JP2012211060A - Method for producing argon - Google Patents

Method for producing argon Download PDF

Info

Publication number
JP2012211060A
JP2012211060A JP2011078427A JP2011078427A JP2012211060A JP 2012211060 A JP2012211060 A JP 2012211060A JP 2011078427 A JP2011078427 A JP 2011078427A JP 2011078427 A JP2011078427 A JP 2011078427A JP 2012211060 A JP2012211060 A JP 2012211060A
Authority
JP
Japan
Prior art keywords
argon
catalyst
argon gas
oxygen
crude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011078427A
Other languages
Japanese (ja)
Inventor
Takayoshi Adachi
貴義 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2011078427A priority Critical patent/JP2012211060A/en
Publication of JP2012211060A publication Critical patent/JP2012211060A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04733Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction
    • F25J3/04739Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction in combination with an auxiliary pure argon column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/82Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing argon, with which high-purity argon is obtained by suppressing occurrence of methane.SOLUTION: In the method for producing argon, raw material air is separated into gaseous nitrogen and oxygen by distillation, an intermediate component in which argon is concentrated is extracted and rectified, and crude gaseous argon including small amounts of oxygen and nitrogen is obtained, and subsequently the high-purity argon is produced by purifying the obtained crude argon. The method includes a deoxidation step to add hydrogen to the crude gaseous argon and to remove oxygen in the gaseous argon with a catalytic reaction, and in the deoxidation step, a change of carbon monoxide in the crude gaseous argon into methane is suppressed by using a catalyst with low activity.

Description

本発明は、深冷式空気分離法によって得られた粗アルゴンを精製して高純度のアルゴンを製造する方法に関する。   The present invention relates to a method for producing high-purity argon by purifying crude argon obtained by a cryogenic air separation method.

深冷式空気分離によりアルゴンを製造する方法では、先ず、原料空気を蒸留により窒素ガスと酸素とに分離し、アルゴンが濃縮された中間成分を抜き出して精留し、少量の酸素と窒素とを含む粗アルゴンガスを得る。次に、得られた粗アルゴンガスに水素を添加し、触媒反応にてアルゴンガス中の酸素を除去する(以下、脱酸素工程という。)。次に、高純度アルゴン塔でアルゴンガス中の水素を精留除去する。これにより、高純度のアルゴンを得ることができる(例えば、特許文献1,2を参照。)。   In the method of producing argon by cryogenic air separation, first, the raw material air is separated into nitrogen gas and oxygen by distillation, an intermediate component enriched in argon is extracted and rectified, and a small amount of oxygen and nitrogen is removed. A crude argon gas containing is obtained. Next, hydrogen is added to the obtained crude argon gas, and oxygen in the argon gas is removed by a catalytic reaction (hereinafter referred to as a deoxygenation step). Next, hydrogen in the argon gas is rectified and removed in a high purity argon tower. Thereby, highly purified argon can be obtained (for example, refer patent documents 1 and 2).

特開昭59−145473号公報JP 59-145473 A 特公平8−32550号公報Japanese Patent Publication No. 8-32550

ところで、上述した脱酸素工程では、下記式(1)の反応を目的としている。
+1/2O O …(1)
By the way, in the deoxygenation process mentioned above, it aims at reaction of following formula (1).
H 2 + 1 / 2O 2 H 2 O (1)

しかしながら、粗アルゴンガス中には、数%の酸素と共に数ppmの微量の一酸化炭素が含まれており、この一酸化炭素が、下記式(2)のように、脱酸素工程時の反応熱によってメタンに変化する。
CO+3H CH+HO …(2)
However, the crude argon gas contains a few ppm of a small amount of carbon monoxide together with several percent of oxygen, and this carbon monoxide is the heat of reaction during the deoxygenation step as shown in the following formula (2). To methane.
CO + 3H 2 CH 4 + H 2 O (2)

このため、上述した脱酸素工程では、アルゴン中にメタンが含まれてしまう。この場合、高純度アルゴン塔における精留工程では、アルゴンと水素の分離が主となるため、アルゴンより高沸点の一酸化炭素の除去は可能であるが、低沸点(−164℃)のメタンはアルゴン中に残留してしまう。   For this reason, in the deoxidation process mentioned above, methane will be contained in argon. In this case, in the rectification process in the high-purity argon tower, separation of argon and hydrogen is mainly performed, so that carbon monoxide having a higher boiling point than argon can be removed, but methane having a low boiling point (−164 ° C.) It remains in argon.

