JP2012210232A - Radiation treatment system - Google Patents

Radiation treatment system Download PDF

Info

Publication number
JP2012210232A
JP2012210232A JP2009189983A JP2009189983A JP2012210232A JP 2012210232 A JP2012210232 A JP 2012210232A JP 2009189983 A JP2009189983 A JP 2009189983A JP 2009189983 A JP2009189983 A JP 2009189983A JP 2012210232 A JP2012210232 A JP 2012210232A
Authority
JP
Japan
Prior art keywords
treatment
dimensional
irradiation
treatment target
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009189983A
Other languages
Japanese (ja)
Inventor
Hirosuke Hirasawa
宏祐 平澤
Haruhisa Okuda
晴久 奥田
Ryoichi Yamakoshi
諒一 山腰
Yasushi Kage
裕史 鹿毛
Kazuhiko Washimi
和彦 鷲見
Takenobu Sakamoto
豪信 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009189983A priority Critical patent/JP2012210232A/en
Priority to PCT/JP2010/057854 priority patent/WO2011021410A1/en
Publication of JP2012210232A publication Critical patent/JP2012210232A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1037Treatment planning systems taking into account the movement of the target, e.g. 4D-image based planning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • A61N5/1067Beam adjustment in real time, i.e. during treatment

Abstract

PROBLEM TO BE SOLVED: To provide a radiation treatment system capable of performing proper treatment based on treatment planning, by dynamically changing the irradiation condition according to the movement of an organ and accurately evaluating the dose distribution.SOLUTION: The radiation treatment system includes a four-dimensional treatment planning device 11 which holds a plurality of three-dimensional images captured for respective respiratory phases, and treatment planning data RTP generated for each of the plurality of the three-dimensional images, a region-to-be-treated displacement measurement device 12 which measures the displacement of a region to be treated, a respiratory phase calculation device 13 which calculates the respiratory phases on the basis of data relating to the measured displacement and the plurality of the three-dimensional images, an irradiation control unit 15, 16 which controls an irradiation device 17 on the basis of the calculated respiratory phases and the treatment planning data, and a dose distribution evaluation unit 20 which evaluates the dose distribution of radiation, wherein the dose distribution evaluation unit 20 superposes dose distributions calculated for the respective respiratory phases on the basis of the treatment planning data corresponding to the respective respiratory phases, and controls the amount of radiation according to the superposed dose distributions.

Description

この発明は、体内の患部組織に放射線を照射して治療を行う放射線治療システムに関するもので、とくに、治療中の患者の呼吸等に伴い動く臓器に対しても高精度な放射線治療を行うための技術に関する。   The present invention relates to a radiotherapy system for performing treatment by irradiating a diseased tissue in a body with radiation, and in particular, for performing high-accuracy radiotherapy for an organ that moves with breathing of a patient being treated. Regarding technology.

放射線治療は、がん病巣に必要な線量の放射線を照射して腫瘍細胞にダメージを与えるものである。放射線治療では、荷電粒子線、中性子線、ガンマ線、X線、電子線など、さまざまな種類の放射線を利用することができるが、いずれの放射線であっても、がん病巣に的確に放射線を照射する一方、正常細胞への被ばくを可能な限り抑制する必要がある。そのため、放射線治療では、最適な治療を行うため、照射する線量や照射範囲、および照射角度等を定めた治療計画に基づいて照射を行う。さらに、肺、肝臓、膵臓など主に呼吸の影響で動く臓器に対しては、呼吸信号をモニタし、特定の呼吸振幅や呼吸位相に合わせて放射線を照射する方式が採用されていた。しかし、体表の呼吸信号から生体内の治療対象部位の位置を推定していたので、治療対象部位の運動を正確に把握することができず、放射線を精度よく照射することができなかった。   Radiation therapy involves irradiating a tumor lesion with a dose of radiation necessary to damage tumor cells. In radiation therapy, various types of radiation, such as charged particle beams, neutron beams, gamma rays, X-rays, and electron beams, can be used. On the other hand, it is necessary to suppress exposure to normal cells as much as possible. Therefore, in radiotherapy, in order to perform optimal treatment, irradiation is performed based on a treatment plan in which a dose, an irradiation range, an irradiation angle, and the like are determined. Furthermore, for organs that move mainly under the influence of respiration, such as the lung, liver, and pancreas, a method in which a respiration signal is monitored and radiation is applied in accordance with a specific respiration amplitude or respiration phase has been adopted. However, since the position of the treatment target part in the living body was estimated from the respiration signal of the body surface, the movement of the treatment target part could not be accurately grasped, and the radiation could not be irradiated accurately.

そこで、X線透視や超音波を使用し治療対象部位の運動を実時間で直接観察し、直接観察した治療対象部位の移動ベクトルに基づいて放射線の照射を制御する放射線治療システムが提案されている。(例えば、特許文献1、2参照)。   Therefore, a radiotherapy system has been proposed that directly observes the movement of a treatment target part in real time using X-ray fluoroscopy and ultrasonic waves, and controls radiation irradiation based on the directly observed movement vector of the treatment target part. . (For example, refer to Patent Documents 1 and 2).

特開2005−185336号公報(段落0084〜0086、図12)JP 2005-185336 A (paragraphs 0084 to 0086, FIG. 12) 特開2003−117010号公報(段落0029〜0035、図1、図2)JP 2003-1117010 (paragraphs 0029 to 0035, FIG. 1 and FIG. 2)

しかしながら、上述した放射線治療システムでは、治療対象部位の移動ベクトルに基づいて放射線の照射位置や照射方向を動的に変更するが、照射位置や照射方向を変更した場合の治療計画への影響、つまり、治療計画における線量分布と実際の照射における線量分布との差異については考慮されていない。したがって、治療対象部位やその周辺部への線量分布の評価が不正確になり、治療計画に基づいた適切な治療を行うことが困難であった。   However, in the radiotherapy system described above, the irradiation position and irradiation direction of the radiation are dynamically changed based on the movement vector of the treatment target part, but the influence on the treatment plan when the irradiation position and irradiation direction are changed, that is, The difference between the dose distribution in the treatment plan and the dose distribution in the actual irradiation is not considered. Therefore, the evaluation of the dose distribution to the treatment target site and its peripheral part becomes inaccurate, and it is difficult to perform appropriate treatment based on the treatment plan.

この発明は、上記のような問題点を解決するためになされたものであり、治療対象部位の動きに応じて、照射位置や照射方向を動的に変更するとともに、線量分布を正確に評価し、治療計画に基づいた適切な治療を行うことができる放射線治療システムを得ることを目的としている。   The present invention has been made to solve the above-described problems, and dynamically changes the irradiation position and irradiation direction according to the movement of the treatment target region and accurately evaluates the dose distribution. An object of the present invention is to obtain a radiotherapy system capable of performing appropriate treatment based on a treatment plan.

本発明にかかる放射線治療システムは、患者の治療対象部位に放射線を照射する照射装置と、前記患者の呼吸位相毎に事前に撮像された複数の3次元画像と、前記複数の3次元画像のそれぞれに対して生成された治療計画データとを保持する4次元治療計画装置と、前記治療対象部位の実時間の変位を計測する治療対象部位変位計測装置と、前記計測した治療対象部位の実時間の変位データと、前記複数の3次元画像とに基づいて、呼吸位相を算出する呼吸位相算出装置と、前記算出した呼吸位相と治療計画データに基づいて前記照射装置を制御する照射制御部と、前記治療対象部位に照射された放射線の線量分布を評価する線量分布評価部と、を備え、前記線量分布評価部は、前記呼吸位相に対応する治療計画データに基づいて線量分布を計算するとともに、前記呼吸位相ごとに計算した線量分布を重ね合わせ、重ね合わせた線量分布に応じて放射線の照射量を制御することを特徴とする。   A radiotherapy system according to the present invention includes an irradiation device that irradiates a patient to be treated with radiation, a plurality of three-dimensional images captured in advance for each respiratory phase of the patient, and each of the plurality of three-dimensional images. A four-dimensional treatment planning apparatus that holds treatment plan data generated for the treatment target, a treatment target part displacement measuring device that measures a real time displacement of the treatment target part, and a real time of the measured treatment target part. A respiratory phase calculation device that calculates a respiratory phase based on displacement data and the plurality of three-dimensional images; an irradiation control unit that controls the irradiation device based on the calculated respiratory phase and treatment plan data; A dose distribution evaluation unit that evaluates a dose distribution of radiation applied to a treatment target site, and the dose distribution evaluation unit calculates a dose distribution based on treatment plan data corresponding to the respiratory phase. As well as calculation, superimposed dose distributions calculated for each of the breathing phase, and controlling the irradiation amount of radiation in accordance with the superimposed dose distribution.

この発明によれば、呼吸位相に応じて照射位置や照射方向を動的に変更するとともに、当該呼吸位相に対応した治療計画を用いて線量分布を評価することにより、治療計画に基づいた適切な治療を行うことができる放射線治療システムを得ることができる。   According to the present invention, the irradiation position and the irradiation direction are dynamically changed according to the respiratory phase, and the dose distribution is evaluated using the treatment plan corresponding to the respiratory phase. A radiation treatment system capable of performing treatment can be obtained.

本発明の実施の形態1にかかる放射線治療システムの構成を示すブロック図である。It is a block diagram which shows the structure of the radiotherapy system concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる放射線治療システムにて使用する4次元CT画像を説明するための図である。It is a figure for demonstrating the four-dimensional CT image used with the radiotherapy system concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる放射線治療システムにて使用する4次元治療計画を説明するための図である。It is a figure for demonstrating the four-dimensional treatment plan used with the radiotherapy system concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる放射線治療システムの構成を示す模式図である。It is a schematic diagram which shows the structure of the radiotherapy system concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる放射線治療システムにて使用する4次元ボリュームデータを説明するための図である。It is a figure for demonstrating the four-dimensional volume data used with the radiotherapy system concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる放射線治療システムにおける3次元計測装置について説明するための図である。It is a figure for demonstrating the three-dimensional measuring apparatus in the radiotherapy system concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる放射線治療システムにおける相関演算について説明するための図である。It is a figure for demonstrating the correlation calculation in the radiotherapy system concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる放射線治療システムにおける照射タイミングについて説明するための図である。It is a figure for demonstrating the irradiation timing in the radiotherapy system concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる放射線治療システムにおける照射タイミングの決定方法について説明するための図である。It is a figure for demonstrating the determination method of the irradiation timing in the radiotherapy system concerning Embodiment 1 of this invention. 本発明の実施の形態2にかかる放射線治療システムの構成を示すブロック図である。It is a block diagram which shows the structure of the radiotherapy system concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる放射線治療システムの構成を示す模式図である。It is a schematic diagram which shows the structure of the radiotherapy system concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかる放射線治療システムの構成を示すブロック図である。It is a block diagram which shows the structure of the radiotherapy system concerning Embodiment 3 of this invention. 本発明の実施の形態4にかかる放射線治療システムの構成を示すブロック図である。It is a block diagram which shows the structure of the radiotherapy system concerning Embodiment 4 of this invention. 本発明の実施の形態4にかかる放射線治療システムにおける相関演算について説明するための図である。It is a figure for demonstrating the correlation calculation in the radiotherapy system concerning Embodiment 4 of this invention.

実施の形態1.
図1〜図9は、本発明の実施の形態1に係る放射線治療システムを説明するためのもので、図1は放射線治療システムの構成を示すブロック図、図2は4次元CT画像を説明するための図、図3は4次元治療計画を説明するための図、図4は放射線治療システムの模式図、図5は4次元ボリュームデータを説明するための図、図6は3次元計測装置について説明するための図、図7は相関演算について説明するための図、図8は照射タイミングについて説明するための図、図9は照射タイミングの決定方法について説明するための図である。
Embodiment 1 FIG.
1 to 9 are for explaining the radiation therapy system according to the first embodiment of the present invention. FIG. 1 is a block diagram showing the configuration of the radiation therapy system, and FIG. 2 is a diagram for explaining a four-dimensional CT image. FIG. 3 is a diagram for explaining a four-dimensional treatment plan, FIG. 4 is a schematic diagram of a radiation treatment system, FIG. 5 is a diagram for explaining four-dimensional volume data, and FIG. 6 is for a three-dimensional measurement apparatus. FIG. 7 is a diagram for explaining the correlation calculation, FIG. 8 is a diagram for explaining the irradiation timing, and FIG. 9 is a diagram for explaining a method for determining the irradiation timing.

