JP2012210623A - METAL CATALYST AND METHOD FOR PRODUCING PHOTOACTIVE α-AMINO ACID DERIVATIVE - Google Patents

METAL CATALYST AND METHOD FOR PRODUCING PHOTOACTIVE α-AMINO ACID DERIVATIVE Download PDF

Info

Publication number
JP2012210623A
JP2012210623A JP2012099540A JP2012099540A JP2012210623A JP 2012210623 A JP2012210623 A JP 2012210623A JP 2012099540 A JP2012099540 A JP 2012099540A JP 2012099540 A JP2012099540 A JP 2012099540A JP 2012210623 A JP2012210623 A JP 2012210623A
Authority
JP
Japan
Prior art keywords
group
formula
hydrocarbon group
aliphatic hydrocarbon
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012099540A
Other languages
Japanese (ja)
Other versions
JP5607103B2 (en
Inventor
Osamu Kobayashi
修 小林
Susumu Saito
奨 齋藤
Takahiro Yamashita
恭弘 山下
Kazuki Seki
和貴 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2012099540A priority Critical patent/JP5607103B2/en
Publication of JP2012210623A publication Critical patent/JP2012210623A/en
Application granted granted Critical
Publication of JP5607103B2 publication Critical patent/JP5607103B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Pyrrole Compounds (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique not needing externally added base when producing photoactive α-amino acid derivative.SOLUTION: A metal catalyst constitutes M(OR1)2 (M represents an alkaline earth metal element and R1 represents an alkyl group) and a ligand bonded to M, and is a compound of a structure represented by a following formula [I] or an enantiomer of the same. Here, R2 is an aliphatic hydrocarbon group or an aromatic hydrocarbon group, all the R2s may be the same or different; R3 is H, an aliphatic hydrocarbon group or an aromatic hydrocarbon group, all the R3 are the same or different; and R4 is a substituted group or a cyano group in which a bonding atom with H, an alkyl group, an aryl group or carbon is a hetero atom.

Description

本発明は光学活性α−アミノ酸誘導体に関する。特に、光学活性α−アミノ酸誘導体の製造技術に関する。例えば、キラルカルシウム触媒に関する。   The present invention relates to an optically active α-amino acid derivative. In particular, it relates to a technique for producing optically active α-amino acid derivatives. For example, it relates to a chiral calcium catalyst.

近年、グリシンエステル誘導体とα,β−不飽和カルボニル化合物とを用いる触媒的不斉1,4−付加反応が注目を集めている。触媒的不斉反応においては、光学活性なグルタミン酸誘導体が得られる上、光学活性配位子の適切な選択により天然からの供給が困難な光学異性体の高効率的合成が可能な為である。   In recent years, catalytic asymmetric 1,4-addition reactions using glycine ester derivatives and α, β-unsaturated carbonyl compounds have attracted attention. This is because, in the catalytic asymmetric reaction, an optically active glutamic acid derivative is obtained, and highly efficient synthesis of optical isomers that are difficult to supply from nature is possible by appropriate selection of optically active ligands.

グリシンエステル誘導体に関しては、1903年にSorensenがDL−α−アミノ酸合成に次のような化合物を用いた(Figure3-1-1)ことから始まり、幾つかのSchiff塩基誘導体が合成されて来た。但し、その多くは不安定な化合物であり、その上エノール化にLDA等の強塩基を必要とした為、この時点では、余り、注目を浴びなかった。しかしながら、1978年にO’Donnellらは、不安定なアルデヒド由来のイミンでは無く、より安定なベンゾフェノン由来のグリシンSchiff塩基を合成し、水溶液中でも安定であるグリシンSchiff塩基化合物の特性を活かした相間移動触媒を用いる二相系反応を開発 (Scheme3-1-7) している。この研究が発表されて以来、この安定なベンゾフェノン由来のグリシンエステル誘導体が、多くの研究者によって、不斉アルキル化を始めとした様々な反応に用いられている。

Figure 2012210623
Regarding glycine ester derivatives, Sorensen used the following compounds for DL-α-amino acid synthesis in 1903 (Figure 3-1-1), and several Schiff base derivatives have been synthesized. However, many of them are unstable compounds and require a strong base such as LDA for enolization. However, in 1978, O'Donnell et al. Synthesized a more stable glycine Schiff base derived from benzophenone rather than an unstable aldehyde-derived imine, and phase transfer utilizing the characteristics of the glycine Schiff base compound that is stable even in aqueous solution. A two-phase reaction using a catalyst has been developed (Scheme3-1-7). Since this research was published, this stable benzophenone-derived glycine ester derivative has been used by many researchers in various reactions including asymmetric alkylation.

Figure 2012210623

又、近年、多くの光学活性な相間移動触媒が開発され、触媒的不斉アルキル化反応等へと展開されて来た。アルキル化反応においては、グリシンを用いて他のアミノ酸エステル誘導体をD,L体に拘らず、両方とも作り分けられることが特徴となっており、様々な反応系が構築されて来た。又、一方で、触媒的不斉1,4−付加反応での触媒系は以下のものが既に開発されている。   In recent years, many optically active phase transfer catalysts have been developed and developed into catalytic asymmetric alkylation reactions and the like. In the alkylation reaction, glycine is used to make other amino acid ester derivatives regardless of the D and L forms, and it has been characterized that various reaction systems have been constructed. On the other hand, the following catalyst systems in the catalytic asymmetric 1,4-addition reaction have already been developed.

Coreyらは、シンコニジン由来の触媒を用いて、グリシンエステル誘導体の触媒的不斉アルキル化反応を1997年に発表しており、その翌年1998年に触媒的不斉1,4−付加反応を報告(Scheme3-1-8)している。反応例は少ないものの、高いエナンチオ選択性が発現している。

Figure 2012210623
Corey et al. Announced a catalytic asymmetric alkylation reaction of a glycine ester derivative in 1997 using a catalyst derived from cinchonidine, and reported the catalytic asymmetric 1,4-addition reaction in 1998 the following year ( Scheme3-1-8). Although there are few reaction examples, high enantioselectivity is expressed.
Figure 2012210623

又、その後、Ishikawa等やO’Donnell等が、2001年に、立て続けに、同様の触媒的不斉1,4−付加反応を報告している。特に、Ishikawa等の報告では、グアニジン部位を有する触媒を用いており、基質は過剰に用いなければならないものの、触媒量の塩基で反応が進行する。反応時間は半日から一週間位と長時間が必要であるが、興味深い報告である。又、一方で、Shibasaki等は、二つのカチオン性四級アンモニウム部位を有する酒石酸由来の新規触媒を用いて反応を行っており、比較的良好な結果を報告(Scheme3-1-9)している。

Figure 2012210623
In addition, Ishikawa et al. And O'Donnell et al. Reported similar catalytic asymmetric 1,4-addition reactions in succession in 2001. In particular, the report of Ishikawa et al. Uses a catalyst having a guanidine moiety, and the reaction proceeds with a catalytic amount of base, although the substrate must be used in excess. The reaction time is from half a day to a week or so, but it is an interesting report. On the other hand, Shibasaki et al. Reported a relatively good result (Scheme3-1-9), using a new catalyst derived from tartaric acid having two cationic quaternary ammonium moieties. .
Figure 2012210623

又、Arai等は、独自のカチオン性四級アンモニウム触媒を用いて、不斉反応を報告している。2002年には、一例のみの報告であったが、触媒量の塩基のみで反応が進行し、中程度のエナンチオ選択性で反応が進行している。その後、2006年に、グリシン以外の他のα−アミノ酸エステル誘導体を用いる触媒的不斉1,4−付加反応を報告している。比較的多くの基質を用いて検討を行っているが、その殆どが低い選択性に留まってしまっている。一方で、Akiyama等は、2003年に、クラウンエーテルとアルカリ金属から調製される触媒を用いて不斉反応を行っており、6例の報告で比較的高いエナンチオ選択性が発現しており、用いる基質も1.5当量程度と報告している。又、2005年にはLygo等が独自の四級アンモニウム相間移動触媒を用いて反応を行っており、5例の報告ではあるものの、高収率・高選択性を実現 (Scheme3-1-10) している。

Figure 2012210623
Arai et al. Reported an asymmetric reaction using a unique cationic quaternary ammonium catalyst. In 2002, only one example was reported, but the reaction proceeded with only a catalytic amount of base, and the reaction proceeded with moderate enantioselectivity. Thereafter, in 2006, a catalytic asymmetric 1,4-addition reaction using other α-amino acid ester derivatives other than glycine was reported. Although studies have been conducted using a relatively large number of substrates, most of them remain low in selectivity. On the other hand, Akiyama et al. Conducted an asymmetric reaction in 2003 using a catalyst prepared from a crown ether and an alkali metal, and reported a relatively high enantioselectivity in 6 reports. The substrate is also reported to be about 1.5 equivalents. In 2005, Lygo et al. Conducted a reaction using a unique quaternary ammonium phase transfer catalyst. Although only five cases were reported, high yield and high selectivity were realized (Scheme3-1-10) is doing.
Figure 2012210623

そして、上記例が先行研究例であり、これ等の反応の問題点は反応で過剰量の基質を用いなければならないこと、又、過剰量の塩基が必要なことである。   The above example is an example of prior research, and the problem of these reactions is that an excessive amount of substrate must be used in the reaction, and an excessive amount of base is required.

又、アゾメチンイリドとアルケンとの反応は、ピロリジン化合物の最も効率的な合成法の一つである(下記Scheme4-1-2)。

Figure 2012210623
The reaction between azomethine ylide and alkene is one of the most efficient methods for synthesizing pyrrolidine compounds (Scheme 4-1-2 below).
Figure 2012210623

この合成法は、反応経路、選択性やLewis酸金属の影響を理解する為に、広く研究がなされた。その中でも、Kanemasaらは、N−アルキリデングリシン誘導体のリチウムエノラートとα,β−不飽和エステルとの反応研究において、MNDOやPM3を用いた計算化学的な手法にて、反応が段階的に進行し得ることを1994年に報告 (Figure4-1-4) している。

Figure 2012210623
This synthetic method has been extensively studied to understand the reaction pathways, selectivity and influence of Lewis acid metal. Among them, Kanemasa et al., In the reaction study of lithium enolates of N-alkylideneglycine derivatives and α, β-unsaturated esters, the reaction proceeds stepwise by computational chemistry using MNDO and PM3. I reported it in 1994 (Figure 4-1-4).
Figure 2012210623

ここでは、始めに、アンチ選択的な1,4−付加反応が遷移状態Bを経由してCになる。ここから、遷移状態Dを経由して分子内Mannich型反応が進行し、ピロリジン化合物Eを与える。エネルギーBとDとの大きさは、置換基Rの立体的な大きさが効いており、置換基Rによって遷移状態エネルギーが異なるとされている。 Here, first, the anti-selective 1,4-addition reaction becomes C via transition state B. From here, an intramolecular Mannich-type reaction proceeds via the transition state D to give the pyrrolidine compound E. The size of the energy B and D are feeling that steric bulk of the substituents R 4, the transition state energy is different by a substituent R 4.

反応開発の分野では、ジアステレオ選択的な反応が1985年Padwa等によって報告(Schemes4-1-3)されて以来、幾つかのジアステレオ選択的な反応開発がなされ、光学活性化合物を合成する手法が提案(Scheme4-1-4)されて来た。

Figure 2012210623
In the field of reaction development, since diastereoselective reactions were reported by Padwa et al. (Schemes 4-1-3) in 1985, several diastereoselective reactions have been developed to synthesize optically active compounds. Has been proposed (Scheme4-1-4).
Figure 2012210623

又、Husson等のように、1,3−双極子の方に不斉点を有する基質を用いて、ジアステレオ選択的な反応を行う例や、Griggらのようにアルケン部位に不斉補助基を導入して反応を行う例などがあり、様々な不斉補助基が用いられるようになった。   In addition, examples of performing a diastereoselective reaction using a substrate having an asymmetric point toward the 1,3-dipole such as Husson et al., And an asymmetric auxiliary group at the alkene site as in Grigg et al. In some cases, the reaction is carried out by introducing a chiral auxiliary group.

不斉反応に関しては、Griggらのコバルトと光学活性エフェドリン由来の配位子を用いる反応が始めての例
(Scheme4-1-5) である。

Figure 2012210623
As for asymmetric reactions, this is the first example of a reaction using a ligand derived from cobalt and optically active ephedrine by Grigg et al.
(Scheme4-1-5).
Figure 2012210623

このGrigg等の例は等量反応であり、光学活性配位子が金属に対して二当量必要であり、又、高いエナンチオ選択性の発現にはα,β−不飽和エステルが溶媒量必要である等の幾つかの問題点が有るものの、極めて高いエナンチオ選択性を実現しており、エナンチオ選択的な反応が可能であることを示した功績は大きい。同時に、Griggらは、マンガン塩や酢酸銀も使用できることを報告している。特に、酢酸銀の場合には、二座ホスフィン配位子を用いることで、70%Eeのエナンチオ選択性が発現することを報告している。但し、用いた当量や反応条件についての開示は無い。   This example of Grigg et al. Is an equivalent reaction, requires two equivalents of an optically active ligand relative to the metal, and requires a solvent amount of α, β-unsaturated ester for high enantioselectivity. Although there are some problems, the achievement of extremely high enantioselectivity and the possibility of enantioselective reaction is great. At the same time, Grigg et al. Report that manganese salts and silver acetate can also be used. In particular, in the case of silver acetate, it has been reported that enantioselectivity of 70% Ee is expressed by using a bidentate phosphine ligand. However, there is no disclosure about the equivalents and reaction conditions used.

一方で、触媒的不斉反応に関しては、2002年のZhangらの酢酸銀と光学活性二座ホスフィン配位子を用いた報告 (Scheme4-1-6)
が最初の例である。

Figure 2012210623
On the other hand, as for catalytic asymmetric reaction, 2002 report using Zhang et al. With silver acetate and optically active bidentate phosphine ligand (Scheme4-1-6)
Is the first example.
Figure 2012210623

この報告では、様々な芳香族アルデヒド及び脂肪族アルデヒド由来のアゾメチン化合物が使用可能であり、中程度から高い収率、かつ、エナンチオ選択性で目的物が得られることが言われている。又、幾つかのα,β−不飽和エステルを用いることが出来、幅広い基質一般性を有する反応となっているが、触媒量ではあるものの外部添加のアミンが必要である。この報告を皮切りに、幾つかの研究グループによって触媒的不斉反応が報告 (Schemes4−1−7,4−1−8)されている。

Figure 2012210623
Figure 2012210623
In this report, it is said that azomethine compounds derived from various aromatic aldehydes and aliphatic aldehydes can be used, and the target product can be obtained with medium to high yield and enantioselectivity. Also, some α, β-unsaturated esters can be used, and the reaction has a wide variety of substrate generalities, but an externally added amine is required although it is a catalytic amount. Starting with this report, catalytic asymmetric reactions have been reported by several research groups (Schemes 4-1-7, 4-1-8).
Figure 2012210623
Figure 2012210623

Jogensen等は、2002年に、亜鉛トリフラートと中性型tert-uBox配位子を用いるアゾメチン化合物の触媒的不斉[3+2]付加環化反応を報告している。この反応においては、外部添加のトリエチルアミンが必須である。又、Schreiberらは、2003年に、酢酸銀とQUINAPを用いる触媒的不斉反応を報告しており、グリシンエステル誘導体だけではなく、他のα−アミノ酸エステル誘導体もエナンチオ選択性は中程度ではあるものの、使用できると報告している。又、Komatsu等は、銅トリフラート(II)とBINAP又はSEGPHOSを光学活性配位子として用いる反応系において、高いexo選択性で反応が進行することを報告している。又、Jogensen等は、2005年には、フッ化銀とシンコニン由来の不斉塩基触媒を用いる反応系を報告しているが、エナンチオ選択性は中程度に留まっている。更に、2005年には、ZhangやCarretero等が、続けて、過塩素酸銅(I)−フェロセン型光学活性配位子を用いる反応系を報告しており、広い基質一般性を有することが示されている。これらの反応系においては、高収率、かつ、高立体選択性を実現しているものの、外部添加のアミンが必須であり、原子効率の観点からは必ずしも満足できる反応系では無い。   Jogensen et al. Reported in 2002 a catalytic asymmetric [3 + 2] cycloaddition reaction of an azomethine compound using zinc triflate and a neutral tert-uBox ligand. In this reaction, externally added triethylamine is essential. Schreiber et al. Reported a catalytic asymmetric reaction using silver acetate and QUINAP in 2003, and not only glycine ester derivatives but also other α-amino acid ester derivatives have moderate enantioselectivity. However, it is reported that it can be used. Komatsu et al. Reported that the reaction proceeds with high exo selectivity in a reaction system using copper triflate (II) and BINAP or SEGPHOS as optically active ligands. Jogensen et al. Reported a reaction system using an asymmetric base catalyst derived from silver fluoride and cinchonine in 2005, but the enantioselectivity remains moderate. Furthermore, in 2005, Zhang, Carretero et al. Reported a reaction system using a copper (I) perchlorate-ferrocene type optically active ligand, and showed that it has wide substrate generality. Has been. In these reaction systems, although high yield and high stereoselectivity are realized, an externally added amine is essential, and the reaction system is not always satisfactory from the viewpoint of atomic efficiency.

このような中で、外部添加のアミンが不必要な反応系が、近年、一つ報告 (Scheme4-1-9) された。

Figure 2012210623
Under such circumstances, one reaction system (Scheme4-1-9) has recently been reported that does not require an externally added amine.
Figure 2012210623

彼等は、銀トリフラートを触媒として用いた時には、エナンチオ選択性が高いものの、反応の進行が遅く、その時、外部添加のアミンが反応加速効果をもたらすことを見出した。又、酢酸銀を用いた場合には、エナンチオ選択性は若干低下するものの、外部添加のアミンが必要なく、反応が円滑に進行することを見出している。加えて、光学活性配位子として、電子吸引性基を有する配位子を用いることによって、収率およびエナンチオ選択性が向上することを見出し、用いる金属の微妙なLewis酸性度が反応に大きな影響を与えることを報告している。又、最近、光学活性配位子の絶対立体配置はそのままで、水素結合できる部位(−NH)を導入した配位子に関して、得られる生成物の絶対立体配置が逆転すると言う興味深い結果も報告 (Scheme4-1-10) している。

Figure 2012210623
They found that when silver triflate was used as a catalyst, the enantioselectivity was high, but the reaction proceeded slowly, and at that time, an externally added amine had a reaction acceleration effect. In addition, when silver acetate is used, it has been found that the enantioselectivity is slightly reduced, but no amine is added externally and the reaction proceeds smoothly. In addition, it has been found that the yield and enantioselectivity are improved by using a ligand having an electron-withdrawing group as an optically active ligand, and the subtle Lewis acidity of the metal used greatly affects the reaction. Reporting that. Recently, an interesting result has been reported that the absolute configuration of the resulting product is reversed with respect to a ligand into which a hydrogen bonding site (—NH 2 ) has been introduced while maintaining the absolute configuration of the optically active ligand. (Scheme4-1-10)
Figure 2012210623