このような課題に対して、上記特許文献2には、過剰量の水素を添加し、脱酸素用触媒層中の温度を230℃以下若しくは480℃以上に温度制御することで、メタンの発生を抑制するアルゴンの製造方法が開示されている。   In response to such a problem, Patent Document 2 discloses that methane is generated by adding an excessive amount of hydrogen and controlling the temperature in the deoxidation catalyst layer to 230 ° C. or lower or 480 ° C. or higher. A method for producing suppressed argon is disclosed.

しかしながら、このような方法を用いたい場合には、粗アルゴン中の酸素濃度が数%を超えると、脱酸素触媒層中における温度が上昇してしまい、温度制御することが困難となるといった別の問題が発生してしまう。   However, when it is desired to use such a method, when the oxygen concentration in the crude argon exceeds several percent, the temperature in the deoxygenation catalyst layer increases, and it becomes difficult to control the temperature. A problem will occur.

本発明は、このような従来の事情に鑑みて提案されたものであり、メタンの発生を抑制し、高純度のアルゴンを得ることを可能としたアルゴンの製造方法を提供することを目的とする。   This invention is proposed in view of such a conventional situation, and it aims at providing the manufacturing method of argon which suppressed generation | occurrence | production of methane and made it possible to obtain high purity argon. .

上記目的を達成するために、本発明に係るアルゴンの製造方法は、原料空気を蒸留により窒素ガスと酸素とに分離し、アルゴンが濃縮された中間成分を抜き出して精留し、少量の酸素と窒素とを含む粗アルゴンガスを得た後、得られた粗アルゴンを精製して高純度のアルゴンを製造する方法であって、粗アルゴンガスに水素を加え、触媒反応にてアルゴンガス中の酸素を除去する脱酸素工程を含み、この脱酸素工程において、活性の低い触媒を用いて、粗アルゴンガス中の一酸化炭素がメタンに変化することを抑制することを特徴とする。   In order to achieve the above object, the method for producing argon according to the present invention separates raw material air into nitrogen gas and oxygen by distillation, extracts an intermediate component enriched in argon, and rectifies it to produce a small amount of oxygen. After obtaining the crude argon gas containing nitrogen, the obtained crude argon is purified to produce high-purity argon, in which hydrogen is added to the crude argon gas and oxygen in the argon gas is catalyzed. In this deoxygenation step, a change in carbon monoxide in the crude argon gas to methane is suppressed using a catalyst having low activity.

以上のように、本発明によれば、メタンの発生を抑制し、高純度のアルゴンを得ることが可能である。   As described above, according to the present invention, generation of methane can be suppressed and high-purity argon can be obtained.

図1は、本発明によるアルゴンの製造を実施するための製造装置の一例を示すフローシートである。FIG. 1 is a flow sheet showing an example of a production apparatus for carrying out the production of argon according to the present invention.

以下、本発明を適用したアルゴンの製造方法について、図面を参照して詳細に説明する。
図1は、本発明によるアルゴンの製造を実施するための製造装置1の一例を示すフローシートである。
Hereinafter, a method for producing argon to which the present invention is applied will be described in detail with reference to the drawings.
FIG. 1 is a flow sheet showing an example of a production apparatus 1 for carrying out the production of argon according to the present invention.

この製造装置1では、図1に示すように、主精留塔下塔2に導入された原料空気が、主精留塔上塔3を経ることによって大部分の窒素と酸素が除去された後、粗アルゴン塔4に導入される。そして、粗アルゴン塔4において更に精留され、少量の酸素と窒素とを含む粗アルゴンガスが生成される。   In this production apparatus 1, as shown in FIG. 1, after the raw air introduced into the main rectifying tower lower tower 2 passes through the main rectifying tower upper tower 3, most of nitrogen and oxygen are removed, Introduced into the crude argon column 4. And it is further rectified in the crude argon tower 4, and the crude argon gas containing a small amount of oxygen and nitrogen is produced | generated.