本発明の実施の形態1に係る放射線治療システムは、図1に示すように、治療対象となる患者の1呼吸周期における位相の異なる複数の3次元CT画像データ群(合わせて4次元CT画像と称する)と、複数の3次元CT画像データ群のそれぞれに対して生成された複数の3次元治療計画データ(合わせて4次元治療計画データと称する)を格納する4次元治療データベースを有する4次元治療計画装置11と、治療対象部位の変位(臓器運動)を実時間で計測する治療対象部位変位計測装置12と、計測した治療対象部位の実時間の変位データと、前記複数の3次元画像とを比較して、呼吸位相を算出する呼吸位相算出装置13と、呼吸位相と治療対象部位の位置に応じて照射のタイミングや照射位置、角度等の照射制御信号と位相信号を出力する照射制御信号生成部15と、照射制御信号に基づいて照射装置17を制御する照射制御部16と、呼吸位相(位相信号)に応じて4次元治療計画データの中から選択した3次元治療計画に基づいて線量分布を評価する線量分布評価部20とを備え、線量分布評価部20では、呼吸位相ごとに呼吸位相に対応する治療計画データを用いて評価した線量分布を重ね合わせ、重ね合わせた線量分布が目標に達した場合にビーム照射を終了する照射終了信号を照射制御部16に出力するように構成している。以下、詳細を説明する。   As shown in FIG. 1, the radiotherapy system according to Embodiment 1 of the present invention includes a plurality of three-dimensional CT image data groups having different phases in one respiratory cycle of a patient to be treated (a combination of four-dimensional CT images and 4D treatment having a 4D treatment database for storing a plurality of 3D treatment plan data (collectively referred to as 4D treatment plan data) generated for each of a plurality of 3D CT image data groups. The planning apparatus 11, the treatment target part displacement measuring device 12 that measures displacement (organ movement) of the treatment target part in real time, the measured displacement data of the treatment target part in real time, and the plurality of three-dimensional images. In comparison, the respiratory phase calculation device 13 that calculates the respiratory phase, and the irradiation control signal and phase signal such as the irradiation timing, irradiation position, and angle according to the respiratory phase and the position of the treatment target part Irradiation control signal generating unit 15 that operates, irradiation control unit 16 that controls the irradiation device 17 based on the irradiation control signal, and three-dimensional treatment selected from the four-dimensional treatment plan data according to the respiratory phase (phase signal) A dose distribution evaluation unit 20 that evaluates the dose distribution based on the plan. The dose distribution evaluation unit 20 superimposes the dose distributions evaluated using the treatment plan data corresponding to the respiratory phase for each respiratory phase, The irradiation end signal for ending the beam irradiation is output to the irradiation control unit 16 when the dose distribution reaches the target. Details will be described below.

まず、4次元治療計画装置11にて扱う4次元治療計画データについて説明する。図2は4次元治療計画装置11で患者の治療対象部位に対して事前に撮影する4次元CT画像の構成を示す概念図である。4次元CT画像とは、通常の3次元CT画像(立体画像)に時間軸方向の概念を加えたもので、時系列の順番に並んだ3次元CT画像群として定義される。本実施の形態1においては、放射線治療を施す患者の1呼吸周期の間の順番に並んだN個の呼吸位相毎の3次元CT画像の集まりを4次元CT画像と称している。つまり、4次元CT画像は、体幹部領域で、呼吸の影響を受けて周期的な動きをする臓器の呼吸位相毎の立体画像データの集まりといえる。   First, 4D treatment plan data handled by the 4D treatment plan apparatus 11 will be described. FIG. 2 is a conceptual diagram showing the configuration of a four-dimensional CT image that is taken in advance with respect to a treatment target site of a patient by the four-dimensional treatment planning apparatus 11. The four-dimensional CT image is a normal three-dimensional CT image (stereoscopic image) added with the concept of the time axis direction, and is defined as a group of three-dimensional CT images arranged in time series. In the first embodiment, a group of 3D CT images for each of N respiratory phases arranged in order during one respiratory cycle of a patient undergoing radiation therapy is referred to as a 4D CT image. That is, the four-dimensional CT image can be said to be a collection of stereoscopic image data for each respiratory phase of an organ that periodically moves under the influence of respiration in the trunk region.

ここで、4次元CT画像の一般的な撮影方法について述べる。被験者(患者)に呼吸センサを装着した状態で、治療計画用CT画像を撮像する。撮像方法としては、「ゲーティングありCT撮像」と、「ゲーティングなしCT撮像」の2つがある。呼吸センサとしては体外設置型ストレイン(歪み)ゲージや、体表マーカ検出カメラ、レーザ変位計を利用することができる。いずれも、呼吸に伴う体表面の上下動運動を計測するものである。その他、サーミスタや換気量計など一般的な呼吸センサを利用することもできる。   Here, a general imaging method of a four-dimensional CT image will be described. A CT image for treatment planning is taken with the subject (patient) wearing a respiration sensor. There are two imaging methods: “CT imaging with gating” and “CT imaging without gating”. As the respiration sensor, an externally installed strain gauge, a body surface marker detection camera, or a laser displacement meter can be used. Both measure the vertical motion of the body surface accompanying breathing. In addition, a general respiration sensor such as a thermistor or a ventilation meter can be used.

「ゲーティングありCT撮像」とは、1呼吸周期の間に、呼吸振幅もしくは呼吸位相ごとにトリガーをかけてCT撮像を行って、呼吸振幅もしくは呼吸位相の異なる複数のCT画像を順次得ていく方法である。広い領域を撮影しようとした場合には、シネモードで寝台を動かす必要があり、寝台ポジションごとに各呼吸振幅もしくは呼吸位相でトリガーをかける必要が生じ、手間と時間のかかる方法となる。ProspectiveなCT撮像とも呼ばれ
る。
“CT imaging with gating” refers to performing CT imaging with a trigger for each respiratory amplitude or respiratory phase during one respiratory cycle, and sequentially obtaining a plurality of CT images with different respiratory amplitudes or respiratory phases. Is the method. When shooting a wide area, it is necessary to move the bed in the cine mode, and it is necessary to trigger each breathing amplitude or breathing phase for each bed position, which is a time-consuming and time-consuming method. Also called Prospective CT imaging.

一方で、「ゲーティングなしCT撮像」では、呼吸振幅もしくは呼吸位相ごとにトリガーをかけることはせず、CT装置のX線管回転撮影における各投影データに呼吸振幅情報もしくは呼吸位相情報を付与しておき、数呼吸周期の間で連続撮像を実施する。広い領域を撮影しようとした場合には、シネモードで寝台ポジションごとに同様の撮像を実施する。その後、各寝台ポジションの各投影データを呼吸振幅もしくは呼吸位相でソーティングし、所定の呼吸振幅もしくは呼吸位相の投影データのみから画像を再構成する。このようにして、複数の呼吸振幅もしくは呼吸位相のCT画像を一挙に得ることができるので、「ゲーティングなしCT撮像」は効率面で有利な方法である。RetrospectiveなCT撮像とも呼ばれている。   On the other hand, in “CT imaging without gating”, a trigger is not applied for each respiratory amplitude or respiratory phase, but respiratory amplitude information or respiratory phase information is added to each projection data in the X-ray tube rotation imaging of the CT apparatus. In addition, continuous imaging is performed between several respiratory cycles. When a wide area is to be imaged, similar imaging is performed for each bed position in the cine mode. Thereafter, each projection data at each couch position is sorted by respiration amplitude or respiration phase, and an image is reconstructed only from projection data of a predetermined respiration amplitude or respiration phase. In this way, CT images with a plurality of respiratory amplitudes or phases can be obtained all at once, so “CT imaging without gating” is an advantageous method in terms of efficiency. It is also called retrospective CT imaging.

いずれの方法にしても、4次元CTを使った治療計画用CT画像は、任意の呼吸振幅もしくは呼吸位相で、呼吸によるブレのない画像となるため、治療計画の精度を向上させることが可能となる。   In any method, the CT image for treatment planning using 4D CT is an image with no respiratory amplitude or phase and no blurring due to respiration. Therefore, it is possible to improve the accuracy of treatment planning. Become.

4次元治療計画装置11では、上記のようにして得られた4次元CT画像中の位相の異なる3次元CT画像の各々に対して、いわゆる治療計画を生成する。治療計画では、がん病巣(治療対象部位)の位置や形状から照射ターゲットを特定し、放射線を照射する方向や照射線量の分布をシミュレーションして、治療の妥当性を評価して、照射装置17でのビーム照射に必要な治療パラメータを決定する。ここで、3次元CT画像がN個あるとすると、図3に示すように、N個の治療計画(RTP〜RTP)が作成されることになる。位相毎の治療計画は、その位相における治療対象部位自体の3次元形状や周辺組織、および放射線を照射する際の体表面からの深さ等を基に、治療対象部位に対し様々な方向(図では2方向であるが、それより多くてもよく、また1方向だけでもよい。)からの放射線の照射範囲や強度を定めていく。特に荷電粒子ビームを使用する場合には、ブラッグピークと呼ばれ荷電粒子ビームの運動エネルギーによってビームエネルギーが吸収される深さ(照射する組織の体表面からの深さ)が定まるので、この治療計画はがん病巣への照射と周辺組織の被ばく量を制御する点において重要である。Nは通常、1呼吸周期を分割する数に相当し、N=10程度が一般的であるが、この数字に限定されるわけではない。こうして生成された呼吸周期の位相毎の3次元の治療計画データ(まとめて4次元治療計画データと称する)は、4次元治療計画データベース111に格納される。 The four-dimensional treatment plan apparatus 11 generates a so-called treatment plan for each of the three-dimensional CT images having different phases in the four-dimensional CT image obtained as described above. In the treatment plan, the irradiation target is identified from the position and shape of the cancer lesion (the site to be treated), the direction of irradiation and the distribution of the irradiation dose are simulated, the validity of the treatment is evaluated, and the irradiation device 17 To determine the treatment parameters required for beam irradiation. Here, assuming that there are N three-dimensional CT images, N treatment plans (RTP 1 to RTP N ) are created as shown in FIG. The treatment plan for each phase is based on the three-dimensional shape of the treatment target part itself in that phase, the surrounding tissue, the depth from the body surface when irradiating radiation, and the like in various directions (see FIG. Then, there are two directions, but there may be more directions, or only one direction. Especially when using a charged particle beam, this treatment plan is called the Bragg peak, and the depth at which the beam energy is absorbed by the kinetic energy of the charged particle beam (the depth from the body surface of the irradiated tissue) is determined. Is important in controlling the irradiation of cancer lesions and the exposure of surrounding tissues. N generally corresponds to a number that divides one respiratory cycle, and is generally about N = 10, but is not limited to this number. The three-dimensional treatment plan data generated for each phase of the respiratory cycle (collectively referred to as four-dimensional treatment plan data) is stored in the four-dimensional treatment plan database 111.