Review;O’Donnell,M. J. Acc. Chem. Res. 2004, 37, 506.Review; O’Donnell, M. J. Acc. Chem. Res. 2004, 37, 506. O’Donnell,M. J.; Boniece, J. M.; Earp, S. E. Tetrahedron Lett. 1978, 30, 2641.O’Donnell, M. J .; Boniece, J. M .; Earp, S. E. Tetrahedron Lett. 1978, 30, 2641. O’Donnell,M. J.; Eckrich, T. M. Tetrahedron Lett. 1978, 30, 4625.O’Donnell, M. J .; Eckrich, T. M. Tetrahedron Lett. 1978, 30, 4625. Lygo,B.; Andrews, B. I. Acc. Chem. Res. 2004, 37, 518.Lygo, B .; Andrews, B. I. Acc. Chem. Res. 2004, 37, 518. Corey,E. J.; Noe, M. C.; Xu, F. Tetrahedron Lett. 1998, 39, 5347.Corey, E. J .; Noe, M. C .; Xu, F. Tetrahedron Lett. 1998, 39, 5347. Zhang,F.-Y., Corey, E. J. Org. Lett. 2000, 2, 1097.Zhang, F.-Y., Corey, E. J. Org. Lett. 2000, 2, 1097. Ishikawa,T.; Araki, Y.; Kumamoto, T.; Seki, H.; Fukuda, K.; Isobe, T. Chem. Commun.2001, 245.Ishikawa, T .; Araki, Y .; Kumamoto, T .; Seki, H .; Fukuda, K .; Isobe, T. Chem. Commun. 2001, 245. O’Donnell,M. J.; Delgado, F. Tetrahedron 2001, 57, 6641.O’Donnell, M. J .; Delgado, F. Tetrahedron 2001, 57, 6641. Shibuguchi, T.; Fukuta, Y.; Akachi, Y.; Sekine, A.; Ohshima, T.;Shibasaki, M. Tetrahedron Lett. 2002, 43, 9539.Shibuguchi, T .; Fukuta, Y .; Akachi, Y .; Sekine, A .; Ohshima, T .; Shibasaki, M. Tetrahedron Lett. 2002, 43, 9539. Ohshima, T.; Shibuguchi, T.; Fukuta, Y.; Shibasaki, M. Tetrahedron2004, 60, 7743.Ohshima, T .; Shibuguchi, T .; Fukuta, Y .; Shibasaki, M. Tetrahedron 2004, 60, 7743. Arai,S.; Tsuji, R.; Nishida, A. Tetrahedron Lett. 2002, 43, 9535.Arai, S .; Tsuji, R .; Nishida, A. Tetrahedron Lett. 2002, 43, 9535. Arai, S.; Takahashi, F.; Tsuji, R.; Nishida, A. Heterocycles 2006,67, 495.Arai, S .; Takahashi, F .; Tsuji, R .; Nishida, A. Heterocycles 2006,67, 495. Akiyama, T.; Hara, M.; Fuchibe, K.; Sakamoto, S.; Yamaguchi, K.Chem. Commun. 2003, 1734.Akiyama, T .; Hara, M .; Fuchibe, K .; Sakamoto, S .; Yamaguchi, K. Chem. Commun. 2003, 1734. Lygo, B.; Allbutt, B.; Kirton, E. H. M. Tetrahedron Lett. 2005, 46,4461.Lygo, B .; Allbutt, B .; Kirton, E. H. M. Tetrahedron Lett. 2005, 46,4461. Kumarasamy, G.; Sastry, M. N. V.; Jena, N. Tetrahedron Lett. 2001,42, 8515.Kumarasamy, G .; Sastry, M. N. V .; Jena, N. Tetrahedron Lett. 2001, 42, 8515. Kumaraswamy, G.; Jena, N.; Sastry, M. N. V.; Padmaja, M.;Markondaiah, B. Adv. Synth. Catal. 2005, 347, 867.Kumaraswamy, G .; Jena, N .; Sastry, M. N. V .; Padmaja, M .; Markondaiah, B. Adv. Synth. Catal. 2005, 347, 867. Kumaraswamy,G.; Jena, N.; Sastry, M. N. V.; Ramakrishna, G. ARKIVOC 2005, 53.Kumaraswamy, G .; Jena, N .; Sastry, M. N. V .; Ramakrishna, G. ARKIVOC 2005, 53. Thischiral ligand was synthesized according to the related procedure.Maruoka, K.; Itoh, T.;Araki, Y.; Shirasaka, T.; Yamamoto, H. Bull. Chem. Soc. Jpn. 1988, 61, 2975.Thischiral ligand was synthesized according to the related procedure. Maruoka, K .; Itoh, T .; Araki, Y .; Shirasaka, T .; Yamamoto, H. Bull. Chem. Soc. Jpn. 1988, 61, 2975. Nakamura,M.; Arai, M.; Nakamura, E. J. Am. Chem. Soc. 1995, 117, 1179.Nakamura, M .; Arai, M .; Nakamura, E. J. Am. Chem. Soc. 1995, 117, 1179. Nakamura,M.; Hirai, A.; Nakamura, E. J. Am. Chem. Soc. 1996, 118, 8489.Nakamura, M .; Hirai, A .; Nakamura, E. J. Am. Chem. Soc. 1996, 118, 8489. Nakamura,M.; Hara, K.; Hatakeyama, T.; Nakamura, E. Org. Lett. 2001, 3, 3137.Nakamura, M .; Hara, K .; Hatakeyama, T .; Nakamura, E. Org. Lett. 2001, 3, 3137. Schulze,V.; Hoffmann, R. W. Chem. Eur. J. 1999, 5, 337.Schulze, V .; Hoffmann, R. W. Chem. Eur. J. 1999, 5, 337. Hoffmann,R. W.; Nell, P. G. Angew. Chem., Int. Ed. 1999, 38, 338.Hoffmann, R. W .; Nell, P. G. Angew. Chem., Int. Ed. 1999, 38, 338. Schulze,V.; Nell, P. G.; Burton, A.; Hoffmann, R. W. J. Org. Chem. 2003, 68, 4546.Schulze, V .; Nell, P. G .; Burton, A .; Hoffmann, R. W. J. Org. Chem. 2003, 68, 4546. Lowenthal,R. E.; Abiko, A.; Masamune, S. Tetrahedron Lett. 1990, 31, 6005.Lowenthal, R. E .; Abiko, A .; Masamune, S. Tetrahedron Lett. 1990, 31, 6005. Corey,E. J.; Wang, Z. Tetrahedron Lett. 1993, 34, 4001.Corey, E. J .; Wang, Z. Tetrahedron Lett. 1993, 34, 4001. Ward, D.E.; Sales, M.; Hrapchak, M. J. Can. J. Chem. 2001, 79, 1775.Ward, D.E .; Sales, M .; Hrapchak, M. J. Can. J. Chem. 2001, 79, 1775. Hong,S.; Tian, S.; Metz, M.; Marks, T. J. J. Am. Chem. Soc. 2003, 125, 14768.Hong, S .; Tian, S .; Metz, M .; Marks, T. J. J. Am. Chem. Soc. 2003, 125, 14768. Hong,S.; Kawaoka, A. M.; Marks, T. J. J. Am. Chem. Soc. 2003, 125, 15878.Hong, S .; Kawaoka, A. M .; Marks, T. J. J. Am. Chem. Soc. 2003, 125, 15878. Hall,J.; Lehn, J.-M.; DeCian, A.; Fischer, J. Helv. Chem. Acta 1991, 74, 1.Hall, J .; Lehn, J.-M .; DeCian, A .; Fischer, J. Helv. Chem. Acta 1991, 74, 1. Brown,J. M.; Guiry, P. J.; Price, D. W.; Hursthouse, M. B.; Karalulov, S.Tetrahedron: Asymmetry 1994, 5, 561.Brown, J. M .; Guiry, P. J .; Price, D. W .; Hursthouse, M. B .; Karalulov, S. Tetrahedron: Asymmetry 1994, 5, 561. Gorlitzer,H. W.; Spiegler, M.; Anwander, R. J. Chem. Soc., Dalton Trans. 1999, 4287Gorlitzer, H. W .; Spiegler, M .; Anwander, R. J. Chem. Soc., Dalton Trans. 1999, 4287 Cabrera, S.; Arrayas, R.G.; Carretero, J. C. J. Am. Chem. Soc. 2005, 127, 16394.Cabrera, S .; Arrayas, R.G .; Carretero, J. C. J. Am. Chem. Soc. 2005, 127, 16394. Gao, W.; Zhang, X.;Raghunath, M. Org. Lett. 2005, 7, 4241.Gao, W .; Zhang, X .; Raghunath, M. Org. Lett. 2005, 7, 4241. Oderaotoshi, Y.; Cheng,W.; Fujitomi, S.; Kasano, Y.; Minakata, S.; Komatsu, M. Org. Lett. 2003, 5,5043.Oderaotoshi, Y .; Cheng, W .; Fujitomi, S .; Kasano, Y .; Minakata, S .; Komatsu, M. Org. Lett. 2003, 5,5043. Chen, C.; Li, X.;Schreiber, S. L. J. Am. Chem. Soc. 2003, 125, 10174.Chen, C .; Li, X .; Schreiber, S. L. J. Am. Chem. Soc. 2003, 125, 10174. Longmire, J. M.; Wang, B.;Zhang, X. J. Am. Chem. Soc. 2002, 124, 13400.Longmire, J. M .; Wang, B .; Zhang, X. J. Am. Chem. Soc. 2002, 124, 13400. Akiyama, T.; Hara, M.;Fuchibe, K.; Sakamoto, S.; Yamaguchi, K. Chem. Comm. 2003, 1734.Akiyama, T .; Hara, M .; Fuchibe, K .; Sakamoto, S .; Yamaguchi, K. Chem. Comm. 2003, 1734. Ishikawa, T.;Araki. Y.; Kumamoto, T.; Seki, H.; Fukuda, K.; Isobe, T. Chem. Comm. 2001, 245.Ishikawa, T.; Araki. Y .; Kumamoto, T .; Seki, H .; Fukuda, K .; Isobe, T. Chem. Comm. 2001, 245. Lown, J. W. In1,3-Dipolar Cycloaddition Chemistry; Padwa, A. Ed.; Wiley: Yew York, 1984; Vol. 1, p 653.Lown, J. W. In1,3-Dipolar Cycloaddition Chemistry; Padwa, A. Ed .; Wiley: Yew York, 1984; Vol. 1, p 653. Annunsiata, R.;Benaglia, M.; Cinquini, M.; Raimondi, L. Tetrahedron 1993, 49, 8629.Annunsiata, R .; Benaglia, M .; Cinquini, M .; Raimondi, L. Tetrahedron 1993, 49, 8629. Rispens, M. T.;Keller, E.; De Lange, B.; Zijlstra, R. W. J.; Feringa, B. L. Tetrahedron:Asymmetry 1994, 5, 607.Rispens, M. T .; Keller, E .; De Lange, B .; Zijlstra, R. W. J .; Feringa, B. L. Tetrahedron: Asymmetry 1994, 5, 607. Gothelf, K. V.; Jorgensen,K. A. Chem. Rev. 1998, 98, 863.Gothelf, K. V .; Jorgensen, K. A. Chem. Rev. 1998, 98, 863. Coldham, I.; Hofton, R.Chem. Rev. 2005, 105, 2765.Coldham, I .; Hofton, R. Chem. Rev. 2005, 105, 2765. Pandey, G.; Banerjee, P.;Gadre, S. R. Chem. Rev. 2006, 106, 4484.Pandey, G .; Banerjee, P .; Gadre, S. R. Chem. Rev. 2006, 106, 4484. Tatsukawa, A.; Kawatake,K.; Kanemasa, S.; Rudzinski, J. M. J. Chem. Soc., Perkin Trans. 2 1994, 2525.Tatsukawa, A .; Kawatake, K .; Kanemasa, S .; Rudzinski, J. M. J. Chem. Soc., Perkin Trans. 2 1994, 2525. Padwa, A.; Chen, Y.-Y.;Chiacchio, U.; Dent, W. Tetrahedron 1985, 41, 3529.Padwa, A .; Chen, Y.-Y.; Chiacchio, U .; Dent, W. Tetrahedron 1985, 41, 3529. Deprez, P.; Rouden, J.;Chiaroni, A.; Riche, C.; Royer, J.; Husson, H.-P. Tetrahedron Lett. 1991,32, 7531.Deprez, P .; Rouden, J .; Chiaroni, A .; Riche, C .; Royer, J .; Husson, H.-P. Tetrahedron Lett. 1991, 32, 7531. Deprez, P.; Royer, J.;Husson, H.-P. Tetrahedron:Asymmetry 1991, 2, 1189.Deprez, P .; Royer, J .; Husson, H.-P.Tetrahedron: Asymmetry 1991, 2, 1189. Roudon, J.; Royyer, J.;Husson, H.-P. TetrahedronLett. 1989, 30, 5133.Roudon, J .; Royyer, J .; Husson, H.-P. Tetrahedron Lett. 1989, 30, 5133. Grigg, R. Tetrahedron:Asymmetry 1995, 6, 2475.Grigg, R. Tetrahedron: Asymmetry 1995, 6, 2475. Cooper, D. M.; Grigg, R.;Hargreaves, S.; Kennewell, P.; Redpath, J. Tetrahedron 1995, 51, 7791.Cooper, D. M .; Grigg, R .; Hargreaves, S .; Kennewell, P .; Redpath, J. Tetrahedron 1995, 51, 7791. Barr, D. A.; Dorrity, M.J.; Grigg, R.; Hargreaves, S.; Malone, J. F.; Montgomery, J.; Redpath, J.;Stevenson, P.; Thornton-Pett, M. Tetrahedron 1995, 51, 273.Barr, D. A .; Dorrity, M.J .; Grigg, R .; Hargreaves, S .; Malone, J. F .; Montgomery, J .; Redpath, J .; Stevenson, P .; Thornton-Pett, M. Tetrahedron 1995, 51, 273. Coulter, T.; Grigg, R.;Malone, J. F.; Sridharan, V. Tetrahedron Lett. 1991, 32, 5417.Coulter, T .; Grigg, R .; Malone, J. F .; Sridharan, V. Tetrahedron Lett. 1991, 32, 5417. Barr, D. A.; Dorrity, M.J.; Grigg, R.; Malone, J. F.; Montgomery, J.; Rajviroongit, S.; Stevenson, P.Tetrahedron Lett. 1990, 31, 6569.Barr, D. A .; Dorrity, M.J .; Grigg, R .; Malone, J. F .; Montgomery, J .; Rajviroongit, S .; Stevenson, P. Tetrahedron Lett. 1990, 31, 6569. Grigg, R.; Sridharan, V.;Suganthan, S.; Bridge, A. W. Tetrahedron 1995, 51, 295.Grigg, R .; Sridharan, V.; Suganthan, S .; Bridge, A. W. Tetrahedron 1995, 51, 295. Grigg, R.; Rankovic, Z.;Thornton-Pett, M.;Somasunderam, A. Tetrahedron 1993, 49, 8679.Grigg, R .; Rankovic, Z .; Thornton-Pett, M .; Somasunderam, A. Tetrahedron 1993, 49, 8679. Barr, D. A.; Donegan, G.;Grigg, R. J. Chem. Soc., Perkin Trans. 1 1989, 1550.Barr, D. A .; Donegan, G .; Grigg, R. J. Chem. Soc., Perkin Trans. 1 1989, 1550. Barr, D. A.;Grigg, R.; Gunaratne, H. Q. N.; Kemp, J.; MvMeekin, P.; Sridharan, V.Tetrahedron 1988, 44, 557.Barr, D. A .; Grigg, R .; Gunaratne, H. Q. N .; Kemp, J .; MvMeekin, P .; Sridharan, V. Tetrahedron 1988, 44, 557. Allway, P.; Grigg, R.Tetrahedron Lett. 1991, 32, 5817.Allway, P .; Grigg, R. Tetrahedron Lett. 1991, 32, 5817. Longmire, J. M.; Wang, B.;Zhang, X. J. Am. Chem. Soc. 2002, 124, 13400.Longmire, J. M .; Wang, B .; Zhang, X. J. Am. Chem. Soc. 2002, 124, 13400. Gothelf, A. S.; Gothelf,K. V.; Hazell, R. G.; Jorgensen, K. A. Angew. Chem., Int. Ed. 2002, 41, 4236.Gothelf, A. S .; Gothelf, K. V .; Hazell, R. G .; Jorgensen, K. A. Angew. Chem., Int. Ed. 2002, 41, 4236. Chen, C.; Li, X.; Schreiber,S. L. J. Am. Chem. Soc. 2003, 125, 10174.Chen, C .; Li, X .; Schreiber, S. L. J. Am. Chem. Soc. 2003, 125, 10174. Oderaotoshi, Y.; Cheng,W.; Fujitomi, S.; Kasano, Y.; Minakata, S.; Komatsu, M. Org. Lett. 2003, 5,5043.Oderaotoshi, Y .; Cheng, W .; Fujitomi, S .; Kasano, Y .; Minakata, S .; Komatsu, M. Org. Lett. 2003, 5,5043. Alemparte, C.; Blay, G.; Jorgensen,K. A. Org. Lett. 2005, 7, 4569.Alemparte, C .; Blay, G .; Jorgensen, K. A. Org. Lett. 2005, 7, 4569. Gao, W.; Zhang, X.; Raghunath,M. Org. Lett. 2005, 7, 4241.Gao, W .; Zhang, X .; Raghunath, M. Org. Lett. 2005, 7, 4241. Cabrera, S.; Arrayas, R.G.; Carretero, J. C. J. Am. Chem. Soc. 2005, 127, 16394.Cabrera, S .; Arrayas, R.G .; Carretero, J. C. J. Am. Chem. Soc. 2005, 127, 16394. Husinec, S.; Savic, V.Tetrahedron: Asymmetry 2005, 16, 2047.Husinec, S .; Savic, V. Tetrahedron: Asymmetry 2005, 16, 2047. Najera, C.; Sansano, J. M.Angew. Chem., Int. Ed. 2005, 44, 6272.Najera, C .; Sansano, J. M. Angelw. Chem., Int. Ed. 2005, 44, 6272. Zeng, W.; Zhou,Y.-G. Org. Lett. 2005, 7, 5055.Zeng, W .; Zhou, Y.-G. Org. Lett. 2005, 7, 5055. Zeng, W.; Chen, G.-Y.; Zhou, Y.-G.; Li, Y.-X. J. Am. Chem.Soc. 2007, 129, 750.Zeng, W .; Chen, G.-Y .; Zhou, Y.-G .; Li, Y.-X. J. Am. Chem. Soc. 2007, 129, 750. Saito, S.; Tsubogo, T.; Kobayashi, S. J. Am. Chem.Soc. 2007, 129, 5364.Saito, S .; Tsubogo, T .; Kobayashi, S. J. Am. Chem. Soc. 2007, 129, 5364. Kim, T.-S.; Lee, Y. -J.; Jeong, B. -S.; Park, H. -g.; Jew, S. -s. J.Org. Chem. 2006, 71, 8276.Kim, T.-S .; Lee, Y. -J .; Jeong, B. -S .; Park, H. -g .; Jew, S. -s. J. Org. Chem. 2006, 71, 8276 . Jew, S. -s.; Lee, Y. -J.; Lee, J.; Kang, M. J.; Jeong, B. -S.; Lee,J. -H.; Yoo, M. -S.; Kim. M. -J.; Choi, S. -h.; Ku, J. -M.; Park, H. -g. Angew.Chem. Int. Ed. 2004, 43, 2382.Jew, S. -s .; Lee, Y. -J .; Lee, J .; Kang, MJ; Jeong, B. -S .; Lee, J. -H .; Yoo, M. -S .; Kim M. -J .; Choi, S. -h .; Ku, J. -M .; Park, H. -g. Angew.Chem. Int. Ed. 2004, 43, 2382. Lee, Y.-J.; Lee, J.; Kim, M. -J.; Kim, T. -S.; Park, H. -g.;Jew, S. -s. Org. Lett. 2005, 7, 1557.Lee, Y.-J .; Lee, J .; Kim, M. -J .; Kim, T. -S .; Park, H. -g .; Jew, S. -s. Org. Lett. 2005, 7, 1557. Lee, Y. -J.; Lee, J.; Kim, M. -J.; Jeong,B. -S.; Lee, J. -H.; Kim, T. -S.; Lee, J.; Ku, J. -M.; Jew, S. -s.; Park, H. -g.Org. Lett. 2005, 7, 3207.Lee, Y. -J .; Lee, J .; Kim, M. -J .; Jeong, B. -S .; Lee, J. -H .; Kim, T. -S .; Lee, J .; Ku, J. -M .; Jew, S. -s .; Park, H. -g.Org. Lett. 2005, 7, 3207. Gotthelf, A. S.; Gothelf, K. V.; Hazell, R.G.; Jorgensen, K. A. Angew. Chem. Int. Ed. 2002, 41, 4236.Gotthelf, A. S .; Gothelf, K. V .; Hazell, R.G .; Jorgensen, K. A. Angew. Chem. Int. Ed. 2002, 41, 4236. Chen, C.; Li, X.; Schreiber, S. L. J. Am.Chem. Soc. 2003, 125, 10174.Chen, C .; Li, X .; Schreiber, S. L. J. Am. Chem. Soc. 2003, 125, 10174. Oderaotoshi, Y.; Cheng, W.; Fujitomi, S.;Kasano, Y.; Minakata, S.; Komatsu, M. Org. Lett. 2003, 5, 5043.Oderaotoshi, Y .; Cheng, W .; Fujitomi, S .; Kasano, Y .; Minakata, S .; Komatsu, M. Org. Lett. 2003, 5, 5043. Gao, W.; Zhang, X.; Raghunsth, M. Org.Lett. 2005, 7, 4241.Gao, W .; Zhang, X .; Raghunsth, M. Org. Lett. 2005, 7, 4241. Cabrera, S.; Arrayas, R. G.; Carretero, J.C. J. Am. Chem. Soc. 2005, 127, 16394.Cabrera, S .; Arrayas, R. G .; Carretero, J.C. J. Am. Chem. Soc. 2005, 127, 16394. Najera, C.; Gracia, Retamosa, M. de .G.;Sansano, J. M. Org. Lett. 2007, 9, 4025.Najera, C .; Gracia, Retamosa, M. de .G .; Sansano, J. M. Org. Lett. 2007, 9, 4025. Zeng, W.; Zhou, Y.-G. Org. Lett. 2005, 7,5055.Zeng, W .; Zhou, Y.-G. Org. Lett. 2005, 7,5055. Dogan, O.; Koyuncu, H.; Garner, P.; Bulut,A.; Youngs, W. J.; Panzner, M. Org. Lett. 2006, 8, 4687.Dogan, O .; Koyuncu, H .; Garner, P .; Bulut, A .; Youngs, W. J .; Panzner, M. Org. Lett. 2006, 8, 4687. Cabrera, S.; Gomez, R.; Martin-Matute,B.; Cossio, F. P.; Carretero, J. C. Tetrahedron, 2007, 63, 6587.Cabrera, S .; Gomez, R .; Martin-Matute, B .; Cossio, F. P .; Carretero, J. C. Tetrahedron, 2007, 63, 6587.

さて、上述した通り、これまでに提案の技術では、外部添加の塩基が必要であり、基質一般性が必ずしも満足できない問題点が残されている。
従って、本発明が解決しようとする課題は、光学活性α−アミノ酸誘導体の製造に際して、外部添加の塩基を必要とせず、又、高いエナンチオ選択性を与える技術を提供することである。
As described above, in the techniques proposed so far, an externally added base is required, and there remains a problem that the generality of the substrate is not necessarily satisfied.
Therefore, the problem to be solved by the present invention is to provide a technique that does not require an externally added base and provides high enantioselectivity in the production of an optically active α-amino acid derivative.

ところで、本発明者は、アルカリ土類金属アルコキシドが光学活性配位子のメチレン架橋部位の活性プロトンを引き抜けるのなら、金属と配位子とが共有結合半径程度で結合し、二つの窒素原子と二座で結合する強固な光学活性金属錯体が構築できるのではないかと考えた。更に、アルカリ土類金属を用いることで、二つの共有結合の一つを光学活性配位子と、もう一つはエノラート成分として構成でき、強固な光学活性エノラートになるのではないかと考えた。このような錯体自体は、アルキル亜鉛試薬やGrignard試薬等の等量反応での光学活性試薬として用いられているものの、触媒として用いられている例は殆ど無い(Schemes3-2-2,3-2-3)。

Figure 2012210623
Figure 2012210623
By the way, the present inventor believes that if the alkaline earth metal alkoxide pulls out the active proton at the methylene crosslinking site of the optically active ligand, the metal and the ligand are bonded with a covalent bond radius, and two nitrogen atoms and We thought that a strong optically active metal complex bound in bidentate could be constructed. Furthermore, by using an alkaline earth metal, one of the two covalent bonds can be constituted as an optically active ligand and the other as an enolate component, which is considered to be a strong optically active enolate. Although such a complex itself is used as an optically active reagent in an equivalent reaction such as an alkylzinc reagent or a Grignard reagent, there are almost no examples of using it as a catalyst (Schemes 3-2-2, 3-2). -3).
Figure 2012210623
Figure 2012210623

Nakamura等はメチレン架橋型光学活性Box配位子をn−ブチルリチウムで脱プロトン化し、それにアリル亜鉛化合物を作用させることでキラルアリル亜鉛化合物を調製し、シクロプロペンの開環反応とイミンのアリル化反応に用いている。イミンのアリル化反応に関しては、環状イミンを用いることで高い立体選択性を発現させることができる。

Figure 2012210623
Nakamura et al. Prepared a chiral allylzinc compound by deprotonating a methylene-bridged optically active Box ligand with n-butyllithium and then reacting it with an allylzinc compound, followed by cyclopropene ring-opening reaction and imine allylation reaction. Used for. Regarding the allylation reaction of imine, high stereoselectivity can be expressed by using cyclic imine.
Figure 2012210623

一方で、Hoffman等は光学活性Box配位子に対して、アルキルマグネシウムを作用させ、直接的に光学活性アルキルマグネシウム錯体を調製し、それに対してヨウ化アルキルを作用させることで望みの光学活性アルキルマグネシウム錯体を得、これをベンズアルデヒドに作用させ、目的物を中程度のエナンチオ選択性で得ている。   On the other hand, Hoffman et al. Prepared the desired optically active alkyl by reacting alkylmagnesium with the optically active Box ligand, directly preparing the optically active alkylmagnesium complex, and allowing alkyl iodide to act on it. A magnesium complex is obtained and this is allowed to act on benzaldehyde to obtain the target product with a moderate enantioselectivity.

触媒として用いられている例としては、マグネシウムを用いるLewis酸触媒として開発されている例はあるが、Bronsted塩基触媒として用いられている炭素−炭素生成反応の例は無い(Scheme3-2-4)。

Figure 2012210623
As an example used as a catalyst, there is an example developed as a Lewis acid catalyst using magnesium, but there is no example of a carbon-carbon generation reaction used as a Bronsted base catalyst (Scheme 3-2-4) .
Figure 2012210623

一方で、第三族のランタンアミドから調製される錯体は近年開発されてきており、アルケンのアミノ化反応の触媒として既に用いられている。   On the other hand, complexes prepared from Group 3 lanthanides have been developed in recent years and have already been used as catalysts for alkenes amination reaction.

しかしながら、この反応においては中程度のエナンチオ選択性までしか与えていない(Scheme3-2-5)。

Figure 2012210623
However, this reaction provides only moderate enantioselectivity (Scheme 3-2-5).
Figure 2012210623

これ等以外の錯体構造だけ知られている論文としては、代表的なものとして以下のものがある(Scheme3-2-6)。

Figure 2012210623
Typical papers other than these complex structures are as follows (Scheme 3-2-6).
Figure 2012210623

以上のことを踏まえて、本発明者は、アルカリ土類金属アルコキシドを用いて検討を開始(Table3-2-4)した。

Figure 2012210623
Based on the above, the present inventor started a study using an alkaline earth metal alkoxide (Table 3-2-4).
Figure 2012210623

そして、アルカリ土類金属アルコキシドの種類を検討した処、Ca,Sr,Baを用いた時に反応が進行することを見出した。その中でも、特に小さい金属であるCaを用いた場合、更にはカルシウムイソプロポキシドを用いた場合、収率は中程度ながら、73%Eeという良好なエナンチオ選択性で目的物が得られることを見出した。尚、得られた生成物の絶対立体配置は、文献記載のHPLCのデータとの比較により決定した。更に、想定した触媒構造が正しいか否かを確かめる為に、通常の中性型Box配位子を用いて検討した処、その検討では全くエナンチオ選択性が得られなかったので、金属−アニオン型Box錯体が正しい構造であると推定している。   And after examining the kind of alkaline-earth metal alkoxide, it discovered that reaction advanced when Ca, Sr, and Ba were used. Among them, it has been found that when Ca, which is a particularly small metal, is used, and when calcium isopropoxide is used, the target product can be obtained with a good enantioselectivity of 73% Ee, although the yield is moderate. It was. The absolute configuration of the obtained product was determined by comparison with HPLC data described in the literature. Furthermore, in order to confirm whether or not the assumed catalyst structure is correct, since the enantioselectivity was not obtained at all in the examination using the normal neutral box ligand, the metal-anion type was used. It is presumed that the Box complex has the correct structure.

上記知見を基にして本発明がなされたものである。
すなわち、前記の課題は、M(OR(但し、Mはアルカリ土類金属元素、Rはアルキル基)と該M(ORのMに結合をする配位子とを持ち、
前記配位子を構成する化合物がビアリール骨格またはビスオキサゾリン骨格を持つ化合物である
ことを特徴とする金属触媒によって解決される。
The present invention has been made based on the above findings.
That is, the above-described problem has M (OR 1 ) 2 (where M is an alkaline earth metal element and R 1 is an alkyl group) and a ligand that binds to M of M (OR 1 ) 2. ,
This is solved by a metal catalyst characterized in that the compound constituting the ligand is a compound having a biaryl skeleton or a bisoxazoline skeleton.

又、M(OR(但し、Mはアルカリ土類金属元素、Rはアルキル基)と、該M(ORのMに結合をする配位子を構成する化合物とが混合されてなり、
前記配位子を構成する化合物がビアリール骨格またはビスオキサゾリン骨格を持つ化合物である
ことを特徴とする金属触媒によって解決される。
Also, M (OR 1 ) 2 (where M is an alkaline earth metal element and R 1 is an alkyl group) and a compound constituting a ligand that binds to M of M (OR 1 ) 2 are mixed. Being
This is solved by a metal catalyst characterized in that the compound constituting the ligand is a compound having a biaryl skeleton or a bisoxazoline skeleton.

又、M(OR(但し、Mはアルカリ土類金属元素、Rはアルキル基)と該M(ORのMに結合をする配位子を構成する化合物とが、前者:後者=1:0.5〜3(更に好ましくは1:1〜2、中でも、1:1〜1.5)の割合で混合されてなり、
前記配位子を構成する化合物がビアリール骨格またはビスオキサゾリン骨格を持つ化合物である
ことを特徴とする金属触媒によって解決される。
M (OR 1 ) 2 (where M is an alkaline earth metal element and R 1 is an alkyl group) and a compound constituting a ligand that binds to M of M (OR 1 ) 2 are the former. : The latter = 1: 0.5 to 3 (more preferably 1: 1 to 2, especially 1: 1 to 1.5)
This is solved by a metal catalyst characterized in that the compound constituting the ligand is a compound having a biaryl skeleton or a bisoxazoline skeleton.

又、上記の金属触媒であって、更にモレキュラーシーブを有することを特徴とする金属触媒によって解決される。   Moreover, it is solved by the metal catalyst described above, which further has a molecular sieve.

上記金属触媒において、M(ORは、そのRの炭素数が1〜10のアルキル基(直鎖型または分岐型のアルキル基)であるものが好ましい。例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、tert−ブチル基などである。但し、直鎖型のアルキル基であるものと分岐型のアルキル基であるものとを比べると、分岐型のアルキル基(炭素数は3以上)であるものが好ましい。最も好ましいものはイソプロピル基である。 In the above metal catalyst, M (OR 1 ) 2 is preferably an alkyl group having 1 to 10 carbon atoms in R 1 (a linear or branched alkyl group). For example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert-butyl group and the like. However, when a linear alkyl group is compared with a branched alkyl group, a branched alkyl group (having 3 or more carbon atoms) is preferable. Most preferred is an isopropyl group.

上記金属触媒において、M(ORは、そのMがCa,Mg,Sr,Ba等のアルカリ土類金属のものである。但し、中でも、Caが最も好ましい。 In the above metal catalyst, M (OR 1 ) 2 is an alkaline earth metal such as Ca, Mg, Sr or Ba. However, among these, Ca is most preferable.

すなわち、M(ORとしてはCa(OiPr)が最も好ましいものである。 That is, as M (OR 1 ) 2 , Ca (OiPr) 2 is most preferable.

さて、上記本発明にあっては、M(ORのMに配位結合をする配位子を構成する化合物は、ビアリール骨格またはビスオキサゾリン骨格を持つ化合物である。このような化合物の中でも、好ましい化合物は、下記の式[I]で表される構造の化合物又はその鏡像体である。
式[I]

Figure 2012210623
但し、式[I]中、Rは脂肪族炭化水素基または芳香族炭化水素基で、全てのRは同一でも異なっていても良く、RはH若しくは脂肪族炭化水素基または芳香族炭化水素基で、全てのRは同一でも異なっていても良く、RはH、アルキル基、アリール基、炭素との結合原子がヘテロ原子である置換基またはシアノ基である。
尚、上記式[I]中でも、Rは芳香族炭化水素基(中でも、特に、フェニル基)、RはH又は芳香族炭化水素基(中でも、特に、H又はフェニル基)で、RはHである化合物が好ましい。 In the present invention, the compound constituting the ligand that forms a coordinate bond to M of M (OR 1 ) 2 is a compound having a biaryl skeleton or a bisoxazoline skeleton. Among such compounds, a preferable compound is a compound having a structure represented by the following formula [I] or an enantiomer thereof.
Formula [I]
Figure 2012210623
However, in the formula [I], R 2 is an aliphatic hydrocarbon group or an aromatic hydrocarbon group, all R 2 may be the same or different, and R 3 is H, an aliphatic hydrocarbon group or an aromatic group. In the hydrocarbon group, all R 3 s may be the same or different, and R 4 is H, an alkyl group, an aryl group, a substituent having a hetero atom as a bonding atom to carbon, or a cyano group.
In the above formula [I], R 2 is an aromatic hydrocarbon group (in particular, a phenyl group), R 3 is H or an aromatic hydrocarbon group (in particular, H or a phenyl group), and R 4 A compound in which is H is preferred.

又、好ましい配位子として下記の式[II]で表される構造の化合物又はその鏡像体も挙げられる。
式[II]

Figure 2012210623
Moreover, as a preferable ligand, a compound having a structure represented by the following formula [II] or an enantiomer thereof may be mentioned.
Formula [II]
Figure 2012210623

本発明の触媒は、特に、光学活性α−アミノ酸誘導体の合成に際しての触媒である。例えば、下記の式[III]で表される化合物と下記の式[IV]で表される化合物との反応に用いられる触媒である。或いは、下記の式[III]で表される化合物と下記の式[V]で表される化合物との反応に用いられる触媒である。若しくは、下記の式[VI]で表される化合物と下記の式[VII]で表される化合物との反応に用いられる触媒である。又は、下記の式[VIII]で表される化合物と下記の式[IX]で表される化合物との反応に用いられる触媒である。   The catalyst of the present invention is particularly a catalyst for the synthesis of optically active α-amino acid derivatives. For example, it is a catalyst used for reaction of the compound represented by the following formula [III] and the compound represented by the following formula [IV]. Or it is a catalyst used for reaction of the compound represented by the following formula [III], and the compound represented by the following formula [V]. Or it is a catalyst used for reaction of the compound represented by the following formula [VI], and the compound represented by the following formula [VII]. Or it is a catalyst used for reaction with the compound represented by the following formula [VIII], and the compound represented by the following formula [IX].

式[III]

Figure 2012210623
但し、式[III]中、RはH、アルキル基またはアリール基(好ましくは、フェニル基)、RはH、アルキル基またはアリール基(好ましくは、フェニル基)、RはH、脂肪族炭化水素基または芳香族炭化水素基(好ましくは、H)、Rは脂肪族炭化水素基(好ましくは、メチル基、エチル基、tert−ブチル基などの炭素数が1〜10のアルキル基)である。 Formula [III]
Figure 2012210623
In the formula [III], R 5 is H, an alkyl group or an aryl group (preferably a phenyl group), R 6 is H, an alkyl group or an aryl group (preferably a phenyl group), R 7 is H, an aliphatic group An aromatic hydrocarbon group or an aromatic hydrocarbon group (preferably H), R 8 is an aliphatic hydrocarbon group (preferably an alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group, a tert-butyl group, etc. ).