そして、この製造装置1では、アルゴン精製装置5に導入された粗アルゴンガスが、熱交換器6及び粗アルゴン圧縮器7を通り、脱酸素塔8に導入される。脱酸素塔8では、その内部に触媒が充填されており、粗アルゴンガスに水素を添加し、触媒反応により酸素分を除去する(以下、脱酸素工程という。)。   In the production apparatus 1, the crude argon gas introduced into the argon purification apparatus 5 passes through the heat exchanger 6 and the crude argon compressor 7 and is introduced into the deoxygenation tower 8. The deoxygenation tower 8 is filled with a catalyst, hydrogen is added to the crude argon gas, and oxygen content is removed by a catalytic reaction (hereinafter referred to as deoxygenation step).

上記反応により変性した変性アルゴンガスは、熱交換器9を通り、脱湿装置10に送られると共に、循環ブロア11によって脱酸素塔8の入口に帰還させられる。したがって、脱酸素塔8には、実際には変性アルゴンガスで希釈された粗アルゴンガスが導入されることになる。  The modified argon gas modified by the above reaction passes through the heat exchanger 9 and is sent to the dehumidifier 10 and is returned to the inlet of the deoxygenation tower 8 by the circulation blower 11. Therefore, the crude oxygen gas diluted with the modified argon gas is actually introduced into the deoxygenation tower 8.

これにより、脱酸素塔8に導入されるガス中の酸素濃度が低下するため、触媒による反応温度を下げることができる。すなわち、粗アルゴンガスをそのまま導入していた場合は、反応温度が300〜400℃程度になっていたものを、230℃以下とすることができる。   Thereby, since the oxygen concentration in the gas introduced into the deoxygenation tower 8 decreases, the reaction temperature by the catalyst can be lowered. That is, when the crude argon gas is introduced as it is, the reaction temperature of about 300 to 400 ° C. can be reduced to 230 ° C. or less.

変性アルゴンガスは、脱湿装置10で吸着剤と接触させ反応生成物である水が除去される。そして、再び熱交換器6を通り、精製アルゴン塔12に導入される。精製アルゴン塔12では、蒸留により窒素や水素等の低沸点不純物が精製分離され、高純度の液化アルゴンが取り出される。   The denatured argon gas is brought into contact with the adsorbent in the dehumidifier 10 to remove water as a reaction product. Then, it passes through the heat exchanger 6 again and is introduced into the purified argon column 12. In the purified argon column 12, low boiling impurities such as nitrogen and hydrogen are purified and separated by distillation, and high purity liquefied argon is taken out.

ところで、本発明を適用したアルゴンの製造方法では、上記脱酸素工程において、活性の低い触媒を用いて、粗アルゴンガス中の一酸化炭素がメタンに変化することを抑制している。   By the way, in the argon production method to which the present invention is applied, in the deoxygenation step, a catalyst having low activity is used to suppress the change of carbon monoxide in the crude argon gas to methane.

具体的に、本発明では、深冷式空気分離法で得られた粗アルゴンガスに、この粗アルゴンガス中に含まれる酸素を十分に還元できる量の水素を添加した後、触媒に接触させることで、上記式(1)の反応により酸素を水に転換する。このとき、活性の低い触媒を用いることによって、粗アルゴンガス中に含まれる一酸化炭素が水素と反応してメタンが発生することを抑制している。   Specifically, in the present invention, after adding an amount of hydrogen capable of sufficiently reducing oxygen contained in the crude argon gas to the crude argon gas obtained by the cryogenic air separation method, the catalyst is brought into contact with the catalyst. Then, oxygen is converted into water by the reaction of the above formula (1). At this time, by using a catalyst having low activity, carbon monoxide contained in the crude argon gas is prevented from reacting with hydrogen and generating methane.

このような活性の低い触媒には、パラジウムを担持した酸化アルミニウム(活性アルミナ)からなるパラジウム触媒を用いることができる。また、パラジウム触媒としては、BET法による比表面積が60m/g以下のものを用いることが好ましい。また、パラジウム触媒としては、一酸化炭素吸着法(CO吸着法)による金属比表面積が20m/g以下のものを用いることが好ましい。さらに、このような活性の低い触媒を用いる際の触媒による反応温度は、350℃以下とすることが好ましい。 As such a low activity catalyst, a palladium catalyst made of aluminum oxide (active alumina) supporting palladium can be used. Moreover, as a palladium catalyst, it is preferable to use a thing whose specific surface area by BET method is 60 m < 2 > / g or less. Moreover, as a palladium catalyst, it is preferable to use a metal specific surface area of 20 m 2 / g or less by a carbon monoxide adsorption method (CO adsorption method). Furthermore, the reaction temperature of the catalyst when such a low activity catalyst is used is preferably 350 ° C. or lower.