治療対象部位変位計測装置12は、図4に示すように、3次元超音波診断装置本体21と3次元超音波診断装置本体21に接続され超音波を送受信する超音波プローブ22と超音波プローブ22を支持固定し、体幹部体表面に密着して内部臓器の運動(治療対象部位の変位)を計測できるようにする支持固定具23とを備えている。これにより、体幹部領域で、動きのある臓器をリアルタイムで計測できる。このように3次元超音波診断装置を使用して3次元ボリュームデータをリアルタイムで収集することにより、内部臓器の4次元ボリュームデータを収集可能である。図5に示すように、時々刻々の3次元ボリュームデータ(VD〜VD)を時系列の順番に蓄積することで4次元ボリュームデータ(3次元ボリュームデータ群)を構成する。この基本的な原理は4次元CTと同様のものであるが、超音波の場合、データ獲得時間が短く、CTよりもサンプリングの間隔の短いボリュームデータをリアルタイムで獲得することができるという特徴がある。なお、ここでは、治療対象部位変位計測装置12として超音波について述べたが、超音波に限定されるわけではなく、X線透視など内部臓器運動を計測できる手段であれば何でも良い。 As shown in FIG. 4, the treatment target region displacement measuring apparatus 12 is connected to the three-dimensional ultrasonic diagnostic apparatus main body 21, the ultrasonic probe 22 connected to the three-dimensional ultrasonic diagnostic apparatus main body 21, and the ultrasonic probe 22. And a support fixture 23 that can measure the movement of the internal organs (displacement of the treatment target site) in close contact with the trunk body surface. As a result, a moving organ can be measured in real time in the trunk region. As described above, by collecting the three-dimensional volume data in real time using the three-dimensional ultrasonic diagnostic apparatus, it is possible to collect the four-dimensional volume data of the internal organ. As shown in FIG. 5, the four-dimensional volume data (three-dimensional volume data group) is configured by accumulating the three-dimensional volume data (VD 1 to VD M ) every moment in the order of time series. This basic principle is the same as that of four-dimensional CT, but in the case of ultrasonic waves, the data acquisition time is short, and volume data having a sampling interval shorter than that of CT can be acquired in real time. . Here, the ultrasonic wave is described as the treatment target region displacement measuring device 12, but the ultrasonic wave is not limited to the ultrasonic wave, and any means capable of measuring internal organ movement such as fluoroscopy may be used.

呼吸位相算出装置13は、治療対象部位変位計測装置12で計測した呼吸にともない変化するがん病巣の立体形状および位置情報と、予め生成された4次元治療計画データとを照合して呼吸位相を算出する装置であり、治療対象部位変位計測装置12が計測した4次元ボリュームデータをそれぞれ治療室内の3次元座標に変換する3次元位置計測部131と、事前に撮像され、記録された4次元ボリュームデータとリアルタイムで計測された立体形状および位置の情報とを照合して、照射対象となる治療対象部位の3次元追跡を行い、呼吸位相を算出する相関演算部132と、を備えている。   The respiratory phase calculation device 13 collates the three-dimensional shape and position information of the cancer lesion that changes with breathing measured by the treatment target part displacement measuring device 12 with the four-dimensional treatment plan data generated in advance, and calculates the respiratory phase. A three-dimensional position measuring unit 131 that converts the four-dimensional volume data measured by the treatment target region displacement measuring device 12 into three-dimensional coordinates in the treatment room, and a four-dimensional volume that has been captured and recorded in advance A correlation calculation unit 132 that collates the data with the information of the three-dimensional shape and position measured in real time, performs three-dimensional tracking of the treatment target region to be irradiated, and calculates a respiratory phase;

3次元位置計測部131はいわゆる3次元計測装置と呼ばれるものであり、計測マーカ41〜43、及び計測マーカを検出するカメラ44、45などで構成される。図6を用いて具体的に説明する。超音波プローブ22の筐体には計測マーカ41〜43が取り付けられ、天井等に設置されたカメラ44、45から計測マーカ41〜43を認識し、3次元座標値を算出する。カメラ44、45は2台以上で構成され、いわゆるステレオ視により3次元計測を実現する。この3次元座標値は放射線ビームの照射中心であるアイソセンタCを原点とした治療室座標系での値であり、計測マーカを3つ以上認識することで、超音波プローブ22の位置とその姿勢を計測することができる。これは、事前の較正作業によって3次元位置計測部131の座標系と治療室座標系の2つの座標系間の変換式を求めておくことで実現できる。   The three-dimensional position measurement unit 131 is a so-called three-dimensional measurement apparatus, and includes measurement markers 41 to 43, cameras 44 and 45 that detect the measurement markers, and the like. This will be specifically described with reference to FIG. Measurement markers 41 to 43 are attached to the housing of the ultrasonic probe 22, and the measurement markers 41 to 43 are recognized from cameras 44 and 45 installed on the ceiling or the like, and three-dimensional coordinate values are calculated. The cameras 44 and 45 are composed of two or more units, and realize three-dimensional measurement by so-called stereo vision. This three-dimensional coordinate value is a value in the treatment room coordinate system with the isocenter C that is the irradiation center of the radiation beam as the origin, and by recognizing three or more measurement markers, the position and posture of the ultrasonic probe 22 can be determined. It can be measured. This can be realized by obtaining a conversion formula between two coordinate systems of the coordinate system of the three-dimensional position measurement unit 131 and the treatment room coordinate system by a prior calibration operation.

また、超音波ファントムなどを使って、治療対象部位変位計測装置12の超音波診断装置21の座標系と超音波プローブ22上に取り付けられた計測マーカ41〜43が張る座標系の2つの座標系間の変換式も事前に求めておくことができる。超音波診断装置21の座標系と計測マーカが張る座標系、計測マーカが張る座標系と治療室座標系の2つの変換式が既知であることにより、超音波診断装置で撮影した画像データの座標を治療室座標系での座標に対応付けることも可能となる。以上は、超音波プローブ22が移動可能な場合についての説明であるが、治療台の中に埋め込む、固定式アームで支持する等、治療室内の不稼動部に固定する構成としても良い。この場合でも、事前に超音波診断装置21の座標系と治療室座標系との関係を求めておくことで、両者の座標を対応付けることが可能となる。   In addition, using an ultrasonic phantom or the like, two coordinate systems, that is, a coordinate system of the ultrasonic diagnostic apparatus 21 of the treatment target region displacement measuring apparatus 12 and a coordinate system stretched by the measurement markers 41 to 43 attached on the ultrasonic probe 22 are used. The conversion formula between them can also be obtained in advance. The coordinate system of the ultrasound diagnostic apparatus 21 and the coordinate system of the measurement marker, the coordinate system of the measurement marker, the coordinate system of the measurement marker, and the treatment room coordinate system are known. Can be associated with coordinates in the treatment room coordinate system. The above is a description of the case where the ultrasonic probe 22 is movable. However, the ultrasonic probe 22 may be fixed to an inoperable part in the treatment room, such as being embedded in a treatment table or supported by a fixed arm. Even in this case, by obtaining the relationship between the coordinate system of the ultrasonic diagnostic apparatus 21 and the treatment room coordinate system in advance, it is possible to associate the coordinates of the two.

つぎに、相関演算部132について図7を用いて説明する。相関演算部132は、超音波診断装置本体21から得られ、3次元位置計測部131により座標変換済みの4次元ボリュームデータを使って照射ターゲットである治療対象部位Taの3次元追跡を行う。任意のフレームで計測した3次元ボリュームデータVD内で、治療対象部位Taの存在するROI(Region of Interest)領域を領域RIとして設定する。領域RIの設定は手動で行うこともできるし、自動で行うようにしても良い。自動の場合は、4次元治療計画データベース111に格納されている治療対象部位Taの輪郭情報の少なくとも一つを使い、当該輪郭に最も適合するような領域を領域RIとすればよい。この自動設定の時も、次に述べるのと同様の相関計算を利用することができる。領域RIが設定されたフレーム以降で取得される3次元ボリュームデータVDに対して探索領域RSを設定し、領域RIとの間で相関を計算し相関値が最大となる位置を求める。 Next, the correlation calculation unit 132 will be described with reference to FIG. The correlation calculation unit 132 performs three-dimensional tracking of the treatment target portion Ta, which is an irradiation target, using the four-dimensional volume data obtained from the ultrasonic diagnostic apparatus main body 21 and subjected to coordinate conversion by the three-dimensional position measurement unit 131. In any three-dimensional volume data measured by the frame VD S, it sets the existing ROI (Region of Interest) region of the target site to be treated Ta as an area RI. The setting of the region RI can be performed manually or automatically. In the case of automatic, at least one of the contour information of the treatment target site Ta stored in the four-dimensional treatment plan database 111 may be used, and the region most suitable for the contour may be set as the region RI. In this automatic setting, the same correlation calculation as described below can be used. A search region RS is set for the three-dimensional volume data VD j acquired after the frame in which the region RI is set, a correlation is calculated with the region RI, and a position where the correlation value is maximized is obtained.

具体的には、探索領域RS内で領域RIを走査していきながら両者の相関を計算する。その際の走査としては、3自由度の並進移動のみでも良いし、3自由度の並進移動と3自由度の回転移動を組み合わせたものでも良い。相関値としては一様な輝度変動などにロバストな手法である正規化相互相関法を用いる。しかし、類似度尺度は正規化相互相関法に限定されるわけではなく、相互情報量など確率的な類似度尺度を利用することもできる。また、これらに限定されるわけではない。   Specifically, the correlation between the two is calculated while scanning the region RI within the search region RS. The scanning at that time may be only translation with three degrees of freedom or a combination of translation with three degrees of freedom and rotational movement with three degrees of freedom. As the correlation value, a normalized cross-correlation method that is robust to uniform luminance fluctuations is used. However, the similarity measure is not limited to the normalized cross-correlation method, and a probabilistic similarity measure such as a mutual information amount can also be used. Moreover, it is not necessarily limited to these.

そして、計測した治療対象部位Taと4次元治療計画データでの治療対象部位Taとの距離が最小となる位相を現在の呼吸位相として算出する。   Then, the phase that minimizes the distance between the measured treatment target site Ta and the treatment target site Ta in the four-dimensional treatment plan data is calculated as the current respiratory phase.

また、相関演算部132は、GPU(Graphic Processing Unit)を搭載し、高速並列計算を活用して、瞬時に複数ボリュームデータとの相関演算を実施するようにしても良い。このように、4次元ボリュームデータを使ったマッチングを導入することで、真に3次元的な精度の高い追跡により呼吸位相を算出できる。   Further, the correlation calculation unit 132 may be equipped with a GPU (Graphic Processing Unit), and may perform correlation calculation with a plurality of volume data instantaneously by utilizing high-speed parallel calculation. In this way, by introducing matching using four-dimensional volume data, the respiratory phase can be calculated by tracking with a truly three-dimensional accuracy.

照射制御信号生成部15は、算出した呼吸位相(およびそれに対応する治療計画データ)と治療対象部位Taの変位に応じて照射のタイミングや照射位置、角度等の照射制御信号と位相信号を生成し、照射制御部16と線量分布評価部20に出力する。   The irradiation control signal generation unit 15 generates irradiation control signals and phase signals such as irradiation timing, irradiation position, and angle according to the calculated respiratory phase (and corresponding treatment plan data) and the displacement of the treatment target site Ta. And output to the irradiation control unit 16 and the dose distribution evaluation unit 20.

照射制御信号生成部15の機能のうち、はじめに照射タイミングの制御について説明する。具体的には図8に示すように、4次元治療計画データRTP4Dの位相毎の3次元治療計画データのうち、ビーム照射可の位相範囲を事前に決定しておけば良い。図8では、1呼吸周期をN分割した内の、(i-1)分割目、i分割目、(i+1)分割目の3つの位相(RTPi−1,RTP,RTPi+1をビーム照射可の範囲として設定している。 Of the functions of the irradiation control signal generation unit 15, the irradiation timing control will be described first. Specifically, as shown in FIG. 8, the phase range in which beam irradiation is possible may be determined in advance among the three-dimensional treatment plan data for each phase of the four-dimensional treatment plan data RTP 4D . In FIG. 8, the three phases (RTP i−1 , RTP i , RTP i + 1 ) of the (i−1) -th division, the i-th division, and the (i + 1) -th division among the one respiratory cycle divided into N beams It is set as a range where irradiation is possible.