式[IV]

Figure 2012210623
但し、式[IV]中、Rは−COOR(但し、Rは脂肪族炭化水素基(好ましくは、Rがメチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基などの炭素数が1〜10のアルキル基)),−CON(R’)R’’(但し、R’,R’’は脂肪族炭化水素基(好ましくはメチル基またはエチル基、特に、メチル基)又は何れか一方がアルコキシ基),−SOR’’’
(但し、R’’’は脂肪族炭化水素基(好ましくは、Rがメチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基などの炭素数が1〜10のアルキル基)又は芳香族炭化水素基(好ましくは、フェニル基))、R10はH,X(ハロゲン原子)、脂肪族炭化水素基(好ましくは、Rがメチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基などの炭素数が1〜10のアルキル基)又は芳香族炭化水素基(好ましくは、フェニル基)である。 Formula [IV]
Figure 2012210623
However, in the formula [IV], R 9 is —COOR (where R is an aliphatic hydrocarbon group (preferably R is a carbon group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group). 1 to 10 alkyl groups)), —CON (R ′) R ″ (where R ′ and R ″ are aliphatic hydrocarbon groups (preferably methyl groups or ethyl groups, particularly methyl groups) or any One is an alkoxy group), —SO 2 R ′ ″
(Where R ′ ″ is an aliphatic hydrocarbon group (preferably R is an alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group) or an aromatic group. Hydrocarbon group (preferably phenyl group)), R 10 is H, X (halogen atom), aliphatic hydrocarbon group (preferably R is methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group) Such as an alkyl group having 1 to 10 carbon atoms) or an aromatic hydrocarbon group (preferably a phenyl group).

式[V]

Figure 2012210623
但し、式[V]中、Rは−OR(但し、Rは脂肪族炭化水素基(好ましくは、Rがメチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基などの炭素数が1〜10のアルキル基))又は−N(R’)R’’(但し、R’,R’’は脂肪族炭化水素基または芳香族炭化水素基(好ましくは、ジメチルアミノ基、ジシクロヘキシルアミノ基、ピペリジノ基、モルフォリノ基)、或いは何れか一方がアルコキシ基)、R10はH又は脂肪族炭化水素基(好ましくは、Rがメチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基などの炭素数が1〜10のアルキル基)である。 Formula [V]
Figure 2012210623
However, in formula [V], R 9 is —OR (where R is an aliphatic hydrocarbon group (preferably R is a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group or the like). 1-10 alkyl groups)) or -N (R ') R "(where R', R" are aliphatic hydrocarbon groups or aromatic hydrocarbon groups (preferably dimethylamino groups, dicyclohexylamino groups). R 10 is H or an aliphatic hydrocarbon group (preferably R is a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, etc.) Is an alkyl group having 1 to 10 carbon atoms.

式[VI]

Figure 2012210623
但し、式[VI]中、Raは炭化水素基または複素環基である。好ましくは芳香族基である。ZはS又はOである。Rbは炭化水素基である。好ましくは脂肪族炭化水素基である。中でも、炭素数が1〜10のアルキル基である。 Formula [VI]
Figure 2012210623
However, in formula [VI], Ra is a hydrocarbon group or a heterocyclic group. An aromatic group is preferred. Z is S or O. Rb is a hydrocarbon group. An aliphatic hydrocarbon group is preferred. Especially, it is a C1-C10 alkyl group.

式[VII]

Figure 2012210623
但し、式[VII]中、R,RはH又は炭化水素基である。炭化水素基は、好ましくは脂肪族炭化水素基である。中でも、炭素数が1〜10のアルキル基である。Rはアルコキシ基またはアミノ基である。 Formula [VII]
Figure 2012210623
However, in the formula [VII], R 1 and R 2 are H or a hydrocarbon group. The hydrocarbon group is preferably an aliphatic hydrocarbon group. Especially, it is a C1-C10 alkyl group. R 3 is an alkoxy group or an amino group.

式[VIII]

Figure 2012210623
但し、式[VIII]中、RはH又はアルキル基である。アルキル基の場合、好ましくは炭素数が1〜10のアルキル基である。Rは炭化水素基である。好ましくは炭素数が1〜10のアルキル基である。 Formula [VIII]
Figure 2012210623
However, in the formula [VIII], R 1 is H or an alkyl group. In the case of an alkyl group, it is preferably an alkyl group having 1 to 10 carbon atoms. R 2 is a hydrocarbon group. Preferably it is a C1-C10 alkyl group.

式[IX]

Figure 2012210623
但し、式[IX]中、Rは炭化水素基である。好ましくは炭素数が1〜10のアルキル基である。 Formula [IX]
Figure 2012210623
However, in the formula [IX], R 3 is a hydrocarbon group. Preferably it is a C1-C10 alkyl group.

又、前記の課題は、上記の金属触媒の存在下で、上記式[III]で表される化合物と上記式[IV]で表される化合物とを反応させる
ことを特徴とする光学活性α−アミノ酸誘導体の製造方法によって解決される。
In addition, the object is to react the compound represented by the formula [III] with the compound represented by the formula [IV] in the presence of the metal catalyst. It is solved by the method for producing amino acid derivatives.

又、前記の課題は、上記の金属触媒の存在下で、上記式[III]で表される化合物と上記式[V]で表される化合物とを反応させる
ことを特徴とする光学活性α−アミノ酸誘導体の製造方法によって解決される。
In addition, the object is to react the compound represented by the above formula [III] with the compound represented by the above formula [V] in the presence of the above metal catalyst. This is solved by a method for producing an amino acid derivative.

又、前記の課題は、上記の金属触媒の存在下で、上記式[VI]で表される化合物と上記式[VII]で表される化合物とを反応させる
ことを特徴とする光学活性α−アミノ酸誘導体の製造方法によって解決される。
Further, the above object is to provide an optically active α-characteristic comprising reacting a compound represented by the above formula [VI] with a compound represented by the above formula [VII] in the presence of the above metal catalyst. This is solved by a method for producing an amino acid derivative.

又、前記の課題は、上記の金属触媒の存在下で、上記式[VIII]で表される化合物と上記式[IX]で表される化合物とを反応させる
ことを特徴とする光学活性α−アミノ酸誘導体の製造方法によって解決される。
Further, the above object is to provide an optically active α-characteristic comprising reacting a compound represented by the formula [VIII] with a compound represented by the formula [IX] in the presence of the metal catalyst. It is solved by the method for producing amino acid derivatives.

上記の反応は、好ましくは、−80℃〜20℃の温度で行なわれる。更に好ましくは−45℃〜20℃で行なわれる。特に、式[III]で表される化合物と式[IV]で表される化合物との反応の場合には、−45℃から0℃が好ましく、式[III]で表される化合物と式[V]で表される化合物との反応の場合には、−30℃から20℃が好ましい。   The above reaction is preferably performed at a temperature of -80 ° C to 20 ° C. More preferably, it is carried out at -45 ° C to 20 ° C. In particular, in the case of the reaction between the compound represented by the formula [III] and the compound represented by the formula [IV], −45 ° C. to 0 ° C. is preferable, and the compound represented by the formula [III] and the formula [III] In the case of the reaction with the compound represented by V], −30 ° C. to 20 ° C. is preferable.

又、上記の反応は、溶媒中で行なわせることが好ましい。溶媒としては、ジエチルエーテル、tert−ブチルメチルエーテル、トルエン、塩化メチレン、ジメトキシエタン、アセトニトリル等を用いることも出来る。しかしながら、収率・選択性の観点から、テトラヒドロフランが最も好ましいものであった。   The above reaction is preferably carried out in a solvent. As the solvent, diethyl ether, tert-butyl methyl ether, toluene, methylene chloride, dimethoxyethane, acetonitrile or the like can be used. However, tetrahydrofuran was most preferred from the viewpoint of yield and selectivity.

上記反応に際して用いられる触媒の量は、基質に対して0.1〜20mol%であることが好ましい。特に好ましくは0.1〜10mol%である。   The amount of the catalyst used in the above reaction is preferably 0.1 to 20 mol% with respect to the substrate. Most preferably, it is 0.1-10 mol%.

又、上記反応に際して、M(ORにビアリール骨格またはビスオキサゾリン骨格を持つ化合物が配位した金属触媒の他に、例えばMS3A,MS4A,MS5A等のモレキュラーシーブが用いられると、高い収率・選択性が得られた。尚、モレキュラーシーブの使用量は、好ましくは、溶媒量に対して重量/体積比で6〜700である。更に好ましくは30〜140である。 In the above reaction, when a molecular sieve such as MS3A, MS4A, MS5A or the like is used in addition to a metal catalyst in which a compound having a biaryl skeleton or a bisoxazoline skeleton is coordinated to M (OR 1 ) 2 , a high yield is obtained.・ Selectivity was obtained. The amount of molecular sieve used is preferably 6 to 700 in weight / volume ratio with respect to the amount of solvent. More preferably, it is 30-140.

外部添加の塩基を必要とせず、高い収率・選択性で、光学活性α−アミノ酸誘導体が得られる。例えば、グリシン誘導体の触媒的不斉Michael反応(1,4−付加反応)や[3+2]−環化反応が可能になり、光学活性α−アミノ酸誘導体が効率良く得られる。   An optically active α-amino acid derivative can be obtained with high yield and selectivity without requiring an externally added base. For example, a catalytic asymmetric Michael reaction (1,4-addition reaction) or [3 + 2] -cyclization reaction of a glycine derivative becomes possible, and an optically active α-amino acid derivative can be obtained efficiently.

又、例えばCaを中心金属として用いていることから、銅などの重金属を用いた場合に比べて、環境調和型の反応である特長も奏する。   In addition, since Ca is used as a central metal, for example, there is also an advantage that it is an environment-friendly reaction as compared with a case where heavy metal such as copper is used.

そして、医薬品中間体などのファインケミカル分野において特に有用である。   It is particularly useful in the field of fine chemicals such as pharmaceutical intermediates.

本発明の触媒は、M(OR(但し、Mはアルカリ土類金属元素、Rはアルキル基)と該M(ORのMに結合をする配位子とを持つものである。このような触媒は、M(OR(但し、Mはアルカリ土類金属元素、Rはアルキル基)と該M(ORのMに配位結合をする配位子を構成する化合物との混合により得られる。例えば、前者:後者=1:0.5〜3、特に、1:1〜2、中でも、1:1〜1.5の割合で混合することにより得られる。前記配位子を構成する化合物は、ビアリール骨格またはビスオキサゾリン骨格を持つ化合物である。又、モレキュラーシーブを有する。 The catalyst of the present invention has M (OR 1 ) 2 (where M is an alkaline earth metal element and R 1 is an alkyl group) and a ligand that binds to M of M (OR 1 ) 2. It is. Such a catalyst comprises M (OR 1 ) 2 (where M is an alkaline earth metal element and R 1 is an alkyl group) and a ligand that forms a coordinate bond with M of M (OR 1 ) 2. Obtained by mixing with the compound to be obtained. For example, the former can be obtained by mixing at a ratio of 1: 0.5 to 3, particularly 1: 1 to 2, especially 1: 1 to 1.5. The compound constituting the ligand is a compound having a biaryl skeleton or a bisoxazoline skeleton. It also has a molecular sieve.

M(ORのRは、例えば炭素数が1〜10のアルキル基(直鎖型または分岐型のアルキル基)である。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、tert−ブチル基などである。好ましい基は分岐型の炭素数が3〜10のアルキル基である。特に、イソプロピル基である。M(ORのMはCa,Mg,Sr,Ba等のアルカリ土類金属であるが、特に、Caである。従って、最も好ましいM(ORはCa(OiPr)である。 R 1 of M (OR 1 ) 2 is, for example, an alkyl group having 1 to 10 carbon atoms (a linear or branched alkyl group). Specific examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a sec-butyl group, and a tert-butyl group. Preferred groups are branched alkyl groups having 3 to 10 carbon atoms. In particular, an isopropyl group. M in M (OR 1 ) 2 is an alkaline earth metal such as Ca, Mg, Sr, or Ba, and is particularly Ca. Therefore, the most preferred M (OR 1 ) 2 is Ca (OiPr) 2 .

M(ORのMに配位結合をする配位子を構成する化合物は、ビアリール骨格またはビスオキサゾリン骨格を持つ化合物である。このような化合物の中でも、好ましい化合物は、上記の式[I]で表される構造の化合物又はその鏡像体である。但し、式[I]中、Rは脂肪族炭化水素基または芳香族炭化水素基で、全てのRは同一でも異なっていても良く、RはH若しくは脂肪族炭化水素基または芳香族炭化水素基で、全てのRは同一でも異なっていても良く、RはH、アルキル基、アリール基、炭素との結合原子がヘテロ原子である置換基またはシアノ基である。式[I]中でも、Rは芳香族炭化水素基(中でも、特に、フェニル基)、RはH又は芳香族炭化水素基(中でも、特に、H又はフェニル基)で、RはHである化合物が好ましいものである。又、好ましい配位子として上記の式[II]で表される構造の化合物又はその鏡像体も挙げられる。 A compound constituting a ligand that forms a coordinate bond to M in M (OR 1 ) 2 is a compound having a biaryl skeleton or a bisoxazoline skeleton. Among such compounds, a preferred compound is a compound having a structure represented by the above formula [I] or an enantiomer thereof. However, in the formula [I], R 2 is an aliphatic hydrocarbon group or an aromatic hydrocarbon group, all R 2 may be the same or different, and R 3 is H, an aliphatic hydrocarbon group or an aromatic group. In the hydrocarbon group, all R 3 s may be the same or different, and R 4 is H, an alkyl group, an aryl group, a substituent having a hetero atom as a bonding atom to carbon, or a cyano group. Among the formulas [I], R 2 is an aromatic hydrocarbon group (particularly, a phenyl group), R 3 is H or an aromatic hydrocarbon group (particularly, H or a phenyl group), and R 4 is H. Certain compounds are preferred. Moreover, the compound of the structure represented by said Formula [II], or its enantiomer is also mentioned as a preferable ligand.

本発明の触媒は、特に、光学活性α−アミノ酸誘導体の合成に用いられる触媒である。例えば、上記の式[III]で表される化合物と上記の式[IV]で表される化合物との反応に用いられる触媒である。或いは、上記の式[III]で表される化合物と上記の式[V]で表される化合物との反応に用いられる触媒である。若しくは、上記の式[VI]で表される化合物と上記の式[VII]で表される化合物との反応に用いられる触媒である。又は、上記の式[VIII]で表される化合物と上記の式[IX]で表される化合物との反応に用いられる触媒である。式[III]中、RはH又はアリール基(好ましくは、フェニル基)、RはH又はアリール基(好ましくは、フェニル基)、RはH、脂肪族炭化水素基または芳香族炭化水素基(好ましくは、H)、Rは脂肪族炭化水素基(好ましくは、メチル基、エチル基、tert−ブチル基などの炭素数が1〜10のアルキル基)である。式[IV]中、Rは−COOR(但し、Rは脂肪族炭化水素基(好ましくは、Rがメチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基などの炭素数が1〜10のアルキル基)),−CON(R’)R’’(但し、R’,R’’は脂肪族炭化水素基(好ましくはメチル基またはエチル基、特に、メチル基)又は何れか一方がアルコキシ基),−SOR’’’
(但し、R’’’は脂肪族炭化水素基(好ましくは、Rがメチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基などの炭素数が1〜10のアルキル基)または芳香族炭化水素基(好ましくは、フェニル基))の群の中から選ばれる何れかで、R10はH,X(ハロゲン原子)、脂肪族炭化水素基(好ましくは、Rがメチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基などの炭素数が1〜10のアルキル基)、及び芳香族炭化水素基(好ましくは、フェニル基)の群の中から選ばれる何れかである。式[V]中、Rは−OR(但し、Rは脂肪族炭化水素基(好ましくは、Rがメチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基などの炭素数が1〜10のアルキル基)),−N(R’)R’’(但し、R’,R’’は脂肪族炭化水素基または芳香族炭化水素基(好ましくは、ジメチルアミノ基、ジシクロヘキシルアミノ基、ピペリジノ基、モルフォリノ基)又は何れか一方がアルコキシ基)の群の中から選ばれる何れかで、R10はH又は脂肪族炭化水素基(好ましくは、Rがメチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基などの炭素数が1〜10のアルキル基)である。式[VI]中、Raは脂肪族炭化水素基あるいは芳香族炭化水素基などの炭化水素基または複素環基である。好ましくは芳香族基である。ZはS又はOである。Rbは炭化水素基である。好ましくは脂肪族炭化水素基である。中でも、炭素数が1〜10のアルキル基である。式[VII]中、R,RはH又は炭化水素基である。炭化水素基は、好ましくは脂肪族炭化水素基である。中でも、炭素数が1〜10のアルキル基である。Rはアルコキシ基またはアミノ基である。式[VIII]中、RはH又はアルキル基である。アルキル基の場合、好ましくは炭素数が1〜10のアルキル基である。Rは炭化水素基である。好ましくは炭素数が1〜10のアルキル基である。式[IX]中、Rは炭化水素基である。好ましくは炭素数が1〜10のアルキル基である。
The catalyst of the present invention is particularly a catalyst used for the synthesis of optically active α-amino acid derivatives. For example, it is a catalyst used for the reaction of the compound represented by the above formula [III] and the compound represented by the above formula [IV]. Or it is a catalyst used for reaction of the compound represented by said Formula [III], and the compound represented by said Formula [V]. Or it is a catalyst used for reaction of the compound represented by said formula [VI], and the compound represented by said formula [VII]. Or it is a catalyst used for reaction of the compound represented by said Formula [VIII], and the compound represented by said Formula [IX]. In the formula [III], R 5 is H or an aryl group (preferably a phenyl group), R 6 is H or an aryl group (preferably a phenyl group), R 7 is H, an aliphatic hydrocarbon group or an aromatic carbon group A hydrogen group (preferably H) and R 8 are an aliphatic hydrocarbon group (preferably an alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group and a tert-butyl group). In formula [IV], R 9 is —COOR (where R is an aliphatic hydrocarbon group (preferably R is a methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group or the like). 10 alkyl groups)), —CON (R ′) R ″ (where R ′, R ″ are aliphatic hydrocarbon groups (preferably methyl groups or ethyl groups, particularly methyl groups) or one of them is Alkoxy group), —SO 2 R ′ ″
Where R ′ ″ is an aliphatic hydrocarbon group (preferably R is an alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group) or an aromatic group Any one selected from the group of hydrocarbon groups (preferably a phenyl group), wherein R 10 is H, X (halogen atom), an aliphatic hydrocarbon group (preferably R is a methyl group, an ethyl group, An alkyl group having 1 to 10 carbon atoms such as a propyl group, an isopropyl group, and a tert-butyl group) and an aromatic hydrocarbon group (preferably a phenyl group). In the formula [V], R 9 is —OR (where R is an aliphatic hydrocarbon group (preferably R is a methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group or the like). 10 alkyl groups)), —N (R ′) R ″ (where R ′, R ″ are aliphatic hydrocarbon groups or aromatic hydrocarbon groups (preferably dimethylamino group, dicyclohexylamino group, piperidino group). R 10 is H or an aliphatic hydrocarbon group (preferably, R is a methyl group, an ethyl group, a propyl group, an isopropyl group), or any one selected from the group of an alkoxy group). Group, an alkyl group having 1 to 10 carbon atoms such as a tert-butyl group). In the formula [VI], Ra is a hydrocarbon group such as an aliphatic hydrocarbon group or an aromatic hydrocarbon group or a heterocyclic group. An aromatic group is preferred. Z is S or O. Rb is a hydrocarbon group. An aliphatic hydrocarbon group is preferred. Especially, it is a C1-C10 alkyl group. In the formula [VII], R 1 and R 2 are H or a hydrocarbon group. The hydrocarbon group is preferably an aliphatic hydrocarbon group. Especially, it is a C1-C10 alkyl group. R 3 is an alkoxy group or an amino group. In the formula [VIII], R 1 is H or an alkyl group. In the case of an alkyl group, it is preferably an alkyl group having 1 to 10 carbon atoms. R 2 is a hydrocarbon group. Preferably it is a C1-C10 alkyl group. In the formula [IX], R 3 is a hydrocarbon group. Preferably it is a C1-C10 alkyl group.

本発明になる光学活性α−アミノ酸誘導体の製造方法は、上記の金属触媒の存在下で、上記式[III]で表される化合物と上記式[IV]で表される化合物とを反応させる方法である。或いは、上記の金属触媒の存在下で、上記式[III]で表される化合物と上記式[V]で表される化合物とを反応させる方法である。若しくは、上記の金属触媒の存在下で、上記式[VI]で表される化合物と上記式[VII]で表される化合物とを反応させる方法である。又は、上記の金属触媒の存在下で、上記式[VIII]で表される化合物と上記式[IX]で表される化合物とを反応させる方法である。この反応は、例えば−80℃〜20℃の温度で行なわれる。−45℃〜20℃で行なわれるのが好ましい。特に、式[III]で表される化合物と式[IV]で表される化合物との反応の場合には、−45℃〜0℃が好ましく、式[III]で表される化合物と式[V]で表される化合物との反応の場合には、−30℃〜20℃が好ましい。又、上記の反応は、溶媒中で行なわせることが好ましい。反応に際しては溶媒が用いられる。溶媒として特に好ましいものは、収率・選択性の観点から、テトラヒドロフランである。本触媒の量は、基質に対して、例えば0.1〜20mol%である。特に0.1〜10mol%である。又、反応に際して、上記金属触媒の他に、例えばMS3A,MS4A,MS5A等のモレキュラーシーブが用いられることが好ましい。特に、溶媒量に対して重量/体積比で6〜700、中でも30〜140の割合で用いられることが好ましい。   The method for producing an optically active α-amino acid derivative according to the present invention comprises reacting the compound represented by the above formula [III] with the compound represented by the above formula [IV] in the presence of the above metal catalyst. It is. Alternatively, it is a method in which the compound represented by the formula [III] is reacted with the compound represented by the formula [V] in the presence of the metal catalyst. Or it is the method of making the compound represented by the said formula [VI], and the compound represented by the said formula [VII] react in presence of said metal catalyst. Alternatively, in the presence of the metal catalyst, the compound represented by the formula [VIII] is reacted with the compound represented by the formula [IX]. This reaction is performed at a temperature of, for example, -80 ° C to 20 ° C. It is preferable to be performed at −45 ° C. to 20 ° C. In particular, in the case of the reaction between the compound represented by the formula [III] and the compound represented by the formula [IV], −45 ° C. to 0 ° C. is preferable, and the compound represented by the formula [III] and the formula [III] In the case of the reaction with the compound represented by V], −30 ° C. to 20 ° C. is preferable. The above reaction is preferably carried out in a solvent. A solvent is used in the reaction. A particularly preferable solvent is tetrahydrofuran from the viewpoint of yield and selectivity. The amount of the catalyst is, for example, 0.1 to 20 mol% with respect to the substrate. Particularly, it is 0.1 to 10 mol%. In the reaction, it is preferable to use molecular sieves such as MS3A, MS4A and MS5A in addition to the metal catalyst. In particular, the weight / volume ratio with respect to the amount of solvent is preferably 6 to 700, and more preferably 30 to 140.

以下、更に詳しく説明する。
[M(ORを用いた触媒的1,4−付加反応]
減圧下で加熱乾燥した反応容器をアルゴン置換し、この反応容器をグローブボックス中に持ち込み、0.03mmolのアルカリ土類金属アルコキシドと100mgのモレキュラーシーブMS5Aを秤量して入れた。
This will be described in more detail below.
[Catalytic 1,4-addition reaction using M (OR 1 ) 2 ]
The reaction vessel heated and dried under reduced pressure was replaced with argon, and this reaction vessel was brought into a glove box, and 0.03 mmol of alkaline earth metal alkoxide and 100 mg of molecular sieve MS5A were weighed in.

そして、グローブボックスから取り出した反応容器を室温下で撹拌した。   And the reaction container taken out from the glove box was stirred at room temperature.

この後、室温下において、0.5mLのテトラヒドロフラン(THF)を加え、そのままの温度で10分間撹拌した。   Thereafter, 0.5 mL of tetrahydrofuran (THF) was added at room temperature, and the mixture was stirred at the same temperature for 10 minutes.

撹拌後、0℃でグリシンエステル誘導体(1b,0.36 mmol)のTHF溶液(1.0mL)とアクリル酸メチル(0.30mmol)を、順次、加えた。そして、そのままの温度で、2時間の撹拌後、0℃の撹拌下で飽和塩化アンモニウム溶液(10mL)を加え、反応を停止した。   After stirring, a THF solution (1.0 mL) of glycine ester derivative (1b, 0.36 mmol) and methyl acrylate (0.30 mmol) were sequentially added at 0 ° C. Then, after stirring for 2 hours at the same temperature, saturated ammonium chloride solution (10 mL) was added with stirring at 0 ° C. to stop the reaction.

この後、塩化メチレン(10mL)を加えて分液し、塩化メチレン(20mL)で3回抽出した。有機層を合わせ、無水硫酸ナトリウムで乾燥した。得られた粗生成物を濾過、そして減圧濃縮後、シリカゲル薄層クロマトグラフィー(Hexane:Ethyl acetate =3:1)にて精製し、目的物を得た。   Thereafter, methylene chloride (10 mL) was added for liquid separation, and extraction was performed three times with methylene chloride (20 mL). The organic layers were combined and dried over anhydrous sodium sulfate. The obtained crude product was filtered, concentrated under reduced pressure, and then purified by silica gel thin layer chromatography (Hexane: Ethyl acetate = 3: 1) to obtain the desired product.

[Ca(OiPr)を用いた触媒的1,4−付加反応]
減圧下で加熱乾燥した反応容器をアルゴン置換し、この反応容器をグローブボックス中に持ち込み、0.03mmolのCa(OiPr)と100mgのモレキュラーシーブMS4Aを秤量して入れた。
[Catalytic 1,4-addition reaction using Ca (OiPr) 2 ]
The reaction vessel heated and dried under reduced pressure was replaced with argon, and this reaction vessel was brought into a glove box, and 0.03 mmol of Ca (OiPr) 2 and 100 mg of molecular sieve MS4A were weighed in.

そして、グローブボックスから取り出した反応容器を室温下で撹拌した。   And the reaction container taken out from the glove box was stirred at room temperature.

この後、室温下において、(S)−2,2’−Methylenebis(4−phenyl−2−oxazoline)のTHF(0.5mL)溶液を加え、そのままの温度で2時間撹拌した。   Thereafter, a solution of (S) -2,2'-Methylenebis (4-phenyl-2-oxazoline) in THF (0.5 mL) was added at room temperature, and the mixture was stirred at the same temperature for 2 hours.

撹拌後、反応容器を−30℃に冷却し、グリシンエステル誘導体 (0.36mmol)のTHF溶液(0.5mL)とα,β−不飽和カルボニル化合物(0.30mmol)のTHF溶液(0.5mL)を、順次、加えた。そして、そのままの温度で12時間の撹拌後、0℃の撹拌下で飽和塩化アンモニウム溶液(10mL)を加え、反応を停止した。   After stirring, the reaction vessel was cooled to −30 ° C., and a THF solution (0.5 mL) of a glycine ester derivative (0.36 mmol) in THF (0.5 mL) and an α, β-unsaturated carbonyl compound (0.30 mmol). ) Were added sequentially. Then, after stirring for 12 hours at the same temperature, a saturated ammonium chloride solution (10 mL) was added with stirring at 0 ° C. to stop the reaction.

この後、塩化メチレン(10mL)を加えて分液し、そして塩化メチレン(20mL)で3回抽出した。有機層を合わせ、無水硫酸ナトリウムで乾燥した。   This was followed by the addition of methylene chloride (10 mL), liquid separation, and extraction with methylene chloride (20 mL) three times. The organic layers were combined and dried over anhydrous sodium sulfate.