これにより、粗アルゴンガス中に含まれる一酸化炭素が水素と反応してメタンが発生することを抑制し、高純度のアルゴンを得ることが可能である。また、本発明によれば、上述した特許文献2のような脱酸素触媒層中における温度が上昇してしまい、温度制御が困難となるといった問題を回避することが可能である。   Thereby, it is possible to suppress the generation of methane by reacting carbon monoxide contained in the crude argon gas with hydrogen, and to obtain high-purity argon. Further, according to the present invention, it is possible to avoid the problem that the temperature in the deoxygenation catalyst layer as in Patent Document 2 described above increases and temperature control becomes difficult.

なお、本発明は、上記実施形態のものに必ずしも限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記図1に示す製造装置1では、上記循環ブロア11の代わりに、バルブを配置することも可能である。この場合、脱酸素塔8の後の熱交換器9を出た変性アルゴンガスの一部が、このバルブを介して粗アルゴン圧縮器7の入口部に帰還されることになる。
In addition, this invention is not necessarily limited to the thing of the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.
For example, in the manufacturing apparatus 1 shown in FIG. 1, a valve can be arranged instead of the circulation blower 11. In this case, a part of the modified argon gas exiting the heat exchanger 9 after the deoxygenation tower 8 is returned to the inlet of the crude argon compressor 7 through this valve.

上記循環ブロア11を用いた場合には、変性アルゴンガスの帰還量を大きくすることができるメリットがある一方、上記循環ブロア11の代わりにバルブを用いた場合には、構成が簡易になるといったメリットがある。   When the circulation blower 11 is used, there is an advantage that the return amount of the modified argon gas can be increased. On the other hand, when a valve is used instead of the circulation blower 11, the structure is simplified. There is.

以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。   Hereinafter, the effects of the present invention will be made clearer by examples. In addition, this invention is not limited to a following example, In the range which does not change the summary, it can change suitably and can implement.

Figure 2012211060
Figure 2012211060

(実施例1)
実施例1では、表1に示すように、触媒として、パラジウムを坦持した活性アルミナ触媒であって、BET法により測定した比表面積が14m/g、CO吸着法により測定した金属表面積が9.1m/gとなるものを用い、この触媒を内径23mmの脱酸素塔に充填高さが200mmとなるように充填した。
Example 1
In Example 1, as shown in Table 1, an active alumina catalyst carrying palladium as a catalyst, the specific surface area measured by the BET method was 14 m 2 / g, and the metal surface area measured by the CO adsorption method was 9 using what the .1m 2 / g, the filling height was packed so that 200mm of this catalyst deoxygenation column having an inner diameter of 23 mm.

そして、1.5%の酸素と、1ppmの一酸化炭素を含むアルゴンガスに、濃度が6%となるように水素ガスを添加し、このアルゴンガスを5NL/minの流量で上記脱酸素塔において触媒と接触させた。   Then, hydrogen gas is added to an argon gas containing 1.5% oxygen and 1 ppm carbon monoxide so as to have a concentration of 6%, and this argon gas is added at a flow rate of 5 NL / min in the deoxygenation tower. Contacted with catalyst.

その結果、酸素と水素の反応により触媒の温度は25℃から250℃に上昇した。そして、この脱酸素塔から排出されたアルゴンガス中から酸素は検出されなかった。また、一酸化炭素はほとんど反応しておらず、検出されたメタンは0.01ppmであった。   As a result, the temperature of the catalyst rose from 25 ° C. to 250 ° C. due to the reaction between oxygen and hydrogen. And oxygen was not detected in the argon gas discharged | emitted from this deoxygenation tower. Carbon monoxide hardly reacted, and the detected methane was 0.01 ppm.