上記照射可能の範囲として選択する位相は、治療対象部位Taの変形や移動またはそれのばらつきが小さく、治療対象部位Taに対して高い精度で放射線を照射することができる、つまり、高精度を保ったまま容易に連続的な照射ができる位相が好ましい。また、照射装置17の動作を大きく変えないような範囲を選択すれば、照射位置や照射角度の変更が少なくて済む。とくに、上述したブラッグピークを有する荷電粒子ビームの場合は、照射深さの変化が小さいと、荷電粒子ビームの運動エネルギーを変化させる量が少なくて済むので、深さ変化が小さい位相や位置を選択することが好ましい。   The phase selected as the irradiation possible range is such that the deformation or movement of the treatment target site Ta is small or its variation is small, and the treatment target site Ta can be irradiated with high accuracy, that is, high accuracy is maintained. A phase that allows continuous irradiation with ease is preferable. Further, if a range that does not greatly change the operation of the irradiation device 17 is selected, the change of the irradiation position and the irradiation angle can be reduced. In particular, in the case of the charged particle beam having the Bragg peak described above, if the change in irradiation depth is small, the amount of change in the kinetic energy of the charged particle beam can be reduced. It is preferable to do.

さらに、図9に示すように当該位相(分割)における3次元治療計画データにおける治療対象部位Taの位置と相関演算部132、3次元位置計測部131で解析した治療対象部位Taの追跡結果との距離Lが事前に設定した閾値Thより小さい場合には、治療対象部位Taが照射可の範囲に属しているものと判断し、ビーム照射可の信号を生成する。一方で、当該分割における治療対象部位Taの位置と相関演算部132、3次元位置計測部131での治療対象部位Taの追跡結果との距離Lが事前に設定した閾値Th以上の場合には、治療対象部位Taが照射可の範囲に属していないものと判断し、ビーム照射不可の信号を生成する。このようなことは、3次元計測手段131によって、治療対象部位変位計測装置12で計測した治療対象部位Taの3次元データが、4次元治療計画データRTP4Dと同一座標系(治療室座標系)上で表現できることによって実現できる。 Further, as shown in FIG. 9, the position of the treatment target site Ta in the three-dimensional treatment plan data in the phase (division) and the tracking result of the treatment target site Ta analyzed by the correlation calculation unit 132 and the three-dimensional position measurement unit 131 When the distance L is smaller than the preset threshold value Th, it is determined that the treatment target site Ta belongs to the irradiation enabled range, and a beam irradiation enabled signal is generated. On the other hand, when the distance L between the position of the treatment target site Ta in the division and the tracking result of the treatment target site Ta in the correlation calculation unit 132 and the three-dimensional position measurement unit 131 is equal to or greater than a preset threshold Th, It is determined that the treatment target site Ta does not belong to the irradiation enabled range, and a beam irradiation impossible signal is generated. This is because the three-dimensional data of the treatment target part Ta measured by the treatment target part displacement measuring device 12 by the three-dimensional measurement means 131 is the same coordinate system (treatment room coordinate system) as the four-dimensional treatment plan data RTP 4D. This can be achieved by expressing the above.

この例では、1呼吸周期を位相でN分割する場合について示したが、1呼吸周期を振幅でN分割する場合にも、同様の方法でビーム照射可否の信号を生成することが可能である。振幅で分割した場合には、同一分割内に、2個のビーム照射可の範囲が存在するので、呼吸の振幅の変化の方向から、呼気相であるか、吸気相であるかを判断し、2個の内のどちらのビーム照射可の範囲を使うかを決定する必要がある。また、領域は連続している必要もなく、離散的な領域を複数選択することもできる。   In this example, a case where one breathing cycle is divided into N by phase is shown, but even when one breathing cycle is divided into N by amplitude, it is possible to generate a signal indicating whether or not beam irradiation is possible by the same method. When divided by amplitude, there are two beam irradiation ranges within the same division, so from the direction of change in the amplitude of breathing, determine whether it is the expiratory phase or the inspiratory phase, It is necessary to determine which of the two beam irradiation ranges is to be used. Further, the regions do not need to be continuous, and a plurality of discrete regions can be selected.

また、照射制御信号生成部15は照射制御部16に対して、呼吸位相と呼吸位相に対応する3次元治療計画データに基づいてビームの照射位置や照射方向を変更するような照射制御指示を送る。したがって、照射制御信号生成部15と照射制御部16とで照射装置17の動作を制御することになる。   Further, the irradiation control signal generation unit 15 sends an irradiation control instruction to the irradiation control unit 16 to change the irradiation position and irradiation direction of the beam based on the respiratory phase and the three-dimensional treatment plan data corresponding to the respiratory phase. . Therefore, the operation of the irradiation device 17 is controlled by the irradiation control signal generator 15 and the irradiation controller 16.

照射装置17は照射制御部16からの制御により、ビーム照射可の信号が照射制御信号生成部15から来ている場合には、指定された照射位置や方向から治療対象部位Taに向けてビームを照射するようにする。これにより、照射装置17はビームの照射位置や照射方向を変更しながら治療対象部位Taに連続的に放射線を照射することができ、効率的な治療が可能となる。   The irradiation device 17 controls the irradiation control unit 16 to emit a beam from the specified irradiation position and direction toward the treatment target site Ta when a beam irradiation enable signal comes from the irradiation control signal generation unit 15. Try to irradiate. Thereby, the irradiation device 17 can continuously irradiate the treatment target site Ta while changing the irradiation position and irradiation direction of the beam, and efficient treatment is possible.

そして、4次元治療計画装置11で立案した位相毎の治療計画、位相に関する情報や照射位置や照射方向の変更の情報は、線量分布評価部20にも出力される。入力された位相等の情報により、ビーム照射位置や照射方向を変更する度に、線量分布評価部20は線量分布を計算する元となる治療計画も変更し、治療対象部位Ta、治療対象部位Taの近傍にある注意臓器の線量を重ね合わせる。この時、治療対象部位Taは移動変形し、治療対象部位Ta近傍の注意臓器も移動変形しているため、前記重ね合わせは非剛体的なマッチング処理として行われる。このようにして、最終的に呼吸位相毎の線量分布の重ね合わせを実施することで、線量分布の正確な評価が可能となる。重ね合わされた後の治療計画線量分布において、治療計画目標となる照射線量に達した場合に、照射制御部16に信号を送り、ビーム照射を終了する。また、線量分布評価部20において、図示しないデータ記録部を設け、位相毎にどれだけの線量を照射したのかも記録できるようにしておくと良い。   Then, the treatment plan for each phase prepared by the four-dimensional treatment planning apparatus 11, information on the phase, and information on the change of the irradiation position and irradiation direction are also output to the dose distribution evaluation unit 20. Each time the beam irradiation position or irradiation direction is changed according to the information such as the input phase, the dose distribution evaluation unit 20 also changes the treatment plan from which the dose distribution is calculated, and the treatment target part Ta and the treatment target part Ta The doses of the organs of attention in the vicinity of are superimposed. At this time, the treatment target portion Ta is moved and deformed, and the attention organ in the vicinity of the treatment target portion Ta is also moved and deformed. Therefore, the superposition is performed as a non-rigid matching process. In this way, the dose distribution for each respiratory phase is finally superimposed so that the dose distribution can be accurately evaluated. In the treatment plan dose distribution after being superposed, when the irradiation dose as the treatment plan target is reached, a signal is sent to the irradiation control unit 16 and the beam irradiation is terminated. The dose distribution evaluation unit 20 may be provided with a data recording unit (not shown) so as to record how much dose has been irradiated for each phase.

以上のように本発明の実施の形態1にかかる放射線治療システムは、患者の治療対象部位Taに放射線を照射する照射装置17と、治療対象部位Ta(およびその周辺組織)に対して患者の(1呼吸周期における)呼吸位相毎に事前に撮像された複数の3次元画像(4次元CT画像)、および複数の3次元画像のそれぞれに対して生成された治療計画データRTPを保持する4次元治療計画装置11と、治療対象部位Taの実時間の変位を計測する治療対象部位変位計測装置12と、計測した治療対象部位Taの実時間の変位データと、事前に撮像された複数の3次元画像とに基づいて、呼吸位相を算出する呼吸位相算出装置13と、算出した呼吸位相と治療計画データに基づいて照射装置17を制御する照射制御部15,16と、治療対象部位Taに照射された放射線の線量分布を評価する線量分布評価部20と、を備え、線量分布評価部20は、前記呼吸位相ごとに当該呼吸位相に対応する治療計画データに基づいて線量分布を計算するとともに、呼吸位相ごとに計算した線量分布を重ね合わせ、重ね合わせた線量分布に応じて放射線の照射量を制御するように構成したので、照射ターゲットである治療対象部位Taの動きに応じて、照射位置や照射方向を動的に変更するとともに、線量分布を正確に評価し、治療計画に基づいた適切な治療を行うことができる   As described above, the radiation therapy system according to the first exemplary embodiment of the present invention includes the irradiation device 17 that irradiates radiation to the treatment target site Ta of the patient and the patient's ( 4D treatment holding a plurality of 3D images (4D CT images) captured in advance for each respiratory phase (in one respiratory cycle) and treatment plan data RTP generated for each of the plurality of 3D images The planning apparatus 11, the treatment target part displacement measuring device 12 that measures the real time displacement of the treatment target part Ta, the measured real time displacement data of the treatment target part Ta, and a plurality of three-dimensional images captured in advance A respiratory phase calculation device 13 that calculates a respiratory phase, irradiation control units 15 and 16 that control the irradiation device 17 based on the calculated respiratory phase and treatment plan data, and a treatment target A dose distribution evaluation unit 20 that evaluates a dose distribution of radiation irradiated to the position Ta, and the dose distribution evaluation unit 20 calculates a dose distribution for each respiratory phase based on treatment plan data corresponding to the respiratory phase. Since the calculation is performed and the dose distribution calculated for each respiratory phase is superimposed, and the radiation dose is controlled according to the superimposed dose distribution, the response is based on the movement of the treatment target portion Ta that is the irradiation target. In addition to dynamically changing the irradiation position and direction, it is possible to accurately evaluate the dose distribution and perform appropriate treatment based on the treatment plan

とくに、治療対象部位変位計測装置12は、治療対象部位Taの変位(臓器運動)を計測するため、治療対象部位Taの3次元画像を実時間で撮像し、呼吸位相算出装置13は、撮像した治療対象部位Taの実時間3次元画像VDと、事前に撮像された複数の3次元画像とを比較して、呼吸位相を算出するように構成したので、4次元治療計画装置11で計画された治療対象部位Taの移動経路とリアルタイム超音波画像を使った、3次元ボリュームデータを用いて治療時の治療対象部位Taのマッチングを行うことになる。つまり、治療計画における想定位置と実際の位置との比較に基づいて呼吸位相を算出している。さらに、想定した位置とのずれ量Lを算出し、算出した呼吸位相や位置ずれ量Lに応じて、照射位置や照射方向を制御するようにしたので、患者の呼吸や呼吸以外の要因で治療対象部位Taの位置が移動しても、位相や治療対象部位Taの位置を正確にとらえることができるようになる。その結果、照射位置や照射方向を呼吸の位相や治療対象部位Taの実際の位置にあわせて的確に変更し、治療計画通りの正確な治療を実施することができる。また、呼気相(息を吐き切った状態)だけではなく,吸気相(息を吸い切った状態)も含めて、定義した全ての呼吸位相で照射が可能となる、といった従来にない顕著な効果を奏することができる。   In particular, the treatment target part displacement measuring device 12 takes a three-dimensional image of the treatment target part Ta in real time in order to measure the displacement (organ movement) of the treatment target part Ta, and the respiratory phase calculation device 13 takes the picture. Since the configuration is such that the respiratory phase is calculated by comparing the real-time three-dimensional image VD of the treatment target site Ta with a plurality of three-dimensional images captured in advance, the four-dimensional treatment planning apparatus 11 is planned. Matching of the treatment target portion Ta at the time of treatment is performed using the three-dimensional volume data using the moving path of the treatment target portion Ta and the real-time ultrasonic image. That is, the respiratory phase is calculated based on the comparison between the assumed position and the actual position in the treatment plan. Furthermore, the amount of deviation L from the assumed position is calculated, and the irradiation position and direction are controlled according to the calculated respiratory phase and position deviation amount L. Even if the position of the target portion Ta moves, the phase and the position of the treatment target portion Ta can be accurately captured. As a result, it is possible to accurately change the irradiation position and irradiation direction according to the respiratory phase and the actual position of the treatment target site Ta, and to perform accurate treatment according to the treatment plan. In addition, not only the expiratory phase (exhaled state) but also the inspiratory phase (exhaled state), including the inspiratory phase (irrigated state), can be irradiated in all the defined respiratory phases, such as notable effects Can be played.