得られた粗生成物を濾過、そして減圧濃縮後、シリカゲル薄層クロマトグラフィー(Hexane:Ethyl acetate =3:1)にて精製し、目的物を得た。   The obtained crude product was filtered, concentrated under reduced pressure, and then purified by silica gel thin layer chromatography (Hexane: Ethyl acetate = 3: 1) to obtain the desired product.

尚、上記バリウムアルコキシド、ストロンチウムアルコキシドやマグネシウムアルコキシドは、高純度化学(株)から購入したものを、又、カルシウムイソプロポキシド(Ca(OiPr))はAldrich社から購入したものをグローブボックス中で保存し、そのまま用いた。各種光学活性配位子はAldrich社から購入したり、公知文献の方法に従って合成されたものである。グリシンエステル誘導体は公知文献の方法に従って合成されたものである。各種のα,β−不飽和カルボニル化合物は東京化成工業 (株)より購入し、蒸留を行い精製したものである。又、得られた生成物の質量分析では、プロトン化されたもの、若しくはケトイミン部位が脱保護された2−アミノペンタンジエステルとして観測された。

Figure 2012210623
The barium alkoxide, strontium alkoxide and magnesium alkoxide were purchased from High Purity Chemical Co., Ltd., and calcium isopropoxide (Ca (OiPr) 2 ) was purchased from Aldrich in the glove box. Stored and used as is. Various optically active ligands are purchased from Aldrich or synthesized according to methods in known literature. The glycine ester derivative is synthesized according to a method in a known literature. Various α, β-unsaturated carbonyl compounds are purchased from Tokyo Chemical Industry Co., Ltd., purified by distillation. In addition, mass analysis of the obtained product was observed as a protonated product or a 2-aminopentane diester in which the ketoimine moiety was deprotected.
Figure 2012210623

[グリシンエステル誘導体を用いた触媒的不斉1,4−付加反応生成物の物性値]
dimethyl
2-(diphenylmethyleneamino)pentanedioate
IR [cm−1]3361, 3060, 3026, 2952, 2845, 1968, 1905, 1741, 1659, 1623,
1598, 1576, 1491, 1442, 1362, 1280, 1158, 1074, 1030, 1004.
1H NMR (CDCl3) d 7.82−7.80 (m, 1H), 7.65−7.63
(m, 2H), 7.46−7.43 (m, 3H), 7.35−7.32
(m, 2H), 7.19−7.17 (m, 2H), 4.13 (t, 1H, J = 6.2 Hz), 3.71 (s, 3H), 3.58 (s, 3H), 2.38-2.35
(m, 2H), 2.26-2.23 (m, 2H).
13C NMR (CDCl3) d 173.4, 172.1, 171.2, 130.5, 130.1, 128.8, 128.7, 128.6,
128.3, 128.1, 127.8, 64.1, 52.2, 51.5, 30.3, 28.6.
HPLC, Daicel Chiralcel OD−H, Hexane/iPrOH = 40/1, Flow rate = 1.00 mL/min, Detection wavelength = 254 nm:
tR = 12.3 min (major), tR = 15.0 min (minor).
ESI−HRMS (m/z) calcd. for C20H22NO4 ((M+H)+): 340.1543; found: 340.1542.
(R)-1-tert-butyl 5-methyl
2-(diphenylmethyleneamino)pentanedioate
IR [cm−1]3358, 2977, 2948, 1738,
1659, 1623, 1443, 1368, 1278, 1259, 1149.
1H NMR (CDCl3) d 7.82−7.80 (m, 1H), 7.65-7.63 (m, 2H), 7.50−7.43 (m, 3H), 7.34−7.31 (m, 2H), 7.18−7.17
(m, 2H), 3.96 (dd, 1H, J = 7.2, 5.2 Hz), 3.59 (s, 3H), 2.39−2.36 (m, 2H), 2.24−2.20
(m, 2H), 1.44 (s, 9H).
13C NMR (CDCl3) d 173.6, 170.7,
170.7, 130.3, 130.1, 128.8, 128.6, 128.4, 128.4, 128.0, 127.8, 81.2, 64.8,
51.5, 30.5, 28.6, 28.0.
HPLC, Daicel Chiralcel OD−H, Hexane/iPrOH = 40/1, Flow rate = 0.25 mL/min, Detection wavelength = 254 nm:
tR = 27.1 min (R), tR = 36.9 min (S).
ESI−HRMS (m/z) calcd. for C10H20NO4 ((M-C13H7)+): 218.1387; found: 218.1386.
(R)-1- tert-butyl
5-ethyl 2-(diphenylmethyleneamino)pentanedioate
IR [cm−1] 3367, 2979, 2931, 1734, 1659, 1599, 1449, 1370, 1316, 1279,
1154, 1030.
1H NMR (CDCl3) d 7.82−7.16
(m, 10H), 4.04 (q, 2H, J = 6.8 Hz), 3.96 (t, 1H, J = 6.0 Hz), 2.37−2.33
(m, 2H), 2.24−2.21 (m, 2H), 1.42 (s, 9H), 1.19 (t, 3H, J = 6.8 Hz).
13C NMR (CDCl3) d 173.1, 170.7,
170.6, 132.4, 130.0, 128.8, 128.5, 128.4, 128.2, 128.0, 127.7, 81.1, 64.8,
60.3, 30.7, 28.6, 28.0, 14.1.
HPLC, Daicel Chiralcel OD−H, Hexane/iPrOH = 40/1, Flow rate = 0.25 mL/min, Detection wavelength = 254 nm:
tR = 23.2 min (R), tR = 28.5 min (S).
ESI−HRMS (m/z) calcd. for C11H22NO4 ((M-C13H7)+): 232.1543; found: 232.1541.
di-tert-butyl 2-(diphenylmethyleneamino))pentanedioate
IR [cm−1] 2978, 1730, 1660, 1622, 1450, 1368, 1278,
1254, 1152
1H NMR (CDCl3) d 7.82−7.16
(m, 10H), 3.95 (t, 1H, J = 6.4 Hz), 2.37−2.17 (m, 4H), 1.44 (s,
9H), 1.39 (s, 9H).
13C NMR (CDCl3) d 172.5, 170.9,
170.6, 132.4, 130.1, 128.8, 128.5, 128.4, 128.3, 128.0, 127.8, 81.1, 80.2,
65.0, 32.0, 28.9, 28.0, 27.4.
HPLC, Daicel Chiralcel OD−H, Hexane/iPrOH = 40/1, Flow rate = 0.25 mL/min, Detection wavelength = 254 nm:
tR = 18.6 min (major), tR = 23.3 min (minor).
ESI−HRMS (m/z) calcd. for C26H34NO4 ((M+H)+):
424.2482; found: 424.2478.
tert-butyl2-(diphenylmethyleneamino)-5-(methoxy(methyl)amino)-5-oxopentanoate
IR [cm−1] 3253, 2979, 1737,
1661, 1449, 1365, 1315, 1279, 1222, 1148.
1H NMR (CDCl3) d 7.58−7.57
(m, 2H), 7.36−7.35 (m, 3H), 7.32−7.29 (m, 1H), 7.25−7.23
(m, 2H), 7.11−7.09 (m, 2H), 3.93 (t, 1H, J = 5.5 Hz),
3.57 (s, 3H), 3.05 (s, 3H), 2.49−2.37
(m, 2H), 2.19−2.09 (m, 2H), 1.36 (s, 9H).
13C NMR (CDCl3) d 174.0, 171.0,
170.3, 139.5, 136.5, 130.2, 128.8, 128.5, 128.4, 127.9, 127.7, 81.0, 65.0,
61.1, 32.1, 28.5, 28.0, 27.9.
HPLC: Daicel Chiralpak OD−H, Hexane/iPrOH = 40/1, Flow rate = 1.00 mL/min,
Detection wavelength = 254 nm: tR = 12.8 min (major), tR = 37.7 min (minor).
ESI−HRMS (m/z) calcd. for C11H23N2O4 ((M-C13H7)+): 247.1652; found: 247.1657.
1-tert-butyl 5-methyl 2-(diphenylmethyleneamino)-4-methylpentanedioate
(major)
IR [cm−1] 3453, 2977, 1734, 1623, 1573, 1450, 1369, 1155.
1H NMR (CDCl3) d 7.61−7.60
(m, 2H), 7.40−7.35 (m, 4H), 7.31−7.29 (m, 2H), 7.16−7.14
(m, 2H), 3.93 (dd, 1H, J = 9.6, 4.1 Hz), 3.48 (s, 3H), 2.60−2.54
(m, 1H), 2.31−2.26 (m, 1H), 2.02−1.98 (m, 1H), 1.42 (s, 9H), 1.14 (d,
3H, J = 6.9 Hz).
13C NMR (CDCl3)
d
176.6, 171.0, 170.7, 139.6, 136.4, 130.2, 128.8, 128.6, 128.2, 128.0, 128.0,
81.1, 64.0, 51.4, 37.3, 36.2, 28.0, 18.4.
HPLC: Daicel Chiralpak OD−H, Hexane/iPrOH = 100/1, Flow rate = 0.50 mL/min,
Detection wavelength = 254 nm: tR = 13.6 min (major), tR = 15.5 min (minor).
ESI-RMS (m/z) calcd. forC11H22NO4 ((M-C13H7)+): 232.1543; found:232.1552
1-tert-butyl5-methyl2-(diphenylmethyleneamino)-4-methylpentanedioate(major)
IR [cm−1] 3059, 2976, 2933,
2878, 1735, 1623, 1444, 1369, 1286, 1154, 1079.
1H NMR (CDCl3) d 7.63−7.62
(m, 2H), 7.44−7.35 (m, 4H), 7.31−7.29 (m, 2H), 7.20−7.18
(m, 2H), 3.92 (dd, 1H, J = 9.6, 5.5 Hz), 3.50 (s, 3H), 2.45−2.41
(m, 1H), 2.34−2.29 (m, 1H), 2.01−1.97 (m, 1H), 1.42 (s, 9H), 1.00 (d,
3H, J = 6.9 Hz).
13C NMR (CDCl3) d 176.7, 170.9,
170.6, 139.4, 136.4, 130.3, 128.8, 128.6, 128.4, 128.0, 127.9, 81.2, 64.1,
51.5, 37.1, 36.6, 28.0, 17.0.
HPLC: Daicel Chiralpak OD−H, Hexane/iPrOH = 100/1, Flow rate = 0.50 mL/min,
Detection wavelength = 254 nm: tR = 15.3 min (major), tR = 27.2 min (minor).
ESI−HRMS (m/z) calcd. for C11H22NO4 ((M-C13H7)+): 232.1543; found: 232.1534.
1-tert-butyl5-methyl2-(diphenylmethyleneamino)-4-ethylpentanedioat(major)
IR [cm−1] 2969, 2933, 1734,
1623, 1446, 1368, 1153.
1H NMR (CDCl3) d 7.55−7.54 (m, 2H), 7.34−7.29
(m, 4H), 7.25−7.23 (m, 2H), 7.10−7.09
(m, 2H), 3.82 (dd, 1H, J = 8.9, 3.4 Hz), 3.40 (s, 3H), 2.37−2.32 (m, 1H), 2.20−2.15
(m, 1H), 2.04−2.00 (m, 1H), 1.56−1.42
(m, 2H), 1.36 (s, 9H), 0.81 (t, 3H, J = 7.6 Hz).
13C NMR (CDCl3) d 176.1, 171.0, 170.7, 139.6, 136.4, 130.2, 128.8, 128.5,
128.2, 127.9, 127.9, 81.1, 64.0, 51.2, 43.4, 35.5, 28.0, 26.4, 11.7.
HPLC: Daicel Chiralpak OD−H, Hexane/iPrOH = 200/1, Flow rate = 0.30 mL/min, Detection wavelength
= 254 nm: tR =
71.1 min (minor), tR = 77.2 min (major).
ESI−HRMS (m/z) calcd. for C12H24NO4 ((M-C13H7)+): 246.1700; found: 246.1703.
1-tert-butyl5-methyl2-(diphenylmethyleneamino)-4-ethylpentanedioate(minor)
IR [cm−1]2969, 2923, 1735, 1622,
1446, 1368, 1152.
1H NMR (CDCl3) d 7.62−7.60 (m, 2H), 7.45−7.41
(m, 3H), 7.37−7.34 (m, 1H), 7.31−7.28
(m, 2H), 7.20−7.18 (m, 2H), 3.90 (dd, 1H, J = 7.9, 5.8 Hz),
3.44 (s, 3H), 2.27−2.07 (m, 3H), 1.52−1.36
(m, 11H), 0.81 (t, 3H, J = 7.2 Hz).
13C NMR (CDCl3) d 176.1, 170.8, 170.4, 139.4, 136.5, 130.3, 128.8, 128.5,
128.4, 128.0, 127.9, 81.2, 64.7, 51.3, 44.3, 35.6, 28.0, 25.6, 11.6.
HPLC: Daicel Chiralpak OD−H, Hexane/iPrOH = 100/1, Flow rate = 0.30 mL/min, Detection wavelength
= 254 nm: tR =
26.9 min (major), tR = 47.7 min (minor).
ESI−HRMS (m/z) calcd. for C12H24NO4 ((M-C13H7)+): 246.1700; found: 246.1698.
1-tert-butyl5-methyl2-(diphenylmethyleneamino)-4-phenylpentanedioate(majar)
IR [cm−1]3341, 2978, 1735, 1660,
1623, 1443, 1368, 1279, 1154.
1H NMR (CDCl3) d 7.54−7.53 (m, 2H), 7.38−7.30
(m, 4H), 7.25−7.23 (m, 2H), 7.13−7.11
(m, 2H), 4.47 (dd, 1H, J = 7.9, 5.8 Hz), 4.03 (t, 1H, J = 5.8 Hz), 3.54 (s,
3H), 2.65−2.60 (m, 1H), 2.46−2.42
(m, 1H), 1.36 (s, 9H).
13C NMR (CDCl3) d 171.5, 169.9, 169.7, 139.2, 136.0, 130.5, 128.8, 128.7,
128.4, 128.0, 127.7, 81.7, 62.8, 54.0, 52.8, 38.4, 28.0.
HPLC: Daicel Chiralpak AD−H, Hexane/iPrOH = 100/1, Flow rate = 1.00 mL/min, Detection wavelength
= 254 nm: tR =
8.7 min (major), tR = 9.9 min (minor).
ESI−HRMS (m/z) calcd. for C10H19ClNO4 ((M-C13H7)+): 252.0997; found: 252.0996.
1-tert-butyl5-methyl2-(diphenylmethyleneamino)-4-phenylpentanedioate(majar(2,4-syn)
IR [cm−1] 3438, 2980, 2936, 1730, 1625, 1446, 1369, 1352, 1292, 1237,
1214, 1156.
1H NMR (CDCl3) d 7.63−7.62 (m, 2H), 7.39−7.36
(m, 4H), 7.32−7.30 (m, 2H), 7.26−7.19
(m, 5H), 7.13−7.11 (m, 2H), 3.94 (dd, 1H, J = 7.6, 4.8 Hz),
3.76 (dd, 1H, J = 9.6, 4.8 Hz), 3.48 (s, 3H), 2.76−2.71 (m, 1H), 2.27−2.23
(m, 1H), 1.42 (s, 9H).
13C NMR (CDCl3) d 173.7, 170.8, 170.7, 139.5, 139.3, 136.2, 130.2, 128.8,
128.6, 128.5, 128.2, 127.9, 127.7, 127.7, 127.2, 81.2, 63.9, 51.8, 47.9, 37.2,
28.0.
HPLC: Daicel Chiralpak AD−H, Hexane/iPrOH = 200/1, Flow rate = 1.00 mL/min, Detection wavelength
= 254 nm: tR =
30.9 min (minor), tR = 33.1 min (major).
ESI−HRMS (m/z) calcd. for C16H24NO4 ((M-C13H7)+): 294.1700; found: 294.1695.
1-tert-butyl4-(N-methoxy-N-methylcarbamoyl)-2-(diphenylmethylenamino)pentanoate(majar)
IR [cm−1]2974, 2934, 1730, 1660,
1450, 1153.
1H NMR (CDCl3) d 7.56 (m, 2H), 7.36−7.29
(m, 4H), 7.27−7.23 (m, 2H), 7.12−7.10
(m, 2H), 3.89 (dd, 1H, J = 7.6, 4.8 Hz), 3.57 (s, 3H), 3.09 (m, 1H), 3.02 (s,
3H), 2.35−2.31 (m, 1H), 1.92−1.88
(m, 1H), 1.38 (s, 9H), 1.06 (d, 3H, J = 7.6 Hz).
13C NMR (CDCl3) d 177.1, 171.4, 170.3, 139.8, 136.5, 130.0, 128.7, 128.5,
128.2, 127.8, 127.7, 80.8, 63.9, 61.2, 37.2, 31.9, 31.9, 27.9, 18.5.
HPLC: Daicel Chiralpak IA, Hexane/iPrOH = 40/1, Flow rate = 0.50 mL/min, Detection
wavelength = 254 nm: tR = 22.1 min (major), tR = 25.6 min (minor).
ESI−HRMS (m/z) calcd. for C12H25N2O4 ((M-C13H7)+): 261.1809; found: 261.1810.
tert-butyl
4-(phenylsulfonyl)-2-(diphenylmethyleneamino)butanoate
IR [cm−1]3451, 3061, 2978, 1729,
1658, 1446, 1371, 1313, 1149, 1086.
1H NMR (CDCl3) d 7.83−7.82
(m, 2H), 7.75−7.73 (m, 1H), 7.59−7.23 (m, 10H), 7.06−7.04
(m, 2H), 3.93 (dd, 1H, J = 6.9, 4.8 Hz), 3.23−3.13 (m, 2H), 2.17−2.09
(m, 2H), 1.30 (s, 9H).
13C NMR (CDCl3) d 171.4, 169.8,
139.0, 138.8, 136.0, 133.6, 130.6, 130.0, 129.2, 128.8, 128.6, 128.1, 128.0,
127.6, 81.7, 63.5, 52.8, 27.9, 27.0.
HPLC: Daicel Chiralpak OD-H, Hexane/iPrOH
= 40/1, Flow rate = 1.00 mL/min: tR = 23.9 min (major), tR = 30.0 min (minor).
ESI−HRMS (m/z) calcd. for C14H22NO4S
((M-C13H7)+): 300.1264; found: 300.1278.
[Physical Properties of Catalytic Asymmetric 1,4-Addition Reaction Products Using Glycine Ester Derivatives]
dimethyl
2- (diphenylmethyleneamino) pentanedioate
IR [cm -1 ] 3361, 3060, 3026, 2952, 2845, 1968, 1905, 1741, 1659, 1623,
1598, 1576, 1491, 1442, 1362, 1280, 1158, 1074, 1030, 1004.
1H NMR (CDCl3) d 7.82-7.80 (m, 1H), 7.65-7.63
(m, 2H), 7.46-7.43 (m, 3H), 7.35-7.32
(m, 2H), 7.19-7.17 (m, 2H), 4.13 (t, 1H, J = 6.2 Hz), 3.71 (s, 3H), 3.58 (s, 3H), 2.38-2.35
(m, 2H), 2.26-2.23 (m, 2H).
13C NMR (CDCl3) d 173.4, 172.1, 171.2, 130.5, 130.1, 128.8, 128.7, 128.6,
128.3, 128.1, 127.8, 64.1, 52.2, 51.5, 30.3, 28.6.
HPLC, Daicel Chiralcel OD-H, Hexane / iPrOH = 40/1, Flow rate = 1.00 mL / min, Detection wavelength = 254 nm:
tR = 12.3 min (major), tR = 15.0 min (minor).
ESI-HRMS (m / z) calcd.for C20H22NO4 ((M + H) +): 340.1543; found: 340.1542.
(R) -1-tert-butyl 5-methyl
2- (diphenylmethyleneamino) pentanedioate
IR [cm -1 ] 3358, 2977, 2948, 1738,
1659, 1623, 1443, 1368, 1278, 1259, 1149.
1H NMR (CDCl3) d 7.82-7.80 (m, 1H), 7.65-7.63 (m, 2H), 7.50-7.43 (m, 3H), 7.34-7.31 (m, 2H), 7.18-7.17
(m, 2H), 3.96 (dd, 1H, J = 7.2, 5.2 Hz), 3.59 (s, 3H), 2.39−2.36 (m, 2H), 2.24−2.20
(m, 2H), 1.44 (s, 9H).
13C NMR (CDCl3) d 173.6, 170.7,
170.7, 130.3, 130.1, 128.8, 128.6, 128.4, 128.4, 128.0, 127.8, 81.2, 64.8,
51.5, 30.5, 28.6, 28.0.
HPLC, Daicel Chiralcel OD-H, Hexane / iPrOH = 40/1, Flow rate = 0.25 mL / min, Detection wavelength = 254 nm:
tR = 27.1 min (R), tR = 36.9 min (S).
ESI-HRMS (m / z) calcd.for C10H20NO4 ((MC 13 H 7 ) +): 218.1387; found: 218.1386.
(R) -1- tert-butyl
5-ethyl 2- (diphenylmethyleneamino) pentanedioate
IR [cm -1 ] 3367, 2979, 2931, 1734, 1659, 1599, 1449, 1370, 1316, 1279,
1154, 1030.
1H NMR (CDCl3) d 7.82-7.16
(m, 10H), 4.04 (q, 2H, J = 6.8 Hz), 3.96 (t, 1H, J = 6.0 Hz), 2.37−2.33
(m, 2H), 2.24−2.21 (m, 2H), 1.42 (s, 9H), 1.19 (t, 3H, J = 6.8 Hz).
13C NMR (CDCl3) d 173.1, 170.7,
170.6, 132.4, 130.0, 128.8, 128.5, 128.4, 128.2, 128.0, 127.7, 81.1, 64.8,
60.3, 30.7, 28.6, 28.0, 14.1.
HPLC, Daicel Chiralcel OD-H, Hexane / iPrOH = 40/1, Flow rate = 0.25 mL / min, Detection wavelength = 254 nm:
tR = 23.2 min (R), tR = 28.5 min (S).
ESI-HRMS (m / z) calcd.for C11H22NO4 ((M-C13H7) +): 232.1543; found: 232.1541.
di-tert-butyl 2- (diphenylmethyleneamino)) pentanedioate
IR [cm -1 ] 2978, 1730, 1660, 1622, 1450, 1368, 1278,
1254, 1152
1H NMR (CDCl3) d 7.82-7.16
(m, 10H), 3.95 (t, 1H, J = 6.4 Hz), 2.37−2.17 (m, 4H), 1.44 (s,
9H), 1.39 (s, 9H).
13C NMR (CDCl3) d 172.5, 170.9,
170.6, 132.4, 130.1, 128.8, 128.5, 128.4, 128.3, 128.0, 127.8, 81.1, 80.2,
65.0, 32.0, 28.9, 28.0, 27.4.
HPLC, Daicel Chiralcel OD-H, Hexane / iPrOH = 40/1, Flow rate = 0.25 mL / min, Detection wavelength = 254 nm:
tR = 18.6 min (major), tR = 23.3 min (minor).
ESI−HRMS (m / z) calcd.for C26H34NO4 ((M + H) +):
424.2482; found: 424.2478.
tert-butyl2- (diphenylmethyleneamino) -5- (methoxy (methyl) amino) -5-oxopentanoate
IR [cm -1 ] 3253, 2979, 1737,
1661, 1449, 1365, 1315, 1279, 1222, 1148.
1H NMR (CDCl3) d 7.58-7.57
(m, 2H), 7.36-7.35 (m, 3H), 7.32-7.29 (m, 1H), 7.25-7.23
(m, 2H), 7.11−7.09 (m, 2H), 3.93 (t, 1H, J = 5.5 Hz),
3.57 (s, 3H), 3.05 (s, 3H), 2.49−2.37
(m, 2H), 2.19−2.09 (m, 2H), 1.36 (s, 9H).
13C NMR (CDCl3) d 174.0, 171.0,
170.3, 139.5, 136.5, 130.2, 128.8, 128.5, 128.4, 127.9, 127.7, 81.0, 65.0,
61.1, 32.1, 28.5, 28.0, 27.9.
HPLC: Daicel Chiralpak OD-H, Hexane / iPrOH = 40/1, Flow rate = 1.00 mL / min,
Detection wavelength = 254 nm: tR = 12.8 min (major), tR = 37.7 min (minor).
ESI-HRMS (m / z) calcd.for C11H23N2O4 ((MC 13 H 7 ) +): 247.1652; found: 247.1657.
1-tert-butyl 5-methyl 2- (diphenylmethyleneamino) -4-methylpentanedioate
(major)
IR [cm -1 ] 3453, 2977, 1734, 1623, 1573, 1450, 1369, 1155.
1H NMR (CDCl3) d 7.61-7.60
(m, 2H), 7.40-7.35 (m, 4H), 7.31-7.29 (m, 2H), 7.16-7.14
(m, 2H), 3.93 (dd, 1H, J = 9.6, 4.1 Hz), 3.48 (s, 3H), 2.60−2.54
(m, 1H), 2.31-2.26 (m, 1H), 2.02-1.98 (m, 1H), 1.42 (s, 9H), 1.14 (d,
3H, J = 6.9 Hz).
13C NMR (CDCl3)
d
176.6, 171.0, 170.7, 139.6, 136.4, 130.2, 128.8, 128.6, 128.2, 128.0, 128.0,
81.1, 64.0, 51.4, 37.3, 36.2, 28.0, 18.4.
HPLC: Daicel Chiralpak OD-H, Hexane / iPrOH = 100/1, Flow rate = 0.50 mL / min,
Detection wavelength = 254 nm: tR = 13.6 min (major), tR = 15.5 min (minor).
ESI-RMS (m / z) calcd.forC11H22NO4 ((MC 13 H 7 ) +): 232.1543; found: 232.1552
1-tert-butyl5-methyl2- (diphenylmethyleneamino) -4-methylpentanedioate (major)
IR [cm -1 ] 3059, 2976, 2933,
2878, 1735, 1623, 1444, 1369, 1286, 1154, 1079.
1H NMR (CDCl3) d 7.63-7.62
(m, 2H), 7.44-7.35 (m, 4H), 7.31-7.29 (m, 2H), 7.20-7.18
(m, 2H), 3.92 (dd, 1H, J = 9.6, 5.5 Hz), 3.50 (s, 3H), 2.45−2.41
(m, 1H), 2.34-2.29 (m, 1H), 2.01-1.97 (m, 1H), 1.42 (s, 9H), 1.00 (d,
3H, J = 6.9 Hz).
13C NMR (CDCl3) d 176.7, 170.9,
170.6, 139.4, 136.4, 130.3, 128.8, 128.6, 128.4, 128.0, 127.9, 81.2, 64.1,
51.5, 37.1, 36.6, 28.0, 17.0.
HPLC: Daicel Chiralpak OD-H, Hexane / iPrOH = 100/1, Flow rate = 0.50 mL / min,
Detection wavelength = 254 nm: tR = 15.3 min (major), tR = 27.2 min (minor).
ESI−HRMS (m / z) calcd.for C11H22NO4 ((MC 13 H 7 ) +): 232.1543; found: 232.1534.
1-tert-butyl5-methyl2- (diphenylmethyleneamino) -4-ethylpentanedioat (major)
IR [cm -1 ] 2969, 2933, 1734,
1623, 1446, 1368, 1153.
1H NMR (CDCl3) d 7.55-7.54 (m, 2H), 7.34-7.29
(m, 4H), 7.25−7.23 (m, 2H), 7.10−7.09
(m, 2H), 3.82 (dd, 1H, J = 8.9, 3.4 Hz), 3.40 (s, 3H), 2.37−2.32 (m, 1H), 2.20−2.15
(m, 1H), 2.04−2.00 (m, 1H), 1.56−1.42
(m, 2H), 1.36 (s, 9H), 0.81 (t, 3H, J = 7.6 Hz).
13C NMR (CDCl3) d 176.1, 171.0, 170.7, 139.6, 136.4, 130.2, 128.8, 128.5,
128.2, 127.9, 127.9, 81.1, 64.0, 51.2, 43.4, 35.5, 28.0, 26.4, 11.7.
HPLC: Daicel Chiralpak OD-H, Hexane / iPrOH = 200/1, Flow rate = 0.30 mL / min, Detection wavelength
= 254 nm: tR =
71.1 min (minor), tR = 77.2 min (major).
ESI-HRMS (m / z) calcd.for C12H24NO4 ((MC 13 H 7 ) +): 246.1700; found: 246.1703.
1-tert-butyl5-methyl2- (diphenylmethyleneamino) -4-ethylpentanedioate (minor)
IR [cm -1 ] 2969, 2923, 1735, 1622,
1446, 1368, 1152.
1H NMR (CDCl3) d 7.62-7.60 (m, 2H), 7.45-7.41
(m, 3H), 7.37-7.34 (m, 1H), 7.31-7.28
(m, 2H), 7.20-7.18 (m, 2H), 3.90 (dd, 1H, J = 7.9, 5.8 Hz),
3.44 (s, 3H), 2.27-2.07 (m, 3H), 1.52-1.36
(m, 11H), 0.81 (t, 3H, J = 7.2 Hz).
13C NMR (CDCl3) d 176.1, 170.8, 170.4, 139.4, 136.5, 130.3, 128.8, 128.5,
128.4, 128.0, 127.9, 81.2, 64.7, 51.3, 44.3, 35.6, 28.0, 25.6, 11.6.
HPLC: Daicel Chiralpak OD-H, Hexane / iPrOH = 100/1, Flow rate = 0.30 mL / min, Detection wavelength
= 254 nm: tR =
26.9 min (major), tR = 47.7 min (minor).
ESI-HRMS (m / z) calcd.for C12H24NO4 ((MC 13 H 7 ) +): 246.1700; found: 246.1698.
1-tert-butyl5-methyl2- (diphenylmethyleneamino) -4-phenylpentanedioate (majar)
IR [cm -1 ] 3341, 2978, 1735, 1660,
1623, 1443, 1368, 1279, 1154.
1H NMR (CDCl3) d 7.54-7.53 (m, 2H), 7.38-7.30
(m, 4H), 7.25−7.23 (m, 2H), 7.13−7.11
(m, 2H), 4.47 (dd, 1H, J = 7.9, 5.8 Hz), 4.03 (t, 1H, J = 5.8 Hz), 3.54 (s,
3H), 2.65−2.60 (m, 1H), 2.46−2.42
(m, 1H), 1.36 (s, 9H).
13C NMR (CDCl3) d 171.5, 169.9, 169.7, 139.2, 136.0, 130.5, 128.8, 128.7,
128.4, 128.0, 127.7, 81.7, 62.8, 54.0, 52.8, 38.4, 28.0.
HPLC: Daicel Chiralpak AD-H, Hexane / iPrOH = 100/1, Flow rate = 1.00 mL / min, Detection wavelength
= 254 nm: tR =
8.7 min (major), tR = 9.9 min (minor).
ESI-HRMS (m / z) calcd.for C10H19ClNO4 ((MC 13 H 7 ) +): 252.0997; found: 252.0996.
1-tert-butyl5-methyl2- (diphenylmethyleneamino) -4-phenylpentanedioate (majar (2,4-syn)
IR [cm -1 ] 3438, 2980, 2936, 1730, 1625, 1446, 1369, 1352, 1292, 1237,
1214, 1156.
1H NMR (CDCl3) d 7.63-7.62 (m, 2H), 7.39-7.36
(m, 4H), 7.32-7.30 (m, 2H), 7.26-7.19
(m, 5H), 7.13-7.11 (m, 2H), 3.94 (dd, 1H, J = 7.6, 4.8 Hz),
3.76 (dd, 1H, J = 9.6, 4.8 Hz), 3.48 (s, 3H), 2.76−2.71 (m, 1H), 2.27−2.23
(m, 1H), 1.42 (s, 9H).
13C NMR (CDCl3) d 173.7, 170.8, 170.7, 139.5, 139.3, 136.2, 130.2, 128.8,
128.6, 128.5, 128.2, 127.9, 127.7, 127.7, 127.2, 81.2, 63.9, 51.8, 47.9, 37.2,
28.0.
HPLC: Daicel Chiralpak AD-H, Hexane / iPrOH = 200/1, Flow rate = 1.00 mL / min, Detection wavelength
= 254 nm: tR =
30.9 min (minor), tR = 33.1 min (major).
ESI-HRMS (m / z) calcd.for C16H24NO4 ((MC 13 H 7 ) +): 294.1700; found: 294.1695.
1-tert-butyl4- (N-methoxy-N-methylcarbamoyl) -2- (diphenylmethylenamino) pentanoate (majar)
IR [cm -1 ] 2974, 2934, 1730, 1660,
1450, 1153.
1H NMR (CDCl3) d 7.56 (m, 2H), 7.36-7.29
(m, 4H), 7.27-7.23 (m, 2H), 7.12-7.10
(m, 2H), 3.89 (dd, 1H, J = 7.6, 4.8 Hz), 3.57 (s, 3H), 3.09 (m, 1H), 3.02 (s,
3H), 2.35−2.31 (m, 1H), 1.92−1.88
(m, 1H), 1.38 (s, 9H), 1.06 (d, 3H, J = 7.6 Hz).
13C NMR (CDCl3) d 177.1, 171.4, 170.3, 139.8, 136.5, 130.0, 128.7, 128.5,
128.2, 127.8, 127.7, 80.8, 63.9, 61.2, 37.2, 31.9, 31.9, 27.9, 18.5.
HPLC: Daicel Chiralpak IA, Hexane / iPrOH = 40/1, Flow rate = 0.50 mL / min, Detection
wavelength = 254 nm: tR = 22.1 min (major), tR = 25.6 min (minor).
ESI−HRMS (m / z) calcd.for C12H25N2O4 ((MC 13 H 7 ) +): 261.1809; found: 261.1810.
tert-butyl
4- (phenylsulfonyl) -2- (diphenylmethyleneamino) butanoate
IR [cm -1 ] 3451, 3061, 2978, 1729,
1658, 1446, 1371, 1313, 1149, 1086.
1H NMR (CDCl3) d 7.83-7.82
(m, 2H), 7.75−7.73 (m, 1H), 7.59−7.23 (m, 10H), 7.06−7.04
(m, 2H), 3.93 (dd, 1H, J = 6.9, 4.8 Hz), 3.23−3.13 (m, 2H), 2.17−2.09
(m, 2H), 1.30 (s, 9H).
13C NMR (CDCl3) d 171.4, 169.8,
139.0, 138.8, 136.0, 133.6, 130.6, 130.0, 129.2, 128.8, 128.6, 128.1, 128.0,
127.6, 81.7, 63.5, 52.8, 27.9, 27.0.
HPLC: Daicel Chiralpak OD-H, Hexane / iPrOH
= 40/1, Flow rate = 1.00 mL / min: tR = 23.9 min (major), tR = 30.0 min (minor).
ESI−HRMS (m / z) calcd.for C14H22NO4S
((MC 13 H 7 ) +): 300.1264; found: 300.1278.