(実施例2)
実施例2では、表1に示すように、触媒として、パラジウムを坦持した活性アルミナ触媒であって、BET法により測定した比表面積が25m/g、CO吸着法により測定した金属表面積が11m/gとなるものを用い、それ以外は、上記実施例1と同様の条件により、上記アルゴンガスを上記脱酸素塔において触媒と接触させた。
(Example 2)
In Example 2, as shown in Table 1, an active alumina catalyst carrying palladium as a catalyst, the specific surface area measured by the BET method was 25 m 2 / g, and the metal surface area measured by the CO adsorption method was 11 m. using what becomes 2 / g, otherwise, the same conditions as those in example 1, was the argon gas is contacted with the catalyst in the deoxygenation column.

その結果、触媒の温度は25℃から250℃に上昇した。そして、この脱酸素塔から排出されたアルゴンガス中から酸素は検出されなかった。また、一酸化炭素はほとんど反応しておらず、検出されたメタンは0.03ppmであった。   As a result, the temperature of the catalyst increased from 25 ° C to 250 ° C. And oxygen was not detected in the argon gas discharged | emitted from this deoxygenation tower. Carbon monoxide hardly reacted, and the detected methane was 0.03 ppm.

(実施例3)
実施例3では、表1に示すように、触媒として、パラジウムを坦持した活性アルミナ触媒であって、BET法により測定した比表面積が54m/g、CO吸着法により測定した金属表面積が14m/gとなるものを用い、それ以外は、上記実施例1と同様の条件により、上記アルゴンガスを上記脱酸素塔において触媒と接触させた。
(Example 3)
In Example 3, as shown in Table 1, an active alumina catalyst carrying palladium as a catalyst, the specific surface area measured by the BET method was 54 m 2 / g, and the metal surface area measured by the CO adsorption method was 14 m. using what becomes 2 / g, otherwise, the same conditions as those in example 1, was the argon gas is contacted with the catalyst in the deoxygenation column.

その結果、触媒の温度は25℃から250℃に上昇した。そして、この脱酸素塔から排出されたアルゴンガス中から酸素は検出されなかった。また、一酸化炭素はほとんど反応しておらず、検出されたメタンは0.03ppmであった。   As a result, the temperature of the catalyst increased from 25 ° C to 250 ° C. And oxygen was not detected in the argon gas discharged | emitted from this deoxygenation tower. Carbon monoxide hardly reacted, and the detected methane was 0.03 ppm.

(比較例1)
比較例1では、表1に示すように、触媒として、パラジウムを坦持した活性アルミナ触媒であって、BET法により測定した比表面積が240m/g、CO吸着法により測定した金属表面積が100m/gとなるものを用い、それ以外は、上記実施例1と同様の条件により、上記アルゴンガスを上記脱酸素塔において触媒と接触させた。
(Comparative Example 1)
In Comparative Example 1, as shown in Table 1, an active alumina catalyst carrying palladium as a catalyst, the specific surface area measured by the BET method was 240 m 2 / g, and the metal surface area measured by the CO adsorption method was 100 m. using what becomes 2 / g, otherwise, the same conditions as those in example 1, was the argon gas is contacted with the catalyst in the deoxygenation column.

その結果、触媒の温度は25℃から300℃に上昇した。また、検出されたメタンは0.5ppmであった。   As a result, the temperature of the catalyst rose from 25 ° C to 300 ° C. Moreover, the detected methane was 0.5 ppm.

(実施例4)
実施例4では、表1に示すように、実施例1と同じ触媒を用い、2%の酸素と、1ppmの一酸化炭素を含むアルゴンガスに、濃度が8%となるように水素ガスを添加し、このアルゴンガスを5NL/minの流量で上記脱酸素塔において触媒と接触させた。
Example 4
In Example 4, as shown in Table 1, using the same catalyst as in Example 1, hydrogen gas was added to an argon gas containing 2% oxygen and 1 ppm of carbon monoxide so that the concentration would be 8%. The argon gas was brought into contact with the catalyst in the deoxygenation tower at a flow rate of 5 NL / min.

その結果、触媒の温度は25℃から320℃に上昇した。そして、この脱酸素塔から排出されたアルゴンガス中から酸素は検出されなかった。また、一酸化炭素はほとんど反応しておらず、検出されたメタンは0.05ppmであった。   As a result, the temperature of the catalyst increased from 25 ° C to 320 ° C. And oxygen was not detected in the argon gas discharged | emitted from this deoxygenation tower. Carbon monoxide hardly reacted, and the detected methane was 0.05 ppm.