また、あらかじめ放射線を照射する呼吸位相を決めておき、治療対象部位Taの実時間変位データから算出した呼吸位相が決めておいた位相と一致している場合のみ、照射装置17から放射線を照射させるようにしたので、例えば、治療対象部位Taの変形や移動、またはそれらのばらつきが小さい位相を選択するようにすれば、治療対象部位Taに対して高い精度で放射線を照射することができる。つまり、高精度を保ったまま容易に連続的な照射ができる。   In addition, a respiratory phase for irradiating radiation is determined in advance, and radiation is irradiated from the irradiation device 17 only when the respiratory phase calculated from the real-time displacement data of the treatment target site Ta matches the determined phase. Thus, for example, if a phase with a small deformation or movement of the treatment target portion Ta or a variation thereof is selected, the treatment target portion Ta can be irradiated with radiation with high accuracy. That is, continuous irradiation can be easily performed while maintaining high accuracy.

なお、本実施の形態1においては、事前に撮影した3次元CT画像のそれぞれに対して治療計画データを作成する例について説明したが、3次元CT画像の数を治療計画よりも多く撮像しておいてもよい。その場合、各治療計画の位相を補完するように3次元CT画像を撮って(例えば、治療計画をN個としたときに3次元CT画像の数を3N個)おき、実時間のデータが補完部分に対応するCT画像と最も相関が高い場合には、当該3次元CT画像に近い位相の治療計画を選択するようにすればよい。   In the first embodiment, an example in which treatment plan data is created for each of three-dimensional CT images taken in advance has been described. However, the number of three-dimensional CT images is larger than the number of treatment plans. It may be left. In that case, 3D CT images are taken so as to complement the phase of each treatment plan (for example, when the number of treatment plans is N, the number of 3D CT images is 3N), and real-time data is complemented. If the CT image corresponding to the portion has the highest correlation, a treatment plan having a phase close to that of the three-dimensional CT image may be selected.

なお、呼吸を停止する息止め照射を想定した場合でも、上述した、治療計画時の画像データと実時間における治療対象部位Taの3次元データとを比較する手法を適用することができる。この場合、治療計画を生成する際に位相毎の3次元画像として、各息止め時の治療対象部位Taの位置を計測し、その位置に応じた治療計画を生成する。そして、息止め状態の患者の治療対象部位Taの位置を実時間で計測し、計測した位置と3次元画像群とを比較して、どの息止め状態(位相に対応)であるかを判定し、ビーム照射位置や照射方向を変更し、さらにそれに応じて治療計画も選択して線量分布を評価すればよい。   In addition, even when breath-holding irradiation for stopping breathing is assumed, the above-described method of comparing the image data at the time of treatment planning and the three-dimensional data of the treatment target site Ta in real time can be applied. In this case, when the treatment plan is generated, the position of the treatment target portion Ta at the time of breath holding is measured as a three-dimensional image for each phase, and the treatment plan corresponding to the position is generated. Then, the position of the treatment target portion Ta of the patient in the breath holding state is measured in real time, and the measured position is compared with the three-dimensional image group to determine which breath holding state (corresponding to the phase). The dose distribution may be evaluated by changing the beam irradiation position and irradiation direction and selecting the treatment plan accordingly.

実施の形態2.
本発明の実施の形態2にかかる放射線治療システムは、リアルタイム(実時間)で治療対象部位Taの位置を測定する治療対象部位変位計測装置12の超音波プローブ22により、治療時の線量分布をみだすことがないように、超音波プローブ22の動作範囲に制限をかける構成を備えている。図10と図11は、本実施の形態2にかかる放射線治療システムを説明するためのもので、図10は放射線治療システムを説明するためのブロック図、図11は放射線治療システムの模式図である。図10に示すように実施の形態2にかかる放射線治療システムは、実施の形態1にかかる放射線治療システムに警報発生部19を追加したものであり、3次元位置計測部131bは、治療対象部位変位計測装置12の超音波プローブ22の位置および姿勢をモニタできるようにしている。また、照射制御信号生成部15bから警報発生部19へ警報発生タイミングを生成する信号を送信する。この警報発生部19は照射制御部の一部として機能している。
Embodiment 2. FIG.
The radiotherapy system according to the second exemplary embodiment of the present invention finds a dose distribution at the time of treatment by the ultrasonic probe 22 of the treatment target part displacement measuring device 12 that measures the position of the treatment target part Ta in real time (real time). In order to prevent this, a configuration for limiting the operation range of the ultrasonic probe 22 is provided. 10 and 11 are for explaining the radiation therapy system according to the second embodiment. FIG. 10 is a block diagram for explaining the radiation therapy system. FIG. 11 is a schematic diagram of the radiation therapy system. . As shown in FIG. 10, the radiotherapy system according to the second exemplary embodiment is obtained by adding an alarm generating unit 19 to the radiotherapy system according to the first exemplary embodiment. The position and posture of the ultrasonic probe 22 of the measuring device 12 can be monitored. Further, a signal for generating an alarm generation timing is transmitted from the irradiation control signal generation unit 15 b to the alarm generation unit 19. This alarm generation unit 19 functions as a part of the irradiation control unit.

また、4次元治療計画装置11bにあっては、4次元治療計画データベース111bに治療計画ごとに、ビームラインLB(放射線のビーム中心:照射装置の出射口の中心からアイソセンタCを結ぶラインに相当)に対する超音波プローブ22の位置と、その位置関係での超音波プローブ22の有無による線量分布の誤差との関係、つまり、超音波プローブ22の存在による線量分布への影響を線量影響データとして格納している。その他の部分については、実施の形態1と共通するため、詳細な説明は省略する。図11に線量影響データを説明する模式図を示す。図において、誤差10%と示している一点鎖線内に超音波プローブ22が入ると線量が10%乱れる可能性があることを、誤差5%と示している一点鎖線内に超音波プローブ22が入ると線量が5%乱れる可能性があることを、誤差3%と示している二点鎖線内に超音波プローブ22が入ると線量が3%乱れる可能性があることを、示している。つまり、4次元治療計画データベース111bには、治療計画ごとに、超音波プローブ22の3次元の位置と線量の変動量とがマッピングされているデータが格納されている。図11においては、誤差5%の領域内に超音波プローブ22が進入しているため、最大で5%の線量誤差が発生する可能性がある。なお、図11中の10%や5%や3%といった数値の設定は一例であり、任意の値で、任意の細かいピッチで誤差を設定することができる。   In the four-dimensional treatment plan apparatus 11b, the beam line LB (corresponding to a line connecting the isocenter C from the center of the exit of the irradiation apparatus) for each treatment plan in the four-dimensional treatment plan database 111b. The relationship between the position of the ultrasonic probe 22 with respect to the dose and the error in dose distribution due to the presence or absence of the ultrasonic probe 22 in that positional relationship, that is, the influence on the dose distribution due to the presence of the ultrasonic probe 22 is stored as dose effect data. ing. Other parts are the same as those in the first embodiment, and thus detailed description thereof is omitted. FIG. 11 is a schematic diagram for explaining dose effect data. In the figure, if the ultrasonic probe 22 enters the dot-dash line indicated as 10% error, the dose may be disturbed by 10%, and the ultrasonic probe 22 enters the dot-dash line indicated as 5% error. This indicates that there is a possibility that the dose may be disturbed by 5%, and that the dose may be disturbed by 3% when the ultrasonic probe 22 enters the two-dot chain line indicated by an error of 3%. That is, the four-dimensional treatment plan database 111b stores data in which the three-dimensional position of the ultrasound probe 22 and the amount of dose variation are mapped for each treatment plan. In FIG. 11, since the ultrasonic probe 22 has entered the region with an error of 5%, a dose error of 5% at maximum may occur. Note that the setting of numerical values such as 10%, 5%, and 3% in FIG. 11 is an example, and an error can be set with an arbitrary value and an arbitrary fine pitch.

つぎに、動作について説明する。
3次元位置計測部131で、超音波プローブ22がビームライン47上に位置するような場合はもちろんのこと、事前に設定した閾値(N%)以上の誤差値で、線量分布を乱す可能性が生じた、つまり、設定した閾値を超える線量の変動を引き起こす可能性のある領域内に超音波プローブ22が入った場合には、警報装置19からアラーム信号を発生してユーザに知らしめるとともに、照射制御信号生成部15にインターロック信号を送って、照射タイミング不可の信号を生成するように制御する。
Next, the operation will be described.
In the three-dimensional position measurement unit 131, there is a possibility that the dose distribution may be disturbed with an error value equal to or greater than a preset threshold value (N%) as well as the case where the ultrasonic probe 22 is positioned on the beam line 47. When the ultrasonic probe 22 enters the region that has occurred, that is, the dose may exceed the set threshold, the alarm device 19 generates an alarm signal to notify the user and An interlock signal is sent to the control signal generation unit 15 so as to generate a signal indicating that the irradiation timing is not possible.

以上、本実施の形態2にかかる放射線治療システムによれば、4次元治療計画装置11bは、治療計画ごとに、放射線のビーム中心(ビームラインLB)に対する治療対象部位変位計測装置の超音波プローブ22の位置と、治療対象部位Taへの放射線の線量の変動とを関係づけた線量変動データを格納し、照射制御部は、呼吸位相算出装置13bの3次元位置計測部131bが測定した超音波プローブ22の位置と、格納された線量影響データに基づいて、超音波プローブ22による線量への影響が所定値より大きいと判定すると警報を発する警報装置19を備えるように構成したので、超音波プローブ22による線量分布の乱れを防止することができる。   As described above, according to the radiotherapy system according to the second exemplary embodiment, the four-dimensional treatment planning apparatus 11b performs the ultrasonic probe 22 of the treatment target region displacement measuring apparatus with respect to the radiation beam center (beam line LB) for each treatment plan. Is stored, and the irradiation control unit stores the ultrasonic probe measured by the three-dimensional position measurement unit 131b of the respiratory phase calculation device 13b. Based on the position 22 and the stored dose effect data, the ultrasonic probe 22 is configured to include an alarm device 19 that issues an alarm when it is determined that the effect on the dose by the ultrasonic probe 22 is greater than a predetermined value. Disturbance of dose distribution due to.

なお、上記実施の形態2においては、超音波プローブ22の存在により、線量が乱れないようにする構成について説明したが、さらに、放射線被ばくにより超音波プローブ22自身が壊れないように、超音波プローブ22をタングステン等の金属の筐体で放射線防護するようにしてもよい。その場合、超音波プローブ22が放射線被ばくにより故障することがないので、治療中の治療対象部位Taの追跡が安定する、といった効果が得られる。   In the second embodiment, the configuration in which the dose is not disturbed by the presence of the ultrasonic probe 22 has been described, but the ultrasonic probe 22 itself is not broken by radiation exposure. You may make it carry out radiation protection of 22 with metal cases, such as tungsten. In that case, since the ultrasonic probe 22 does not break down due to radiation exposure, an effect that the tracking of the treatment target portion Ta during treatment is stabilized can be obtained.

なお、超音波プローブ22に貼り付けるマーカについては、赤外線を自ら発光するアクティブーマーカや赤外線を反射するパッシブマーカを用いることが出来、耐放射線性能という点では全く問題がないことから、特に防護する必要はない。   As the marker to be attached to the ultrasonic probe 22, an active marker that emits infrared light by itself or a passive marker that reflects infrared light can be used, and there is no problem in terms of radiation resistance. There is no need.