[(Ca(OiPr)を用いた触媒的不斉[3+2]付加環化反応]
減圧下で加熱乾燥した反応容器をアルゴン置換し、この反応容器をグローブボックス中に持ち込み、反応容器中に0.03mmolのCa(OiPr)と100mgのモレキュラーシーブMS4Aを秤量して入れた。
[Catalytic asymmetric [3 + 2] cycloaddition reaction using (Ca (OiPr) 2 ]
The reaction vessel heated and dried under reduced pressure was replaced with argon, and this reaction vessel was brought into a glove box, and 0.03 mmol of Ca (OiPr) 2 and 100 mg of molecular sieve MS4A were weighed into the reaction vessel.

そして、グローブボックスから取り出した反応容器を室温下で撹拌した。   And the reaction container taken out from the glove box was stirred at room temperature.

この後、室温下において、(S)−2,2’−Methylenebis(4−phenyl−2−oxazoline)のTHF(0.5mL)溶液を加え、そのままの温度で2時間撹拌した。   Thereafter, a solution of (S) -2,2'-Methylenebis (4-phenyl-2-oxazoline) in THF (0.5 mL) was added at room temperature, and the mixture was stirred at the same temperature for 2 hours.

撹拌後、反応容器を0℃に冷却し、0.33mmolのアゾメチン化合物のTHF溶液(0.5mL)溶液と、0.30mmolのα,β−不飽和カルボニル化合物のTHF溶液(0.5mL)溶液とを、順次、加えた。そして、そのままの温度で3時間撹拌した。この後、0℃での撹拌下で飽和塩化アンモニウム溶液(10mL)を加え、反応を停止させた。   After the stirring, the reaction vessel was cooled to 0 ° C., and a 0.33 mmol solution of an azomethine compound in THF (0.5 mL) and a 0.30 mmol solution of an α, β-unsaturated carbonyl compound in THF (0.5 mL). Were added sequentially. And it stirred at the same temperature for 3 hours. Thereafter, a saturated ammonium chloride solution (10 mL) was added under stirring at 0 ° C. to stop the reaction.

この後、塩化メチレン(10mL)を加えて分液し、そして塩化メチレン(20mL)で3回抽出した。有機層を合わせ、無水硫酸ナトリウムで乾燥した。   This was followed by the addition of methylene chloride (10 mL), liquid separation, and extraction with methylene chloride (20 mL) three times. The organic layers were combined and dried over anhydrous sodium sulfate.

得られた粗生成物を濾過、そして減圧濃縮後、シリカゲル薄層クロマトグラフィー(Hexane:Ethyl acetate =3:1)にて精製し、目的物を得た。   The obtained crude product was filtered, concentrated under reduced pressure, and then purified by silica gel thin layer chromatography (Hexane: Ethyl acetate = 3: 1) to obtain the desired product.

尚、上記した方法にて得られた目的物を以下(Table4−2−5,4−2−6,4−2−7,4−3−1,4−3−2,Scheme4−3−2)に示す。エナンチオ選択性(Ee)に関してはHPLCを用いて決定した。

Figure 2012210623
Figure 2012210623
Figure 2012210623
The target product obtained by the above-described method is shown below (Table 4-2-5, 4-2-6, 4-2-7, 4-3-1, 4-3-2, Scheme 4-3-2. ). Enantioselectivity (Ee) was determined using HPLC.
Figure 2012210623
Figure 2012210623
Figure 2012210623

尚、上記カルシウムイソプロポキシドCa(OiPr)はAldrich社から購入したものをグローブボックス中で保存し、そのまま用いた。各種光学活性配位子はAldrich社から購入したり、公知文献の方法に従って合成されたものである。グリシンエステル誘導体は公知文献の方法に従って合成されたものである。各種のα,β−不飽和カルボニル化合物は東京化成工業(株)より購入し、蒸留操作で精製したものである。 The calcium isopropoxide Ca (OiPr) 2 purchased from Aldrich was stored in a glove box and used as it was. Various optically active ligands are purchased from Aldrich or synthesized according to methods in known literature. The glycine ester derivative is synthesized according to a method in a known literature. Various α, β-unsaturated carbonyl compounds are purchased from Tokyo Chemical Industry Co., Ltd. and purified by distillation.

[アゾメチンイリド化合物の合成]
(E)−methyl 2−(benzylideneamino)acetate
B.p. 250 ℃ (0.8 mmHg, bulb−to−bulb)
IR [cm−1]3366, 3061, 3030, 2951, 2882, 1963, 1741,
1646, 1601, 1582, 1493, 1435, 1376, 1272, 1204, 1093, 1026.
1H NMR (CDCl3) d 8.30 (s, 1H),
7.80−7.77
(m, 2H), 7.48−7.40 (m, 3H), 4.42 (s, 2H), 3.78 (s, 3H).
13C NMR (CDCl3) d 170.6, 165.5, 131.3, 135.5, 128.6, 128.5,
61.9, 52.2.
ESI−HRMS (m/z) calcd. for
C10H12NO2 ((M+H)+): 178.0863; found: 178.0869.
(E)−ethyl 2−(benzylideneamino)acetate
B.p. 250 ℃(0.8 mmHg, bulb−to−bulb)
IR [cm−1]3364, 3062, 3029, 2982, 2935, 1964, 1890,
1740, 1646, 1601, 1582, 1492, 1451, 1374, 1337, 1268, 1188, 1095, 1028.
1H NMR (CDCl3) d 8.30 (s, 1H), 7.80−7.77 (m, 2H), 7.44−7.42 (m, 3H), 4.40
(s, 2H), 4.24 (q, 2H, J = 7.2 Hz), 1.31 (t, 3H, J = 7.2 Hz).
13C NMR (CDCl3) d 170.2, 165.4, 135.6, 131.2, 128.6, 128.5,
62.1, 61.1, 14.2.
ESI−HRMS (m/z) calcd. for
C11H14NO2 ((M+H)+): 192.1019; found: 192.1012.
(E)−tert−butyl 2−(benzylideneamino)acetate
B.p. 250 ℃(0.5 mmHg, bulb−to−bulb)
IR [cm−1]3289, 3062, 2977, 2932, 2876, 1963, 1739,
1647, 1580, 1454, 1389, 1369, 1344, 1286, 1218, 1155, 1053.
1H NMR (CDCl3) d 8.26 (s, 1H), 7.79−7.77 (m,
2H), 7.43−7.40 (m, 3H), 4.31 (s, 2H), 1.49 (s, 9H).
13C NMR (CDCl3) d 169.3, 165.1,
135.6, 131.0, 128.5, 128.4, 81.4, 62.6, 28.0.
ESI−HRMS (m/z) calcd. for
C13H18NO2 ((M+H)+): 220.1332; found: 220.1328.
DL−(E)−methyl 2−(benzylideneamino)propanoate
B.p. 240 ℃(0.8 mmHg, bulb−to−bulb).
IR [cm−1]3385, 3061, 3027, 1987, 1950, 1872, 1961,
1742, 1643, 1579, 1493, 1450, 1383, 1341, 1268, 1205, 1175, 1126, 1050.
1H NMR (CDCl3) d 8.31 (s, 1H), 7.79−7.77 (m, 2H), 7.45−7.39 (m, 3H), 4.16
(q, 1H, J = 6.8 Hz), 3.75 (s, 3H), 1.53 (d, 3H, J = 6.8 Hz).
13C NMR (CDCl3) d 173.0, 162.9,
135.7, 131.1, 128.5, 128.4, 68.0, 52.2, 19.5.
ESI−HRMS (m/z) calcd. for
C11H14NO2 ((M+H)+): 192.1019; found: 192.1011.
DL −(E)−ethyl 2−(benzylideneamino)propanoate
B.p. 250 ℃(0.7 mmHg, bulb−to−bulb).
IR [cm−1]3454, 3062, 3027, 2983, 2936, 2872, 2051,
1964, 1893, 1821, 1738, 1644, 1579, 1450, 1382, 1335, 1291, 1262, 1190, 1125,
1048, 1021.
1H NMR (CDCl3) d 8.32 (s, 1H), 7.79−7.77 (m, 2H), 7.44−7.39 (m, 3H), 4.24−4.17 (m, 1H), 4.14
(q, 2H, J = 6.8 Hz), 1.53 (d, 3H, J = 6.9 Hz), 1.27 (t, 3H, J = 6.9 Hz).
13C NMR (CDCl3) d 172.5, 162.8, 135.8,
131.0, 128.6, 128.5, 68.0, 61.0, 19.4, 14.2.
ESI−HRMS (m/z) calcd. for
C12H16NO2 ((M+H)+): 206.1176; found: 206.1186.
DL −(E)−benzyl 2−(benzylideneamino)propanoate
B.p. 300℃ (0.6 mmHg, bulb−to−bulb)
IR [cm−1] 3450, 3062, 3031, 2983, 2936, 1873,
1960, 1741, 1643, 1580, 1495, 1452, 1379, 1334, 1260, 1178, 1123, 1046.
1H NMR (CDCl3) d 8.31 (s, 1H), 7.79−7.76 (m, 2H), 7.45−7.28 (m, 8H), 5.22−5.15 (m, 2H), 4.20
(q, 1H, J = 6.8 Hz), 1.54 (d, 3H, J = 6.8 Hz).
13C NMR (CDCl3) d 172.3, 162.9, 135.8, 135.7, 131.1, 128.6,
128.5, 128.4, 128.1, 128.0, 67.8, 66.6, 19.3.
ESI−HRMS (m/z) calcd. for
C17H18NO2 ((M+H)+): 268.1332; found: 268.1333.
[Synthesis of azomethine ylide compounds]
(E) -methyl 2- (benzylideneamino) acetate
Bp 250 ℃ (0.8 mmHg, bulb-to-bulb)
IR [cm -1 ] 3366, 3061, 3030, 2951, 2882, 1963, 1741,
1646, 1601, 1582, 1493, 1435, 1376, 1272, 1204, 1093, 1026.
1H NMR (CDCl3) d 8.30 (s, 1H),
7.80-7.77
(m, 2H), 7.48-7.40 (m, 3H), 4.42 (s, 2H), 3.78 (s, 3H).
13C NMR (CDCl3) d 170.6, 165.5, 131.3, 135.5, 128.6, 128.5,
61.9, 52.2.
ESI−HRMS (m / z) calcd. For
C10H12NO2 ((M + H) +): 178.0863; found: 178.0869.
(E) -ethyl 2- (benzylideneamino) acetate
Bp 250 ℃ (0.8 mmHg, bulb-to-bulb)
IR [cm -1 ] 3364, 3062, 3029, 2982, 2935, 1964, 1890,
1740, 1646, 1601, 1582, 1492, 1451, 1374, 1337, 1268, 1188, 1095, 1028.
1H NMR (CDCl3) d 8.30 (s, 1H), 7.80-7.77 (m, 2H), 7.44-7.42 (m, 3H), 4.40
(s, 2H), 4.24 (q, 2H, J = 7.2 Hz), 1.31 (t, 3H, J = 7.2 Hz).
13C NMR (CDCl3) d 170.2, 165.4, 135.6, 131.2, 128.6, 128.5,
62.1, 61.1, 14.2.
ESI−HRMS (m / z) calcd. For
C11H14NO2 ((M + H) +): 192.1019; found: 192.1012.
(E) -tert-butyl 2- (benzylideneamino) acetate
Bp 250 ℃ (0.5 mmHg, bulb-to-bulb)
IR [cm -1 ] 3289, 3062, 2977, 2932, 2876, 1963, 1739,
1647, 1580, 1454, 1389, 1369, 1344, 1286, 1218, 1155, 1053.
1H NMR (CDCl3) d 8.26 (s, 1H), 7.79-7.77 (m,
2H), 7.43-7.40 (m, 3H), 4.31 (s, 2H), 1.49 (s, 9H).
13C NMR (CDCl3) d 169.3, 165.1,
135.6, 131.0, 128.5, 128.4, 81.4, 62.6, 28.0.
ESI−HRMS (m / z) calcd. For
C13H18NO2 ((M + H) +): 220.1332; found: 220.1328.
DL- (E) -methyl 2- (benzylideneamino) propanoate
Bp 240 ° C (0.8 mmHg, bulb-to-bulb).
IR [cm -1 ] 3385, 3061, 3027, 1987, 1950, 1872, 1961,
1742, 1643, 1579, 1493, 1450, 1383, 1341, 1268, 1205, 1175, 1126, 1050.
1H NMR (CDCl3) d 8.31 (s, 1H), 7.79-7.77 (m, 2H), 7.45-7.39 (m, 3H), 4.16
(q, 1H, J = 6.8 Hz), 3.75 (s, 3H), 1.53 (d, 3H, J = 6.8 Hz).
13C NMR (CDCl3) d 173.0, 162.9,
135.7, 131.1, 128.5, 128.4, 68.0, 52.2, 19.5.
ESI−HRMS (m / z) calcd. For
C11H14NO2 ((M + H) +): 192.1019; found: 192.1011.
DL − (E) −ethyl 2- (benzylideneamino) propanoate
Bp 250 ° C (0.7 mmHg, bulb-to-bulb).
IR [cm -1 ] 3454, 3062, 3027, 2983, 2936, 2872, 2051,
1964, 1893, 1821, 1738, 1644, 1579, 1450, 1382, 1335, 1291, 1262, 1190, 1125,
1048, 1021.
1H NMR (CDCl3) d 8.32 (s, 1H), 7.79-7.77 (m, 2H), 7.44-7.39 (m, 3H), 4.24-4.17 (m, 1H), 4.14
(q, 2H, J = 6.8 Hz), 1.53 (d, 3H, J = 6.9 Hz), 1.27 (t, 3H, J = 6.9 Hz).
13C NMR (CDCl3) d 172.5, 162.8, 135.8,
131.0, 128.6, 128.5, 68.0, 61.0, 19.4, 14.2.
ESI−HRMS (m / z) calcd. For
C12H16NO2 ((M + H) +): 206.1176; found: 206.1186.
DL − (E) −benzyl 2− (benzylideneamino) propanoate
Bp 300 ° C (0.6 mmHg, bulb-to-bulb)
IR [cm -1 ] 3450, 3062, 3031, 2983, 2936, 1873,
1960, 1741, 1643, 1580, 1495, 1452, 1379, 1334, 1260, 1178, 1123, 1046.
1H NMR (CDCl3) d 8.31 (s, 1H), 7.79-7.76 (m, 2H), 7.45-7.28 (m, 8H), 5.22-5.15 (m, 2H), 4.20
(q, 1H, J = 6.8 Hz), 1.54 (d, 3H, J = 6.8 Hz).
13C NMR (CDCl3) d 172.3, 162.9, 135.8, 135.7, 131.1, 128.6,
128.5, 128.4, 128.1, 128.0, 67.8, 66.6, 19.3.
ESI−HRMS (m / z) calcd. For
C17H18NO2 ((M + H) +): 268.1332; found: 268.1333.

