge incinerator and temperature control method for sludge incinerator
WO2019235377A1 (en) Method for estimating state quantity of combustion facility, combustion control method, and combustion control device
JP4188859B2 (en) Operation control method and operation control apparatus for waste treatment plant equipment
JP5452906B2 (en) Combustion control system for combustion furnace and combustion control method thereof
JP2012211741A (en) Dynamic characteristic identification method for sludge incinerator
JP4201781B2 (en) Incinerator control method and apparatus, and program
JP2010145018A (en) Boiler device and method of controlling boiler device
JP5277036B2 (en) Temperature control device for sludge incinerator and temperature control method for sludge incinerator
JP2008249214A (en) Control method, device and program for incinerator
JP2006226674A (en) Combustion control system of refuse incinerator without boiler facility
JP7397627B2 (en) Incineration plant and its combustion control method
JP2022134592A (en) Prediction model creation device, flue gas concentration control system, prediction model creation method, and flue gas concentration control method
KR101552294B1 (en) Circulating-type multi-layer furnace
JP4486628B2 (en) Incinerator control method and apparatus, and program
JP7075021B1 (en) Combustion control device and combustion control method for waste incineration facilities
JP4942788B2 (en) Incinerator control device
JP2009150626A (en) Combustion control system for combustion furnace and its combustion control method
JP2007519089A5 (en)
JP2005274025A (en) Operation control device for fludized incinerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106