実施の形態3.
本発明の実施の形態3にかかる放射線治療システムは、治療対象部位Taの位置を正確に測定するために、治療時の放射線が超音波プローブ22に対してノイズとならないように照射タイミングと超音波プローブ22の動作タイミングを制御する構成を備えている。図12は、本実施の形態3にかかる放射線治療システムを説明するためのブロック図である。図12に示すように、本実施の形態3にかかる放射線治療システムは、照射制御部16cから治療対象部位変位計測装置12cに向かって計測タイミングを生成する信号を送信する。その他の構成については、実施の形態1にかかる放射線照射システムと共通するので説明を省略する。
Embodiment 3 FIG.
In the radiotherapy system according to the third exemplary embodiment of the present invention, in order to accurately measure the position of the treatment target site Ta, the irradiation timing and the ultrasonic wave are used so that the radiation at the time of treatment does not become noise with respect to the ultrasonic probe 22. A configuration for controlling the operation timing of the probe 22 is provided. FIG. 12 is a block diagram for explaining the radiation therapy system according to the third embodiment. As shown in FIG. 12, the radiotherapy system according to the third exemplary embodiment transmits a signal for generating measurement timing from the irradiation control unit 16c toward the treatment target region displacement measuring device 12c. Since other configurations are the same as those of the radiation irradiation system according to the first exemplary embodiment, description thereof is omitted.

つぎに動作について説明する。
図において、照射制御部16cに照射制御信号生成部15からのビーム照射可の制御信号が入力され、照射装置17からビームを照射させている期間は、治療対象部位変位計測装置12cでのリアルタイム超音波画像取得を中断させる。一方、照射制御部16cに照射制御信号生成部15からのビーム照射不可の制御信号が入力され、照射装置17からビームを照射させていない期間は、治療対象部位変位計測装置12cでのリアルタイム超音波画像取得を実施するよう計測タイミングの信号を治療対象部位変位計測装置に出力する。これにより、内部臓器計測手段12cは、照射装置17から放射線を照射している間はリアルタイム超音波画像を取得せず、照射装置17から放射線を照射していない間にリアルタイム超音波画像を取得するようになる。
Next, the operation will be described.
In the figure, the irradiation control unit 16c receives a beam irradiation control signal from the irradiation control signal generation unit 15, and the period during which the beam is irradiated from the irradiation device 17 is super-real time in the treatment target region displacement measuring device 12c. Suspend sonic image acquisition. On the other hand, during the period in which the irradiation control unit 16c receives a beam non-irradiation control signal from the irradiation control signal generation unit 15 and the irradiation device 17 does not irradiate the beam, real-time ultrasonic waves in the treatment target region displacement measuring device 12c are obtained. A measurement timing signal is output to the treatment target region displacement measuring apparatus so as to perform image acquisition. Thereby, the internal organ measuring means 12c does not acquire a real-time ultrasonic image while irradiating radiation from the irradiation device 17, and acquires a real-time ultrasonic image while not irradiating radiation from the irradiation device 17. It becomes like this.

以上、本実施の形態3にかかる放射線治療システムによれば、照射装置17から放射線を照射している期間は超音波プローブ22による治療対象部位Taの変位計測を中断し、照射装置17から放射線を照射していない期間のみ治療対象部位Taの運動計測を実行するように構成したので、放射線照射による背景ノイズを低減し、鮮明な治療対象部位Taの超音波画像を取得することができる。その結果、治療対象部位Taの追跡精度が向上し、治療計画通りに放射線治療を実施することができる。   As described above, according to the radiotherapy system according to the third exemplary embodiment, the displacement measurement of the treatment target site Ta by the ultrasonic probe 22 is interrupted during the period of irradiation with radiation from the irradiation device 17, and radiation is emitted from the irradiation device 17. Since the movement measurement of the treatment target part Ta is executed only during the period of no irradiation, background noise due to radiation irradiation can be reduced, and a clear ultrasonic image of the treatment target part Ta can be acquired. As a result, the tracking accuracy of the treatment target site Ta is improved, and radiotherapy can be performed according to the treatment plan.

実施の形態4.
本発明の実施の形態4にかかる放射線治療システムでは、実施の形態1において用いた3次元位置計測部131を使用せず、治療対象部位Taの実時間3次元画像データと位相毎の3次元画像とを直接比較して位相を算出するようにする。図13と図14は、本発明の実施の形態4にかかる放射線治療システムを説明するためのもので、図13は放射線治療システムを説明するためのブロック図、図14は位相を算出する方法を説明するための図である。
Embodiment 4 FIG.
The radiotherapy system according to the fourth exemplary embodiment of the present invention does not use the three-dimensional position measurement unit 131 used in the first exemplary embodiment, and the real-time three-dimensional image data and the three-dimensional image for each phase of the treatment target site Ta. Are directly compared with each other to calculate the phase. FIGS. 13 and 14 are diagrams for explaining the radiation therapy system according to the fourth embodiment of the present invention. FIG. 13 is a block diagram for explaining the radiation therapy system, and FIG. 14 is a method for calculating the phase. It is a figure for demonstrating.

図13に示すように、相関演算部132dでは、治療計画のため事前に撮像された3次元CT画像群と、リアルタイムで測定した治療対象部位Taの位置データとを3次元位置計測部による座標合わせを行わずに、比較して相関を演算して位相を算出する。具体的には、相関演算部132dには、4次元治療計画データベース111dから入力される4次元超音波画像データの中から任意の斜断面を抽出する斜断面抽出部(図示せず)を備え、治療対象部位変位計測装置12から得られる3次元超音波画像データのある走査断面と、4次元超音波画像データから抽出した任意斜断面とを直接比較することで、両者の相関を計算し、相関値の一番高い任意斜断面を含む3次元超音波画像データの位相を、その時の位相と判断する。   As shown in FIG. 13, in the correlation calculation unit 132d, the 3D CT image group captured in advance for the treatment plan and the position data of the treatment target site Ta measured in real time are coordinated by the 3D position measurement unit. Without performing the above, the phase is calculated by calculating the correlation. Specifically, the correlation calculation unit 132d includes an oblique section extraction unit (not shown) that extracts an arbitrary oblique section from the 4D ultrasound image data input from the 4D treatment plan database 111d. By directly comparing a scanning cross section of the 3D ultrasonic image data obtained from the treatment target part displacement measuring apparatus 12 with an arbitrary oblique cross section extracted from the 4D ultrasonic image data, the correlation between the two is calculated and the correlation is calculated. The phase of the three-dimensional ultrasound image data including the arbitrary oblique section having the highest value is determined as the phase at that time.

もしくは、治療対象部位変位計測装置12から得られる3次元超音波画像データのある走査断面と、4次元治療計画データベース111から得られる4次元CT画像データの任意斜断面とを直接比較することで、異なるモダリティ間で両者の画像相関を計算し、相関値の一番高い任意斜断面を含む3次元CT画像データの位相を、その時の位相と判断するようにしても良い。このような適切な呼吸位相の特定から腫瘍経路を決定することができ、照射制御信号生成部15にて、照射タイミング信号を生成できるようになる。   Alternatively, by directly comparing a scanning section of the three-dimensional ultrasound image data obtained from the treatment target region displacement measuring device 12 with an arbitrary oblique section of the four-dimensional CT image data obtained from the four-dimensional treatment plan database 111, The image correlation between the two modalities may be calculated, and the phase of the 3D CT image data including the arbitrary oblique section having the highest correlation value may be determined as the phase at that time. The tumor path can be determined from the specification of such an appropriate respiratory phase, and the irradiation control signal generation unit 15 can generate the irradiation timing signal.

また、臓器内に金属マーカなどが存在せず、相関計算だけでは位相を検出するのが難しい場合には、次に述べる方法を用いることができる。このとき、リアルタイム超音波画像として、走査面ごとに得られた、例えば、図14に示すような直交する2断面画像(PS1,PS2)を使用することができる。そして、直交2断面画像内で、動脈、静脈、門脈などの主要となる血管BTの断面CBTを3つ以上検出する。3つの位置関係から、4次元治療計画データベース111d内に格納された3次元CT画像データ群のどの断面を現在のリアルタイム超音波画像が描出しているかを計算する。 Further, when there is no metal marker or the like in the organ and it is difficult to detect the phase only by correlation calculation, the following method can be used. At this time, for example, two orthogonal cross-sectional images (PS1 and PS2) obtained for each scanning plane as shown in FIG. 14 can be used as the real-time ultrasonic image. Then, the orthogonal second-sectional image to detect arterial, venous, or three section C BT vascular BT as a main, such as the portal vein. From the three positional relationships, it is calculated which cross-section of the three-dimensional CT image data group stored in the four-dimensional treatment plan database 111d shows the current real-time ultrasonic image.

図14を用いて具体的な方法を説明する。超音波ボリュームデータVDは治療対象部位変位計測装置12から得られるものである。呼吸位相算出装置13dは、撮像した治療部位の実時間3次元画像の中から直交する2つの走査断面を抽出する図示しない走査断面抽出部を備えている。そして、図14(a1)に示すように超音波ボリュームデータVDから生成される直交する2つの走査面を走査面PS1と走査面PS2とする。走査面PS1、もしくは、走査面PS2のどちらか一方の走査面で、血管が3つ以上うつるように超音波プローブ22の固定場所を決定するようにする。図14(a2)、図14(a3)に示すように走査面PS1に血管BT1、BT2、BT3(まとめて血管BTと称する。)の断面CBT1,CBT2,CBT3が映ったとする。これらの血管BTの抽出は、当該血管の情報を4次元治療データベース111dにテンプレートとして事前登録しておき、相関演算部132dがそれを利用することにより実施することができる。また、これら、比較対象とする血管BTとして、動脈、静脈、門脈などの内、中枢からの分岐の回数の少ない、主要な太い系のものを利用するようにすると、血管の特定、つまり識別が容易となる。 A specific method will be described with reference to FIG. The ultrasonic volume data VD m is obtained from the treatment target region displacement measuring device 12. The respiratory phase calculation device 13d includes a scanning section extraction unit (not shown) that extracts two orthogonal scanning sections from the real-time three-dimensional image of the imaged treatment site. Then, the two scanning plane perpendicular generated from the ultrasound volume data VD m as shown in FIG. 14 (a1) and the scanning plane PS1 and the scanning plane PS2. The fixing location of the ultrasonic probe 22 is determined so that three or more blood vessels pass on either the scanning surface PS1 or the scanning surface PS2. Figure 14 (a2), and vascular BT1, BT2, BT3 (collectively referred to as blood vessel BT in.) Of the cross-section C BT1, C BT2, C BT3 is reflected in the scanning plane PS1 as shown in FIG. 14 (a3). The extraction of these blood vessels BT can be performed by previously registering information on the blood vessels as a template in the four-dimensional treatment database 111d and using the correlation calculation unit 132d. In addition, as the blood vessel BT to be compared, if a main thick system having a small number of branches from the center, such as arteries, veins, and portal veins, is used, blood vessels are identified, that is, identified. Becomes easy.

次に、時間が経過し、図14(b1)に示すように超音波ボリュームデータVDが取得されたものとする。この時、治療対象部位Taを含む臓器Orgが動き、図14(b2)、図14(b3)に示すように走査面PS1、PS2にうつる血管BT1、BT2、BT3の断面CBT1,CBT2,CBT3の位置関係も変化する。この血管BT1、BT2、BT3の断面CBT1,CBT2,CBT3それぞれの中心点(3点)の位置関係の変化から、治療対象部位Taを含む臓器Orgの移動変化そのものを推定する。ここでは、超音波ボリュームデータを使って説明したが、超音波ボリュームデータの代わりに治療計画時のCTボリュームデータを使って同様の推定をすることもできる。 Then, over time, the ultrasound volume data VD n as shown in FIG. 14 (b1) and those obtained. At this time, the organ Org including the treatment target site Ta moves, and as shown in FIGS. 14 (b2) and 14 (b3), cross sections C BT1 , C BT2 , blood vessels BT1, BT2, BT3 passing through the scan planes PS1, PS2, The positional relationship of CBT3 also changes. The vascular BT1, BT2, from the positional change in the relationship between BT3 sectional C BT1, C BT2, C BT3 respective center points (three points), to estimate the movement change itself organ Org containing the target site to be treated Ta. Although the description has been made using the ultrasound volume data here, the same estimation can be performed using the CT volume data at the time of treatment planning instead of the ultrasound volume data.