[[3+2]付加環化反応生成物の物性値]
(2R, 4R, 5S)−dimethyl 5−phenylpyrrolidine−2,4−dicarboxylate
IR [cm−1]
3349, 2951, 1738, 1655, 1493, 1438, 1377, 1206, 1170, 1088, 1032.
1H NMR (CDCl3) d 7.36−7.22 (m, 5H), 4.54 (d, 1H, J = 7.6 Hz), 3.95 (t, 1H, J =
8.0 Hz), 3.83 (s, 3H), 3.33 (dt, 1H, J = 8.0, 7.6 Hz), 3.22 (s, 3H), 2.43 (dd,
2H, J = 8.0, 8.0 Hz).
13C NMR (CDCl3) d 173.8, 173.1,
139.0, 128.2, 127.7, 126.6, 65.9, 60.0, 52.3, 51.3, 49.8, 33.4.
HPLC, Daicel Chiralpak AS, Hexane/iPrOH = 9/1, Flow rate = 1.00 mL/min, Detection wavelength = 220 nm: tR = 13.2 min (2S, 4S, 5R), tR = 21.6 min (2R, 4R, 5S).
ESI−HRMS (m/z) calcd. for
C14H18NO4 ((M+H)+): 264.1230; found: 264.1290.
4−ethyl 2−methyl 5−phenylpyrrolidine−2,4−dicarboxylate
IR [cm−1]
3341, 2953, 1735, 1653, 1452, 1378, 1201, 1093, 1034.
1H NMR (CDCl3) d 7.35−7.22 (m, 5H), 4.53 (d, 1H, J = 7.6 Hz), 3.98 (t, 1H, J =
8.2 Hz), 3.82 (s, 3H), 3.73−3.60 (m, 2H), 3.29
(dt, 1H, J = 7.6, 6.8 Hz), 2.41 (m, 2H), 0.82 (t, 3H, J = 7.2 Hz).
HPLC, Daicel Chiralcel OB−H, Hexane/iPrOH = 19/1, Flow rate = 0.50 mL/min, Detection wavelength = 220 nm: tR = 32.4 min (major), tR = 42.4 min (minor).
ESI−HRMS (m/z) calcd. for
C15H20NO4 ((M+H)+): 278.1387; found: 278.1403.
(2R, 4R, 5S)−4−tert−butyl 2−methyl 5−phenylpyrrolidine−2,4−dicarboxylate
IR [cm−1]3749, 3341, 3029, 2977, 2952, 2372, 1738,
1454, 1370, 1250, 1210, 1151, 1095, 1026.
1H NMR (CDCl3) d 7.4−7.2 (m, 5H), 4.42 (d, 1H, J = 7.9 Hz), 3.91(dd, 1H, J = 8.7, 8.3 Hz), 3.76 (s, 3H), 3.23 (ddd, 1H, J = 7.9, 7.5, 6.8
Hz), 2.84 (br, 1H), 3.0−2.3 (m, 2H), 0.99 (s, 9H).
13C NMR (CDCl3) d 173.2, 171.4,
139.0, 128.0, 127.6, 126.8, 79.9, 65.5, 59.3, 51.6, 49.7, 33.6, 27.0.
HPLC, Daicel Chiralpak AS, Hexane/iPrOH
= 9/1, Flow rate = 1.00 mL/min, Detection
wavelength = 220 nm: tR =
6.8 min (2S, 4S, 5R), tR = 11.2 min (2R, 4R,
5S).
ESI−HRMS (m/z) calcd. for C17H24NO4 ((M+H)+):
306.1700; found: 306.1694.
2−tert−butyl 4−methyl 5−phenylpyrrolidine−2,4−dicarboxylate
IR [cm−1]3749,
3349, 2978, 2376, 2307, 1733, 1454, 1370, 1250, 1204, 1155, 1036
1H NMR (CDCl3) d 7.32−7.23 (m, 5H), 4.53 (d, 1H, J = 7.8 Hz), 3.86 (t, 1H, J = 8.2
Hz), 3.32 (dt, 1H, J = 15, 7.8 Hz), 3.23 (s, 3H), 2.35 (m, 2H), 1.53 (s, 9H).
13C NMR (CDCl3) d 172.9, 172.5,
139.3, 128.2, 127.6, 126.8, 81.6, 65.9, 60.8, 51.2, 49.9, 33.6, 28.1.
HPLC, Daicel Chiralpak AD−H, Hexane/iPrOH = 19/1, Flow rate = 0.50 mL/min, Detection wavelength = 220 nm: tR = 27.2 min (minor), tR = 37.6 min (major).
ESI−HRMS (m/z) calcd. for
C17H24NO4 ((M+H)+): 306.1700; found: 306.1699.
di−tert−butyl 5−phenylpyrrolidine−2,4−dicarboxylate
IR [cm−1]3281, 2973, 2374, 1725, 1704, 1454, 1370,
1288, 1253, 1217, 1151, 1105
1H NMR (CDCl3) d 7.36−7.21 (m, 5H), 4.46 (d, 1H, J = 8.0 Hz), 3.82 (t, 1H, J =
8.4 Hz), 3.25 (dt, 1H, J = 8.0, 6.8 Hz), 2.46−2.38
(m, 1H), 2.17−2.26 (m, 1H), 1.52 (s, 9H), 1.02 (s, 9H).
13C NMR (CDCl3) d 172.5, 171.9,
137.8, 128.1, 127.3, 127.2, 81.4, 80.5, 65.5, 60.7, 50.4, 34.5, 28.1, 27.5.
HPLC, Daicel Chiralpak ASx2, Hexane/iPrOH = 40/1, Flow rate = 0.50 mL/min, Detection wavelength = 220 nm: tR = 31.9 min (minor), tR = 36.9 min (major).
ESI−HRMS (m/z) calcd. for C20H30NO4 ((M+H)+):
348.2169; found: 348.2183.
dimethyl 3−methyl−5−phenylpyrrolidine−2,4−dicarboxylate
IR [cm−1]3365,
3028, 2953, 2876, 2377, 2309, 1737, 1494, 1436, 1378, 1075, 1020
1H NMR (CDCl3) d 7.44−7.21 (m, 5H), 4.62 (d, 1H, J = 8.6 Hz), 3.83 (s, 3H), 3.55
(d, 1H, J = 8.7 Hz), 3.23 (s, 3H), 3.01 (dd, 1H, J = 8.6, 8.2 Hz), 2.72 (ddq, 1H, J = 8.7, 8.2, 6.6 Hz), 2.65
(br, 1H), 1.24 (d,
3H, J = 6.6 Hz).
13C NMR (CDCl3) d 173.7, 172.3,
140.0, 128.2, 127.6, 126.9, 67.3, 64.4, 58.3, 52.3, 51.3, 41.4, 17.8.
HPLC, Daicel Chiralpak AS, Hexane/iPrOH = 19/1, Flow rate = 0.25 mL/min, Detection wavelength = 220 nm: tR = 35.7 min (minor), tR = 46.9 min (major).
ESI−HRMS (m/z) calcd. for
C15H20NO4 ((M+H)+): 278.1386; found: 278.1390.
4−tert−butyl 2−methyl 3−methyl−5−phenylpyrrolidine−2,4−dicarboxylate
IR [cm−1] 3858, 3301, 3062, 3030, 2951,
2380, 2307, 1960, 1739, 1601, 1492, 1454, 1434, 1372, 1333, 1273, 1204, 1173,
1094, 1027.
1H NMR (CDCl3) d 7.45−7.20 (m, 5H), 4.55
(d, 1H, J = 8.6 Hz), 3.83 (s, 3H), 3.49 (d, 1H, J = 8.8 Hz), 2.9 (m, 2H), 2.65
(ddq, 1H, J = 8.8, 7.9, 6.7 Hz), 1.26 (d, 1H, J = 6.7 Hz), 1.02 (s, 9H).
13C NMR (CDCl3) d 173.5, 170.9,
140.2, 128.0, 127.3, 127.3, 80.4, 67.2, 64.1, 58.8, 52.1, 42.3, 27.4, 18.0.
HPLC, Daicel Chiralpak AS−H, Hexane/iPrOH = 19/1, Flow rate =
1.0 mL/min, Detection
wavelength = 220 nm: tR =
11.6 min (major), tR = 23.1 min (minor).
ESI−HRMS (m/z) calcd. for C18H26NO4 ((M+H)+):
320.1856; found: 320.1865.
2−tert−butyl 4−methyl 3−methyl−5−phenylpyrrolidine−2,4−dicarboxylate
IR [cm−1]3749, 3652, 3363, 3062, 2975, 2877, 2376,
2298, 1734, 1602, 1496, 145, 1438, 1372, 1332, 1249, 1159, 1073, 1023.
1H NMR (CDCl3) d 7.32−7.23 (m, 5H), 4.60 (d, 1H, J = 8.6 Hz), 3.41 (d, 1H, J =
9.1 Hz), 3.24 (s, 3H), 3.01 (dd, 1H, J = 8.7, 8.6 Hz), 2.81 (br, 1H), 2.61−2.65 (m, 1H), 1.54 (s, 9H), 1.22 (d, 3H, J = 6.7 Hz).
13C NMR (CDCl3) d 172.4, 172.2,
140.4, 128.2, 127.6, 126.9, 81.7, 67.9, 64.4, 58.2, 51.2, 41.6, 28.1, 17.6.
HPLC, Daicel Chiralpak AD−H, Hexane/iPrOH = 19/1, Flow rate = 0.50 mL/min, Detection wavelength = 220 nm: tR = 21.6 min (minor), tR = 24.9 min (major).
ESI−HRMS (m/z) calcd. for
C18H26NO4 ((M+H)+): 320.1856; found: 320.1847.
di−tert−butyl 3−methyl−5−phenylpyrrolidine−2,4−dicarboxylate
IR [cm−1]3354, 3062, 2975, 2931, 2344, 1726, 1455,
1370, 1331, 1250, 1152, 1033.
1H NMR (CDCl3) d 7.36−7.22 (m, 5H), 4.54 (d, 1H, J = 8.6 Hz), 3.36 (d, 1H, J =
9.1 Hz), 2.91 (dd, 1H, J = 8.4, 8.4 Hz), 2.57 (ddq, 1H, J = 9.1, 8.6, 6.9 Hz),
2.85 (br, 1H), 1.24 (d, 3H, J = 6.9 Hz), 1.52 (s, 9H), 1.02 (s, 9H).
13C NMR (CDCl3) d 172.4, 171.0,
142.0, 128.1, 127.5, 127.4, 81.5, 80.5, 68.0, 64.2, 59.2, 42.8, 28.1, 27.5,
18.1.
HPLC, Daicel Chiralpak AD−H, Hexane/iPrOH = 19/1, Flow rate = 0.50 mL/min, Detection wavelength = 220 nm: tR = 35.2 min (major), tR = 56.7 min (minor).
ESI−HRMS (m/z) calcd. for
C21H32NO4 ((M+H)+): 362.2325; found: 362.2337.
2−tert−butyl 4−ethyl 3,5−diphenylpyrrolidine−2,4−dicarboxylate
IR [cm−1]3353,
3030, 2977, 2932, 2378, 1731, 1601, 1495, 1455, 1369, 1336, 1260, 1219, 1156,
1092, 1029
1H NMR (CDCl3) d 7.40−7.23 (m, 10H), 4.84 (d, 1H, J = 9.0 Hz), 3.90 (d, 1H, J =
9.6 Hz), 3.75 (dd, 1H, J = 9.2, 9.0 Hz), 3.65−3.52
(m, 3H), 2.92 (br, 1H), 1.34 (s, 9H), 0.78 (t, 3H, J = 7.1 Hz).
13C NMR (CDCl3) d 171.7, 171.4,
140.2, 139.9, 128.5, 128.2, 127.9, 127.7, 127.3, 127.0, 81.6, 68.6, 65.4, 60.3,
59.2, 53.2, 27.9, 13.6.
HPLC, Daicel Chiralcel OD−H, Hexane/iPrOH = 19/1, Flow rate = 0.50
mL/min, Detection wavelength
= 220 nm: tR =
17.4 min (minor), tR = 18.9 min (major).
ESI−HRMS (m/z) calcd. for C24H30NO4 ((M+H)+):
396.2169 ; found: 396.2180.
dimethyl 2−methyl−5−phenylpyrrolidine−2,4−dicarboxylate
IR [cm−1]3360,
3028, 2951, 2379, 2344, 1734, 1604, 1495, 1437, 1376, 1259, 1202, 1134, 1087,
1031
1H NMR (CDCl3) d 7.31−7.21 (m, 5H), 4.66 (d, 1H, J = 7.6 Hz), 3.84 (s, 3H), 3.38−3.33 (m, 1H), 3.21 (s, 3H), 3.16 (br, 1H), 2.73 (dd, 1H, J
= 14, 5.3 Hz), 2.06 (dd, 1H, J = 14, 7.6 Hz), 1.51 (s, 3H).
13C NMR (CDCl3) d 176.6, 173.1,
139.1, 128.2, 127.6, 126.7, 65.8, 65.0, 52.6, 51.2, 50.6, 40.4, 27.6.
HPLC, Daicel Chiralpak AD−H, Hexane/iPrOH = 19/1, Flow rate = 0.25 mL/min, Detection wavelength = 220 nm: tR = 47.9 min (major), tR = 51.7 min (minor).
ESI−HRMS (m/z) calcd. for
C15H20NO4 ((M+H)+): 278.1386; found: 278.1445.
dimethyl 2,3−dimethyl−5−phenylpyrrolidine−2,4−dicarboxylate
IR [cm−1]3365,
3062, 3028, 2951, 1955, 1733, 1603, 1494, 1437, 1378, 1256, 1195, 1118, 1027.
1H NMR (CDCl3) d 7.31−7.21 (m, 5H), 4.68 (d, 1H, J = 9.6 Hz), 3.82 (s, 3H), 3.17
(s, 3H), 3.12 (dd, 1H, J = 10.9, 9.6 Hz), 2.87 (br, 1H), 2.87 (dq, 1H, J =
10.9, 6.7 Hz), 1.35 (s, 3H), 1.10 (d, 1H, J = 6.7 Hz).
13C NMR (CDCl3) d 175.9, 172.1,
141.1, 128.1, 127.6, 127.3, 67.6, 62.5, 57.1, 52.5, 51.2, 42.7, 20.4, 13.8.
HPLC, Daicel Chiralpak AD−H, Hexane/iPrOH = 40/1, Flow rate = 0.25 mL/min, Detection wavelength = 220 nm: tR = 63.4 min (major), tR = 66.6 min (minor).
ESI−HRMS (m/z) calcd. for C16H22NO4 ((M+H)+):
292.1543; found: 292.1544.
4−tert−butyl 2−methyl 2−methyl−5−phenylpyrrolidine−2,4−dicarboxylate
IR [cm−1]3357,
2976, 2359, 1731, 1452, 1369, 1295, 1254, 1213, 1148
1H NMR (CDCl3) d 7.33−7.21 (m, 5H), 4.61 (d, 1H, J = 7.9 Hz), 3.81 (s, 3H), 3.32
(ddd, 1H, J = 7.9, 7.8, 6.0 Hz), 3.18 (br, 1H), 2.62 (dd, 1H, J = 14, 6.0 Hz),
2.27 (dd, 1H, J = 14, 7.8 Hz), 1.49 (s, 3H), 1.01 (s, 9H).
13C NMR (CDCl3) d 176.4, 171.7,
139.5, 128.1, 127.3, 127.2, 80.5, 65.6, 64.4, 52.5, 50.8, 40.9, 27.5, 27.1.
HPLC, Daicel Chiralpak AD−H, Hexane/iPrOH = 19/1, Flow rate = 0.50 mL/min, Detection wavelength = 220 nm: tR = 14.6 min (major), tR = 17.3 min (minor).
ESI−HRMS (m/z) calcd. for
C18H26NO4 ((M+H)+): 320.1856; found: 320.1872.
4−tert−butyl 2−ethyl 2−methyl−5−phenylpyrrolidine−2,4−dicarboxylate
IR [cm−1]3360,
3062, 2977, 2934, 1729, 1604, 1452, 1369, 1295, 1254, 1214, 1147, 1024
1H NMR (CDCl3) d 7.33−7.21 (m, 5H), 4.61 (d, 1H, J = 7.7 Hz), 4.29−4.24 (m, 2H), 3.33 (ddd, 1H, J = 7.8, 7.7, 6.2 Hz), 3.21
(br, 1H), 2.62 (dd, 1H, J = 14, 6.2 Hz), 2.07 (dd, 1H, J = 14, 7.8 Hz), 1.49
(s, 3H), 1.32 (t, 3H, J = 7.1 Hz), 1.02 (s, 9H).
13C NMR (CDCl3) d 175.9, 171.7,
139.7, 128.1, 127.3, 127.3, 80.5, 65.5, 64.5, 61.3, 50.8, 40.9, 27.5, 27.1,
14.2.
HPLC, Daicel Chiralcel OD−H, Hexane/iPrOH = 19/1, Flow rate = 0.50 mL/min, Detection wavelength = 220 nm: tR = 13.4 min (minor), tR = 23.4 min (major).
ESI−HRMS (m/z) calcd. for
C19H28NO4 ((M+H)+): 334.2012; found: 334.2009.
2−benzyl 4−tert−butyl 2−methyl−5−phenylpyrrolidine−2,4−dicarboxylate
IR [cm−1] 3358, 3062, 3031, 2975, 2934, 1953,
1728, 1604, 1496, 1453, 1370, 1254, 1215, 1147, 1082, 1028, 1000.
1H NMR (CDCl3) d 7.40−7.21 (m, 10H), 5.29−5.21 (m, 2H), 4.61
(d, 1H, J = 7.7 Hz), 3.32 (ddd, 1H, J = 7.8, 7.7, 6.0 Hz), 3.21 (br, 1H), 2.65
(dd, 1H, J = 14, 6.0 Hz), 2.07 (dd, 1H, J = 14, 7.8 Hz), 1.51 (s, 3H), 1.00 (s,
9H).
13C NMR (CDCl3) d 175.8, 171.7,
139.6, 135.9, 128.6, 128.2, 128.1, 128.1, 127.3, 127.2,
80.5, 66.9, 65.6, 64.5, 50.9, 40.8,
27.5, 27.3.
HPLC, Daicel Chiralcel OD−H, Hexane/iPrOH = 19/1, Flow rate = 0.50 mL/min, Detection wavelength = 220 nm: tR = 19.4 min (minor), tR = 30.0 min (major).
ESI−HRMS (m/z) calcd. for
C24H30NO4 ((M+H)+): 396.2169; found: 396.2178.
2−tert−butyl 4−methyl 3−methyl−5,5−diphenylpyrrolidine−2,4−dicarboxylate
IR [cm−1]3650, 3368, 3305, 3059, 2975, 2932, 2877,
2360, 1959, 1733, 1661, 1598, 1492, 1449, 1391, 1367, 1343, 1263, 1158, 1080,
1030.
1H NMR (CDCl3) d 7.8−7.1 (m, 10H), 3.68 (d, 1H, J = 6.4 Hz), 3.47 (br, 1H), 3.30
(m, 4H), 2.67 (ddq, 1H, J = 8.4, 6.8, 6.4 Hz), 1.51 (s, 9H), 1.05 (d, 3H, J =
6.8 Hz).
13C NMR (CDCl3) d 173.5, 172.3,
146.4, 145.3, 132.4, 130.0, 128.3, 127.9, 126.9, 126.5, 81.4, 74.6, 66.4, 62.7,
51.4, 44.8, 28.1, 18.2.
HPLC, Daicel Chiralpak AD−H, Hexane/iPrOH = 40/1, Flow rate = 0.50 mL/min, Detection wavelength = 220 nm: tR = 12.6 min (minor), tR = 14.9 min (major).
ESI−HRMS (m/z) calcd. for
C24H30NO4 ((M+H)+): 396.2169; found: 396.2187.
2−tert−butyl 4−ethyl 3−methyl−5,5−diphenylpyrrolidine−2,4−dicarboxylate
IR [cm−1]3746,
3059, 2975, 2932, 1728, 1598, 1492, 1450, 1369, 1342, 1244, 1156, 1033.
1H NMR (CDCl3) d 7.8−7.1 (m, 10H), 3.7−3.8 (m, 2H), 3.67 (d,
1H, J = 5.8 Hz), 3.53 (br, 1H), 3.29 (d, 1H, J = 8.6 Hz), 2.65 (ddq, 1H, J =
8.6, 7.0, 5.8 Hz), 1.51 (s, 9H), 1.04 (d, 3H, J = 7.0 Hz), 0.88 (t, 3H, J = 7.1
Hz).
13C NMR (CDCl3) d 173.1, 172.3,
146.4, 145.4, 132.4, 130.1, 128.3, 127.9, 126.9, 126.5, 81.4, 74.7, 66.5, 62.9,
60.5, 45.2, 28.1, 18.5, 13.6.
HPLC, Daicel Chiralpak AD−H, Hexane/iPrOH = 19/1, Flow rate = 0.50 mL/min, Detection wavelength = 220 nm: tR = 17.8 min (minor), tR = 21.6 min (major).
ESI−HRMS (m/z) calcd. for
C25H32NO4 ((M+H)+): 410.2325; found: 410.2334.
di−tert−butyl 3−methyl−5,5−diphenylpyrrolidine−2,4−dicarboxylate
IR [cm−1]3320, 30059, 2974, 2931, 2876, 2359,
1959, 1726, 1663, 1598, 1489, 1451, 1392, 1368, 1338, 1284, 1250, 1211, 1156,
1082, 1035.
1H NMR (CDCl3) d 7.8−7.1 (m, 10H), 3.58 (d, 1H, J = 5.2 Hz), 3.26 (d, 1H, J =
8.0 Hz), 2.56 (ddq, 1H, J = 8.0, 6.8, 5.2 Hz), 1.51 (s, 9H), 1.07 (s, 9H), 1.01
(d, 3H, J = 6.8 Hz).
13C NMR (CDCl3) d 172.4, 172.3,
146.3, 146.9, 132.4, 130.1, 128.4, 128.1, 126.7, 126.4, 81.2, 80.9, 74.6, 66.5,
64.0, 45.9, 28.1, 27.4, 19.2.
HPLC, Daicel Chiralpak AD−Hx2, Hexane/iPrOH = 19/1, Flow rate = 0.25 mL/min, Detection wavelength = 220 nm: tR = 30.7 min (minor), tR = 33.1 min (major).
ESI−HRMS (m/z) calcd. for
C27H36NO4 ((M+H)+): 438.2638; found: 438.2616.
tert−butyl 4−(dimethylcarbamoyl)−5,5−diphenylpyrrolidine−2−carboxylate
IR [cm−1]3445, 3270, 2978, 2932,
1732, 1627, 1491, 1451, 1396, 1367, 1344, 1243, 1161,
1116.
1H NMR (CDCl3) d 7.58−7.57 (m, 2H), 7.27−7.06 (m, 8H), 4.08
(d, 1H, J = 6.2 Hz), 4.00 (m, 1H), 3.53 (m, 1H), 2.77 (s, 3H), 2.55 (s, 3H),
2.18 (dd, 1H, J = 12.7, 4.5 Hz), 2.12−2.08 (m, 1H), 1.43 (s, 9H).
13C NMR (CDCl3) d 173.7, 172.5,
145.0, 143.3, 128.4, 127.7, 126.9, 126.7, 126.7, 126.3, 81.0, 76.4, 59.2, 47.0,
37.6, 35.4, 35.1, 28.1.
HPLC, Daicel Chiralpak AD−H, Hexane/iPrOH = 19/1, Flow rate =
0.50 mL/min, Detection wavelength = 220 nm: tR =
12.7 min (major), tR = 19.9 min (minor).
ESI−HRMS (m/z) calcd. for
C24H31N2O3 ((M+H)+): 395.2329; found: 395.2338.
tert−butyl 4−(morpholine−4−carbonyl)−5,5−diphenylpyrrolidine−2−carboxylate
IR [cm−1]3443, 2976, 2858, 1728,
1624, 1442, 1368, 1344, 1233, 1160, 1117, 1066, 1017.
1H NMR (CDCl3) d 7.65−7.64 (m, 2H), 7.36−7.34 (m, 2H), 7.27−7.17 (m, 6H), 4.10
(d, 1H, J = 6.9 Hz), 4.04 (brs, 1H), 3.61−3.23 (m, 8H), 3.12−3.03 (m, 2H), 2.30 (dd, 1H, J = 12.7, 4.5 Hz), 1.52 (s, 9H).
13C NMR (CDCl3) d 172.5, 172.4,
144.7, 142.7, 128.4, 128.0, 127.1, 127.0, 126.9, 126.6, 81.1, 76.2, 66.4, 66.0,
59.0, 46.6, 46.1, 41.6, 35.4, 28.1
HPLC: Daicel Chiralpak AD−H, Hexane/iPrOH = 9/1, Flow rate = 0.50 mL/min, Detection wavelength = 220 nm: tR = 19.4 min
(major), tR =
30.3 min (minor).
ESI−HRMS (m/z) calcd. for C26H33N2O4 ((M+H)+):
437.2435; found: 437.2436.
tert−butyl 5,5−diphenyl−4−(piperidine−1−carbonyl)pyrrolidine−2−carboxylate
IR [cm−1]3271, 3064, 2973, 2933, 2859, 1735, 1619,
1448, 1366, 1338, 1286, 1247, 1223, 1158, 1117, 1029, 1009.
1H NMR (CDCl3) d 7.64−7.62 (m, 2H), 7.32−7.08 (m, 8H), 4.14
(d, 1H, J = 6.9 Hz), 4.12 (brs, 1H), 3.61−3.57 (m, 1H), 3.45−3.37 (m, 2H), 3.10−3.03 (m, 2H), 2.26−2.14 (m, 2H), 1.48 (s, 9H), 1.40−1.21 (m, 6H).
13C NMR (CDCl3) d 172.4, 172.0,
145.1, 143.3, 128.3, 127.8, 126.8, 126.7, 126.5, 126.5, 80.9, 76.2, 59.1, 46.8,
46.4, 42.3, 35.4, 28.1, 26.0, 25.0, 24.2.
HPLC: Daicel Chiralpak OD−H, Hexane/iPrOH = 100/1, Flow rate = 0.30 mL/min, Detection wavelength
= 220 nm: tR =
41.6 min (minor), tR = 47.7 min (major).
ESI−HRMS (m/z) calcd. for C27H35N2O3 ((M+H)+):
435.2642; found: 435.2652.
ert−butyl 4−(dicyclohexylcarbamoyl)−5,5−diphenylpyrrolidine−2−carboxylate
IR [cm−1]3441, 2928, 2853, 1735,
1631, 1443, 1367, 1236, 1160.
1H NMR (CDCl3) d 7.58−7.57 (m, 2H), 7.37−7.34 (m, 3H), 7.32−7.29 (m, 1H), 7.25−7.23 (m, 2H), 7.11−7.09 (m, 2H), 4.05
(brs, 1H), 3.88 (m, 1H), 3.62−3.60 (m, 1H), 3.47 (m, 1H), 2.64 (m, 1H), 2.36 (m, 1H), 2.10 (m,
3H), 1.79−1.00 (m, 27H).
13C NMR (CDCl3) d 172.5, 172.5,
145.6, 144.0, 128.3, 127.8, 127.6, 126.6, 126.4, 126.3, 80.9, 76.2, 59.3, 58.2,
56.1, 48.3, 36.0, 31.6, 30.6, 29.6, 28.0, 26.6, 26.5, 26.1, 25.2, 25.1.
HPLC: Daicel Chiralpak AD−H, Hexane/iPrOH = 40/1, Flow rate = 0.25 mL/min, Detection wavelength = 220 nm: tR = 18.9 min (major), tR = 37.9 min
(minor).
ESI−HRMS (m/z) calcd. for C34H47N2O3 ((M+H)+):
531.3581; found: 531.3599.
2−tert−butyl 3,4−dimethyl 5−phenylpyrrolidine−2,3,4−tricarboxylate
IR [cm−1]3649, 3454, 3351, 2979, 2952,
1736, 1438, 1372, 1336, 1239, 1158, 1070, 1021.
1H NMR (CDCl3) d 7.33−7.24 (m, 5H), 4.68
(d, 1H, J = 8.4 Hz), 4.02 (d, 1H, J = 8.6 Hz), 3.77 (s, 3H), 3.64 (dd, 1H, J =
8.4, 7.1 Hz), 3.52 (dd, 1H, J = 8.6, 7.1 Hz), 3.21 (s, 3H), 2.79 (br, 1H), 1.52
(s, 9H).
13C NMR (CDCl3) d 172.8, 171.5, 170.7, 138.6, 128.3, 127.9, 126.9, 82.2, 65.4,
64.7, 54.4, 52.4, 51.1, 28.0, 28.0.
HPLC, Daicel Chiralcel OD−H, Hexane/iPrOH = 19/1, Flow rate = 0.50 mL/min, Detection wavelength = 220 nm: tR = 28.7 min (minor), tR = 30.5 min (major).
ESI−HRMS (m/z) calcd. for
C19H26NO6 ((M+H)+): 364.1754; found: 364.1743.
[Physical properties of [3 + 2] cycloaddition reaction product]
(2R, 4R, 5S) -dimethyl 5-phenylpyrrolidine-2,4-dicarboxylate
IR [cm -1 ]
3349, 2951, 1738, 1655, 1493, 1438, 1377, 1206, 1170, 1088, 1032.
1H NMR (CDCl3) d 7.36−7.22 (m, 5H), 4.54 (d, 1H, J = 7.6 Hz), 3.95 (t, 1H, J =
8.0 Hz), 3.83 (s, 3H), 3.33 (dt, 1H, J = 8.0, 7.6 Hz), 3.22 (s, 3H), 2.43 (dd,
(2H, J = 8.0, 8.0 Hz).
13C NMR (CDCl3) d 173.8, 173.1,
139.0, 128.2, 127.7, 126.6, 65.9, 60.0, 52.3, 51.3, 49.8, 33.4.
HPLC, Daicel Chiralpak AS, Hexane / iPrOH = 9/1, Flow rate = 1.00 mL / min, Detection wavelength = 220 nm: tR = 13.2 min (2S, 4S, 5R), tR = 21.6 min (2R, 4R, 5S ).
ESI−HRMS (m / z) calcd. For
C14H18NO4 ((M + H) +): 264.1230; found: 264.1290.
4-ethyl 2-methyl 5-phenylpyrrolidine-2,4-dicarboxylate
IR [cm -1 ]
3341, 2953, 1735, 1653, 1452, 1378, 1201, 1093, 1034.
1H NMR (CDCl3) d 7.35−7.22 (m, 5H), 4.53 (d, 1H, J = 7.6 Hz), 3.98 (t, 1H, J =
8.2 Hz), 3.82 (s, 3H), 3.73-3.60 (m, 2H), 3.29
(dt, 1H, J = 7.6, 6.8 Hz), 2.41 (m, 2H), 0.82 (t, 3H, J = 7.2 Hz).
HPLC, Daicel Chiralcel OB-H, Hexane / iPrOH = 19/1, Flow rate = 0.50 mL / min, Detection wavelength = 220 nm: tR = 32.4 min (major), tR = 42.4 min (minor).
ESI−HRMS (m / z) calcd. For
C15H20NO4 ((M + H) +): 278.1387; found: 278.1403.
(2R, 4R, 5S) -4-tert-butyl 2-methyl 5-phenylpyrrolidine-2,4-dicarboxylate
IR [cm -1 ] 3749, 3341, 3029, 2977, 2952, 2372, 1738,
1454, 1370, 1250, 1210, 1151, 1095, 1026.
1H NMR (CDCl3) d 7.4−7.2 (m, 5H), 4.42 (d, 1H, J = 7.9 Hz), 3.91 (dd, 1H, J = 8.7, 8.3 Hz), 3.76 (s, 3H), 3.23 ( ddd, 1H, J = 7.9, 7.5, 6.8
Hz), 2.84 (br, 1H), 3.0−2.3 (m, 2H), 0.99 (s, 9H).
13C NMR (CDCl3) d 173.2, 171.4,
139.0, 128.0, 127.6, 126.8, 79.9, 65.5, 59.3, 51.6, 49.7, 33.6, 27.0.
HPLC, Daicel Chiralpak AS, Hexane / iPrOH
= 9/1, Flow rate = 1.00 mL / min, Detection
wavelength = 220 nm: tR =
6.8 min (2S, 4S, 5R), tR = 11.2 min (2R, 4R,
5S).
ESI−HRMS (m / z) calcd.for C17H24NO4 ((M + H) +):
306.1700; found: 306.1694.
2-tert-butyl 4-methyl 5-phenylpyrrolidine-2,4-dicarboxylate
IR [cm -1 ] 3749,
3349, 2978, 2376, 2307, 1733, 1454, 1370, 1250, 1204, 1155, 1036
1H NMR (CDCl3) d 7.32−7.23 (m, 5H), 4.53 (d, 1H, J = 7.8 Hz), 3.86 (t, 1H, J = 8.2
Hz), 3.32 (dt, 1H, J = 15, 7.8 Hz), 3.23 (s, 3H), 2.35 (m, 2H), 1.53 (s, 9H).
13C NMR (CDCl3) d 172.9, 172.5,
139.3, 128.2, 127.6, 126.8, 81.6, 65.9, 60.8, 51.2, 49.9, 33.6, 28.1.
HPLC, Daicel Chiralpak AD-H, Hexane / iPrOH = 19/1, Flow rate = 0.50 mL / min, Detection wavelength = 220 nm: tR = 27.2 min (minor), tR = 37.6 min (major).
ESI−HRMS (m / z) calcd. For
C17H24NO4 ((M + H) +): 306.1700; found: 306.1699.
di-tert-butyl 5-phenylpyrrolidine-2,4-dicarboxylate
IR [cm -1 ] 3281, 2973, 2374, 1725, 1704, 1454, 1370,
1288, 1253, 1217, 1151, 1105
1H NMR (CDCl3) d 7.36−7.21 (m, 5H), 4.46 (d, 1H, J = 8.0 Hz), 3.82 (t, 1H, J =
8.4 Hz), 3.25 (dt, 1H, J = 8.0, 6.8 Hz), 2.46−2.38
(m, 1H), 2.17-2.26 (m, 1H), 1.52 (s, 9H), 1.02 (s, 9H).
13C NMR (CDCl3) d 172.5, 171.9,
137.8, 128.1, 127.3, 127.2, 81.4, 80.5, 65.5, 60.7, 50.4, 34.5, 28.1, 27.5.
HPLC, Daicel Chiralpak ASx2, Hexane / iPrOH = 40/1, Flow rate = 0.50 mL / min, Detection wavelength = 220 nm: tR = 31.9 min (minor), tR = 36.9 min (major).
ESI−HRMS (m / z) calcd.for C20H30NO4 ((M + H) +):
348.2169; found: 348.2183.
dimethyl 3-methyl-5-phenylpyrrolidine-2,4-dicarboxylate
IR [cm -1 ] 3365,
3028, 2953, 2876, 2377, 2309, 1737, 1494, 1436, 1378, 1075, 1020
1H NMR (CDCl3) d 7.44−7.21 (m, 5H), 4.62 (d, 1H, J = 8.6 Hz), 3.83 (s, 3H), 3.55
(d, 1H, J = 8.7 Hz), 3.23 (s, 3H), 3.01 (dd, 1H, J = 8.6, 8.2 Hz), 2.72 (ddq, 1H, J = 8.7, 8.2, 6.6 Hz), 2.65
(br, 1H), 1.24 (d,
3H, J = 6.6 Hz).
13C NMR (CDCl3) d 173.7, 172.3,
140.0, 128.2, 127.6, 126.9, 67.3, 64.4, 58.3, 52.3, 51.3, 41.4, 17.8.
HPLC, Daicel Chiralpak AS, Hexane / iPrOH = 19/1, Flow rate = 0.25 mL / min, Detection wavelength = 220 nm: tR = 35.7 min (minor), tR = 46.9 min (major).
ESI−HRMS (m / z) calcd. For
C15H20NO4 ((M + H) +): 278.1386; found: 278.1390.
4-tert-butyl 2-methyl 3-methyl-5-phenylpyrrolidine-2,4-dicarboxylate
IR [cm -1 ] 3858, 3301, 3062, 3030, 2951,
2380, 2307, 1960, 1739, 1601, 1492, 1454, 1434, 1372, 1333, 1273, 1204, 1173,
1094, 1027.
1H NMR (CDCl3) d 7.45-7.20 (m, 5H), 4.55
(d, 1H, J = 8.6 Hz), 3.83 (s, 3H), 3.49 (d, 1H, J = 8.8 Hz), 2.9 (m, 2H), 2.65
(ddq, 1H, J = 8.8, 7.9, 6.7 Hz), 1.26 (d, 1H, J = 6.7 Hz), 1.02 (s, 9H).
13C NMR (CDCl3) d 173.5, 170.9,
140.2, 128.0, 127.3, 127.3, 80.4, 67.2, 64.1, 58.8, 52.1, 42.3, 27.4, 18.0.
HPLC, Daicel Chiralpak AS-H, Hexane / iPrOH = 19/1, Flow rate =
1.0 mL / min, Detection
wavelength = 220 nm: tR =
11.6 min (major), tR = 23.1 min (minor).
ESI−HRMS (m / z) calcd.for C18H26NO4 ((M + H) +):
320.1856; found: 320.1865.
2-tert-butyl 4-methyl 3-methyl-5-phenylpyrrolidine-2,4-dicarboxylate
IR [cm -1 ] 3749, 3652, 3363, 3062, 2975, 2877, 2376,
2298, 1734, 1602, 1496, 145, 1438, 1372, 1332, 1249, 1159, 1073, 1023.
1H NMR (CDCl3) d 7.32−7.23 (m, 5H), 4.60 (d, 1H, J = 8.6 Hz), 3.41 (d, 1H, J =
9.1 Hz), 3.24 (s, 3H), 3.01 (dd, 1H, J = 8.7, 8.6 Hz), 2.81 (br, 1H), 2.61−2.65 (m, 1H), 1.54 (s, 9H), 1.22 ( d, 3H, J = 6.7 Hz).
13C NMR (CDCl3) d 172.4, 172.2,
140.4, 128.2, 127.6, 126.9, 81.7, 67.9, 64.4, 58.2, 51.2, 41.6, 28.1, 17.6.
HPLC, Daicel Chiralpak AD-H, Hexane / iPrOH = 19/1, Flow rate = 0.50 mL / min, Detection wavelength = 220 nm: tR = 21.6 min (minor), tR = 24.9 min (major).
ESI−HRMS (m / z) calcd. For
C18H26NO4 ((M + H) +): 320.1856; found: 320.1847.
di-tert-butyl 3-methyl-5-phenylpyrrolidine-2,4-dicarboxylate
IR [cm -1 ] 3354, 3062, 2975, 2931, 2344, 1726, 1455,
1370, 1331, 1250, 1152, 1033.
1H NMR (CDCl3) d 7.36−7.22 (m, 5H), 4.54 (d, 1H, J = 8.6 Hz), 3.36 (d, 1H, J =
9.1 Hz), 2.91 (dd, 1H, J = 8.4, 8.4 Hz), 2.57 (ddq, 1H, J = 9.1, 8.6, 6.9 Hz),
2.85 (br, 1H), 1.24 (d, 3H, J = 6.9 Hz), 1.52 (s, 9H), 1.02 (s, 9H).
13C NMR (CDCl3) d 172.4, 171.0,
142.0, 128.1, 127.5, 127.4, 81.5, 80.5, 68.0, 64.2, 59.2, 42.8, 28.1, 27.5,
18.1.
HPLC, Daicel Chiralpak AD-H, Hexane / iPrOH = 19/1, Flow rate = 0.50 mL / min, Detection wavelength = 220 nm: tR = 35.2 min (major), tR = 56.7 min (minor).
ESI−HRMS (m / z) calcd. For
C21H32NO4 ((M + H) +): 362.2325; found: 362.2337.
2-tert-butyl 4-ethyl 3,5-diphenylpyrrolidine-2,4-dicarboxylate
IR [cm -1 ] 3353,
3030, 2977, 2932, 2378, 1731, 1601, 1495, 1455, 1369, 1336, 1260, 1219, 1156,
1092, 1029
1H NMR (CDCl3) d 7.40−7.23 (m, 10H), 4.84 (d, 1H, J = 9.0 Hz), 3.90 (d, 1H, J =
9.6 Hz), 3.75 (dd, 1H, J = 9.2, 9.0 Hz), 3.65−3.52
(m, 3H), 2.92 (br, 1H), 1.34 (s, 9H), 0.78 (t, 3H, J = 7.1 Hz).
13C NMR (CDCl3) d 171.7, 171.4,
140.2, 139.9, 128.5, 128.2, 127.9, 127.7, 127.3, 127.0, 81.6, 68.6, 65.4, 60.3,
59.2, 53.2, 27.9, 13.6.
HPLC, Daicel Chiralcel OD-H, Hexane / iPrOH = 19/1, Flow rate = 0.50
mL / min, Detection wavelength
= 220 nm: tR =
17.4 min (minor), tR = 18.9 min (major).
ESI−HRMS (m / z) calcd.for C24H30NO4 ((M + H) +):
396.2169; found: 396.2180.
dimethyl 2-methyl-5-phenylpyrrolidine-2,4-dicarboxylate
IR [cm -1 ] 3360,
3028, 2951, 2379, 2344, 1734, 1604, 1495, 1437, 1376, 1259, 1202, 1134, 1087,
1031
1H NMR (CDCl3) d 7.31−7.21 (m, 5H), 4.66 (d, 1H, J = 7.6 Hz), 3.84 (s, 3H), 3.38−3.33 (m, 1H), 3.21 (s, 3H), 3.16 (br, 1H), 2.73 (dd, 1H, J
= 14, 5.3 Hz), 2.06 (dd, 1H, J = 14, 7.6 Hz), 1.51 (s, 3H).
13C NMR (CDCl3) d 176.6, 173.1,
139.1, 128.2, 127.6, 126.7, 65.8, 65.0, 52.6, 51.2, 50.6, 40.4, 27.6.
HPLC, Daicel Chiralpak AD-H, Hexane / iPrOH = 19/1, Flow rate = 0.25 mL / min, Detection wavelength = 220 nm: tR = 47.9 min (major), tR = 51.7 min (minor).
ESI−HRMS (m / z) calcd. For
C15H20NO4 ((M + H) +): 278.1386; found: 278.1445.
dimethyl 2,3-dimethyl-5-phenylpyrrolidine-2,4-dicarboxylate
IR [cm -1 ] 3365,
3062, 3028, 2951, 1955, 1733, 1603, 1494, 1437, 1378, 1256, 1195, 1118, 1027.
1H NMR (CDCl3) d 7.31-7.21 (m, 5H), 4.68 (d, 1H, J = 9.6 Hz), 3.82 (s, 3H), 3.17
(s, 3H), 3.12 (dd, 1H, J = 10.9, 9.6 Hz), 2.87 (br, 1H), 2.87 (dq, 1H, J =
10.9, 6.7 Hz), 1.35 (s, 3H), 1.10 (d, 1H, J = 6.7 Hz).
13C NMR (CDCl3) d 175.9, 172.1,
141.1, 128.1, 127.6, 127.3, 67.6, 62.5, 57.1, 52.5, 51.2, 42.7, 20.4, 13.8.
HPLC, Daicel Chiralpak AD-H, Hexane / iPrOH = 40/1, Flow rate = 0.25 mL / min, Detection wavelength = 220 nm: tR = 63.4 min (major), tR = 66.6 min (minor).
ESI−HRMS (m / z) calcd.for C16H22NO4 ((M + H) +):
292.1543; found: 292.1544.
4-tert-butyl 2-methyl 2-methyl-5-phenylpyrrolidine-2,4-dicarboxylate
IR [cm -1 ] 3357,
2976, 2359, 1731, 1452, 1369, 1295, 1254, 1213, 1148
1H NMR (CDCl3) d 7.33-7.21 (m, 5H), 4.61 (d, 1H, J = 7.9 Hz), 3.81 (s, 3H), 3.32
(ddd, 1H, J = 7.9, 7.8, 6.0 Hz), 3.18 (br, 1H), 2.62 (dd, 1H, J = 14, 6.0 Hz),
2.27 (dd, 1H, J = 14, 7.8 Hz), 1.49 (s, 3H), 1.01 (s, 9H).
13C NMR (CDCl3) d 176.4, 171.7,
139.5, 128.1, 127.3, 127.2, 80.5, 65.6, 64.4, 52.5, 50.8, 40.9, 27.5, 27.1.
HPLC, Daicel Chiralpak AD-H, Hexane / iPrOH = 19/1, Flow rate = 0.50 mL / min, Detection wavelength = 220 nm: tR = 14.6 min (major), tR = 17.3 min (minor).
ESI−HRMS (m / z) calcd. For
C18H26NO4 ((M + H) +): 320.1856; found: 320.1872.
4-tert-butyl 2-ethyl 2-methyl-5-phenylpyrrolidine-2,4-dicarboxylate
IR [cm -1 ] 3360,
3062, 2977, 2934, 1729, 1604, 1452, 1369, 1295, 1254, 1214, 1147, 1024
1H NMR (CDCl3) d 7.33−7.21 (m, 5H), 4.61 (d, 1H, J = 7.7 Hz), 4.29−4.24 (m, 2H), 3.33 (ddd, 1H, J = 7.8, 7.7, 6.2 Hz ), 3.21
(br, 1H), 2.62 (dd, 1H, J = 14, 6.2 Hz), 2.07 (dd, 1H, J = 14, 7.8 Hz), 1.49
(s, 3H), 1.32 (t, 3H, J = 7.1 Hz), 1.02 (s, 9H).
13C NMR (CDCl3) d 175.9, 171.7,
139.7, 128.1, 127.3, 127.3, 80.5, 65.5, 64.5, 61.3, 50.8, 40.9, 27.5, 27.1,
14.2.
HPLC, Daicel Chiralcel OD-H, Hexane / iPrOH = 19/1, Flow rate = 0.50 mL / min, Detection wavelength = 220 nm: tR = 13.4 min (minor), tR = 23.4 min (major).
ESI−HRMS (m / z) calcd. For
C19H28NO4 ((M + H) +): 334.2012; found: 334.2009.
2-benzyl 4-tert-butyl 2-methyl-5-phenylpyrrolidine-2,4-dicarboxylate
IR [cm -1 ] 3358, 3062, 3031, 2975, 2934, 1953,
1728, 1604, 1496, 1453, 1370, 1254, 1215, 1147, 1082, 1028, 1000.
1H NMR (CDCl3) d 7.40-7.21 (m, 10H), 5.29-5.21 (m, 2H), 4.61
(d, 1H, J = 7.7 Hz), 3.32 (ddd, 1H, J = 7.8, 7.7, 6.0 Hz), 3.21 (br, 1H), 2.65
(dd, 1H, J = 14, 6.0 Hz), 2.07 (dd, 1H, J = 14, 7.8 Hz), 1.51 (s, 3H), 1.00 (s,
9H).
13C NMR (CDCl3) d 175.8, 171.7,
139.6, 135.9, 128.6, 128.2, 128.1, 128.1, 127.3, 127.2,
80.5, 66.9, 65.6, 64.5, 50.9, 40.8,
27.5, 27.3.
HPLC, Daicel Chiralcel OD-H, Hexane / iPrOH = 19/1, Flow rate = 0.50 mL / min, Detection wavelength = 220 nm: tR = 19.4 min (minor), tR = 30.0 min (major).
ESI−HRMS (m / z) calcd. For
C24H30NO4 ((M + H) +): 396.2169; found: 396.2178.
2-tert-butyl 4-methyl 3-methyl-5,5-diphenylpyrrolidine-2,4-dicarboxylate
IR [cm -1 ] 3650, 3368, 3305, 3059, 2975, 2932, 2877,
2360, 1959, 1733, 1661, 1598, 1492, 1449, 1391, 1367, 1343, 1263, 1158, 1080,
1030.
1H NMR (CDCl3) d 7.8−7.1 (m, 10H), 3.68 (d, 1H, J = 6.4 Hz), 3.47 (br, 1H), 3.30
(m, 4H), 2.67 (ddq, 1H, J = 8.4, 6.8, 6.4 Hz), 1.51 (s, 9H), 1.05 (d, 3H, J =
(6.8 Hz).
13C NMR (CDCl3) d 173.5, 172.3,
146.4, 145.3, 132.4, 130.0, 128.3, 127.9, 126.9, 126.5, 81.4, 74.6, 66.4, 62.7,
51.4, 44.8, 28.1, 18.2.
HPLC, Daicel Chiralpak AD-H, Hexane / iPrOH = 40/1, Flow rate = 0.50 mL / min, Detection wavelength = 220 nm: tR = 12.6 min (minor), tR = 14.9 min (major).
ESI−HRMS (m / z) calcd. For
C24H30NO4 ((M + H) +): 396.2169; found: 396.2187.
2-tert-butyl 4-ethyl 3-methyl-5,5-diphenylpyrrolidine-2,4-dicarboxylate
IR [cm -1 ] 3746,
3059, 2975, 2932, 1728, 1598, 1492, 1450, 1369, 1342, 1244, 1156, 1033.
1H NMR (CDCl3) d 7.8−7.1 (m, 10H), 3.7−3.8 (m, 2H), 3.67 (d,
1H, J = 5.8 Hz), 3.53 (br, 1H), 3.29 (d, 1H, J = 8.6 Hz), 2.65 (ddq, 1H, J =
8.6, 7.0, 5.8 Hz), 1.51 (s, 9H), 1.04 (d, 3H, J = 7.0 Hz), 0.88 (t, 3H, J = 7.1
Hz).
13C NMR (CDCl3) d 173.1, 172.3,
146.4, 145.4, 132.4, 130.1, 128.3, 127.9, 126.9, 126.5, 81.4, 74.7, 66.5, 62.9,
60.5, 45.2, 28.1, 18.5, 13.6.
HPLC, Daicel Chiralpak AD-H, Hexane / iPrOH = 19/1, Flow rate = 0.50 mL / min, Detection wavelength = 220 nm: tR = 17.8 min (minor), tR = 21.6 min (major).
ESI−HRMS (m / z) calcd. For
C25H32NO4 ((M + H) +): 410.2325; found: 410.2334.
di-tert-butyl 3-methyl-5,5-diphenylpyrrolidine-2,4-dicarboxylate
IR [cm -1 ] 3320, 30059, 2974, 2931, 2876, 2359,
1959, 1726, 1663, 1598, 1489, 1451, 1392, 1368, 1338, 1284, 1250, 1211, 1156,
1082, 1035.
1H NMR (CDCl3) d 7.8−7.1 (m, 10H), 3.58 (d, 1H, J = 5.2 Hz), 3.26 (d, 1H, J =
8.0 Hz), 2.56 (ddq, 1H, J = 8.0, 6.8, 5.2 Hz), 1.51 (s, 9H), 1.07 (s, 9H), 1.01
(d, 3H, J = 6.8 Hz).
13C NMR (CDCl3) d 172.4, 172.3,
146.3, 146.9, 132.4, 130.1, 128.4, 128.1, 126.7, 126.4, 81.2, 80.9, 74.6, 66.5,
64.0, 45.9, 28.1, 27.4, 19.2.
HPLC, Daicel Chiralpak AD-Hx2, Hexane / iPrOH = 19/1, Flow rate = 0.25 mL / min, Detection wavelength = 220 nm: tR = 30.7 min (minor), tR = 33.1 min (major).
ESI−HRMS (m / z) calcd. For
C27H36NO4 ((M + H) +): 438.2638; found: 438.2616.
tert-butyl 4- (dimethylcarbamoyl) -5,5-diphenylpyrrolidine-2-carboxylate
IR [cm -1 ] 3445, 3270, 2978, 2932,
1732, 1627, 1491, 1451, 1396, 1367, 1344, 1243, 1161,
1116.
1H NMR (CDCl3) d 7.58-7.57 (m, 2H), 7.27-7.06 (m, 8H), 4.08
(d, 1H, J = 6.2 Hz), 4.00 (m, 1H), 3.53 (m, 1H), 2.77 (s, 3H), 2.55 (s, 3H),
2.18 (dd, 1H, J = 12.7, 4.5 Hz), 2.12−2.08 (m, 1H), 1.43 (s, 9H).
13C NMR (CDCl3) d 173.7, 172.5,
145.0, 143.3, 128.4, 127.7, 126.9, 126.7, 126.7, 126.3, 81.0, 76.4, 59.2, 47.0,
37.6, 35.4, 35.1, 28.1.
HPLC, Daicel Chiralpak AD-H, Hexane / iPrOH = 19/1, Flow rate =
0.50 mL / min, Detection wavelength = 220 nm: tR =
12.7 min (major), tR = 19.9 min (minor).
ESI−HRMS (m / z) calcd. For
C24H31N2O3 ((M + H) +): 395.2329; found: 395.2338.
tert-butyl 4- (morpholine-4-carbonyl) -5,5-diphenylpyrrolidine-2-carboxylate
IR [cm -1 ] 3443, 2976, 2858, 1728,
1624, 1442, 1368, 1344, 1233, 1160, 1117, 1066, 1017.
1H NMR (CDCl3) d 7.65-7.64 (m, 2H), 7.36-7.34 (m, 2H), 7.27-7.17 (m, 6H), 4.10
(d, 1H, J = 6.9 Hz), 4.04 (brs, 1H), 3.61−3.23 (m, 8H), 3.12−3.03 (m, 2H), 2.30 (dd, 1H, J = 12.7, 4.5 Hz), 1.52 (s, 9H).
13C NMR (CDCl3) d 172.5, 172.4,
144.7, 142.7, 128.4, 128.0, 127.1, 127.0, 126.9, 126.6, 81.1, 76.2, 66.4, 66.0,
59.0, 46.6, 46.1, 41.6, 35.4, 28.1
HPLC: Daicel Chiralpak AD-H, Hexane / iPrOH = 9/1, Flow rate = 0.50 mL / min, Detection wavelength = 220 nm: tR = 19.4 min
(major), tR =
30.3 min (minor).
ESI−HRMS (m / z) calcd.for C26H33N2O4 ((M + H) +):
437.2435; found: 437.2436.
tert-butyl 5,5-diphenyl-4- (piperidine-1-carbonyl) pyrrolidine-2-carboxylate
IR [cm -1 ] 3271, 3064, 2973, 2933, 2859, 1735, 1619,
1448, 1366, 1338, 1286, 1247, 1223, 1158, 1117, 1029, 1009.
1H NMR (CDCl3) d 7.64-7.62 (m, 2H), 7.32-7.08 (m, 8H), 4.14
(d, 1H, J = 6.9 Hz), 4.12 (brs, 1H), 3.61−3.57 (m, 1H), 3.45−3.37 (m, 2H), 3.10−3.03 (m, 2H), 2.26−2.14 (m , 2H), 1.48 (s, 9H), 1.40−1.21 (m, 6H).
13C NMR (CDCl3) d 172.4, 172.0,
145.1, 143.3, 128.3, 127.8, 126.8, 126.7, 126.5, 126.5, 80.9, 76.2, 59.1, 46.8,
46.4, 42.3, 35.4, 28.1, 26.0, 25.0, 24.2.
HPLC: Daicel Chiralpak OD-H, Hexane / iPrOH = 100/1, Flow rate = 0.30 mL / min, Detection wavelength
= 220 nm: tR =
41.6 min (minor), tR = 47.7 min (major).
ESI−HRMS (m / z) calcd.for C27H35N2O3 ((M + H) +):
435.2642; found: 435.2652.
ert-butyl 4- (dicyclohexylcarbamoyl) -5,5-diphenylpyrrolidine-2-carboxylate
IR [cm -1 ] 3441, 2928, 2853, 1735,
1631, 1443, 1367, 1236, 1160.
1H NMR (CDCl3) d 7.58-7.57 (m, 2H), 7.37-7.34 (m, 3H), 7.32-7.29 (m, 1H), 7.25-7.23 (m, 2H), 7.11-7.09 (m, 2H) , 4.05
(brs, 1H), 3.88 (m, 1H), 3.62-3.60 (m, 1H), 3.47 (m, 1H), 2.64 (m, 1H), 2.36 (m, 1H), 2.10 (m,
3H), 1.79-1.00 (m, 27H).
13C NMR (CDCl3) d 172.5, 172.5,
145.6, 144.0, 128.3, 127.8, 127.6, 126.6, 126.4, 126.3, 80.9, 76.2, 59.3, 58.2,
56.1, 48.3, 36.0, 31.6, 30.6, 29.6, 28.0, 26.6, 26.5, 26.1, 25.2, 25.1.
HPLC: Daicel Chiralpak AD-H, Hexane / iPrOH = 40/1, Flow rate = 0.25 mL / min, Detection wavelength = 220 nm: tR = 18.9 min (major), tR = 37.9 min
(minor).
ESI−HRMS (m / z) calcd.for C34H47N2O3 ((M + H) +):
531.3581; found: 531.3599.
2-tert-butyl 3,4-dimethyl 5-phenylpyrrolidine-2,3,4-tricarboxylate
IR [cm -1 ] 3649, 3454, 3351, 2979, 2952,
1736, 1438, 1372, 1336, 1239, 1158, 1070, 1021.
1H NMR (CDCl3) d 7.33-7.24 (m, 5H), 4.68
(d, 1H, J = 8.4 Hz), 4.02 (d, 1H, J = 8.6 Hz), 3.77 (s, 3H), 3.64 (dd, 1H, J =
8.4, 7.1 Hz), 3.52 (dd, 1H, J = 8.6, 7.1 Hz), 3.21 (s, 3H), 2.79 (br, 1H), 1.52
(s, 9H).
13C NMR (CDCl3) d 172.8, 171.5, 170.7, 138.6, 128.3, 127.9, 126.9, 82.2, 65.4,
64.7, 54.4, 52.4, 51.1, 28.0, 28.0.
HPLC, Daicel Chiralcel OD-H, Hexane / iPrOH = 19/1, Flow rate = 0.50 mL / min, Detection wavelength = 220 nm: tR = 28.7 min (minor), tR = 30.5 min (major).
ESI−HRMS (m / z) calcd. For
C19H26NO6 ((M + H) +): 364.1754; found: 364.1743.