(実施例5)
実施例5では、表1に示すように、実施例3と同じ触媒を用い、それ以外は、上記実施例4と同様の条件により、上記アルゴンガスを上記脱酸素塔において触媒と接触させた。
(Example 5)
In Example 5, as shown in Table 1, the same catalyst as in Example 3 was used, and the argon gas was brought into contact with the catalyst in the deoxygenation tower under the same conditions as in Example 4 except that.

その結果、触媒の温度は25℃から320℃に上昇した。そして、この脱酸素塔から排出されたアルゴンガス中から酸素は検出されなかった。また、一酸化炭素はほとんど反応しておらず、検出されたメタンは0.15ppmであった。   As a result, the temperature of the catalyst increased from 25 ° C to 320 ° C. And oxygen was not detected in the argon gas discharged | emitted from this deoxygenation tower. Further, carbon monoxide hardly reacted, and the detected methane was 0.15 ppm.

(比較例2)
比較例2では、表1に示すように、比較例1と同じ触媒を用い、それ以外は、上記実施例4と同様の条件により、上記アルゴンガスを上記脱酸素塔において触媒と接触させた。
(Comparative Example 2)
In Comparative Example 2, as shown in Table 1, the same catalyst as in Comparative Example 1 was used, and the argon gas was brought into contact with the catalyst in the deoxygenation tower under the same conditions as in Example 4 except that.

その結果、触媒の温度は25℃から370℃に上昇した。また、検出されたメタンは0.7ppmであった。   As a result, the temperature of the catalyst rose from 25 ° C to 370 ° C. Moreover, the detected methane was 0.7 ppm.

(比較例3)
比較例3では、表1に示すように、実施例1と同じ触媒を用い、2.5%の酸素と、1ppmの一酸化炭素を含むアルゴンガスに、濃度が10.0%となるように水素ガスを添加し、このアルゴンガスを5NL/minの流量で上記脱酸素塔において触媒と接触させた。
(Comparative Example 3)
In Comparative Example 3, as shown in Table 1, the same catalyst as in Example 1 was used, and the concentration was 10.0% in argon gas containing 2.5% oxygen and 1 ppm carbon monoxide. Hydrogen gas was added and the argon gas was brought into contact with the catalyst in the deoxygenation tower at a flow rate of 5 NL / min.

その結果、触媒の温度は25℃から390℃に上昇した。また、検出されたメタンは0.4ppmであった。   As a result, the temperature of the catalyst rose from 25 ° C to 390 ° C. Moreover, the detected methane was 0.4 ppm.

1…製造装置 2…主精留塔下塔 3…主精留塔上塔 4…粗アルゴン塔 5…アルゴン精製装置 6…熱交換器 7…粗アルゴン圧縮器 8…脱酸素塔 9…熱交換器 10…脱湿装置 11…循環ブロア 12…精製アルゴン塔   DESCRIPTION OF SYMBOLS 1 ... Manufacturing apparatus 2 ... Main rectification tower lower tower 3 ... Main rectification tower upper tower 4 ... Crude argon tower 5 ... Argon purification apparatus 6 ... Heat exchanger 7 ... Crude argon compressor 8 ... Deoxygenation tower 9 ... Heat exchanger DESCRIPTION OF SYMBOLS 10 ... Dehumidifier 11 ... Circulating blower 12 ... Purified argon tower

Claims (5)