以上のように、本実施の形態4によれば、呼吸位相算出装置13dは、複数の3次元画像の中から任意の斜断面を抽出する斜断面抽出部を備え、治療対象部位変位計測装置12から得られる超音波画像データ(3次元)のある走査断面と、抽出した斜断面とを直接比較することで、両者の相関を計算して位相を算出するように構成したので、簡単な構成で位相を算出することができる。   As described above, according to the fourth embodiment, the respiratory phase calculation apparatus 13d includes the oblique section extraction unit that extracts an arbitrary oblique section from a plurality of three-dimensional images, and the treatment target region displacement measuring apparatus 12 is provided. By directly comparing the scan section with the ultrasonic image data (three-dimensional) obtained from the above and the extracted oblique section, the correlation between the two is calculated and the phase is calculated. The phase can be calculated.

とくに、4次元治療計画装置11dの4次元治療計画データベース111dには、治療計画ごとに治療対象部位Ta(を含む臓器Org)周辺の複数の血管BT1、BT2、BT3の位置データが記録され、呼吸位相算出装置13dは、撮像した治療部位の実時間3次元画像の中から直交する2つの走査断面PS1,PS2を抽出する走査断面抽出部を備え、撮像した治療対象部位Ta周辺の実時間3次元画像の所定の走査断面PS1、PS2に映る複数の血管CBT1,CBT2,CBT3の位置関係と血管の位置データとを比較して呼吸位相を算出するようにしたので、マーカが存在しない場合でも、治療対象部位Taの追跡を行い、位相を算出することができる。 In particular, in the 4D treatment plan database 111d of the 4D treatment plan apparatus 11d, position data of a plurality of blood vessels BT1, BT2, BT3 around the treatment target site Ta (including the organ Org) is recorded for each treatment plan, and breathing is performed. The phase calculation device 13d includes a scanning section extraction unit that extracts two orthogonal scanning sections PS1 and PS2 from the real-time three-dimensional image of the imaged treatment site, and the real-time three-dimensional area around the imaged treatment target site Ta. since to calculate the predetermined scanning plane PS1, reflected in PS2 multiple vascular C BT1, C BT2, the positional relationship between the blood vessel position data and compared with respiratory phase of C BT3 image, if the marker is not present However, it is possible to track the treatment target site Ta and calculate the phase.

なお、上記実施の形態4における血管の検出数である3という数字には限定があるわけではなく、特徴的な血管であれば、2点でも位相算出は可能である。一方、検出数が多いほど、臓器Orgの移動変化の推定精度は向上するので、対象となる臓器Orgや、その周辺の血管の構成や状態に応じて、適宜検出数を決定すればよい。治療計画時に、腫瘍経路と臓器運動の位置関係は事前に調べておくことができるので、このような臓器運動の抽出から腫瘍経路を決定することができ、照射制御信号生成部15dにて、照射タイミング信号を生成できるようになる。   Note that the number 3, which is the number of detected blood vessels in the fourth embodiment, is not limited, and the phase can be calculated at two points if it is a characteristic blood vessel. On the other hand, the greater the number of detections, the better the accuracy of estimation of the movement change of the organ Org. Therefore, the number of detections may be appropriately determined according to the target organ Org and the configuration and state of the surrounding blood vessels. Since the positional relationship between the tumor path and the organ movement can be examined in advance at the time of treatment planning, the tumor path can be determined from the extraction of the organ movement, and the irradiation control signal generation unit 15d performs irradiation. A timing signal can be generated.

11 4次元治療計画装置(111 4次元治療計画データベース)、
12 治療対象部位変位計測装置、
13 呼吸位相算出装置(131 3次元位置計測部、 132 相関演算部)、
15 照射制御信号生成部、 16 照射制御部、 17 照射装置、 19 警報発生部、 20 線量分布評価部、
21 3次元超音波診断装置本体、 22 超音波プローブ、 23 支持固定具、 41〜43 計測マーカ、44〜45 カメラ、
BT 血管、 CBT 血管の断面(像)、 C アイソセンタ、 LB ビームライン、 Org 治療対象部位を含む臓器、 PS1、PS2 走査面、 RTP 3次元治療計画データ、 RTP4D 4次元治療計画データ、 Ta 治療対象部位(照射ターゲット)、 VD 3次元ボリュームデータ。
添え字:b〜dは実施の形態により変形した例を示す。
11 4D treatment plan device (111 4D treatment plan database),
12 treatment object part displacement measuring device,
13 respiratory phase calculation devices (131 three-dimensional position measurement unit, 132 correlation calculation unit),
15 irradiation control signal generation unit, 16 irradiation control unit, 17 irradiation device, 19 alarm generation unit, 20 dose distribution evaluation unit,
21 three-dimensional ultrasonic diagnostic apparatus main body, 22 ultrasonic probe, 23 support fixture, 41-43 measurement marker, 44-45 camera,
BT vascular, C BT vessel cross-section (the image), C isocenter, LB beamline, organ containing Org treated site, PS1, PS2 scanning surface, RTP 3-dimensional treatment planning data, RTP 4D 4-dimensional treatment planning data, Ta treatment Target site (irradiation target), VD 3D volume data.
Subscripts: b to d show examples modified according to the embodiment.

Claims (7)

患者の治療対象部位に放射線を照射する照射装置と、
前記治療対象部位に対して前記患者の呼吸位相毎に事前に撮像された複数の3次元画像と、前記複数の3次元画像のそれぞれに対して生成された治療計画データとを保持する4次元治療計画装置と、
前記治療対象部位の実時間の変位を計測する治療対象部位変位計測装置と、
前記計測した治療対象部位の実時間の変位データと、前記事前に撮像された複数の3次元画像とに基づいて、呼吸位相を算出する呼吸位相算出装置と、
前記算出した呼吸位相と前記治療計画データに基づいて、前記照射装置を制御する照射制御部と、
前記治療対象部位に照射された放射線の線量分布を評価する線量分布評価部と、を備え、
前記線量分布評価部は、前記呼吸位相ごとに当該呼吸位相に対応する治療計画データに基づいて線量分布を計算するとともに、前記呼吸位相ごとに計算した線量分布を重ね合わせ、重ね合わせた線量分布に応じて放射線の照射量を制御することを特徴とする放射線治療システム。
An irradiation device for irradiating the patient's treatment site;
A four-dimensional treatment that holds a plurality of three-dimensional images captured in advance for each respiratory phase of the patient with respect to the treatment target region and treatment plan data generated for each of the plurality of three-dimensional images. Planning equipment;
A treatment target part displacement measuring device for measuring a displacement in real time of the treatment target part;
A respiratory phase calculation device that calculates a respiratory phase based on the measured real-time displacement data of the treatment target site and the plurality of three-dimensional images captured in advance;
Based on the calculated respiratory phase and the treatment plan data, an irradiation control unit that controls the irradiation device;
A dose distribution evaluation unit that evaluates the dose distribution of radiation irradiated to the treatment target site, and
The dose distribution evaluation unit calculates a dose distribution based on the treatment plan data corresponding to the respiratory phase for each respiratory phase, and superimposes the dose distribution calculated for each respiratory phase to obtain a superimposed dose distribution. A radiation therapy system that controls the radiation dose in response.
前記治療対象部位変位計測装置は、前記治療対象部位の3次元画像を実時間で撮像し、
前記呼吸位相算出装置では、撮像した治療対象部位の実時間3次元画像と、前記事前に撮像された複数の3次元画像とを比較して、呼吸位相を算出する、
ことを特徴とする請求項1に記載の放射線治療システム。
The treatment target part displacement measuring device captures a three-dimensional image of the treatment target part in real time,
In the respiratory phase calculation device, the real-time three-dimensional image of the imaged treatment target part is compared with the plurality of three-dimensional images captured in advance, and the respiratory phase is calculated.
The radiotherapy system according to claim 1.
前記照射制御部は、前記算出した呼吸位相があらかじめ定めた呼吸位相と一致している場合のみ、前記照射装置に放射線を照射させるようにしたことを特徴とする請求項1または2のいずれか1項に記載の放射線治療システム。   3. The radiation control unit according to claim 1, wherein the irradiation control unit causes the irradiation apparatus to irradiate radiation only when the calculated respiratory phase matches a predetermined respiratory phase. 4. The radiation therapy system according to item. 前記4次元治療計画装置は、前記放射線のビーム中心に対する前記治療対象部位変位計測装置のプローブの位置と、前記治療対象部位への放射線の線量の変動とを関係づけた線量変動データを格納し、
前記照射制御部は、測定したプローブの位置と、前記線量影響データに基づいて、前記治療対象部位の線量分布への影響が所定値より大きいと判定すると警報を発する警報装置を備えることを特徴とする請求項1ないし3のいずれか1項に記載の放射線治療システム。
The four-dimensional treatment planning apparatus stores dose variation data relating the position of the probe of the treatment target region displacement measuring device with respect to the center of the radiation beam and the variation of the radiation dose to the treatment target region,
The irradiation control unit includes an alarm device that issues an alarm when it is determined that the influence on the dose distribution of the treatment target region is larger than a predetermined value based on the measured probe position and the dose effect data. The radiotherapy system according to any one of claims 1 to 3.
前記照射装置から放射線を照射している期間は前記治療対象部位の変位計測を中断し、前記照射装置から放射線を照射していない期間のみ前記治療対象部位の変位計測を実行することを特徴とする請求項1ないし4のいずれか1項に記載の放射線治療システム。   Displacement measurement of the treatment target part is interrupted during a period during which radiation is emitted from the irradiation apparatus, and displacement measurement of the treatment target part is performed only during a period during which radiation is not emitted from the irradiation apparatus. The radiation therapy system of any one of Claims 1 thru | or 4. 前記呼吸位相算出装置は、前記複数の3次元画像の中から任意の斜断面を抽出する斜断面抽出部を備え、
撮像した治療対象部位の実時間3次元画像の所定の走査断面と、前記抽出した斜断面とを比較して、前記呼吸位相を算出する、
ことを特徴とする請求項2に記載の放射線治療システム。
The respiratory phase calculation device includes an oblique section extraction unit that extracts an arbitrary oblique section from the plurality of three-dimensional images,
Comparing a predetermined scanning cross-section of the captured real-time three-dimensional image of the treatment target site with the extracted oblique cross-section, to calculate the respiratory phase,
The radiotherapy system according to claim 2.
前記4次元治療計画装置には、前記治療計画ごとに前記治療対象部位周辺の複数の血管の位置データが記録され、
前記呼吸位相算出装置は、前記撮像した治療部位の実時間3次元画像の中から直交する2つの走査断面を抽出する走査断面抽出部を備え、
抽出した走査断面に映る複数の血管の位置関係と前記血管の位置データから前記呼吸位相を算出する、
ことを特徴とする請求項2に記載の放射線治療システム。
In the four-dimensional treatment plan apparatus, position data of a plurality of blood vessels around the treatment target site is recorded for each treatment plan,
The respiratory phase calculation device includes a scanning section extraction unit that extracts two orthogonal scanning sections from a real-time three-dimensional image of the imaged treatment site,
Calculating the respiratory phase from the positional relationship of the plurality of blood vessels shown in the extracted scanning section and the position data of the blood vessels,
The radiotherapy system according to claim 2.
JP2009189983A 2009-08-19 2009-08-19 Radiation treatment system Pending JP2012210232A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009189983A JP2012210232A (en) 2009-08-19 2009-08-19 Radiation treatment system
PCT/JP2010/057854 WO2011021410A1 (en) 2009-08-19 2010-05-10 Radiation treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009189983A JP2012210232A (en) 2009-08-19 2009-08-19 Radiation treatment system