[システイン誘導体とα,β−不飽和カルボニル化合物との触媒的不斉1,4−付加反応]

Figure 2012210623
Figure 2012210623
アルゴン雰囲気下で良く乾燥した30mLのナスフラスコにCa(OiPr)2 (0.03 mmol)と不斉配位子(0.03 mmol)、及びモレキュラーシーブス4A (100 mg)を量り取り、室温にて無水THF (0.5 mL)を加えて2時間攪拌した。
0℃に冷却後、システイン誘導体(0.30 mmol)のTHF溶液(0.5 mL)及びアクリル酸メチル(0.36 mmol)のTHF溶液(0.5 mL)を加えた。
そして、そのままの温度で24時間攪拌後、飽和塩化アンモニウム溶液(10 mL)を加えて反応を停止した。
この混合物に塩化メチレン10 mLを加えて分液し、水槽より塩化メチレン(15 mL x 2)で抽出した。そして、有機層を合わせ、無水硫酸ナトリウム上で乾燥した。濾過、濃縮後、得られた粗生成物をシリカゲル薄層クロマトグラフィーで精製し(ヘキサンー酢酸エチル=3:1)、下記の構造式で示される目的物を得た。尚、光学純度は光学活性カラムを用いた高速液体クロマトグラフィーで決定した。
Methyl
4-(3-methoxy-3-oxopropyl) -2-phenyl-4,5-
dihydrothiazole-4-carboxylate:
Figure 2012210623
IR [cm−1] 3632, 3454, 2952, 2846, 1734, 1601, 1435, 1375, 1091.
1H NMR (CDCl3)
d7.85-7.84 (m, 2H), 7.49-7.27
(m, 3H), 3.85(d, 1H, J = 11.3 Hz), 3.80 (s, 3H), 3.65 (s, 3H) 3.35 (d,
1H, J = 11.3 Hz), 2.63-2.29 (m, 4H).
13C NMR (CDCl3) d 173.2, 173.1, 169.3, 132.7, 131.7, 128.6, 128.4,
87.3, 52.9, 51.7, 40.4, 33.1, 29.4.
HPLC
Daicel Chiralpack OJ-H, hexane/iPrOH = 9/1, flow rate = 0.7 mL/min,
Detection wavelength = 254 nm, tR = 45.1 (major), tR =
49.6 (minor).
[a]D 15
+24.7 (c 0.68).
FAB-HRMS
(m/z) calcd. for C15H18NO4S (M+H): 308.0951;
found: 308.0953.
尚、アミノ酸エステルのSchiff塩基を用いる立体選択的α置換アミノ酸合成は多くの研究者によって様々な高立体選択的触媒反応が開発され来てており、例えばアラニンやセリンなどのα置換基を有する基質を用いた不斉4級炭素生成も報告されている。しかしながら、これらの反応にあっては過剰量の強塩基や過剰量の基質を必要とし、基質一般性も含め未だ改善の余地を多く残していた。又、これまで報告されているシステイン誘導体に対するアルキル基導入反応では、キラル4級アンモニウム塩を用いるアルキルハライドによる触媒的不斉アルキル化反応が報告されているが、触媒的不斉1,4−付加反応で高エナンチオ選択的にアルキル基を導入した報告はない。これに対して、本発明者は、グリシンエステルから誘導されるSchiff塩基とα,β−不飽和エステルとの不斉1,4−付加反応において、本発明のキラルカルシウム錯体が有効な触媒となることを見出し、不斉4級炭素生成を目的にシステインから誘導される化合物とα,β−不飽和エステルとの反応による光学活性なα−置換グルタミン酸誘導体の合成を検討した結果、高収率・高立体選択的に目的物を得ることが判ったのである。又、置換基を有するα,β−不飽和エステルの場合も良好なジアステレオ選択性を示すことが明らかになった。 [Catalytic asymmetric 1,4-addition reaction of a cysteine derivative with an α, β-unsaturated carbonyl compound]
Figure 2012210623
Figure 2012210623
Weigh Ca (O i Pr) 2 (0.03 mmol), asymmetric ligand (0.03 mmol), and molecular sieves 4A (100 mg) in a well-dried 30 mL eggplant flask under an argon atmosphere, and dry at room temperature. THF (0.5 mL) was added and stirred for 2 hours.
After cooling to 0 ° C., a THF solution (0.5 mL) of a cysteine derivative (0.30 mmol) and a THF solution (0.5 mL) of methyl acrylate (0.36 mmol) were added.
Then, after stirring at the same temperature for 24 hours, a saturated ammonium chloride solution (10 mL) was added to stop the reaction.
The mixture was partitioned by adding 10 mL of methylene chloride, and extracted with methylene chloride (15 mL × 2) from a water bath. The organic layers were combined and dried over anhydrous sodium sulfate. After filtration and concentration, the resulting crude product was purified by silica gel thin layer chromatography (hexane-ethyl acetate = 3: 1) to obtain the desired product represented by the following structural formula. The optical purity was determined by high performance liquid chromatography using an optically active column.
Methyl
4- (3-methoxy-3-oxopropyl) -2-phenyl-4,5-
dihydrothiazole-4-carboxylate:
Figure 2012210623
IR [cm -1 ] 3632, 3454, 2952, 2846, 1734, 1601, 1435, 1375, 1091.
1H NMR (CDCl3)
d7.85-7.84 (m, 2H), 7.49-7.27
(m, 3H), 3.85 (d, 1H, J = 11.3 Hz), 3.80 (s, 3H), 3.65 (s, 3H) 3.35 (d,
1H, J = 11.3 Hz), 2.63-2.29 (m, 4H).
13 C NMR (CDCl 3 ) d 173.2, 173.1, 169.3, 132.7, 131.7, 128.6, 128.4,
87.3, 52.9, 51.7, 40.4, 33.1, 29.4.
HPLC
Daicel Chiralpack OJ-H, hexane / i PrOH = 9/1, flow rate = 0.7 mL / min,
Detection wavelength = 254 nm, t R = 45.1 (major), t R =
49.6 (minor).
[a] D 15
+24.7 (c 0.68).
FAB-HRMS
(m / z) calcd.for C 15 H 18 NO 4 S (M + H): 308.0951;
found: 308.0953.
In addition, various highly stereoselective catalytic reactions have been developed by many researchers for the synthesis of stereoselective α-substituted amino acids using Schiff bases of amino acid esters. For example, substrates having α-substituents such as alanine and serine. Asymmetric quaternary carbon production using has also been reported. However, these reactions require an excessive amount of strong base and an excessive amount of substrate, and there is still much room for improvement including the generality of the substrate. In the alkyl group introduction reaction to cysteine derivatives reported so far, catalytic asymmetric alkylation reaction with alkyl halide using chiral quaternary ammonium salt has been reported, but catalytic asymmetric 1,4-addition. There is no report of introducing an alkyl group with high enantioselectivity in the reaction. On the other hand, the present inventors have found that the chiral calcium complex of the present invention is an effective catalyst in the asymmetric 1,4-addition reaction between a Schiff base derived from a glycine ester and an α, β-unsaturated ester. As a result of studying the synthesis of optically active α-substituted glutamic acid derivatives by the reaction of a compound derived from cysteine with an α, β-unsaturated ester for the purpose of asymmetric quaternary carbon formation, It was found that the object was obtained with high stereoselectivity. In addition, it has been clarified that α, β-unsaturated esters having a substituent also show good diastereoselectivity.