原料空気を蒸留により窒素ガスと酸素とに分離し、アルゴンが濃縮された中間成分を抜き出して精留し、少量の酸素と窒素とを含む粗アルゴンガスを得た後、得られた粗アルゴンを精製して高純度のアルゴンを製造する方法であって、
前記粗アルゴンガスに水素を加え、触媒反応にてアルゴンガス中の酸素を除去する脱酸素工程を含み、この脱酸素工程において、活性の低い触媒を用いて、前記粗アルゴンガス中の一酸化炭素がメタンに変化することを抑制することを特徴とするアルゴンの製造方法。
The raw material air is separated into nitrogen gas and oxygen by distillation, and an intermediate component enriched with argon is extracted and rectified to obtain a crude argon gas containing a small amount of oxygen and nitrogen. A method for producing high purity argon by purification,
A deoxygenation step in which hydrogen is added to the crude argon gas and oxygen in the argon gas is removed by a catalytic reaction, and in this deoxygenation step, carbon monoxide in the crude argon gas is used using a catalyst having low activity. A method for producing argon, characterized by suppressing the change of methane to methane.
前記触媒は、パラジウムを担持した酸化アルミニウムからなり、そのBET法による比表面積が60m/g以下であることを特徴とする請求項1記載のアルゴンの製造方法。 2. The method for producing argon according to claim 1, wherein the catalyst is made of aluminum oxide carrying palladium and has a specific surface area of 60 m 2 / g or less by BET method. 前記触媒は、パラジウムを担持した酸化アルミニウムからなり、その一酸化炭素吸着法による金属比表面積が20m/g以下であることを特徴とする請求項1又は2に記載のアルゴンの製造方法。 The said catalyst consists of aluminum oxide which carry | supported palladium, The metal specific surface area by the carbon monoxide adsorption method is 20 m < 2 > / g or less, The manufacturing method of argon of Claim 1 or 2 characterized by the above-mentioned. 前記触媒による反応温度を350℃以下とすることを特徴とする請求項1〜3の何れか一項に記載のアルゴンの製造方法。   The method for producing argon according to any one of claims 1 to 3, wherein a reaction temperature by the catalyst is 350 ° C or lower. 前記脱酸素工程の後に、アルゴンガス中の水を吸着剤に接触させて除去した後、アルゴンガス中の水素を精留除去することを特徴とするアルゴンの製造方法。   After the deoxygenation step, water in argon gas is removed by contact with an adsorbent, and then hydrogen in argon gas is rectified and removed.
JP2011078427A 2011-03-31 2011-03-31 Method for producing argon Withdrawn JP2012211060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011078427A JP2012211060A (en) 2011-03-31 2011-03-31 Method for producing argon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011078427A JP2012211060A (en) 2011-03-31 2011-03-31 Method for producing argon

Publications (1)

Publication Number Publication Date
JP2012211060A true JP2012211060A (en) 2012-11-01

Family

ID=47265380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011078427A Withdrawn JP2012211060A (en) 2011-03-31 2011-03-31 Method for producing argon

Country Status (1)

Country Link
JP (1) JP2012211060A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113582144A (en) * 2020-04-30 2021-11-02 盐城市海之诺气体设备有限公司 Nitrogen and argon terminal purification device and purification method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113582144A (en) * 2020-04-30 2021-11-02 盐城市海之诺气体设备有限公司 Nitrogen and argon terminal purification device and purification method

Similar Documents

Publication Publication Date Title
JP6070695B2 (en) Method for producing nitrite, and method for producing dialkyl oxalate and dialkyl carbonate
US10874983B2 (en) Process and apparatus for the recovery of methanol
US20170283260A1 (en) Method for preparing chlorine gas through catalytic oxidation of hydrogen chloride
JP2021500389A (en) Method for producing ethyleneamine
EA036440B1 (en) Process for the production of formaldehyde-stabilised urea
JP2021500381A (en) Method for producing ethyleneamine
EP2641889B1 (en) Methanol production process
CN106477525B (en) Method for purifying chlorination tail gas chlorine hydride dechlorination gas
US10611636B2 (en) Method for producing hydrogen chloride
JP2010184831A (en) Method for producing high purity polycrystalline silicon
JP4134761B2 (en) Production method of alkyl nitrite
JP2012211060A (en) Method for producing argon
JP4134777B2 (en) Nitrite ester production method
JP6446163B2 (en) Method for producing polycrystalline silicon
KR20140010404A (en) Distillation method for removing chlorine from gas flows that contain oxygen and chlorine
JP2014129283A (en) Production method of dialkyl oxalate
JP5738743B2 (en) Method for producing acetic acid raw material or MMA raw material using methanol plant
JP2005306712A (en) Method for manufacturing chlorine and hydrochloric acid
WO2020066536A1 (en) Apparatus for producing carbon monoxide gas and method for producing carbon monoxide gas
WO2012064689A1 (en) Processing gaseous streams resulting from carbonylation process
JP5659067B2 (en) Method for producing hydrogen gas
KR101869580B1 (en) Production method for hydrogen gas
JP2017223417A (en) Refined gas manufacturing method and refined gas manufacturing device
US20070033968A1 (en) Process and apparatus for obtaining krypton and/or xenon
WO2023282241A1 (en) Octafluorocyclobutane production method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603