Publications (1)

Publication Number Publication Date
JP2012210232A true JP2012210232A (en) 2012-11-01

Family

ID=43606868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009189983A Pending JP2012210232A (en) 2009-08-19 2009-08-19 Radiation treatment system

Country Status (2)

Country Link
JP (1) JP2012210232A (en)
WO (1) WO2011021410A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014155556A1 (en) * 2013-03-27 2014-10-02 株式会社島津製作所 Fluoroscopic device
JP2014217549A (en) * 2013-05-08 2014-11-20 富士フイルム株式会社 Mold, surgery support set, surgery support device, surgery support method, and surgery support program
JP2015142671A (en) * 2014-01-31 2015-08-06 株式会社東芝 Particle beam irradiation apparatus and method for controlling the same
JP2016511027A (en) * 2013-02-08 2016-04-14 コビディエン エルピー Lung denervation system and method
JP2016116559A (en) * 2014-12-18 2016-06-30 株式会社東芝 Dynamic body tracking treatment device, method, and program
JP2017121324A (en) * 2016-01-06 2017-07-13 株式会社東芝 Treatment system, medical image processing device, and treatment program
JP2017144000A (en) * 2016-02-16 2017-08-24 株式会社東芝 Medical image processing apparatus, method, and program, and radiotherapeutic apparatus
WO2017170178A1 (en) * 2016-03-30 2017-10-05 株式会社日立製作所 Particle beam dose evaluation system, planning device, particle beam irradiation system, and dose evaluation method
JP2017205482A (en) * 2016-05-17 2017-11-24 東芝メディカルシステムズ株式会社 Support device and support method
JP2018504969A (en) * 2015-01-28 2018-02-22 エレクタ、インク.Elekta, Inc. 3D localization and tracking for adaptive radiation therapy
JP2018075362A (en) * 2016-10-31 2018-05-17 キヤノンメディカルシステムズ株式会社 Particle beam treatment system
WO2018101499A1 (en) * 2016-11-29 2018-06-07 울산대학교 산학협력단 Respiratory monitoring device and method thereof
JP2018519115A (en) * 2015-07-09 2018-07-19 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Radiation therapy system using multiple treatment plans
WO2019008826A1 (en) * 2017-07-06 2019-01-10 株式会社島津製作所 Radiographic device and radiographic image detection method
JP2019018010A (en) * 2017-07-20 2019-02-07 安西メディカル株式会社 Radiotherapy system
KR20200114039A (en) * 2019-03-27 2020-10-07 사회복지법인 삼성생명공익재단 System and method for respiration-gated radiotherapy evaluation
KR20200134092A (en) * 2019-05-21 2020-12-01 사회복지법인 삼성생명공익재단 System and method for respiration-gated radiotherapy evaluation using machine learning
JP2020192274A (en) * 2019-05-30 2020-12-03 キヤノンメディカルシステムズ株式会社 Medical processing apparatus and radiotherapy apparatus
JP2021526949A (en) * 2018-06-08 2021-10-11 データ インテグリティ アドバイザーズ,エルエルシー Lung volume gate X-ray imaging system and method
WO2021240713A1 (en) * 2020-05-28 2021-12-02 イーグロース株式会社 Assisting device and program for radiation therapy
JP2022129776A (en) * 2021-02-25 2022-09-06 橘 理絵 Radiation exposure condition setting device, radiation exposure condition setting method, and radiation exposure condition setting program

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454246B (en) * 2011-09-30 2014-10-01 Mackay Memorial Hospital Immediate monitoring of the target location of the radiotherapy system
US9913996B2 (en) 2012-11-05 2018-03-13 Mitsubishi Electric Corporation Three-dimensional image capture system and particle beam therapy system
DE102012112348B4 (en) * 2012-12-14 2014-11-06 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Irradiation planning of a particle irradiation taking into account a movement of a target volume
US20150119699A1 (en) * 2013-10-24 2015-04-30 Varian Medical Systems, Inc. System and method for triggering an imaging process
TWI565450B (en) * 2014-05-14 2017-01-11 Diagnostic system and method of human body parts for diagnosis and treatment equipment
JP6996711B2 (en) * 2018-03-20 2022-01-17 国立研究開発法人量子科学技術研究開発機構 Medical image processing equipment, treatment systems, and medical image processing programs
EP4267243A1 (en) * 2020-12-23 2023-11-01 Ebamed SA A multiplanar motion management system
CN113274654B (en) * 2021-06-29 2024-03-01 程明霞 Tumor and organ position ultrasonic image real-time monitoring system for radiotherapy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003117010A (en) * 2001-08-09 2003-04-22 Mitsubishi Electric Corp Radiotherapy device, program and computer-readable recording medium recording program
CN101031336B (en) * 2005-02-04 2011-08-10 三菱电机株式会社 Particle beam irradiation method and device

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016511027A (en) * 2013-02-08 2016-04-14 コビディエン エルピー Lung denervation system and method
US10328280B2 (en) 2013-02-08 2019-06-25 Covidien Lp System and method for lung denervation
US10328281B2 (en) 2013-02-08 2019-06-25 Covidien Lp System and method for lung denervation
US11547872B2 (en) 2013-02-08 2023-01-10 Covidien Lp System and method for lung denervation
WO2014155556A1 (en) * 2013-03-27 2014-10-02 株式会社島津製作所 Fluoroscopic device
JP6065103B2 (en) * 2013-03-27 2017-01-25 株式会社島津製作所 X-ray fluoroscope
JPWO2014155556A1 (en) * 2013-03-27 2017-02-16 株式会社島津製作所 X-ray fluoroscope
TWI510221B (en) * 2013-03-27 2015-12-01 Shimadzu Corp X-ray fluoroscopic apparatus
JP2014217549A (en) * 2013-05-08 2014-11-20 富士フイルム株式会社 Mold, surgery support set, surgery support device, surgery support method, and surgery support program
JP2015142671A (en) * 2014-01-31 2015-08-06 株式会社東芝 Particle beam irradiation apparatus and method for controlling the same
JP2016116559A (en) * 2014-12-18 2016-06-30 株式会社東芝 Dynamic body tracking treatment device, method, and program
JP2018504969A (en) * 2015-01-28 2018-02-22 エレクタ、インク.Elekta, Inc. 3D localization and tracking for adaptive radiation therapy
US10987522B2 (en) 2015-01-28 2021-04-27 Elekta, Inc. Three dimensional localization and tracking for adaptive radiation therapy
JP2018519115A (en) * 2015-07-09 2018-07-19 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Radiation therapy system using multiple treatment plans
JP2017121324A (en) * 2016-01-06 2017-07-13 株式会社東芝 Treatment system, medical image processing device, and treatment program
JP2017144000A (en) * 2016-02-16 2017-08-24 株式会社東芝 Medical image processing apparatus, method, and program, and radiotherapeutic apparatus
JP2017176533A (en) * 2016-03-30 2017-10-05 株式会社日立製作所 Particle beam dose evaluation system, planning device, particle beam irradiation system, and dose evaluation method
WO2017170178A1 (en) * 2016-03-30 2017-10-05 株式会社日立製作所 Particle beam dose evaluation system, planning device, particle beam irradiation system, and dose evaluation method
US10835764B2 (en) 2016-03-30 2020-11-17 Hitachi, Ltd. Dose evaluation system, planning system, particle irradiation system and dose evaluation method
JP2017205482A (en) * 2016-05-17 2017-11-24 東芝メディカルシステムズ株式会社 Support device and support method
JP7019301B2 (en) 2016-05-17 2022-02-15 キヤノンメディカルシステムズ株式会社 Support device
JP2018075362A (en) * 2016-10-31 2018-05-17 キヤノンメディカルシステムズ株式会社 Particle beam treatment system
JP7086560B2 (en) 2016-10-31 2022-06-20 キヤノンメディカルシステムズ株式会社 Particle therapy system
WO2018101499A1 (en) * 2016-11-29 2018-06-07 울산대학교 산학협력단 Respiratory monitoring device and method thereof
JP2019013450A (en) * 2017-07-06 2019-01-31 株式会社島津製作所 Radiographic apparatus and radiation image detection method
WO2019008826A1 (en) * 2017-07-06 2019-01-10 株式会社島津製作所 Radiographic device and radiographic image detection method
JP2019018010A (en) * 2017-07-20 2019-02-07 安西メディカル株式会社 Radiotherapy system
JP7141875B2 (en) 2017-07-20 2022-09-26 安西メディカル株式会社 Radiation therapy system
JP2021526949A (en) * 2018-06-08 2021-10-11 データ インテグリティ アドバイザーズ,エルエルシー Lung volume gate X-ray imaging system and method
KR102248029B1 (en) * 2019-03-27 2021-05-04 사회복지법인 삼성생명공익재단 System and method for respiration-gated radiotherapy evaluation
KR20200114039A (en) * 2019-03-27 2020-10-07 사회복지법인 삼성생명공익재단 System and method for respiration-gated radiotherapy evaluation
KR20200134092A (en) * 2019-05-21 2020-12-01 사회복지법인 삼성생명공익재단 System and method for respiration-gated radiotherapy evaluation using machine learning
KR102273862B1 (en) * 2019-05-21 2021-07-06 사회복지법인 삼성생명공익재단 System and method for respiration-gated radiotherapy evaluation using machine learning
JP2020192274A (en) * 2019-05-30 2020-12-03 キヤノンメディカルシステムズ株式会社 Medical processing apparatus and radiotherapy apparatus
JP7350520B2 (en) 2019-05-30 2023-09-26 キヤノンメディカルシステムズ株式会社 Medical processing equipment and radiation therapy equipment
WO2021240713A1 (en) * 2020-05-28 2021-12-02 イーグロース株式会社 Assisting device and program for radiation therapy
JP2022129776A (en) * 2021-02-25 2022-09-06 橘 理絵 Radiation exposure condition setting device, radiation exposure condition setting method, and radiation exposure condition setting program

Also Published As

Publication number Publication date
WO2011021410A1 (en) 2011-02-24

Similar Documents

Publication Publication Date Title
WO2011021410A1 (en) Radiation treatment system
US8348846B2 (en) 3D motion detection and correction by object tracking in ultrasound images
US10646188B2 (en) Method and system for radiation application
EP1402761B1 (en) Method and system for predictive physiological gating
JP5801717B2 (en) Continuous stereoscopic imaging method and system for trajectory estimation and target position monitoring, computer product
JP2007236760A (en) Radiotherapy equipment control device and radiation irradiation method
JP2011500263A (en) Automatic correlation modeling of internal targets
US8358738B2 (en) Respiration-correlated radiotherapy
JP7330205B2 (en) Motion Tracking in Magnetic Resonance Imaging Using Radar and Motion Detection Systems
JP2006515187A5 (en)
EP1176919A4 (en) Apparatus and method for compensating for respiratory and patient motion during treatment
US10500418B2 (en) System and method for patient-specific motion management for treatment
JP7397909B2 (en) Guidance for lung cancer radiation
JP7362130B2 (en) radiation therapy equipment
JP6450165B2 (en) Charged particle beam apparatus, charged particle beam irradiation position specifying apparatus, and charged particle beam irradiation position specifying method
US20140171782A1 (en) Method for detecting the position of a transducer
EP2358276B1 (en) 3d motion detection and correction by object tracking in ultrasound images
JP2018175688A (en) Body tissue position measuring apparatus, radiation therapy apparatus, and body tissue position measuring method
RU2784922C2 (en) Motion tracking in magnetic resonance imaging, using radar and motion detection system
KR20140021109A (en) Method and system to trace trajectory of lesion in a moving organ using ultrasound