[α−アミノ酸エステルシッフ塩基とエチレンジカルボン酸誘導体との不斉[3+2]付加環化反応]

Figure 2012210623
Figure 2012210623
アルゴン雰囲気下で良く乾燥した30mLのナスフラスコにCa(OiPr)2 (0.03 mmol)と不斉配位子(0.03 mmol)、及びモレキュラーシーブス4A (100 mg)を量り取り、室温にて無水THF (0.5 mL)を加えて2時間攪拌した。
10℃に冷却後、グリシンSchiff塩基(0.30
mmol)のTHF溶液(0.3
mL)およびフマル酸ジメチル(0.36 mmol)のTHF溶液(0.9 mL)を加えた。
そして、そのままの温度で3時間攪拌後、飽和塩化アンモニウム溶液(10 mL)を加えて反応を停止した。
この混合物に塩化メチレン10 mLを加えて分液し、水槽より塩化メチレン(15 mL x 2)で抽出した。そして、有機層を合わせ、無水硫酸ナトリウム上で乾燥した。濾過、濃縮後、得られた粗生成物をシリカゲル薄層クロマトグラフィーで精製し(ヘキサンー酢酸エチル=3:1)、下記の構造式で示される目的物を得た。尚、光学純度は光学活性カラムを用いた高速液体クロマトグラフィーで決定した。
2-tert-butyl 3,4-dimethyl 5-phenylpyrrolidine-2,3,4-triboxylate
Figure 2012210623
IR [cm-1] 3649, 3454, 3351, 2979,
2952, 1736, 1438, 1372, 1336, 1239, 1158, 1070, 1021.
1H NMR
(CDCl3) d 7.33-7.24 (m, 5H), 4.68 (d, 1H, J = 8.4 Hz), 4.02 (d, 1H, J = 8.6
Hz), 3.77 (s, 3H), 2.79 (br, 1H), 1.52 (s, 9H).
13C NMR
(CDCl3) d 172.8, 171.5, 170.7, 138.6, 128.3, 127.9, 126.9, 82.2, 65.4, 64.7,
54.4, 52.4, 51.1, 28.0, 28.0.
Daicel Chiralcel OD-H,
hexane/iPrOH = 19/1, flow rate = 0.50 mL/min, Detection wavelength =
220 nm, tR = 28.7 (minor), tR = 30.5 (major).
ESI-HRMS (m/z) calcd.
for C26 H 42 NO 5((M+H)+): 364.1754; found: 364.1743.
尚、ピロリジン化合物は生理活性を有する化合物の母核となる骨格であり、その効率的合成法の開発が望まれて来た。その中でも本骨格の触媒的不斉合成は、光学活性医薬品を合成する際の中間体供給において重要な手法である。そして、本発明者は、キラルカルシウム触媒を用いるアゾメチンイミンとα,β−不飽和エステルとの高エナンチオ選択的[3+2]付加環化反応を報告している。そして、この手法の適用拡大を目指し、アゾメチンイミンとエチレン−1,2−ジカルボン酸エステルとの不斉[3+2]付加環化反応について検討を行った結果、例えばカルシウムアルコキシドとキラルビスオキサゾリンから調製されるキラルカルシウム触媒が有効に機能し、対応する[3+2]付加環化体を良好な収率、選択性をもって与えることが見出された。又、これまで、α−グリシン誘導体とフマル酸やマレイン酸誘導体との不斉[3+2]付加環化反応は高ジアステレオ、高エナンチオ選択的な例が報告されていたが、触媒の原子効率などにおいて問題が残っていた。しかしながら、本発明になる触媒を用いれば、より原子効率に優れた系になり得る。又、α位に置換基を有するアミノ酸誘導体との触媒的不斉反応の報告例は限られているのに対して、本発明により不斉4級炭素を有するピロリジン誘導体の合成が可能になった。

[Asymmetric [3 + 2] cycloaddition reaction between α-amino acid ester Schiff base and ethylenedicarboxylic acid derivative]
Figure 2012210623
Figure 2012210623
Weigh Ca (O i Pr) 2 (0.03 mmol), asymmetric ligand (0.03 mmol), and molecular sieves 4A (100 mg) in a well-dried 30 mL eggplant flask under an argon atmosphere, and dry at room temperature. THF (0.5 mL) was added and stirred for 2 hours.
After cooling to 10 ° C., glycine Schiff base (0.30
mmol) in THF (0.3
mL) and a THF solution (0.9 mL) of dimethyl fumarate (0.36 mmol) were added.
Then, after stirring at the same temperature for 3 hours, a saturated ammonium chloride solution (10 mL) was added to stop the reaction.
The mixture was partitioned by adding 10 mL of methylene chloride, and extracted with methylene chloride (15 mL × 2) from a water bath. The organic layers were combined and dried over anhydrous sodium sulfate. After filtration and concentration, the resulting crude product was purified by silica gel thin layer chromatography (hexane-ethyl acetate = 3: 1) to obtain the desired product represented by the following structural formula. The optical purity was determined by high performance liquid chromatography using an optically active column.
2-tert-butyl 3,4-dimethyl 5-phenylpyrrolidine-2,3,4-triboxylate
Figure 2012210623
IR [cm -1 ] 3649, 3454, 3351, 2979,
2952, 1736, 1438, 1372, 1336, 1239, 1158, 1070, 1021.
1 H NMR
(CDCl 3 ) d 7.33-7.24 (m, 5H), 4.68 (d, 1H, J = 8.4 Hz), 4.02 (d, 1H, J = 8.6
Hz), 3.77 (s, 3H), 2.79 (br, 1H), 1.52 (s, 9H).
13 C NMR
(CDCl 3 ) d 172.8, 171.5, 170.7, 138.6, 128.3, 127.9, 126.9, 82.2, 65.4, 64.7,
54.4, 52.4, 51.1, 28.0, 28.0.
Daicel Chiralcel OD-H,
hexane / i PrOH = 19/1, flow rate = 0.50 mL / min, Detection wavelength =
220 nm, t R = 28.7 (minor), t R = 30.5 (major).
ESI-HRMS (m / z) calcd.
for C 26 H 42 NO 5 ((M + H) + ): 364.1754; found: 364.1743.
The pyrrolidine compound is a skeleton serving as a mother nucleus of a compound having physiological activity, and development of an efficient synthesis method thereof has been desired. Among them, catalytic asymmetric synthesis of this skeleton is an important technique for supplying intermediates when synthesizing optically active pharmaceuticals. The present inventor has reported a highly enantioselective [3 + 2] cycloaddition reaction of azomethine imine with an α, β-unsaturated ester using a chiral calcium catalyst. Aiming to expand the application of this method, we studied the asymmetric [3 + 2] cycloaddition reaction of azomethine imine with ethylene-1,2-dicarboxylic acid ester. As a result, for example, from calcium alkoxide and chiral bisoxazoline. It has been found that the prepared chiral calcium catalyst functions effectively and gives the corresponding [3 + 2] cycloaddition with good yield and selectivity. In the past, asymmetric [3 + 2] cycloaddition reactions of α-glycine derivatives with fumaric acid and maleic acid derivatives have been reported as examples of high diastereo and high enantioselectivity. Problems remained in efficiency. However, if the catalyst according to the present invention is used, the system can be more excellent in atomic efficiency. In addition, while there are limited reports of catalytic asymmetric reactions with amino acid derivatives having a substituent at the α-position, the present invention has made it possible to synthesize pyrrolidine derivatives having asymmetric quaternary carbons. .

Claims (11)

式[III]で表される化合物と式[IV]で表される化合物との反応に用いられる触媒であって、
M(OR(但し、Mはアルカリ土類金属元素、Rはアルキル基)と該M(ORのMに結合をする配位子とを持ち、
前記配位子を構成する化合物がビアリール骨格またはビスオキサゾリン骨格を持つ化合物である
ことを特徴とする金属触媒。
式[III]
Figure 2012210623
[但し、式[III]中、RはH、アルキル基またはアリール基、RはH、アルキル基またはアリール基、RはH、脂肪族炭化水素基または芳香族炭化水素基、Rは脂肪族炭化水素基である。]
式[IV]
Figure 2012210623
[但し、式[IV]中、Rは−COOR(但し、Rは脂肪族炭化水素基),−CON(R’)R’’(但し、R’,R’’は脂肪族炭化水素基あるいは何れか一方がアルコキシ基)又は−SOR’’’
(但し、R’’’は脂肪族炭化水素基または芳香族炭化水素基)、R10はH,X(ハロゲン原子)、脂肪族炭化水素基または芳香族炭化水素基である。]
A catalyst used for the reaction of a compound represented by the formula [III] and a compound represented by the formula [IV],
M (OR 1 ) 2 (where M is an alkaline earth metal element, R 1 is an alkyl group) and a ligand that binds to M of M (OR 1 ) 2 ;
A metal catalyst, wherein the compound constituting the ligand is a compound having a biaryl skeleton or a bisoxazoline skeleton.
Formula [III]
Figure 2012210623
[In the formula [III], R 5 is H, an alkyl group or an aryl group, R 6 is H, an alkyl group or an aryl group, R 7 is H, an aliphatic hydrocarbon group or an aromatic hydrocarbon group, R 8 Is an aliphatic hydrocarbon group. ]
Formula [IV]
Figure 2012210623
[In the formula [IV], R 9 is —COOR (where R is an aliphatic hydrocarbon group), —CON (R ′) R ″ (where R ′ and R ″ are aliphatic hydrocarbon groups) Or one of them is an alkoxy group) or —SO 2 R ′ ″
(Where R ′ ″ is an aliphatic hydrocarbon group or an aromatic hydrocarbon group), and R 10 is H, X (halogen atom), an aliphatic hydrocarbon group or an aromatic hydrocarbon group. ]
配位子を構成する化合物が下記の式[I]で表される構造の化合物又はその鏡像体であることを特徴とする請求項1の金属触媒。
式[I]
Figure 2012210623
[但し、式[I]中、Rは脂肪族炭化水素基または芳香族炭化水素基で、全てのRは同一でも異なっていても良く、RはH、脂肪族炭化水素基または芳香族炭化水素基で、全てのRは同一でも異なっていても良く、RはH、アルキル基、アリール基、炭素との結合原子がヘテロ原子である置換基またはシアノ基である。]
The metal catalyst according to claim 1, wherein the compound constituting the ligand is a compound having a structure represented by the following formula [I] or an enantiomer thereof.
Formula [I]
Figure 2012210623
[In the formula [I], R 2 is an aliphatic hydrocarbon group or an aromatic hydrocarbon group, all R 2 may be the same or different, and R 3 is H, an aliphatic hydrocarbon group or an aromatic group. In the group hydrocarbon group, all R 3 s may be the same or different, and R 4 is H, an alkyl group, an aryl group, a substituent whose carbon bond atom is a hetero atom or a cyano group. ]
式[I]のRは芳香族炭化水素基で、全てのRは同一でも異なっていても良く、RはH又は芳香族炭化水素基で、全てのRは同一でも異なっていても良く、RはHである
ことを特徴とする請求項2の金属触媒。
R 2 in the formula [I] is an aromatic hydrocarbon group, all R 2 may be the same or different, R 3 is H or an aromatic hydrocarbon group, and all R 3 are the same or different. The metal catalyst according to claim 2, wherein R 4 is H.
配位子を構成する化合物が下記の式[II]で表される構造の化合物又はその鏡像体である
ことを特徴とする請求項1の金属触媒。
式[II]
Figure 2012210623
The metal catalyst according to claim 1, wherein the compound constituting the ligand is a compound having a structure represented by the following formula [II] or an enantiomer thereof.
Formula [II]
Figure 2012210623
M(OR(但し、Mはアルカリ土類金属元素、Rはアルキル基)と該M(ORのMに結合をする配位子を構成する化合物とが混合されて触媒が構成されてなる
ことを特徴とする請求項1〜請求項4いずれかの金属触媒。
M (OR 1 ) 2 (wherein M is an alkaline earth metal element and R 1 is an alkyl group) and a compound constituting a ligand that binds to M of M (OR 1 ) 2 are mixed to form a catalyst The metal catalyst according to any one of claims 1 to 4, wherein
M(ORのRは炭素数が1〜10のアルキル基である
ことを特徴とする請求項1〜請求項5いずれかの金属触媒。
The metal catalyst according to any one of claims 1 to 5, wherein R 1 in M (OR 1 ) 2 is an alkyl group having 1 to 10 carbon atoms.
M(ORのRは炭素数が3〜10の分岐型アルキル基である
ことを特徴とする請求項6の金属触媒。
The metal catalyst according to claim 6, wherein R 1 of M (OR 1 ) 2 is a branched alkyl group having 3 to 10 carbon atoms.
M(ORのMがCaである
ことを特徴とする請求項1〜請求項7いずれかの金属触媒。
The metal catalyst according to any one of claims 1 to 7, wherein M in M (OR 1 ) 2 is Ca.
請求項1〜請求項8いずれかの金属触媒の存在下で、式[III]で表される化合物と式[IV]で表される化合物とを反応させる
ことを特徴とする光学活性α−アミノ酸誘導体の製造方法。
式[III]
Figure 2012210623
[但し、式[III]中、RはH、アルキル基またはアリール基、RはH、アルキル基またはアリール基、RはH、脂肪族炭化水素基または芳香族炭化水素基、Rは脂肪族炭化水素基である。]
式[IV]
Figure 2012210623
[但し、式[IV]中、Rは−COOR(但し、Rは脂肪族炭化水素基),−CON(R’)R’’(但し、R’,R’’は脂肪族炭化水素基あるいは何れか一方がアルコキシ基)又は−SOR’’’
(但し、R’’’は脂肪族炭化水素基または芳香族炭化水素基)、R10はH,X(ハロゲン原子)、脂肪族炭化水素基または芳香族炭化水素基である。]
9. An optically active α-amino acid characterized by reacting a compound represented by the formula [III] with a compound represented by the formula [IV] in the presence of the metal catalyst according to any one of claims 1 to 8. A method for producing a derivative.
Formula [III]
Figure 2012210623
[In the formula [III], R 5 is H, an alkyl group or an aryl group, R 6 is H, an alkyl group or an aryl group, R 7 is H, an aliphatic hydrocarbon group or an aromatic hydrocarbon group, R 8 Is an aliphatic hydrocarbon group. ]
Formula [IV]
Figure 2012210623
[In the formula [IV], R 9 is —COOR (where R is an aliphatic hydrocarbon group), —CON (R ′) R ″ (where R ′ and R ″ are aliphatic hydrocarbon groups) Or one of them is an alkoxy group) or —SO 2 R ′ ″
(Where R ′ ″ is an aliphatic hydrocarbon group or an aromatic hydrocarbon group), and R 10 is H, X (halogen atom), an aliphatic hydrocarbon group or an aromatic hydrocarbon group. ]
−80℃〜20℃の温度で反応を行わせる
ことを特徴とする請求項9の光学活性α−アミノ酸誘導体の製造方法。
The method for producing an optically active α-amino acid derivative according to claim 9, wherein the reaction is carried out at a temperature of -80 ° C to 20 ° C.
金属触媒の量が基質に対して0.1〜20mol%である
ことを特徴とする請求項9又は請求項10の光学活性α−アミノ酸誘導体の製造方法。

The method for producing an optically active α-amino acid derivative according to claim 9 or 10, wherein the amount of the metal catalyst is 0.1 to 20 mol% based on the substrate.

JP2012099540A 2007-03-09 2012-04-25 Metal catalyst and method for producing optically active α-amino acid derivative Expired - Fee Related JP5607103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012099540A JP5607103B2 (en) 2007-03-09 2012-04-25 Metal catalyst and method for producing optically active α-amino acid derivative

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007060816 2007-03-09
JP2007060816 2007-03-09
JP2012099540A JP5607103B2 (en) 2007-03-09 2012-04-25 Metal catalyst and method for producing optically active α-amino acid derivative

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008058169A Division JP2008253987A (en) 2007-03-09 2008-03-07 METALLIC CATALYST AND MANUFACTURING METHOD OF OPTICALLY ACTIVE alpha-AMINO ACID DERIVATIVE

Publications (2)

Publication Number Publication Date
JP2012210623A true JP2012210623A (en) 2012-11-01
JP5607103B2 JP5607103B2 (en) 2014-10-15

Family

ID=39978120

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2008058169A Pending JP2008253987A (en) 2007-03-09 2008-03-07 METALLIC CATALYST AND MANUFACTURING METHOD OF OPTICALLY ACTIVE alpha-AMINO ACID DERIVATIVE
JP2012099539A Expired - Fee Related JP5607102B2 (en) 2007-03-09 2012-04-25 Metal catalyst and method for producing optically active α-amino acid derivative
JP2012099540A Expired - Fee Related JP5607103B2 (en) 2007-03-09 2012-04-25 Metal catalyst and method for producing optically active α-amino acid derivative

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2008058169A Pending JP2008253987A (en) 2007-03-09 2008-03-07 METALLIC CATALYST AND MANUFACTURING METHOD OF OPTICALLY ACTIVE alpha-AMINO ACID DERIVATIVE
JP2012099539A Expired - Fee Related JP5607102B2 (en) 2007-03-09 2012-04-25 Metal catalyst and method for producing optically active α-amino acid derivative

Country Status (1)

Country Link
JP (3) JP2008253987A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5089634B2 (en) * 2009-03-12 2012-12-05 独立行政法人科学技術振興機構 Alkaline earth metal catalyst and reaction method
WO2011029762A1 (en) * 2009-09-14 2011-03-17 Convergence Pharmaceuticals Limited Process for preparing alpha-carboxamide derivatives
CN110551069B (en) * 2018-05-31 2022-10-04 中国科学院上海有机化学研究所 Synthesis method of 5-phenylpentanol compound and intermediate thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3150088A (en) * 1962-03-23 1964-09-22 Continental Oil Co Highly basic calcium-containing additive agent
JP2000080060A (en) * 1997-07-14 2000-03-21 Sumitomo Chem Co Ltd Production of optically active cyclopropanecarboxylic acid ester
JP2003012675A (en) * 2001-04-27 2003-01-15 Sumitomo Chem Co Ltd Asymmetric copper complex, method for producing the same, and method for producing optically active cyclopropane compound by using asymmetric copper complex
JP2005041792A (en) * 2003-07-23 2005-02-17 Tosoh Corp FLUORINE-CONTAINING OPTICALLY ACTIVE QUATERNARY AMMONIUM SALT, METHOD FOR PRODUCING THE SAME AND METHOD FOR PRODUCING OPTICALLY ACTIVE alpha-AMINO ACID DERIVATIVE USING THE SAME

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3150088A (en) * 1962-03-23 1964-09-22 Continental Oil Co Highly basic calcium-containing additive agent
JP2000080060A (en) * 1997-07-14 2000-03-21 Sumitomo Chem Co Ltd Production of optically active cyclopropanecarboxylic acid ester
JP2003012675A (en) * 2001-04-27 2003-01-15 Sumitomo Chem Co Ltd Asymmetric copper complex, method for producing the same, and method for producing optically active cyclopropane compound by using asymmetric copper complex
JP2005041792A (en) * 2003-07-23 2005-02-17 Tosoh Corp FLUORINE-CONTAINING OPTICALLY ACTIVE QUATERNARY AMMONIUM SALT, METHOD FOR PRODUCING THE SAME AND METHOD FOR PRODUCING OPTICALLY ACTIVE alpha-AMINO ACID DERIVATIVE USING THE SAME

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JPN6012009864; NOLAN, T. et al: 'The Development of the Asymmetric Morita-Baylis-Hillman Reaction Catalyzed by Chiral Broensted Acids' Advanced Synthesis & Catalysis Vo.346, No.9-10, 20040921, p.1231-1240 *
JPN6012009866; SAITO, S. et al: 'Highly anti-Selective Catalytic Aldol Reactions of Amides with Aldehydes' J. Am. Chem. Soc. Vol.128, No.27, 20060617, p.8704-8705 *
JPN6012009869; NAKAMURA, M. et al: 'Enantioselective Allylzincation of Cyclic Aldimines in the Presence of Anionic Bis-oxazoline Ligand' J.Am.Chem.Soc. Vol.118, 19960904, p.8489-8490, American Chemical Society *
JPN6012009870; SCHULZE, V. et al: 'Simple Diastereoselectivity on Addition of alpha-Haloalkyl Grignard Reagents to Benzaldehyde' J.Org.Chem. Vol.68, No.11, 20030502, p.4546-4548, American Chemical Society *
JPN6012009877; SAITO, S. et al: 'Direct-type catalytic Mannich reactions of amides with imines' Chem. Commun. No.12, 20070215, p.1236-1237 *
JPN6014004049; KUMARASWAMY, G. et al: 'Enantioenriched Calcium-(R)-5,5',6,6',7,7',8,8'-Octahydro-BINOL (H8-BINOL): An Efficient Catalys' Adv. Synth. Catal. Vol.347, No.6, 20050509, p.867-871 *

Also Published As

Publication number Publication date
JP5607102B2 (en) 2014-10-15
JP5607103B2 (en) 2014-10-15
JP2012210622A (en) 2012-11-01
JP2008253987A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
Liu et al. Iridium-catalyzed asymmetric allylic substitutions
Cao et al. Enantioselective Michael addition of malonates to chalcone derivatives catalyzed by dipeptide-derived multifunctional phosphonium salts
Larionova et al. (S)-Threonine/α, α-(S)-diphenylvalinol-derived chiral ionic liquid: an immobilized organocatalyst for asymmetric syn-aldol reactions
Tsubogo et al. Synthesis of optically active, unnatural α-substituted glutamic acid derivatives by a chiral calcium-catalyzed 1, 4-addition reaction
Moberg Molybdenum-catalyzed and tungsten-catalyzed enantioselective allylic substitutions
ES2710448T3 (en) Selective hydrogenation of aldehyde with Ru complexes / bidentate ligands
JP2021509684A (en) Manganese-catalyzed hydrogenation of esters
JP5607103B2 (en) Metal catalyst and method for producing optically active α-amino acid derivative
Wang et al. Applications of conformational design: rational design of chiral ligands derived from a common chiral source for highly enantioselective preparations of (R)-and (S)-enantiomers of secondary alcohols
Kong et al. Synthesis of chiral lactams via asymmetric hydrogenation of α, β-unsaturated nitriles
CN114805068A (en) Preparation method of chiral alpha-hydroxy-beta-keto ester compound
Ku et al. Asymmetric synthesis of α, β-epoxysulfones via phase-transfer catalytic Darzens reaction
Han et al. Chiral ferrocenyl P, S-ligands for highly efficient copper-catalyzed asymmetric [3+ 2] cycloaddition of azomethine ylides
CN102503976A (en) Alpha-quaternary carbon contained alpha, beta-diamino acid derivative, synthetic method thereof and application thereof
JPWO2008111371A1 (en) Phosphoramide compound and method for producing the same, ligand, complex, catalyst, and method for producing optically active alcohol
WO2019204477A1 (en) Pd(ii)-catalyzed enantioselective c-h arylation of free carboxylic acids
Gök et al. Synthesis of a Novel C2‐Symmetric Bis‐oxazoline (= Bis [4, 5‐dihydrooxazole]) and Its Application as Chiral Ligand in Asymmetric Transition Metal Catalysis
Xu et al. Highly enantioselective addition of methyl propiolate to aldehydes catalyzed by a titanium (IV) complex of a β-hydroxy amide
JP4004547B2 (en) Method for producing optically active amine
JP2015172024A (en) Chiral bicyclic diene ligand having hydrogen bond formation amide group
JP2013142071A (en) Pyrrolidinyl-spirooxindole derivative and method for producing the same
JP4696274B2 (en) Solid chiral zirconium catalyst and method for synthesizing aldol reactant or cyclized compound using the same
JP2013142080A (en) Indole derivative and method for producing the same
Lee New Complexity-Building Reactions of α-Keto Esters
Bartlett New Complexity-Building Reactions of Alpha-Keto Esters

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140827

R150 Certificate of patent or registration of utility model

Ref document number: 5607103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees